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A Slacks-based Measure of Super-Efficiency in
Data Envelopment Analysis

Kaoru Tone*

Abstract

In most models of Data Envelopment Analysis (DEA), the best
performers have the full efficient status denoted by unity (or 100%),
and, from experience, we know that usually plural Decision Making
Units (DMU) have this “efficient status.” To discriminate between
these efficient DMUs is an interesting subject. This paper addresses
this “super-efficiency” issue by using the slacks-based measure (SBM)
of efficiency, which the author has proposed in his previous paper
(Tone (1999)). The method differs from the traditional one based on
the radial measure, e.g. Andersen and Petersen model, in that the for-
mer deals directly with slacks in inputs/outputs, while the latter does
not take account of the existence of slacks. We will demonstrate the
rationality of our approach by comparing it with the radial measure of
super-efficiency. The proposed method will be useful especially when
the number of DMUs are small compared with the number of criteria
employed for evaluation.

Keywords: DEA, efficiency, super-efficiency, slacks, units invariant,
multiple criteria decision-making

1 Introduction

In most models of Data Envelopment Analysis (DEA) (Charnes et al. (1978),

Cooper et al. (1999)), the best performers have the efficiency score unity,
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and, from experience, we know that usually there are plural Decision Mak-
ing Units (DMU) which have this “efficient status.” To discriminate between
these efficient DMUs is an interesting research subject. Several authors have
proposed methods for ranking the best performers. See Andersen and Pe-
tersen (1993), Doyle and Green (1993, 1994), Stewart (1994), Tofallis (1996),
and Seiford and Zhu (1999) among others. We will call this problem the
“super-efficiency problem.”

Meanwhile, the author of this paper has proposed a slacks-based measure
of efficiency (SBM) (Tone (1999)), which is non-radial and deals with in-
put/output slacks directly. The SBM returns an efficiency measure between
0 and 1, and gives unity if and only if the DMU concerned is on the frontiers
of the production possibility set with no input/output slacks. In that respect,
SBM differs from traditional radial measures of efficiency that do not take
account of the existence of slacks.

In this paper, we discuss the “super-efficiency” issues based on the SBM.
We can rank the efficient DMUs by applying this procedure. This paper
_is organized as follows: Section 2 briefly introduces the SBM and then we
propose a super-efficiency measure by using SBM in Section 3. We specialize
our super-efficiency model to input (output) orientation in Section 4. This
enables us to compare our method with the super-efficiency evaluated by
the CCR (Charnes-Cooper-Rhodes) type radial super-efficiency models. In
Section 5 we compare our method with the Andersen Petersen model and
demonstrate the rationality of our method. Some remarks will follow in

Section 6.



2 Slacks-based Measure of Efficiency

We will deal with n DMUs (Decision Making Units) with the input and
output matrices X = (z;;) € R™*™ and Y = (y;;) € R°*", respectively. We
assume that the data set is positive, i.e. X >0 and ¥ >O.

The production possibility set P is defined as

P={(z,y) |z =X\ y<YX A>0}, (1)

where A is a nonnegative vector in R”.
We consider an expression for describing a certain DMU (z,,y,) as
z, = XA+s~ (2)
Y, = YA-—s¥, (3)
with XA > 0, s~ > 0 and s* > 0. The vectors s~ € R™ and s* € R® indicate

the input excess and output shortfall of this expression, respectively, and are
called slacks. From the conditions X >O and A > 0, it holds

Ty > 5. (4)

Using s~ and s*, we define an index p as follows:

— o i1 8i [Tio
T ()

TS e
It can be verified that p satisfies the properties (i) units invariant and (ii)

monotone decreasing in input/output slacks. Furthermore, from (4), it holds

0<p<l (6)
In an effort to estimate the efficiency of (x,, y,), we formulate the following
fractional program [SBM] in A, s~ and s™.

1— 5%, 87 [T
1 +':'Z;?=1 Sg_/yio

[SBM] min p = (7)



subject to z, = XA+ 8™
¥y, = YA—s"

A >0 s >0 s8">0.

[SBM] can be transformed into a linear program using the Charnes-Cooper
transformation in a similar way to the CCR model. (See Charnes and Cooper
(1962) and Charnes et al. (1978).) Refer to Tone(1999), Cooper et. al (1999)
for detail.

Let an optimal solution for [SBM] be (p*, A*,s7*,s1*). Based on this
optimal solution, we define a DMU as being SBM-efficient as follows:

Definition 1 (SBM-efficient)
A DMU (z,,y,) is SBM-efficient, if p* = 1.

*

This condition is equivalent to s™ = 0 and s™ = 0, i.e., no input excesses

and no output shortfalls in any optimal solution.

3 Super-efficiency evaluated by SBM

In this section, we discuss the super-efficiency issues under the assumption
that the DMU (z,,y,) is SBM-efficient, i.e. p* = 1.
3.1 Super-efficiency Score

Let us define a production possibility set P \ (z,,¥,) spanned by (X,Y)

excluding (z,, y,), i.e.

P\(mmyo):{(ésg)l@z Z /\jmjz QS Z )‘Jy;p @201 )\20}
j=1i?§o j-—'lﬁéo
(8)



Further, we define a subset P \ (z,,¥,) of P\ (%, ¥,) as

P\ (20, 9,) = P\ (%0, Yo) [ [{Z 2 @, and § < 9.} - 9)

By the assumption X >0 and Y > 0, P\ (x,,y,) is not empty.
As a weighted I; distance from (z,,y,) and (Z,3) € P\ (zo,Y,), We
employ the index ¢ as defined by

§= pIiadite 10)
3 &r=1 Gr [ Yro

From (9), this distance is not less than 1 and attains 1 if and only if (x,,y,) €
P\ (x,,¥,), i.e. exclusion of the DMU (z,, y,) has no effect on the original
production possibility set P.

We can interpret this index as follows. The numerator is a weighted [,
distance from x, to Z(> x,), and hence it expresses an average expansion
rate of @, to & of the point (%,%) € P\ (x,,¥,). The denominator is a
weighted /; distance from y, to (< v, ), and hence it is an average reduction
rate of ¥, to @ of (&,7) € P\ (2,,v,). The smaller the denominator is, the
farther y, is positioned to §. Its inverse can be interpreted as an index of
the distance from ¥y, to §. Therefore, § is a product of two indices: one, the
distance in the input space, and the other, in the output space. Both indices
are dimensionless.

Based on the above observations, we define the super-efficiency of (2, y,)

as the optimal objective function value é* of the following program:

Lym g /p
SuperSBM]  6* = min g — B 5/ Tio (11)
271 U/ Yro
subject to & > A T;
J 0
y < )‘jyj



v

@z, and ¥ < Y,
0.

>
v

We have the following two propositions.

Proposition 1 The super-efficiency score §* is units invariant, i.e. 1t is in-
dependent of the units in which the inputs and outputs are measured provided

these units are the same for every DMU.

Proof : This proposition holds, since both the objective function and con-

straints are units invariant. O

Proposition 2 Let (az,, By,) witha <1 and 8 > 1 be a DMU with reduced
inputs and enlarged outputs than (xz,,vy,). Then, the super-efficiency score

of (azx,, By,) is not less than that of (xo,Y,).

Proof : The super-efficiency score (8*) of (a,, By,) is evaluated by solving

the following program:

1 mo A4 1 m A
a .2 g Z‘—q xi/(amio) . ﬂ poy Z':]_ ﬂ;i/wio
SuperSBM'] ¢* = minéd = 2—"—"— = min —Mm =20 © (12
[ ] 0 B P a T g e )
subject to &> Y Az
Jj=LF#o
n
< Z AiY;
j=l70
2 > axeand ¢ < Py,
A>0

It can be observed that, for any feasible solution (&,%) for [SuperSBM/], .
(&/a,9/0) is feasible for [SuperSBM]. Hence it holds

1 m e 1 m 4
s m i=1(-'fi/a)/mio _ B i iCi/CCio_ i3
SN/ TS S (13)
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Comparing (12) with (13) comes to:

&< b
Thus, the super-efficiency score of (az,, 8y,) (@ <1 and 8 > 1) is not less
than that of (z,,¥,). ' O
3.2 Solving Super-efficiency

The fractional program [SuperSBM] can be transformed into a linear pro-

gramming problem using Charnes-Cooper transformation as:

1 &7
[LP] 7*=min7=—) —~ (14)
m ;21 Tio
13 7
subject to 1= — Y
5 =1 Yro
T Z Z A,-:I:j
=10
§< > My
=170

> tx, and ¥ < ty,

> 8]

>0, §>0, t>0.

Let an optimal solution of [LP]| be (7*,Z*,%*, A*,t*). Then we have an
optimal solution of [SuperSBM)] as expressed by

=1, A= AT, B =, 5=/t (15)

3.3 An Example

We illustrate the slacks-based super-efficiency using an example. Table 1

exhibits data for seven DMUs using two inputs (1, z2) to produce a single



Table 1: Data and Results of CCR (6*), SBM (p*) and Super-efficiency (6*)

Data CCR SBM

DMU z; z2 y g* o o* Ty 7
A 4 3 1 0.8571 0.8333

B 7 3 1 0.6316 0.6191

C 8 1 1 1 1 - 1125 10 1 1
D 4 2 1 1 1 1.25 4 3 1
E 2 4 1 1 1 - 15 4 4 1
F 10 1 1 1 0.9

G 12 1 1 1 0.8333

output (y = 1). The input-oriented CCR (Charnes-Cooper-Rhodes) model
identifies F and G as weakly efficient (6* = 1), although they have slacks
in z; against C. The SBM model reveals these slacks and identifies only C,
D and E as efficient (p* = 1). We evaluated the super-efficiency of these
three DMUs and obtained the scores listed in column §*. It is observed that
E has the largest distance as measured by the weighted {;-norm from the
remaining production possibility set. Actually, E has the optimal solution

Iy =4, z; =4, ¥ = 1 and hence
pg=%(§+§) =15
4 Input/Output Oriented Super-efficiency

In order to adapt our super-efficiency model to input (output) orientation,
we can modify the preceding program as below.
For input orientation, we deal with the weighted /,-distance only in the

input space, keeping the outputs status quo. Thus, the program turns out



to be:

1 m
[SuperSBM(I)] &* = mind = — > T/ i (16)
=1
subject to  Z > > Aw;
J=l#o
F< Y, Ny
j=1,§£0
ET>xz,and y =1y,
A>0.

The following proposition holds for this program:

Proposition 3 If inputs =, decrease to ©, — Az (> 0, Az > 0), then the

optimal objective function value 6F(Ax) corresponding to this change satisfies

§i(Ax) > 67. (17)

Furthermore, the equality holds if and only if Az; = 0 or T} = z;,, — Az;

holds for every i (= 1,...,m), where &} is an optimal solution of the above

program (16).

Proof : The linear program for this perturbed problem is expressed as:

subject to

55 (Az) = min§ = %Z@/(mio — Az (18)
i=1
T > Y Mz
j=lfo
7< > AjY;
j=l,#o
T >x,— Az and y =1y,
A>0



For any optimal solution (Z*,3* = v,) of the above perturbed LP, (Z* +
Az, y* = y,) is feasible for [SuperSBM(I)]. Hence it holds:

o 1 ST+ Az 1 & I .
6r < E;—_ﬁwzo gag—-—%o“AfBi = 67(Az).
The last inequality holds since
Z; T+ Az Az (T — x50 + Ax;) >0
Tio — Am; Ti Tio(Tio — Az;) T

The equality holds if and only if Az; = 0 or Zf = z;, — Az; holds for every
i(=1,...,m). 0
In a similar way we can develop the output-oriented super-efficiency

model as follows:

[SuperSBM(O)] 5 =mind = y—; 1

T = 19
5 r=1yr/yro (19)

subject to &>

Since the above two models behave in the restricted feasible region of [Su-

perSBM], we have:

Proposition 4  §7 > 6* and 05 > 6*.

5 Comparisons with the Andersen and Pe-
tersen Model

In this section, we compare our method with the super-efficiency model pro-

posed by Andersen and Petersen (1993), and point out remarkable differences
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between them.

5.1 Andersen and Petersen Model

This model can be described, in the input-oriented CCR. case, as follows:

[SuperCCR]  #* =miné (20)
subject to Oz, = > Nmj+ s
i=1,#o0
Yo = Z )‘jyj - S+
j=150

A>0,5"2>0, st>0,

where s~ and s¥ represent input and output slacks, respectively. Let an
optimal solution of [SuperCCR] be (6*, A*, s™*,s**). For an efficient DMU
(20,Y,), 0 is not less than unity, and this value indicates “super-efficiency.”

Regarding this measure we have the following proposition:

Proposition 5 The [SuperCCR| model returns the same super-efficiency
score 0% for any DMUs represented by (@, — as™/6*, y,) for the range
0<a<l

This contradicts our common understanding that a reduction of input values
usually increases super-efficiency. This irrationality is caused by the fact that
this model deals only with the radial measure and neglects the existence of
input slacks as represented by s7*.

Furthermore, we have the following relationships between [SuperCCR]

and [SuperSBM(I)].

Lemma 1 Let us define

«* = min {M] st > 0} (21)



Then, (Z = 0*x, — a*s™, ¥ = y,, X = X\*) is a feasible solution for [Super-
SBM(I)].

Proof: From (21), we have & > x,, and hence, the above (#, ) satisfies the
constraints of [SuperSBM(I)]. O

Let an optimal solution of [SuperCCR] be (6*, A*, s=*, s™)}, the optimal
objective value of [SuperSBM(I)] be 6, and o* as defined by (21). Then we

have:

Theorem. 1 -

(22)

1
Proof : The objective function value corresponding to Z in Lemma 1 for
[SuperSBM(I)] is given by:

a*
m;

~

,;:cw ? _'—Z

&% is not greater than this value, since d; is optimal for [SuperSBM(I)]. O

xw

5.2 Comparisons using a Numerical Example

In this section, we compare the SuperCCR and SuperSBM(I) models using
an example which is often referred to in papers dealing with discernment in
DEA, e.g. Doyle and Green (1993, 1988), Stewart (1994), and Tofallis (1996).
We restrict our comparisons only within the above two models and do not
discuss the practical aspects of the problem, i.e. we deal with the structure
of the problem as represented by the production possibility set assumptions.
This example consists of six “efficient” DMUs (power plant locations) with

four inputs and two outputs listed below:
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Input z; = manpower required
zy = construction costs in millions of dollars
z3 = annual maintenance costs in millions of dollars
z4 = number of villages to be evacuated

Qutput y; = power generated in megawatts

yp = safety level
Table 2 exhibits the data and Table 3 displays the CCR super-efficiency
scores along with the projected point (8*z,), input slacks (s™*) and the

reference set {j| A\* > 0}.

Table 2: Data

Data
DMU a4 Ty T3 T4 Y1 Yo
D1 80 600 54 8 90 5
D2 65 200 97 1 B8 1
D3 83 400 72 4 60 7
D4 40 1000 75 T 80 10
D5 52 600 20 3 72 8
D6 94 700 36 5 96 6

It can be observed that D2, D4 and D5 have projected points compara-

tively larger than the inputs, i.e.

D2: z, =65 — 157 x5 = 200 — 483 23=97—234 z,=1—24
D4: £, =40 =65 o =1000 — 1626 23 =75 122 z, =7 — 114
D5 z;=52—125 z,=600— 1442 2z3=20—248 =z,=3—->7
These large projection values tally with their large super-efficiency scores:
63 = 2.4167 (rank 1), 67 = 1.625 (rank 3) and 6; = 2.4026 (rank 2).
At the same time, they have considerably large input slacks against their
respective referent composed of a positive combination of their reference

DMUs, as designated by the number in parentheses. This means that their
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super-efficiency scores are evaluated by referring to points far apart from the
efficient portions of the production possibility set P\ (zo,¥,). Of course,
this is caused by the “radial” characteristics of the CCR efficiency measure.
However, is it legitimate for D2 to have a super-efficiency score more than

double of that of D1, considering the existence of such large slacks?

Table 3: Results of Super CCR Model

DMU CCR Rank Projected point Reference
(Input slacks)
g* g*x] G* 3 #z3 G*z; Referent
(s17)  (s57)  (s37) (s37) (A)
D1 1.0283 6 82.26 616.95 55.53 823 D2 D5 D6
(0) {0) (0) (4.56) (.33) (.46) (.39)
D2 2.4167 1 157.08 483.33 23441 2.42 D5
(115.19) (0) (218.30) (0) (.81)
D3 1.3125 4 108.94  525.00 94.50 525 Db
{63.43) 0y (77.00) (2.63) (.88)
D4 1.6250 3 65.00 1626.00 121.88 11.38 D5
(0) (875.00) (96.88) (7.63) (1.25)
D5 2.4026 2 124.93 1441.54 48.05 721 D4 D6
(0) (508.78) (0) (0.55) (.003) (1.33)
D6 1.0628 5 99.90 743.95 38.26 531 D1 D2 D5
(25.12) (0) (0) (0) (.32) (.03) (.91)

Table 4 presents the results obtained by applying the SuperSBM(I) model
to this problem. As expected, the super-efficiency score §7 dropped from
that of the super CCR score 6*. Especially, D2, D4 and D5 lost about 30%
efficiency and the ranking of D2 and D5 is reversed.

We will observe this change in the case of D2 in more detail. The [Super-
CCR] model for D2 gives the solution:

Grxo = Mgms + 57

Thus, the projected point 85z, has slacks s™* =(115.2,0,218.3,0)7 against

14



Table 4: Results of Super SBM(I) Model

DMU SBM Rank Projected point Reference
* (Input slacks)
L 7" Z," z3" Z,  Referent
(1) (537 (37 (s37) (A
D1 1.0116 6 80.00 627.88 54.00 800 D2 D5 D6
(0) (0) (0) (4.40) (.32) (.58) (.31)
D2 1.7083 2 65.00 483.33 97.00 242 Db
(23.11) (0) (80.89)  (0) (.81)
D3 1.0781 4 83.00 525.00 72.00 400 Db
(37.5) (0) (54.50) (1.38) (.88)
D4 1.1111 3 57.78 100000 7500 7.00 D5
(0) (333.33) (52.78) (3.67) (1.11)
D5 1.7988 1 5200 82857 5743 583 D4 D6
: (0) (0) (0) (0) (.63) (.29)
Dé 1.0198 5 94.00 755.47 36.00 500 D1 D2 D5
(20.36) (0) )  (0) (.25) (.03) (1.01)

the referent Mias = (41.91,483.33,16.12,2.42)T which is on the efficient
frontiers of P\ (x3,¥,). Referring to Lemma 1, from (21), we have, for
(@3,,), &* = 0.629 and & = (84.61, 483.33, 97.00, 2.42)T. As demon-
strated in Lemma 2, this Z is feasible for [SuperSBM(I)], and has slacks
37 = (42.7,0,80.9,0)T against f3x,. This reduction of slacks from s™ to
7% indicates that the resulting (Z,% = y,) is closer to the efficient portion
of P\ (x3,¥,) than the super CCR projection (85zs,y,).

Furthermore, for this activity (£,¥ = ¥,), the corresponding objective
value for [SuperSBM(I)] is calculated as:

m —%

(8% S;
gr — =52 — 17839,
2 m ; Zio

which is still larger than the 7 = 1.7083 of D2 as Theorem 1 asserts.
As for the rank reversal of D2 and D5, D2 is closer to the respective pro-

duction possibility frontiers than D5 as measured by the weighted I, distance
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and this ranking is rational so far as we employ the proposed measure of

distance function.

6 Concluding Remarks

In this paper, we proposed a super-efficiency measure based on input/output
slacks and demonstrated its characteristics theoretically and empirically by
numerical examples. The rationality for this measure is to minimize a sort
of weighted [; distance from an efficient DMU to the production possibility
set excluding the DMU. In this respect, it is in a sharp contrast to methods
proposed so far. Especially, when specialized in input (output) orientation, it
can be directly compared with the super-efficiency measures using the radial
expansion (reduction) of input (output).

However, we need to study the possibility of other types of distance,
e.g. lp norm. Further, the infeasibility LP issue, mainly caused by zeros in
data and/or by variable returns-to-scale environments is a subject for future
research. Seiford and Zhu (1999), and Zhu (2001) have studied these issues,
in the case of radial type super-efficiency, extensively. Their results will be
useful for us too.

Another direction for future research includes study in the dual side of the
associated linear programs, which connect the virtual input/output weights
with the efficiency scores. Incorporation of weight restrictions to our model

will enhance the power of real super-efficiency discernment.
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