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Abstract 
This study investigates how pesticide use by neighboring farmers affects a given farmer’s 

pesticide use. Although it is common knowledge that pesticide use has spatial externalities, 

few empirical economic studies directly analyze this issue. Applying the spatial panel 

econometric model to the plot-level panel data in Bohol, the Philippines, this study shows 

that the pesticide use, especially for herbicides, is spatially correlated although there is no 

statistically significant spatial correlation in unobserved shocks. This implies that farmers 

apply pesticides by mimicking neighboring farmers’ behavior rather than rationally 

responding to the intensity of infestation. 

 

Keywords: pesticide use, neighborhood effects, externality, spatial econometrics, rural 

Philippines 

JEL classification: Q56, Q12, O13 

  

                                            
† This research was supported by a Grant-in-Aid for JSPS Fellows (14J10587). I am 
especially grateful to Kei Kajisa for providing the detailed data, Alistair Munro for his 
encouragement from the early stages of the draft, and Akiko Oguchi for her seminar 
presentation that inspired this study. I also thank Nobuyoshi Kikuchi, Takashi Kurosaki, 
Keijiro Otsuka, Daichi Shimamoto, Masahiro Shoji, Ryo Takahashi, and the participants at 
ABEF 2015 and TEA 2016 for their constructive comments. All remaining errors are my 
own. 
* Address: 7-22-1 Roppongi, Minato-ku, Tokyo 106-8677, Japan. 
E-mail: aidatakeshi@gmail.com 



 2 

1. Introduction 
 

Pesticides, if properly used, can enhance agricultural productivity by reducing crop 

damage. However, their inappropriate use can cause serious problems, for example, to the 

environment, farmers’ health, and food safety. In addition, especially in developing countries, 

farmers are often unaware of the proper use of pesticides, which could lead to their acute 

and/or chronic poisoning as well as to environmental degradation (e.g., Rola and Pingali 

1993; Shetty 2004). In fact, some studies argue that the health cost is so high as to offset a 

large part of the benefit (e.g., Antle and Pingali 1994; Pingali et al. 1994; Soares and Porto 

2009). Thus, better understanding of farmers’ decisions on pesticide use is very important not 

only for the field of agricultural research but also for perspectives on policymaking to reduce 

improper pesticide usage.  

In the theoretical economic analysis of pesticide use, farmers are assumed to optimize 

their application amount by equalizing marginal benefit and marginal cost (e.g., Headley 

1972; Sexton et al. 2007). However, this optimization often does not incorporate spatial 

externalities of pesticide use, and the results might not be socially optimal. In order to fill this 

gap, this study aims to analyze spatial externalities, that is, neighborhood effects (e.g., 

Manski 1993; Durlauf 2004; Ioannides and Topa 2010), in pesticide use. 

In the case of pesticide use, neighborhood effects are consequential in several ways. 

First, pesticide application in surrounding plots can directly reduce the weed or pest 

population, which leads to lower usage in the farmer’s own plot. However, regarding 

insecticides, neighbors’ use could increase one’s own use because these can kill not only 

pests but also the beneficial insects that prey them and increase reliance on insecticides 

(Grogan and Goodhue 2012). Second, pest and weed infestation, which are difficult for 

econometricians to observe accurately, can be spatially correlated (e.g., Ferguson et al. 2003; 

Walter and Simmelsgaard 2002). In this case, positive spatial correlation in usage is expected 

to respond to correlated intensity of infestation. In addition to these effects, it is possible to 

observe a positive neighborhood effect if farmers simply mimic neighboring farmers’ 

application pattern, which often results in inappropriate use (Escalada and Heong 1993).  

In terms of empirical analysis of individual pesticide use, studies have been focusing on 

the effect of behavioral parameters such as risk and loss aversion (Liu and Huang 2013). 

Other studies focus on the pesticide reduction effect of integrated pest management (IPM) 

programs (e.g., Burrows 1983; Fernandez-Cornejo 1996; Ferraioli 1999) and genetically 

modified crops (e.g., Huang et al 2005; Qaim and de Janvry 2005; Qaim and Zilberman 

2003). However, very few empirical studies directly examine the neighborhood effects of 
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pesticide use. An interesting exception is Grogan and Goodhue (2012), who analyze the 

effect of landscape-level use of pesticide on individual farmers’ use in the California citrus 

industry. However, in the case of Asian countries, where small-scale farming is dominant 

(e.g., Eastwood et al. 2010), the ownership of individual farm plots is complex. Thus, it is 

necessary to analyze plot-level data by explicitly incorporating geographical information to 

discuss externalities of pesticide use. 

One of the straightforward ways to incorporate these neighborhood effects into an 

empirical model is to employ the spatial econometric approach (e.g., Anselin 1988). Spatial 

econometrics is effective for agricultural and environmental studies, where spatial effects can 

be an important issue. In fact, using this approach, several studies analyze spatial externality 

in yield (e.g., Florax et al. 2002; Druska and Horrace 2004) and the response to fertilizers 

(Anselin et al. 2004). However, to the best of my knowledge, none of the studies applies this 

approach to the analysis of pesticide use, in which neighborhood effects can be more salient 

than other inputs of usage because of its direct and indirect neighborhood effects. 

The aim of this study is to analyze the neighborhood effects of pesticide use by 

employing spatial panel econometric approach. This study uses a dataset on rice farmers in 

Bohol Island in the Philippines. The advantage of the dataset is that plot-level panel data of 

agricultural input and GPS data are available. Thus, assuming time invariance, including 

individual fixed effects controls for the effect of preference parameters (e.g., time discounting, 

risk preference, loss aversion), which are important determinants of pesticide use (e.g., 

Pannell 1991; Liu and Huang 2013).  

The remainder of this article is organized as follows. The next section describes the data 

and summary statistics. The third section describes the empirical strategy of this article, and 

the fourth section discusses the estimation results. The final section offers the summary and 

concluding remarks. 

 

2. Data 
 

The study site is the northeastern part of Bohol Island in the Philippines (Figure 1). 

Rainfall in this area is mostly evenly distributed throughout the year with comparatively little 

rainfall from February to May and more rainfall from June to January (JICA and IRRI 2012). 

Supported by Japanese ODA loans, the Bayongan irrigation system started operation in 2008 

to enhance agricultural productivity. Its main canal is 17.5 km long and the actual irrigated 

area is 2644 ha as of November 2011, covering 14 villages in three municipalities: San 

Miguel, Ubay, and Trinidad. In order to assess its socio-economic impact, the International 
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Rice Research Institute (IRRI) conducted a series of household surveys over five cropping 

seasons: 2008-09 dry, 2009 rainy, 2009-10 dry, 2010 rainy, and 2010-11 dry seasons1. 

However, since the first round of this series focused on irrigation management and covered 

only the upstream laterals in the irrigation scheme, this study uses the panel data of the last 

four seasons. The original sampling target was 418 irrigable households that were randomly 

selected from each irrigation water users’ group and 429 randomly selected households from 

the adjacent villages that were similar to the irrigated area in terms of hydrology, agronomy, 

and socioeconomics. Note that all sample households are rice farmers and rice has been the 

dominant crop often cultivated twice a year even before this project. In this survey, the IRRI 

collected data on agricultural input and output in each farmer’s main plot with its GPS 

coordinates as well as other household characteristics. Upon dropping the missing values, the 

household-plot-level balanced panel data is available for 665 households, including 348 

rain-fed and 317 irrigated households. The average distance between each farm plot is 6.68 

km. 

Table 1 shows the summary statistics of the variables used in this study. This study 

focuses on two types of pesticides: herbicide and insecticide. Since the sample farmers use 

various brands of pesticide, the unit of usage amount is represented in terms of active 

ingredients (kg per hectare) for comparison2. The average size of the surveyed plot is 0.64 ha. 

Note that the size of the surveyed plot is time variant, albeit slightly, depending on the 

irrigation water accessibility3. Because of the original sampling scheme, about half of the 

sample plot is irrigated. For these irrigated plots, self-reported irrigation water usage during 

each season, which is measured by the cumulative depth in an irrigation canal (in meters), is 

available4. In this study area, only 3.3% of farmers adopt hybrid seeds. However, since it is 

possible that the pattern of pesticide application is different between hybrid and non-hybrid 

seeds, this variable is included in the main analysis. 15.3% of samples are classified as credit 

constraint, that is, they could not borrow as much as they wanted or did not apply credit for 

fear of rejection. 

Figures 2 and 3 show the spatial pattern of herbicide and insecticide use, respectively. 

                                            
1 See JICA and IRRI (2012) and Tsusaka et al. (2015) for details. 
2 The main ingredients of the commonly used herbicides and insecticides are classified as 
moderately or slightly hazardous (II or III) in WHO (2010). However, some insecticide 
brands include extremely hazardous (Ia) ingredients, which require special care for handling. 
3 The correlation between the size of surveyed plot and irrigation water usage is significantly 
positive at the 1% level. 
4 For rain-fed plots, the irrigation water depth is set to zero. 
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Comparing to insecticides, there seems to be weak geographical concentration in herbicide 

use. In contrast, the pattern of insecticide use is more dispersed. However, there is an 

increasing trend in the amount of usage of insecticides over time. Figure 4 shows the time 

trend in average pesticide usage amount. As expected, there is a clear increasing trend in 

insecticide use, whereas there is no clear trend in herbicide use. Since it takes a decade for 

insects and 10–25 years for plants to gain resistance to pesticides (Palumbi 2001), it is 

difficult to attribute this trend to the issue of resistant pests. Instead, this increasing trend 

might reflect the path dependence of pesticide use because of high cost of returning to 

low-pesticide farming (Cowan and Gunby 1996; Wilson and Tisdell 2001). 

In order to test spatial correlation statistically, Moran’s I statistics of pesticide usage 

amount are calculated for each season. Table 2 shows the results. Consistent with graphical 

analysis, there is significant spatial correlation in herbicide use. In the case of insecticide, the 

correlation is significant for 2009-10 dry and 2010 rainy seasons.  

Although these findings suggest the existence of neighborhood effects in pesticide use, 

especially for herbicides, the results so far do not control other variables. In addition, spatial 

correlation in the unobserved intensity of infestation cannot be tested by these analyses. Thus, 

in order to test neighborhood effects rigorously, it is necessary to employ the spatial 

econometric approach. 

 

3. Empirical Strategy 
 

In order to test neighborhood effects in pesticide use, this study employs the spatial 

econometric approach. Spatial econometric models incorporate spatial dependence and 

heterogeneity (e.g., Anselin 1988; LeSage and Pace 2008). Among these models, the 

combined spatial lag and error (SAC) model with individual fixed effects (e.g., Elhorst 2003, 

2010, 2014; Anselin et al. 2008) is used for the purpose of this study. The model to be 

estimated is 

 

𝑦𝑦𝑡𝑡 = 𝜌𝜌𝜌𝜌𝑦𝑦𝑡𝑡 + 𝑋𝑋𝑡𝑡𝛽𝛽 + 𝜏𝜏𝑡𝑡 + 𝜂𝜂 + 𝑢𝑢𝑡𝑡 (1) 

 

𝑢𝑢𝑡𝑡 = 𝜆𝜆𝜌𝜌𝑢𝑢𝑡𝑡 + 𝜖𝜖𝑡𝑡, (2) 

 

where 𝑦𝑦𝑡𝑡 is a vector of the amount of herbicide or insecticide use at time t, 𝜌𝜌 is an 𝑛𝑛 × 𝑛𝑛 

inverse-distance weight matrix to capture spatial effects, 𝑋𝑋𝑡𝑡 is a set of control variables at 

time t, 𝜏𝜏𝑡𝑡 denotes period fixed effects to control for period-specific aggregate shocks, 𝜂𝜂 
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represents household-plot fixed effects to control time-invariant unobserved preference 

parameters as well as plot characteristics, and 𝜖𝜖𝑡𝑡 is the vector of the well-behaved error term. 

Note that 𝜌𝜌 is row-standardized for estimation, implying that 𝜌𝜌𝑦𝑦𝑡𝑡 represents the weighted 

average of neighbors’ pesticide usage amount. The coefficient on the spatial lag term, 𝜌𝜌, 

captures spatial correlation in pesticide use.  

After controlling for observed and unobserved characteristics, the residual 𝑢𝑢𝑡𝑡 captures 

the intensity of infestation, which can be spatially correlated. If unobserved insect or weed 

infestation correlates spatially, 𝜆𝜆 should be positive. If 𝜆𝜆 is not significantly different from 

zero, it implies that (i) shocks are actually not spatially correlated or that (ii) farmers’ 

pesticide application is not based on the intensity of infestation. Note that case (ii) can 

happen if farmers use pesticides as preventive measures, which often results in injudicious 

use5 (e.g., Plianbangchang et al. 2009). 

The main parameters of interest are 𝜌𝜌  and 𝜆𝜆 , which capture spatial dependence 

(“endogenous effect”) and heterogeneity (“correlated effect”), respectively. One possible 

scenario of neighborhood effects in pesticide use arises from spatially correlated shocks. If 

the farmers respond to spatially correlated shocks, both 𝜌𝜌 and 𝜆𝜆 are expected to be positive. 

On the other hand, if the intensity of infestation is not spatially correlated (𝜆𝜆 = 0), the spatial 

lag term should be 0 as long as the farmers are rational and there is no other type of spatial 

externality in pesticide use. In contrast to these cases, 𝜌𝜌 > 0 and 𝜆𝜆 = 0 imply that farmers 

are mimicking the pattern of pesticide application in surrounding farm plots, because 

otherwise, there is no rational reason for the application pattern to be spatially correlated 

without significant spatially correlated shocks. In addition to these cases, neighborhood 

effects in pesticide use arise from the endogenous effect. In the case of insecticides, 𝜌𝜌 can be 

positive or negative because neighboring farmers’ insecticide use can kill both pests and their 

predator insects. If the impact of killing pests outweighs that of killing predator insects, the 

net impact would be negative (𝜌𝜌 < 0) because surrounding farmers’ usage leads to lower 

application. Conversely, if the impact of killing predator insects outweighs that of killing 

pests, the net impact would be positive. Thus, the sign of 𝜌𝜌 is an empirical question for 

rational insecticide use. As for herbicides, the expected endogenous effect is negative, though 

negligible, because herbicide drift from surrounding farm plots can reduce the weed 

population in one’s own plot, which leads to lower herbicide use. Thus, positive 𝜌𝜌 without a 

significant spatial error term implies mimicking behavior in herbicide use. 

                                            
5 Preventive use is common for herbicides in this area. 
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Note that model (1) is a structural form in the sense that 𝑦𝑦𝑡𝑡 is present on both sides. 

Thus, the OLS estimators are known to be inconsistent (e.g., Anselin 1988; LeSage and Pace 

2008). In order to handle this problem, this study employs the maximum likelihood approach 

by solving (1) and (2) for 𝜖𝜖𝑡𝑡 and assuming it to be independent and identically distributed 

following a normal distribution. In addition, the transformation approach proposed by Lee 

and Yu (2010) is also employed for bias correction.6 

Although the most preferable specification is the SAC model with individual fixed 

effects to control unobserved individual heterogeneities, it is also informative to discuss the 

impact of time-variant variables. For this purpose, pooled OLS regression and corresponding 

cross sectional SAC models are also estimated. In addition, there are many cases where 

farmers did not use any herbicides or insecticides during each survey period. Thus, linear 

probability models are also estimated to analyze the decision whether to apply pesticide.7 

 

4. Empirical Results 
 

Using the econometric models discussed above, this section analyzes the neighborhood 

effects for herbicides and insecticides, respectively. 

 

4.1 Herbicide Use 

The first four columns of Table 3 show the estimation results of the neighborhood 

effects in herbicide use when the dependent variable is the usage amount. The spatial lag term 

is significantly positive with and without fixed effects. In contrast, the spatial error term is 

not significant in both cases. Thus, the farmers’ usage pattern is correlated without spatially 

correlated shocks, implying that they mimic their neighbors. 

The results of the pooled OLS and cross-sectional SAC models show that the distance to 

the agricultural supplier in the nearest town is negatively associated with the usage of 

herbicides, suggesting that the cost of the herbicide is a hindrance for application. Although 

the irrigation dummy itself is not statistically significant, the amount of irrigation water usage 

has a significantly negative effect and its magnitude is not considerably affected even after 

controlling for fixed effects. This implies that irrigation water generally prevents the growth 

of weed population. The sign on the size of the surveyed plot is negative, which represents 

                                            
6  Because of this approach, the sample size reduces from NT to N(T-1) for spatial 
fixed-effect model. 
7 Since the estimation of spatial Tobit models did not converge, they are not reported. 
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economy of scale (Liu and Huang 2013). Though credit constraint is negatively associated 

with the usage amount, it becomes insignificant in the fixed-effect models. Thus, credit 

constraint is not necessarily a barrier for herbicide use. Larger household size is associated 

with lower herbicide use, suggesting that herbicides can be substituted for weeding by the 

household members. Note that the qualitative results remain virtually unchanged between the 

models with and without the spatial terms. 

The remaining four columns show the estimation results when the dependent variable is 

a dummy for whether the farmers applied herbicides. Consistent with the first four columns, 

the spatial lag term is significantly positive but the spatial error term is insignificant. Thus, 

this finding is robust and supports the possibility of farmers’ mimicking use of herbicides. As 

for other variables, the results do not change qualitatively except for the sign of the surveyed 

plot size. Combined with the findings above, larger plot size is associated with higher 

probability of application and lower amount, which supports the existence of scale economy. 

However, the positive coefficient on plot size becomes significant when time-invariant 

heterogeneities are controlled for. 

 

4.2 Insecticide Use 

The first four columns of Table 4 show the estimation results of the neighborhood 

effects in insecticide use when the dependent variable is the usage amount. In contrast to the 

herbicide use, both spatial lag and error are insignificant. This can be reasonable because the 

insignificant spatial lag term can result from the lack of spatially correlated pest infestation. 

Similar to the herbicide case, the size of the surveyed plot has negative impact on the 

insecticide use, implying the effect of scale economy. The coefficient on distance to the 

agricultural suppler in the nearest town is negative but insignificant. As for the irrigation 

variables, though the irrigated dummy is significantly negative, irrigation water use is 

insignificant and robust to the inclusion of fixed effects, suggesting higher insecticide use in 

the rain-fed area. This might reflect the fact that the intensity of pests is lower in the irrigated 

area because the timing of transplanting is synchronized due to the timing of irrigation water 

supply8 (Litsinger et al. 2009). The coefficient on household size is negative but insignificant, 

which contrasts with the herbicide case. This is because pest infestation is more difficult to 

monitor or predict than weed infestation. Consistent with the graphical analysis (Figures 2-4), 

                                            
8 In fact, the standard deviation of the timing of transplanting is significantly smaller in the 
irrigated area than in the rain-fed area for all seasons. Note that direct sowing is not common 
in this area. 
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the magnitudes of the coefficients on the season dummies are increasing, suggesting path 

dependence in insecticide use. 

The remaining four columns show the estimation results when the dependent variable is 

a dummy for whether they applied insecticides or not. The spatial error term is significantly 

positive in the pooled SAC model, indicating that pest damage might be spatially correlated. 

However, the spatial lag term is insignificant. This inconsistency also implies that farmers do 

not properly respond to pest damage. However, in the SAC model with fixed effects, the 

spatial lag term becomes significantly positive and the spatial error term becomes 

insignificant. This finding is consistent with the herbicide case and supports mimicking use in 

insecticide use. Similar to the herbicide case, the coefficient on plot size is positive but 

insignificant in the fixed-effect models. 

Comparing to the robust positive coefficient on the spatial lag term in herbicide use, 

significance is much lower in insecticide use. This contrast might imply that negative 

externalities arising from reducing pest insect population is much stronger than that from 

herbicide drift, which results in less precise estimates. 

 

4.3 Irrigated vs. Rain-fed Samples 

Further, it is informative to analyze the neighborhood effects separately for irrigated and 

rain-fed households because the pattern of pesticide application and unobserved intensity of 

infestation might be different. Note that dividing the sample implicitly assumes that there is 

no neighborhood effect between irrigated and rain-fed households. Tables 5 and 6 show the 

estimation results for herbicide and insecticide use, respectively. Since the introduction of the 

spatial terms has virtually no effect on other coefficients, the estimation results are reported 

only for the spatial models. 

The first four columns of Table 5 show the results for irrigated households and the last 

four columns for rain-fed households, respectively. There is no clear difference between 

irrigated and rain-fed samples for herbicide use. The spatial lag term in the SAC model with 

fixed effects is significantly positive for columns (2) and (8), but the spatial error term is 

always insignificant. This result also supports, albeit weakly, the hypothesis of mimicking the 

neighboring households. Compared to the significant spatial lag term in Table 3, this lack of 

significance might imply salient endogenous effects between the irrigated and the rain-fed 

households. Overall tendency of the other coefficients is not very different from those of 

Table 3 except that the coefficients are less precisely estimated. 

Similarly, Table 6 shows the results for insecticide use. In contrast to the ambiguous 

difference for herbicide use, there is a clear difference in the spatial error terms for insecticide 
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use. Although 𝜆𝜆  is insignificant in all specifications for irrigated households, it is 

significantly positive for rain-fed households except for column (8). As mentioned above, 

these significant coefficients might indicate higher intensity of pests in the rain-fed area 

because of the lack of synchronized transplanting. The spatial lag term is significantly 

negative in column (5), implying that the negative endogenous effect from reducing the pest 

population is larger than the positive effect from killing predator insects. However, it 

becomes insignificant when plot fixed effects are controlled for. Another interesting finding is 

that the increasing trend in insecticide use can be found only in the rain-fed area, implying 

that the path dependence issue is more salient—and thus, the problem of insecticide use is 

more serious—in the rain-fed area than in the irrigated area. 

 

5. Concluding Remarks 

 

This study investigates neighborhood effects in pesticide use by employing the spatial 

econometric approach. By exploiting the plot-level panel data in the rural Philippines, this 

study controls for time-invariant individual characteristics, which affect pesticide use but are 

difficult to observe. The estimation results show that although there is no significant spatial 

correlation in an unobserved degree of infestation, the usage is spatially correlated, especially 

for herbicide use. This finding indicates that when farmers apply pesticide, they do not 

respond to the degree of infestation but mimic the neighboring farmers’ application. Thus, the 

current usage amount may not be optimal and there is room for pesticide reduction. To the 

best of my knowledge, this is the first statistical evidence that suggests mimicking behavior 

in pesticide use. 

Another important finding is that sufficient irrigation water use can reduce herbicide use. 

Since irrigation water is a common pool resource, effective allocation requires 

community-level involvement. In this sense, collective action among neighbors can indirectly 

lead to pesticide reduction through irrigation management as well as direct effects of joint 

pest management (e.g., Regev et al. 1976). 

In addition to these results from econometric analysis, there are some anecdotal 

evidences from an open-ended interview. In the interview, an elder farmer answered that 

others refer to his pesticide use by asking him what type of pesticide he is spraying. However, 

they do not coordinate in crop protection except for few farmers who engage in synchronized 

transplanting as a method of IPM. Intriguingly, another farmer also answered that she was 

trying to reduce pesticide use by employing traditional pest control methods because of food 

safety concerns. These evidences suggest that there continues to be room for pesticide 



 11 

reduction and improving farmers’ welfare. 

Some policy implications can be drawn from these findings. First, since farmers may 

apply pesticide by mimicking neighboring farmers, policy interventions such as agricultural 

training programs that provide them with proper knowledge about the usage of pesticides, are 

effective to reduce pesticide use. In addition, since there is an increasing trend in insecticide 

use, reducing the current use can lead to the reduction of insecticide use in the future. The 

training should provide information not only on the timing and the amount of pesticide 

application but also on the proper use of protective cover to prevent acute and chronic 

poisoning. Giving this training to selective farmers would be sufficient because it will be 

disseminated among the neighboring farmers through the mimicking process, thus being a 

cost-effective intervention (e.g., Krishnan and Patnam 2013; Nakano et al. 2015).  
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Figure 1: Map of the Study Site (cited from JICA-IRRI (2012)) 
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Table 1: Summary Statistics 

  Count Mean S.D. 

Herbicide (kg per ha; active ingredients) 2660 0.073 0.193 

Insecticide (kg per ha; active ingredients) 2660 0.051 0.140 

Irrigated dummy 2660 0.477 0.500 

Size of surveyed plot 2660 0.635 0.498 

Log (irrigation water use +1) 2660 1.322 1.645 

Hybrid dummy 2660 0.033 0.179 

Credit-constrained dummy 2660 0.153 0.360 

Distance to the nearest agricultural supplier (km) 2660 16.348 3.172 

Age of household head 2660 52.856 12.186 

Education level of household head 2660 6.177 3.216 

Female household head dummy 2660 0.057 0.232 

Household size 2660 5.677 2.504 

Note: Irrigation water use is self-reported amount of irrigation water usage measured by the 

cumulative depth in an irrigation canal (in meters) and replaced with 0 for rain-fed 

households.
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Figure 2: Spatial Pattern of Herbicide Usage Amount 
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Figure 3: Spatial Pattern of Insecticide Usage Amount 
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Figure 4: Time Trend in Average Pesticide Usage Amount 
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Table 2: Moran’s I of Pesticide Use 

  Herbicide Insecticide 

2009 Rainy 0.018*** 0.002 

 

(0.004) (0.004) 

2009-10 Dry 0.007** 0.005** 

 

(0.004) (0.004) 

2010 Rainy 0.016*** 0.009*** 

 

(0.004) (0.004) 

2010-11 Dry 0.029*** 0.002 

  (0.004) (0.004) 

Standard deviations are in parentheses. *** p<0.01, ** p<0.05, * p<0.1  
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Table 3: Estimation Results for Herbicide Use 

  (1) (2) (3) (4) (5) (6) (7) (8) 
MODEL OLS SAC FE SAC FE OLS SAC FE SAC FE 
VARIABLES kg/ha kg/ha kg/ha kg/ha dummy dummy dummy dummy 
                  
Irrigated dummy 0.0183 0.0209 

  
-0.00802 0.0152 

  
 

(0.0167) (0.0137) 
  

(0.0389) (0.0302) 
  Size of surveyed plot -0.0185** -0.0178** -0.0359** -0.0352** 0.0769*** 0.0774*** 0.0220 0.0225 

 
(0.00758) (0.00758) (0.0155) (0.0154) (0.0251) (0.0165) (0.0285) (0.0284) 

Log (irrigation water use +1) -0.0103** -0.00949** -0.0120** -0.0103** -0.0296*** -0.0279*** -0.0325*** -0.0313*** 

 
(0.00433) (0.00430) (0.00492) (0.00497) (0.0103) (0.00930) (0.00933) (0.00935) 

Hybrid dummy -0.00232 -0.00258 0.0141 0.0122 -0.0528 -0.0529 -0.00354 -0.00621 

 
(0.0166) (0.0207) (0.0150) (0.0147) (0.0378) (0.0451) (0.0379) (0.0371) 

Credit constrained -0.0234*** -0.0234** -0.00507 -0.00634 -0.0378* -0.0373 -0.00875 -0.0105 

 
(0.00897) (0.0106) (0.00894) (0.00892) (0.0229) (0.0231) (0.0228) (0.0227) 

Distance to the nearest agricultural 

 

-0.00844*** -0.00603*** 
  

-0.0198*** -0.0133*** 
  

 
(0.00137) (0.00126) 

  
(0.00332) (0.00297) 

  Age of household head 0.00303 0.00291 
  

0.0128* 0.0126*** 
  

 
(0.00265) (0.00217) 

  
(0.00660) (0.00473) 

  Age squared (divided by 100) -0.00280 -0.00271 
  

-0.0116* -0.0114*** 
  

 
(0.00250) (0.00201) 

  
(0.00618) (0.00437) 

  Education level of household head 0.000408 0.000357 
  

0.000495 0.000445 
  

 
(0.00148) (0.00121) 

  
(0.00370) (0.00264) 

  Female household head dummy -0.0166 -0.0161 
  

-0.0676 -0.0671* 
  

 
(0.0214) (0.0162) 

  
(0.0419) (0.0353) 

  Household size -0.00680*** -0.00679*** 
  

-0.0165*** -0.0165*** 
  

 
(0.00200) (0.00154) 

  
(0.00426) (0.00335) 

  2009 dry season dummy -0.0231*** -0.0142 -0.0192** -0.0139* -0.0838*** -0.0449** -0.0773*** -0.0640*** 
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(0.00827) (0.00886) (0.00822) (0.00833) (0.0199) (0.0217) (0.0196) (0.0225) 

2010 wet season dummy -0.0100 -0.00971 -0.00756 -0.00781 -0.0222 -0.0217 -0.0187 -0.0204 

 
(0.00904) (0.00846) (0.00905) (0.00915) (0.0213) (0.0182) (0.0213) (0.0234) 

2010 dry season dummy -0.00953 -0.0108 -0.00785 -0.00839 -0.0823*** -0.0514** -0.0800*** -0.0698*** 

 
(0.0107) (0.00901) (0.0108) (0.0110) (0.0219) (0.0217) (0.0216) (0.0232) 

Spatial lag (𝜌𝜌) 

  
0.619*** 

 
0.396** 

 
0.604*** 

 
0.226* 

  
(0.189) 

 
(0.163) 

 
(0.181) 

 
(0.118) 

Spatial error (𝜆𝜆) 

  
-0.317 

 
0.0249 

 
-0.331 

 
0.108 

  
(0.287) 

 
(0.166) 

 
(0.265) 

 
(0.124) 

Constant 0.201*** 0.115* 0.120*** NA 0.368** 0.0911 0.313*** NA 

 
(0.0685) (0.0648) (0.0136) NA (0.174) (0.153) (0.0290) NA 

         Observations 2,660 2,660 2,660 1,995 2,660 2,660 2,660 1,995 
Log likelihood 650.4261 655.69448 1411.859 1366.1933 -1415.89 -1411.079 -552.614 -600.332 

Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Estimation Results for Insecticide Use 

  (1) (2) (3) (4) (5) (6) (7) (8) 
MODEL OLS SAC FE SAC FE OLS SAC FE SAC FE 
VARIABLES kg/ha kg/ha kg/ha kg/ha dummy dummy dummy dummy 
                  
Irrigated dummy -0.0263*** -0.0284** 

  
-0.0763* -0.0744* 

  
 

(0.00990) (0.0114) 
  

(0.0412) (0.0411) 
  Size of surveyed plot -0.0112** -0.0115** -0.0280* -0.0279* 0.0892*** 0.0873*** 0.0145 0.0154 

 
(0.00544) (0.00553) (0.0152) (0.0151) (0.0323) (0.0191) (0.0319) (0.0317) 

Log (irrigation water use +1) 0.00343 0.00295 0.00285 0.00246 0.00148 -0.00454 0.0156 0.0120 

 
(0.00256) (0.00325) (0.00310) (0.00320) (0.0122) (0.0113) (0.0133) (0.0138) 

Hybrid dummy 0.0179 0.0179 0.0235 0.0234 0.0433 0.0431 0.0437 0.0410 

 
(0.0200) (0.0152) (0.0205) (0.0206) (0.0522) (0.0527) (0.0645) (0.0641) 

Credit constrained -0.00676 -0.00645 -0.000997 -0.000484 -0.0554** -0.0514* -0.0252 -0.0238 

 
(0.00905) (0.00775) (0.0116) (0.0118) (0.0281) (0.0267) (0.0286) (0.0284) 

Distance to the nearest agricultural 

 

-0.00125 -0.00148 
  

-0.00517 -0.00596 
  

 
(0.000953) (0.00109) 

  
(0.00414) (0.00426) 

  Age of household head 0.00500*** 0.00505*** 
  

0.0182** 0.0180*** 
  

 
(0.00156) (0.00157) 

  
(0.00711) (0.00540) 

  Age squared (divided by 100) -0.00509*** -0.00513*** 
  

-0.0198*** -0.0196*** 
  

 
(0.00141) (0.00145) 

  
(0.00659) (0.00499) 

  Education level of household head -0.00146 -0.00141 
  

-0.00485 -0.00484 
  

 
(0.000991) (0.000884) 

  
(0.00397) (0.00305) 

  Female household head dummy 0.00764 0.00811 
  

-0.0777 -0.0656 
  

 
(0.0187) (0.0117) 

  
(0.0516) (0.0403) 

  Household size -0.00123 -0.00131 
  

-0.00758 -0.00797** 
  

 
(0.00126) (0.00111) 

  
(0.00464) (0.00381) 

  2009 dry season dummy 0.0118* 0.0163 0.0131* 0.0108 -0.177*** -0.147* -0.166*** -0.105*** 
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(0.00715) (0.0156) (0.00754) (0.0102) (0.0233) (0.0860) (0.0237) (0.0401) 

2010 wet season dummy 0.0228*** 0.0294* 0.0236*** 0.0185* -0.126*** -0.116 -0.117*** -0.0768** 

 
(0.00636) (0.0167) (0.00666) (0.0111) (0.0242) (0.0810) (0.0246) (0.0355) 

2010 dry season dummy 0.0680*** 0.0882*** 0.0684*** 0.0534** -0.0174 -0.0335 -0.00484 -0.00673 

 
(0.00898) (0.0282) (0.00929) (0.0254) (0.0257) (0.0680) (0.0263) (0.0289) 

Spatial lag (𝜌𝜌) 

  
-0.346 

 
0.213 

 
0.206 

 
0.381** 

  
(0.410) 

 
(0.325) 

 
(0.315) 

 
(0.174) 

Spatial error (𝜆𝜆) 

  
0.485 

 
0.0628 

 
0.602** 

 
0.0854 

  
(0.321) 

 
(0.328) 

 
(0.257) 

 
(0.228) 

Constant -0.0382 -0.0246 0.0378*** NA 0.230 0.172 0.427*** NA 

 
(0.0438) (0.0487) (0.0125) NA (0.196) (0.248) (0.0367) NA 

         Observations 2,660 2,660 2,660 1,995 2,660 2,660 2,660 1,995 
Log likelihood 1522.141 1523.25 2070.159 2021.8134 -1790.737 -1770.601 -998.7405 -1043.2734 

Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Estimation Results for Herbicide Use (Irrigated vs. Rain-fed) 

  (1) (2) (3) (4) (5) (6) (7) (8) 
SAMPLE Irrigated Rain-fed 
MODEL SAC SAC FE SAC SAC FE SAC SAC FE SAC SAC FE 
VARIABLES kg/ha kg/ha dummy dummy kg/ha kg/ha dummy dummy 
                  
Size of surveyed plot 0.00255 -0.0455* 0.119*** 0.0468 -0.0316*** -0.0242 0.0423* -0.00225 

 
(0.0114) (0.0269) (0.0227) (0.0424) (0.0102) (0.0149) (0.0241) (0.0345) 

Log (irrigation water use +1) -0.00390 -0.00297 -0.0231** -0.0228** 
    

 
(0.00476) (0.00540) (0.00945) (0.0100) 

    Hybrid dummy -0.0103 0.00386 -0.0864* -0.0472 0.0564 0.0486 0.0843 0.144 

 
(0.0243) (0.0135) (0.0483) (0.0333) (0.0431) (0.0451) (0.102) (0.110) 

Credit constrained -0.0306* -0.00881 -0.0307 0.00684 -0.0220 -0.0120 -0.0563 -0.0461 

 
(0.0157) (0.0122) (0.0311) (0.0251) (0.0148) (0.0140) (0.0350) (0.0381) 

Distance to the nearest agricultural 

 

-0.00918*** 
 

-0.0174*** 
 

-0.00496*** 
 

-0.0155*** 
 

 
(0.00248) 

 
(0.00488) 

 
(0.00159) 

 
(0.00475) 

 Age of household head -0.000641 
 

-0.000927 
 

0.00469 
 

0.0230*** 
 

 
(0.00341) 

 
(0.00676) 

 
(0.00294) 

 
(0.00695) 

 Age squared (divided by 100) 0.000690 
 

0.000962 
 

-0.00432 
 

-0.0201*** 
 

 
(0.00327) 

 
(0.00647) 

 
(0.00263) 

 
(0.00622) 

 Education level of household head -0.00229 
 

-0.00729** 
 

0.00257 
 

0.00712* 
 

 
(0.00183) 

 
(0.00363) 

 
(0.00163) 

 
(0.00387) 

 Female household head dummy -0.0309 
 

-0.0585 
 

-0.00371 
 

-0.0594 
 

 
(0.0276) 

 
(0.0547) 

 
(0.0199) 

 
(0.0473) 

 Household size -0.00860*** 
 

-0.0187*** 
 

-0.00520** 
 

-0.0149*** 
 

 
(0.00232) 

 
(0.00458) 

 
(0.00206) 

 
(0.00487) 

 2009 dry season dummy -0.00604 -0.00356 -0.0280 -0.0295 -0.0257* -0.0284** -0.0952** -0.105*** 

 
(0.0139) (0.0118) (0.0309) (0.0302) (0.0151) (0.0128) (0.0450) (0.0333) 
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2010 wet season dummy 0.00347 0.00708 -0.0105 -0.00697 -0.0174 -0.0200 -0.0264 -0.0256 

 
(0.0149) (0.0141) (0.0311) (0.0321) (0.0138) (0.0135) (0.0328) (0.0348) 

2010 dry season dummy 0.0163 0.0239 -0.0265 -0.0212 -0.0296* -0.0362** -0.0951** -0.108*** 

 
(0.0200) (0.0183) (0.0339) (0.0329) (0.0169) (0.0147) (0.0460) (0.0360) 

Spatial lag (𝜌𝜌) 

 

0.450 0.306** 0.298 -0.0133 0.273 0.0559 0.311 0.182** 

 
(0.279) (0.141) (0.290) (0.175) (0.293) (0.0886) (0.274) (0.0883) 

Spatial error (𝜆𝜆) 

 

-0.144 0.138 -0.0247 0.155 -0.201 -0.0206 -0.0890 0.0573 

 
(0.387) (0.147) (0.344) (0.144) (0.352) (0.0838) (0.322) (0.0998) 

Constant 0.274*** NA 0.603*** NA 0.0698 NA -0.102 NA 

 
(0.0988) NA (0.208) NA (0.0927) NA (0.245) NA 

         Observations 1,268 951 1,268 951 1,392 1,044 1,392 1,044 
Log likelihood 284.9907 605.6397 -580.50448 -182.4868 388.7026 774.6842 -808.33569 -395.5922 

Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 6: Estimation Results for Insecticide Use (Irrigated vs. Rain-fed) 

  (1) (2) (3) (4) (5) (6) (7) (8) 
SAMPLE Irrigated Rain-fed 
MODEL SAC SAC FE SAC SAC FE SAC SAC FE SAC SAC FE 
VARIABLES kg/ha kg/ha dummy dummy kg/ha kg/ha dummy dummy 
                  
Size of surveyed plot -0.00149 -0.0308 0.108*** 0.0395 -0.0213*** -0.0258 0.0609** -0.0127 

 
(0.00808) (0.0252) (0.0281) (0.0511) (0.00751) (0.0164) (0.0260) (0.0387) 

Log (irrigation water use +1) 0.00142 -0.000108 -0.00984 0.00117 
    

 
(0.00337) (0.00333) (0.0117) (0.0151) 

    Hybrid dummy 0.0237 0.0277 0.0669 0.0695 -0.0128 0.00308 -0.0508 -0.0300 

 
(0.0172) (0.0255) (0.0601) (0.0766) (0.0324) (0.0230) (0.112) (0.114) 

Credit constrained 0.00218 0.00507 -0.0401 -0.0490 -0.00896 0.00104 -0.0666* 0.00274 

 
(0.0111) (0.0197) (0.0385) (0.0408) (0.0108) (0.0118) (0.0373) (0.0399) 

Distance to the nearest agricultural 

 

-0.000563 
 

0.00193 
 

-0.00320* 
 

-0.0153* 
 

 
(0.00125) 

 
(0.00498) 

 
(0.00180) 

 
(0.00780) 

 Age of household head 0.00370 
 

0.00363 
 

0.00652*** 
 

0.0250*** 
 

 
(0.00240) 

 
(0.00831) 

 
(0.00214) 

 
(0.00740) 

 Age squared (divided by 100) -0.00404* 
 

-0.00453 
 

-0.00622*** 
 

-0.0269*** 
 

 
(0.00230) 

 
(0.00796) 

 
(0.00192) 

 
(0.00664) 

 Education level of household head -0.00138 
 

-0.00528 
 

-0.00128 
 

-0.00457 
 

 
(0.00130) 

 
(0.00451) 

 
(0.00121) 

 
(0.00416) 

 Female household head dummy 0.0225 
 

-0.0503 
 

-0.00157 
 

-0.0683 
 

 
(0.0195) 

 
(0.0673) 

 
(0.0145) 

 
(0.0500) 

 Household size -0.00296* 
 

-0.00548 
 

-8.27e-05 
 

-0.00937* 
 

 
(0.00163) 

 
(0.00565) 

 
(0.00149) 

 
(0.00515) 

 2009 dry season dummy -0.0126 -0.0129 -0.126* -0.107*** 0.0623* 0.0595** -0.229* -0.188*** 

 
(0.0117) (0.0101) (0.0685) (0.0404) (0.0366) (0.0285) (0.127) (0.0452) 
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2010 wet season dummy -0.00429 -0.00583 -0.141* -0.121*** 0.0753** 0.0744** -0.135 -0.0958** 

 
(0.0110) (0.00862) (0.0723) (0.0418) (0.0354) (0.0313) (0.117) (0.0403) 

2010 dry season dummy 0.0568*** 0.0504*** -0.0813 -0.0591 0.121*** 0.120*** 0.000480 0.0314 

 
(0.0202) (0.0169) (0.0590) (0.0467) (0.0366) (0.0352) (0.106) (0.0384) 

Spatial lag (𝜌𝜌) 

 

-0.0447 0.00543 0.0398 0.151* -0.709*** -0.571 0.00196 0.0930 

 
(0.325) (0.130) (0.383) (0.0907) (0.253) (0.510) (0.355) (0.122) 

Spatial error (𝜆𝜆) 

 

-0.0490 -0.00790 0.213 0.0809 0.699*** 0.606* 0.665*** 0.141 

 
(0.328) (0.0997) (0.364) (0.120) (0.152) (0.329) (0.248) (0.121) 

Constant -0.0139 NA 0.360 NA -0.0527 NA 0.288 NA 

 
(0.0649) NA (0.279) NA (0.0698) NA (0.351) NA 

         Observations 1,268 951 1,268 951 1,392 1,044 1,392 1,044 
Log likelihood 727.48979 957.2583 -847.26575 -551.54 809.47291 1077.0624 -910.20426 -477.1891 

Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1


