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Degree of Scale Economies and Congestion:
A Unified DEA Approach

Kaoru Tone*and Biresh K. Sahoo f
National Graduate Institute for Policy Studies !

Abstract

There are increasing concerns about how increase in congestion can
adversely affect output as well as about the relative benefit-cost ratio
or return on investment associated with alternative projects or policies
to address those problems. Regardless of what policy strategies are
used to address congestion, the fact remains that we can not assess
the economic benefits of congestion-reduction strategies unless we are
able to measure the extent to which congestion affects productivity
in general, and scale economies in particular. This paper makes a
novel attempt to suggest a method in a non-parametric framework to
measure scale elasticity in production in the presence of congestion.

Keywords: DEA, scale elasticity, degree of scale economies, con-
gestion.

1 Introduction

Most of the business units (or decision making units (DMUs)) today face
an Irritatingly limited supply of resources, and face persistent competition.
This has led to a significant emphasis on the efficient utilization and alloca-
tion of on-hand resources by building larger operating units to achieve the
possible advantages of ‘scale economies.” From a policy point of view, the
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estimation of scale elasticity (returns to scale) parameter is of particular im-
portance concerning whether there is any scope for increased productivity by
expanding/contracting, whether minimum efficient scales will allow compet-
itive markets to be established, and if the existing size distribution of firms
is consistent with a competitive market outcome.

There are many resources which affect the performance of a unit when
there is ‘overuse’ of such resources. When firms use these resources they
only take into account their own benefits and costs of such usage, but largely
ignore the congestion, or exclusion costs that they impose on others. This is
referred as “congestion externality” in economics literature. When congestion
is present, it effectively shrinks business market areas and reduces the scale
economies. So there is a need to estimate the returns to scale parameter in
the presence of congestion, and to examine it with more prudence for the
firm’s financial viability and success.

Since the breakthrough by Banker, Charnes and Cooper (1984), the re-
turns to scale issues under multiple input/output environments have been
extensively studied in the framework of DEA (Data Envelopment Analysis).
The treatment of congestion within the DEA framework has received con-
siderable attention in the recent literature. After the concept of congestion
was first introduced in the paper by Fire and Svensson (1980), and subse-
quently was given operationally implementable form by Fire et al. (1985)
and Cooper et al. (1996, 2000), there has been found a growing interest
in congestion in a number of application areas, e.g., congestion in Chinese
production by Brockett et al. (1998), congestion in US teaching hospitals
by Grosskopf et al. (2001). Just as the DEA literature (Fire et al., 1986,
1988, Banker et al., 1996a,b, Fgrsund, 1996 and Sueyoshi, 1997, 1999) that
addresses the evaluation of scale elasticity is sparse, the research on using
DEA to evaluate scale elasticity in the presence of congestion is almost nil.
This paper makes a humble attempt to fill in this void.

This paper unfolds as follows. Section 2 discusses the scale elasticity or
the degree of scale economies (DSE). Then we turn our attention to the
problem of scale elasticity issue in the presence of congestion, and propose a
new method for identifying DSE in Section 3. Sections 4 and 5 introduce an
illustrative example and an empirical case study regarding the scale elasticity
of operations of supermarkets of the Japan Chain Stores Association. Some
concluding remarks follow in Section 6.



2 Scale Elasticity in Production

Throughout this paper, we deal with n DMUs, each having m inputs for
producing s outputs. For each DMU, (0 =1,...,n), we denote respectively
the input/output vectors by =, € R™ and y, € R°. The input/output
matrices are defined by X = (z1,...,2,) € R and Y = (yy,...,¥,) €
Rs*™ We assume that X > O and Y > O.

The returns to scale (RTS) or scale elasticity in production (p) or degree
of scale economies (DSE) or Passus Coefficient, is defined as the ratio of
marginal product (MP) to average product (AP). In a single input/output
case, if the output y is produced by the input z, we define the scale elasticity
p by o 1y

p=MP/AP = 2/ 2 , (1)
See Hanoch (1970), Starrett (1977), Panzar and Willig (1977) and Baumol
et al. (1988) for the detailed discussion.

For a neoclassical ‘S-shaped production function’ (or Regular Ultra Pas-
sum Law (RUPL) in the words of Frisch, 1965), p can take on values ranging
from ‘greater than one’ to ‘less than one,’ and even negative values when
production decreases with usage of inputs. RTS is said to be increasing, con-
stant and decreasing if p > 1, p =1 and p < 1 respectively. The production
function y = f(z) satisfies RUPL if 8p/dy < 0 and 8p/0z < 0 (Fgrsund and
Hjalmarsson, 2002).

A
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Figure 1: Scale Elasticity



Figure 1 exhibits such a sample curve y = f(z) to demonstrate scale elastic-
ity in production. Scale elasticity is well-defined at a point on the efficient
portion of the input-output correspondence, e.g., the point A. For an ineffi-
cient DMU operating on point such as B, p is defined on its upward projected
point B’

In the case of multiple input-output environment, although Baumol et al.
(1988) discussed DSE in terms of cost and output, we utilize the same ter-
minology in our case because any differentiable cost function, whatever the
number of outputs involved, and whether or not it is derived from a homoge-
neous production process, has a local degree of homogeneity (or, equivalently
DSE) that is reciprocal of RTS parameter of a production process (p.56).
We deal with the production possibility set Pgoc related with the multiple
input-output correspondence as defined by

PBcoz{(m,y)|mZX)\,ySYA,e)\:l,AZO}, (2)

where e is a row vector with all its elements being equal to one.

Analogous to the single input-output case, we measure the scale elasticity
of DMUs positioned on the efficient portion of Pgse. Such projection can
be realized by solving the following output-oriented BCC model (Banker et
al., 1984) for each DMU (w,,y,) (0=1,...,n).

[BCC-O] HECC = max 9300 (3)
subject to @, =XA+ s~
OpccyY, =Y A —s*
ex=1
A>0,s" >0, st>0.
To solve [BCC-0O], we employ a two-stage process: first we obtain %cc by
solving the program [BCC-0], and then we maximize the sum of input slacks

s; and output slacks s while keeping the objective function value at 6%,,.
Symbolically, we utilize the objective function of the form

m 5

max fpcc + € (Z s+ s,‘.") (4)
i=1 r=1

for the two-stage evaluation process, where € is a Non-Archimedean small

positive number. Refer to Cooper et al. (1999) for the detailed explanation

of this two-stage evaluation process.



Let an optimal solution of [BCC-O] be (f5pc, A, s7*, ™). Then the
DMU (=,,v,) is called “strongly efficient” if and only if 0, =1, s7* =0
and s™ = 0 hold for every optimal solution for [BCC-O]. Otherwise, the
DMU (z,,y,) can be brought into the strongly efficient status by the BCC-
O projection as defined by

T — T — 8 (5)
Yo+ Opocy, + 5. (6)

See Cooper et al. (1999) for the detailed explanation. Hereafter, we assume
that the DMU (z,,v,) is strongly efficient.

The dual program to the [BCC-O] model, using the dual variables » €
R™, uw € R* and w € R, is described as follows:

[Dual] minve, —w (7)
subject to —vX +uY +ew <0 (8)
uy, =1 (9)

v2>0, u>0, w:free in sign. (10}

Since we assume that the DMU (z,,y,) is (strongly) efficient, there exists
an optimal solution (v*,u*, w*} for [Dual] such that

vz, —w' =1 (11)

From (8),(9) and (11), it holds, for the optimal (v*,u* w*), that

—v'z; +uty; +w' <0 (j=1,...,n) (12)
vz, + vy, +w* =0 (13)
v* >0, ut > 0. (14)

This means that the hyperplane —v*z + uw*y -+ w* = 0 is a supporting
hyperplane to the production possibility set Pgoe at (o, ¥,)-

We now define respectively the virtual input (¢) and virtual output (n)
associated with (z,y) € Pgce by

E=v*'z and 7 =u*y. (15)
Thus, the hyperplane can be expressed as

—&+n+w =0 (16)
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From this equation, we derive marginal product (MP) as

dn .
MP == =1, (17)
and average product (AP) as
n n
AP=<= : 18
£ ntw (18)

At (x,,9,), we have n = 1 from (9), and hence the scale elasticity (p) or
DSE at (w,,y,) is expressed by

p=1+w" (19)

It is to be noted here that as pointed out by Fgrsund and Hjalmarsson (2002),
p does not satisfy fully the requirement of RUPL as
Op w*v}

——— — 7:=1 R £ £
Oz; (T vz — w*)? Y

IRS (w* > 0) implies decreasing production elasticity in accordance with
RUPL, while DRS (w* < 0) implies an increasing p, thus violating the law.

In many occasion, the optimal w* is not uniquely determined, i.e., there
exist multiple optima. In such cases, we can find the upper (lower) bound
@ (w) of w by solving the following linear program in v,u and w.

[Upper(Lower)]  @{w) = max(min)w (20)
subject to —vX+uY +ew<0 (21)
—vx, +uy, +w =70 (22)

uy, =1 (23)

v >0, u>0, w: free in sign. (24)

The upper (lower) scale elasticity in production g (p) is calculated by
p=14+w and p=1+w. (25)

Several authors have derived this same scale elasticity formulas in differ-
ent ways. Fgrsund (1996) has found (19) assuming unique optimal solution
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to hold for DMU under evaluation whereas Sueyoshi (1999) and Fukuyama
(2001) devised (25) for the multiple optima case. Also is found in Fukuyama
(2001) the estimation of scale elasticity in Russell and Additive DEA models.
However, we need to mention here that our approach towards the derivation
of scale elasticity is much simpler.

It should be noted that the status of increasing, constant and decreasing
returns to scale is not “absolute” one. If we impose constraints on the dual
variables v and © as we do so in the case of “Assurance Region,” the status
of a DMU on its DSE may suffer a change. See Tone (2001) for details.

Regarding the scale elasticity in production, we have a units invariance
theorem as follows:

Theorem 1 The scale elasticity in production (p) as defined by (19), and
its upper (lower) bound p (p) are all units invariant.

Proof: Let us change the units of X and Y respectively by diagonal matrices
D, € R™™ and D, € R°**° as

X'=D,X and Y'=D,Y.

By this units change, [BCC-O] turns out as

[BCC-O']  max 8 (26)
subject to @, =X'A+s” (27)
by, = Y'A— s+ (28)

ex=1

AZO: 3_20, 3+20.

By multiplying D;* and D ! from the left to (27) and (28) respectively, we
obtain the essentially same expression as those in [BCC-O]. Thus, [BCC-0]
suffers from no effect.

On the other hand, the [Dual] results in

[Duall minve, —w (29)
subject to —vX' +uY' +ew <0 (30)
' uy, =1 (31)

v >0, u>0, w:free in sign, (32)
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which is equivalent to following model:

minvD,x, — w (33)
subject to  —vD X +uD,)Y +ew <0 (34)
uDyy, =1 (35)
v >0, u >0, w:free in sign. (36)

Let us replace vD, by v’ and wD, by v'. Then, the dual program becomes

minv'z, — w (37)
subject to —v'X +uY +ew<0 (38)
u'y, =1 (39)
v >0, v >0, w:free in sign. (40)

Thus, we have now the same program as that in the [Dual], which concludes
the proof. a

3 Congestion

So far we have dealt with situations where input slacks (excesses) are consid-
ered free. The set Pgce allows an (unbounded) input @ > XA for producing
an output ¥ = Y'A. Under this assumption, the scale elasticity p is nonneg-
ative, since we have

p=1l4+w"=v"z,>0.

However, there are some cases in which an increase in one or more inputs
causes the worsening of one or more outputs. A typical example is the
case of mining where too many miners in an underground mine may lead to
“congestion” with reference to output. Figure 2 exhibits such a phenomenon.
An increase in input 2 results in a decrease in output ¥ as is shown in case
of points such as F and G.

In order to potentially deal with such situation, we need to modify our
production possibility set as follows:

Pcon'uea: = {(m:y)lm = XA)'y < YA) e\ = 17A > 0} . (41)



Figure 2: Congestion

In this section, we discuss the scale elasticity issue with respect to this
new production possibility set P.onyer, and demonstrate that “congestion”
is recognized by the status with having negative production elasticity (p <
0), and that the degree of congestion can be measured by p. Similar to
the Ppge case, we assume here that the concerned DMU (z,,y,) is on the
strongly efficient frontier of Ponye;. This means that the following model has
a solution (§* = 1, s™ = 0) for every optimal one.

[Congestion-1]  max 6 (42)
subject to  x, = XA\
| fy,=YA—st
ex=1
A>0, st >0,

If the DMU (z,,y,) is not efficient, we project it onto the efficient frontier
of Peonvez Dy the following formulae:

x, < x, unchanged (43)
Yy Oy, + s (44)

The input-output vector (=}, ¥%) is now strongly efficient,.

9

10



The dual program of {Congestion-1] is described as follows:

[Dual-Congestion] minvz, —w (45)
subject to —vX +uY +ew <0 (46)

uy, =1 (47)

u>0, v, w: free in sign. (48)

We notice that, in this dual program v is free in sign, whereas it was con-
strained to be nonnegative in [Dual]. Let an optimal solution vector of [Dual-
Congestion] be (v*,u*,w*). Then, we can demonstrate in the similar vein
as is in the case of Pgge that the hyperplane —v*z + u*y +w* = 0 is a
supporting hyperplane t0 Peonyer 8t (25, y,). The production elasticity can
then be obtained by

p=1+w" (49)
The multiple optima case can be dealt with by the following program:
[Upper-w] @ = maxw (50)
subject to —vX 4 uY +ew<0 (51)
—vE, +uy, +w=20 (52)
uy, = 1 (53)
u > 0, v,w: free in sign. (54)

Here we have an interest in the upper bound values of w*, since this value
is closely related with “congestion.” The upper bound of scale elasticity is
calculated by

p=14+d. (55)

3.1 The case with a negative upper bound p

The dual program to [Dual-Upper-w] can be described as follows:

(Dual-Upper-w] miné; — 6, (56)
subject to XA =61, (57)

YA > by, (58)

eX=1-+6 (59)

A>0. (60)
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Let an optimal solution vector of [Dual-Upper-w] be (6%, 85, A*). Then, the
upper bound of scale elasticity  satisfies the following:

p=1+0]-065. (61)

Now, suppose that g < 0, ie, 1467 — 85 < 0. In this case, from the
constraints in [Dual-Upper-w] and the assumptions X > O and Y > O, we
have:

63 > 1467 >0 >0and X" #£0. (62)
Let us define \, @, and Y, respectively as
- 1 e~ e Lo
A—l_*_gTA,:co—X)\andyo—Y)\. (63)
Then, we have
ex=1 ‘ (64)
~ o
XA= Ao = 1 o o
=17 Q;m <w (65)
~ gx
=7, > —2— :
YA=9,2 12 gz Ye > Yo (66)

Thus, there exists (Z,,7,) € Peonvez Such that Z, < =, and g, > y,. This
means that the DMU (=,,¥,) is in the region of “congestion” where there
exists a different activity (Z,,%,) that uses less inputs to produce more out-
puts.

Conversely, suppose that there exists (&o,¥,) € Peonver Such that

&, = am, (with 0 < @ < 1) and ¥, > By, (with g > 1). (67)

Then, we can prove that (z,,%,) has a negative upper bound of scale elas-
ticity, as follows:

Since adding the activity (Z,,¥,) to the data set (X,Y") has no effect on
the curvature of the set Pronves, we enlarge the data set (X,Y) to (X,Y) by
adding (%, and ¥,) to the top of X and Y, respectively. Thus, we have

X = (B0, @1, ..., %) € R+l and ¥ = (F0r Y1y -+ 1Yn) € Rex(ntl)
Let us define the corresponding A € R**! by
AT = (0\,0,0,...,0).
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Then, we have

XX =\E, = Moz, (68)
YA =M%, > MBy, (69)
65\ = /\1. (70)

Let us define Ay, 6, and 0, respectively by

1
AL = T o (71)
o
91—(1}\1— 1—a (72)
= = 2 (73)
Then, we have

XA =iz, (74)
YA> 6y, (75)
eA=1+06 (76)
A>0. (77)

Thus, this solution vector (61,82, A) is feasible in [Dual-Upper-w]. For this
feasible solution we now have

1—
1+6, -8, = % < 0, since o < 1 and B > 1 by assumption.  (78)

Hence, it is proved that the DMU (z,,vy,) has a negative upper bound of
scale elasticity.
To conclude this section, we have the following definition and theorem.

Definition 1 (Strong Congestion) A DMU (x,,y,) is strongly congested if
there exists an activity (&0, ¥,) € Peonvez Such that &, = ax, (with 0 < a <

1) and §, > By, (with > 1). at (z,,y,)

Theorem 2 A DMU (x,,y,) is in the status of strong congestion, if and
only if the upper scale elasticity (p) as measured by the scheme [Upper-w] is
negative.

We notice that this definition of strong congestion requires existence of a
DMU (&,,%,) € Peonvez With a proportionally reduced input vector &, (=
az,, 0 < a < 1) and an enlarged output vector g, (> By,, 8> 1).
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3.2 Weak congestion

The common understanding on congestion is that an increase {decrease)
in one or more inputs causes a decrease (increase) in one or more outputs
(Cooper et al., 2001). From this point of view, the above definition of strong
congestion is too restrictive in that a proportionate reduction in all inputs
warrants an increase in all outputs. We now redefine (weak) congestion by
relaxing such stringent requirements in the following definition.

Definition 2 (Weak congestion) A DMU is (weakly) congested if it is strongly
efficient with respect 10 Pronves and there exist an activity in Peonyez that uses
less resources in one or more inputs for making more products in one or more
outputs.

In order to deal with this less restrictive definition, we present here an another
scheme.

First, we assume that the concerned DMU (=,,v,) is strongly efficient
in Poonves a8 defined in (41). Thus, the program [Congestion-1] has (6* =
1,8 = 0) for every optimal solution. For this DMU (., y,), we solve the
following linear program with variables X, ¢~ and t*.

1.t
[Congestion-2]  max 5 > yL (79)
r=1 Yro
subject to T, = XA 417
Yy, =YA—tt

A>0,t>0,t">0.

To solve [Congestion-2], we employ a two-stage process similar to (4): first,
we maximize the objective function in (79), and then we maximize Y72, t; /i,
while keeping the objective value of (79) at the optimum level. Symbolically,
we utilize the objective function of form
1.8t 1 &t
mex — ) ——4+e— ) - 80
S 721 Yro m ; Tio ( )
for the two-stage evaluation process, where ¢ is a Non-Archimedean small
positive number.
Let an optimal solution vector be (A*,£7*,£**). We have now two cases:
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Case 1. t¥* = 0. A
In this case, no congestion is observed in activity (x,,¥,), since a de-
crease in inputs cannot increase any outputs.

Case 2. t7 # 0.
In this case, t~* is not even zero too, since activity (z,,¥,) is strongly
efficient in Poonvez Thus, we identify congestion in activity (., y,)-

The objective function form in [Congestion-2| is an output-oriented version
of the Slacks-based Measure (SBM) that was introduced in Tone (2001). It
is units invariant.

Henceforth, we deal with the Case 2, ie., t™* # 0, t7* # 0. Based on
the optimal solution vector (A*,t7*,t**), we define Z, and 7, as

To=XA=x,— 17" (81)
—YA=y, et (2)
(Z,,Y,) is an improved (less congested) activity than (z,,y,).

As a proxy measure for scale elasticity, we propose the following formula.
First, we define an approximation to the marginal production rate (MPR) as

1St /1 & t_*
MPR = =3 / (83)

S r=1 Yro m i=1 i’
where § and 7 are the numbers of positive t* (r = 1,...,s) and positive
t;* (i =1,...,m), respectively. The average production rate (APR) is de-

fined as
APR = Z Uro / > T (84)
S =1 Yre/ M5 .’L‘w

Thus, we have the following approximation measure for DSE, which is given

belovw. MPR 18 t+* 1z t‘*
DSE = —— = —=
S APR 1 y,o m z—l Tio (85)

This can be interpreted as the ratio of the average improvement in outputs
to the average reduction in inputs. To note here that the negaive DSE value
for any activity indicates that congestion is present in that activity.

We have the following theorem regarding the status of weak congestion
and inefficiency in the BCC-O model.
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Theorem 3 Suppose that the DMU (z,,y,) is efficient with respect fo the
Poowes. Then, it is weakly congested if and only if it has 0pce > 1 or
(0500 =1 and s** # 0) by the model [BCC-O] in (3).

Proof : The status of weak congestion has two alternatives: (A) Congested
and (B) Not congested, while the optimal solution for the [BCC-O] model
has three alternatives: (a) 8500 > 1, (b) 03cc = 1 and s** # 0, and (c)
0300 = 1 and s™ = 0. We demonstrate that (A) corresponds to (a) or (b),
and (B) corresponds to (c).

In case of (a), the second constraint in (3) can be transformed into:

Yo = XA — (0poc — Ny, — s

Since #cc > 1, it holds that (fpcc—1)y,+s1* > 0 and hence the weak con-
gestion model [Congestion-2] has a positive objective function value, resulting
in (A). In case of (b), the DMU (@,,¥,) is weakly congested by definition
and hence (b) corresponds to (A). In case of (c), no congestion is identified,
and (c) corresponds to (B). This concludes the proof. ]
Regarding the improved DMU (&,, 7,), we have the following theorem:

Theorem 4 The improved DMU (%,,%,) defined by (81) and (82) is not
weakly congested. :

Proof : The congestion status of the (Z,,7,) is evaluated by the program
below:

T
max — TZ; ”~ (86)
subject to T, =Xp+ T
Jo=Yp—1"
ep=1

If it has an optimal solution (p*,77*,77*) with 77* # 0, then, referring to
(81) and (82), it holds that '

xo=Xpu +t7+177"

Yy, =Yu* -t —
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Since tT* + 7 > ¢t and t** + 7 # t**, this contradicts the maximality
of t** for [Congestion-2]. Thus, we have 71* = 0 and hence (Z,,,) is not
weakly congested. m]

If an increase in some special outputs is required, the weights on the
respective output slacks ¢} in the objective function (79) can be assigned in
the following manner:

where the weight w, > 0 (with >37_; w,. = s) is the weight assigned to the
output 7.

4 An Illustrative Example

We now illustrate the above procedure with the help of input-output data
of seven DMUs that were used in Figure 2. Table 1 reports the DSE results
obtained from [BCC-O], [Congestion-1] {Strong) and [Congestion-2] (Weak)
models. Depending on 5 and p in [BCC-O] model, we identified DMU A

Table 1: An Illustrative Example

Data [BCC-O] [Congestion-1] [Congestion-2]

DMU  Input  Qutput P F) TS P p RIS g RST

A 2 1 =) 4 IRS, =) 4 IRS - IRS

B 3 3 2 1 CRS 2 1 CRS 1.5 CRS

c - 4 4 1 05 CRS 1 0.5 CRS 0.75 CRS

D 6§ 5 0.6 0 DRS 06 0 DRS 0.3 DRS

E 7 5 06 0 DRS 0 1.4 DRS -0.7 DRS

F 8 4 06 0 DRS -2 -4 Congestion -1 Congestion

G ) 2 0.6 0 DRS -9 -co Congestion -4,5 Congestion

operating under IRS, DMUs B and C under CRS, and the remaining DMUs
under DRS. In this model, however, DMUs E, F and G are inefficient, i.e.,
they are not on the strongly efficient portion of Pgce, and hence we projected
them to the frontier point (DMU D) using (5) and (6). Thus, DMUs E, F
and G share same information with DMU D with respect to g, p and RTS.
However, in [Congestion-1] and [Congestion-2] models, all the DMUs are
strongly efficient with respect to Peonves-

[Congestion-1) evaluated the upper elasticity 5 via (50)-(55), and the
lower elasticity p using a similar scheme (by replacing max with min). In
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this model, DMUs A, B, C and D have eventually the same g and p with
those in [BCC-O] model, and hence their RTS behavior in [BCC-O] and
[Congestion-1] are same. DMU E has p = 0 and p = —1.4. We judged
E being not congested, and operate under DRS. DMUs F and G are found
strongly congested, because they have a negative p.

In [Congestion-2] model, however, two DMUs F and G as found weakly
congested, as is evident from their negative scale elasticity values. These
values are less than the 7 values in [Congestion-1] model. This is due to
the fact that the latter p reflects the slope of the supporting hyperplane
t0 Peonves at the concerned DMU (z,,y,), while the former (elasticity in
the weak congestion model) is calculated along the line segment connecting
(z0,%,) and (Z,,7,) that may pass through inside Piopyee. Other DMUs
are identified as being not congested in this model, and they have the same
elasticity and RTS with those in [Congestion-1]. So we recorded the average
of 5 and p in the [Congestion-1] model as the scale elasticity value in the
[Congestion-2] model.

For the congested DMUs F and G, we found in [Congestion-1] the im-~
proved DMU (Z,,%,) as designated by (63). Table 2 reports these results.
As can be seen, DMU F is projected to DMU E (7, 5), and DMU G to DMU
F (8, 4), which is still congested.

Table 2: Improvement of Congested DMUs

[Congestion-1]  [Congestion-2]
Data Improved Improved
DMU Input Output Input Output Input Output
F 8 4 7 5 6 5
G 9 2 8 4 6 5

In the weak congestion case {[Congestion-2]), however, the improved input
and output combination using the formulas (81) and (82) is the activity (6,
5) that is DMU D, which is not weakly congested, as asserted by Theorem
4. See Table 2.
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5 An Empirical Study

We analyze here the scale elasticity change over time of the operations of
chain stores (i.e., supermarkets) in Japan for a period of 27 years from 1975
through 2001. For the computation of scale elasticity, we have considered
here one output: annual sales (unit: hundred million yen), and two inputs:
the number of stores and the total area of stores (unit: 1000m?).

Table 3: Chain Stores Data Set
Year  Number  Area Sales Sales/Number Sales/Area

75 2,412 5,430 41,091 17.036 7.498
76 3,163 6,233 48,367 15.201 7.760
77 3,350 6,798 56,000 16.716 8.238
78 3,371 7,274 60,940 18.078 8.378
79 3,778 7,992 69,046 18.276 8.639
80 4,020 8,500 77,347 19.241 9.100
81 5,029 9,246 85,805 17.062 9.280
82 5,164 9,639 90,433 17.512 9.382
83 5,285 9,981 95,640 18.096 9.582
84 5,618 10,276 100,257 17.846 9.756
85 5,081 10,521 105,944 17.713 10.070
86 6,217 10,766 109,857 17.670 10.204
87 6,455 11,144 116,114 17.988 10.419
88 6,674 11,418 125,404 18.790 10.983
89 6,829 11,717 131,862 19.309 11.254
90 6,095 11,987 140,817 20.131 11.747
91 7,338 12,463 150,583 20.521 12.082
92 7,946 13,426 152,943 19.248 11.392
93 8,236 14,147 155,128 18.835 10.965
94 7,722 15,014 158,714 20.553 10.571
95 7,727 15,022 161,739 20.932 10.767
96 7,822 16,191 169,786 21.706 10.486
97 7,531 16,969 167,195 22.201 9.853
98 7,201 17,627 167,187 23.217 9.485
99 7,281 18,364 165,480 22.728 9.011
00 7,053 19,698 162,847 23.089 8.267
01 6,067 16,176 154,671 25.494 9.562
Average 6,010 12,003 119,304 19.455 9.805

Table 3 report such data. The data were directly obtained from the Japan
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Chain Stores Association. This Association covers respectively roughly about
20%, 42% and 51% of total Number, Area and Sales of supermarkets as of
1999.

Let us first analyze the behavior of the trends of the inputs and output.
As is seen in Figure 3, we find there is a slow but steady rise in the number of
chain stores till 1993 after which the trend continues declining consistently.
Barring last year of our study, though the total area is seen to be consistently
rising throughout, the first-half of our total sample period is characterized by
logarithmic rise whereas the second-half experiences an exponential rise. This
indicates the rapid growth of large-scale stores as contrasted to remarkable
extinction of small stores in recent years. As regards the nature of sales trend,
we find that it has shown an increasing trend until 1996 after which the trend
is seen to be consistently declining. This reflects the “bear” consumer minds
and weak Japan economies in recent years.

—— Number
~=— Area
—4— Sales/10

S

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 €4 25 96 97 98
Y ear -

Figure 3: Trend

99 00 01

In Figure 4 we see that while the trend for sales per store is of rise
throughout, this is not so in case of sales per area, which has exhibited an
upward trend until 1991 after which it shows a declining trend. The year
2001 however, demonstrates an improvement in both indices.
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Figure 4: Sales/Number and Sales/Area

Based on this data set, we evaluated the scale elasticity of operations
over time, with each year being treated as distinct DMU. Three DEA models
were utilized for this purpose: the BCC-O, the Strong and Weak Congestion
Models.

5.1 Résults of the BCC-0O model

We applied the [BCC-O] model (3) to the data set to compute the efficiency
score, input excesses and output shortfalls, based on which the projected
inputs and outputs are computed using the formulas (5) and (6). We then
solved the [Upper(Lower)] program (20)-(24) to compute the upper and lower
bound of scale elasticity 5 (p) using (25). Finally, the average elasticity score
is computed as the mean the lower and upper scale elasticity values. However,
in case the upper bound is co, the lower bound is taken as the average. These
results are reported in Table 4. The average BCC-O scores is found to be
1.06, which indicates that the chain stores have been operating their business
in a considerably efficient way throughout 27 years. Concerning the scale
elasticity of operations of chain stores, we find that barring for the last fours
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years of our study period it has overall shown a declining trend. However,
the chain stores were operating under IRS for the first 16 years (1975-1990)
followed by CRS in 1991 after which DRS sets in. The year 1990-1991, which
corresponds to the collapse of the bubble economies in Japan is the turning
point. The scale elasticity score, which was continuously falling since the
begining period of our study, started showing increasing trend particularly
after 1998. This finding can be viewed as the importance level of chain stores’
scale expansion reflecting a signing of recovery resulting from intense business
restructuring in recent years. The BCC-O analysis suggests that the Japan
Chain Stores Association, which was enjoying scale economies until 1990,
started suffering from the scale diseconomies after 1992. Rapid expansions
in the number as well as size of chain stores were not accompanied with the
corresponding growth in sales. As a result, several supermarkets were forced
to go bankrupt. This also suggests existence of congestion in this business.

Table 4: BCC-O Results

Projected Projected Projected Elasticity Elasticity Elasticity

DMU  Score Number Area Sales Upper(5) Lower(p) Average RTS
5 1.000 2,412 5,480 41,001 00 1.599 1.599 IRS
76 1,094 2,943 6,233 52,808 1.848 1.465 1.656 IRS
Kk 1.103 3,342 6,798 61,757 1.726 1.398 1.562 IRS
78 1.066 3,371 7,274 64,955 1.379 1.379 1.379 IRS
79 1.084 3,778 7,992 74,829 1.329 1.329 1.329 IRS
80 1.049 4,020 8,500 81,175 1.303 1.303 1,303 IRS
B1 1.161 5,029 9,246 99,590 1.247 1.247 1.247 IRS
82 1.148 5,164 9,639 103,773 1.237 1.237 1.237 IRS
83 1.124 5,285 9,981 107,462 1.229 1.229 1.229 IRS
84 1.135 5,618 10,276 113,825 1.216 1.216 1.216 IRS
85 1.134 5,968 10,521 120,133 1.373 1.205 1,289 IRS
86 1.129 6,141 10,766 123,974 1.362 1.198 1.280 IRS
87 1.119 6,408 11,144 129,901 1.345 1.189 1.267 IRS
88 1.070 6,601 11,418 134,198 1.334 1.183 1.259 IRS
89 1.053 6,812 11,717 138,886 1.323 1.177 1.250 IRS
90 1.016 6,995 11,987 143,019 1.172 1,172 1.172 IRS
91 1.000 7,338 12,463 150,583 1.298 0.426 0.862 CRS
92 1.017 7,463 13,426 155,543 0.760 0.445 0.602 DRS
93 1.027 7,557 14,147 159,257 0.766 0.458 0.612 DRS
94 1.032 7,669 15,0i4 163,723 Q772 0.472 0.622 DRS
95 1.013 7,670 15,022 163,764 0.772 0.472 0.622 DRS
96 1.000 7,822 16,191 169,786 0.780 0,000 0.390 DRS
97 1.008 7,931 16,864 168,568 0.575 0.187 0.381 DRS
98 1.000 7,201 17,627 167,187 0.571 0.180 0.376 DRS
99 1.012 7,281 17,442 167,522 0.572 0.182 0.377 DRS
oo 1.017 7,053 17,438 165,554 0.567 0.470 0.519 DRS
0l 1.000 6,067 16,176 154,671 1.219 0.433 0.826 CRS

Average 1.060
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5.2 Results of the strong congestion model

In order to investigate the existence of strong congestion as defined in Section
3.1, we analyzed the data set in Table 3 with the convex production possibility
set assumption-(41). The results are reported in Table 5. First, we solved
the [Congestion-1] (42) to compute the technical efficiency 6*, which is shown
in the column ‘Score’ of this table. As expected, this value is not greater
than that in the [BCC-O] model. The ‘Projected Sales’ is calculated using
the formula (44), while Number and Area remain unchanged. Using these
projected data, we calculated the upper scale elasticity by means of the
program [Upper-w] in (50)-(54) and (55), and lower elasticity using similar
scheme. These scores are reported in the columns ‘Elasticity Upper’ and
‘Elasticity Lower’. Theorem 2 asserts that strong congestion occurs if and
only if p is negative. We found two years 1997 (p = —0.252) and 1999
(p = —0.274) to be strongly congested.
The improved activities, using (65) and (66), for these two years are:

For 1997:
Number = 75,07(—0.3%), Area = 16,917(—0.3%), Sales = 168,472(0.07%)

For 1999:
Number = 71,69(~1.5%), Area = 18,080(—1.5%), Sales = 166, 237(0.42%).

Numbers in parentheses indicate % change. As defined in Section 3.1, the
strong congestion is identified if and only if a reduction in all inputs requires
an increase in all outputs. This restrictive definition seems to limit the
numbers of congested DMUs to a small number, in which case % changes are
small too.

5.3 Results of the weak congestion model

This model identifies congestion when a reduction in some inputs causes an
increase in some outputs, thus resulting in an occurrence of more congested
DMUs than in the case of strong congestion. Table 6 exhibits the results
where 14 years of operation are found to be under congestion. The column
‘Slacks Sales’ indicates shortfalls in the output (Sales), while ‘Slacks Number’
and ‘Slacks Area’ correspond to excesses in the inputs (Number of stores and
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Table 5: Strong Congestion Results

Projected Projected Projected Elasticity Blasticity BElasticity

DMU Score Number Arca Sales Upper Lower Average RTS
78 1.000 2,412 5,480 41,091 -4 1.599 1.599 IRS
76 1.000 3,163 6,233 48,367 oo 2.546 2.546 IRS
77 1.100 3,350 6,798 61,587 2.218 2.215 2.215 IRS
78 1.066 3,371 7,274 64,955 1.379 1.379 1.379 IRS
79 1.084 3,778 7,992 74,829 1.329 1.329 1,329 IRS
80 1.049 4,020 8,500 81,175 1.303 1.303 1.303 IRS
81 1,161 5,025 9,246 69,580 1.247 1.247 1.247 IRS
82 1.148 5,164 9,639 103,773 1.237 1.237 1.237 IRS
83 1.124 5,285 9,981 107,462 1.229 1.229 1.229 IRS
84 1.135 5,618 10,276 113,825 1.216 1.216 1.216 IRS
85 1.131 5,981 10,521 115,866 1.624 1.624 1.624 IRS
86 1.085 6,217 10,766 119,147 3.336 3.336 3.336 IRS
87 1.109 6,455 11,144 128,738 3.162 3.162 3.162 IRS
88 1.000 6,674 11,418 125,404 o 3.219 3.219 1IRS
89 1.051 6,829 11,717 138,530 1.540 1.540 1.540 IRS
90 1.016 6,995 11,987 143,019 1.172 1.172 1.172 IRS
91 1.000 7,338 12,463 150,583 oo 0.222 0.222 CRS
92 1.000 7,946 13,428 152,943 o - 1.000 CRS
93 1.000 8,236 14,147 155,128 0.164 —c0 0.164 DRS
94 1.030 7,722 15,014 163,439 0.283 0.283 0.283 DRS
95 1.011 7,727 15,022 163,459 0.283 0.283 0.283 . DRS
96 1.000 7,822 16,191 169,786 0.780 —0c0 0.780 DRS
a7 1.007 7,531 16,969 168,342 -0.252 -0.252 -0.252  Congestion
98 1.000 7,201 17,627 167,187 0.571 -0.261 0.185 DRS
99 1.000 7,281 18,364 165,538 -0.274 -0.274 -0.274  Congestion
00 1.000 7,083 19,698 162,847 o —e0 1.000 CRS
01 1.000 6,067 16,176 154,671 1.579 0.368 0.973 CRS

Average 1.048

Area of stores), which are all displayed with negative values. The ‘Improved’
inputs and output are computed using formulas (81) and (82), where as
‘Elasticity’ is by (85). It is interesting to note that, before 1995 congestion
was due to the excess in number of stores, whereas after 1997 it is due to the
excess in area of stores. This finding tallies with the trend of both the inputs
in Figure 4.

5.4 Summary of this case study

We conclude this section by comparing three models with respect to their
average scale elasticity score trends in Figure 5.

1. The scale elasticity scores in [BCC-O} model indicate that Supermar-
kets operate under IRS upto 1990, CRS in 1991 and DRS for the re-
maining years barring the last year of operation. The managerial im-
plication is that the scale expansion after 1990 was not rewarding when
several supermarkets were obliged to go bankrupt in 90s.

2. The strong congestion model identified two years of chain stores’ oper-
ation in the late 90s as congested, reflecting excesses in both the inputs
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Table 6: Weak Congestion Results

Slacks Slacks Slacks Improved Improved Improved
DMU Score Number Area Sales Number Area Sales Elasticity Congestion
75 1.000 0 0 [§] 2,412 5,480 41,091
76 1.000 -219.81 0  4530.88 2,943 6,233 52,898 -1.348  Congestion
ke 1.100 -8.25 o 169.98 3,342 6,798 61,757 -1.121 Congestion
78 1.066 0 0 Q 3,371 7,274 64,955
79 1.084 0 0 0 3,778 7,992 74,829
80 1.049 o] 0 0 4,020 8,500 81,175
81 1.161 0 0 0 5,029 9,246 99,590
82 1.148 Q 1] 0 5,164 9,639 103,773
83 1.124 0 0 0 5,285 9,981 107,462
84 1.135 0 0 0 5,618 10,276 113,825
85 1.131 -12.94 0 266.73 5,968 10,521 120,133 -1.020  Congestion
86 1.085 -76.11 0 4827.11 6,141 10,766 123,974 -3.309 Congestion
87 1.109 -47.46 [¢] 1162.99 6,408 11,144 129,501 -1.228 Congestion
a8 1.000 -73.17 0 8793.62 6,601 11,418 134,198 -6.396  Congestion
89 1.051 -17.25 o] 355.54 6,812 11,717 138,886 -1.016 Congestion
90 1.018 4] 0 0 6,995 11,987 143,019
91 1.000 0 1] 0 7,338 12,463 150,583
092 1.000 -482.98 0 2600.43 7,463 13,426 155,543 -0,279 Congestion
93 1.000 -679.37 0 4120.32 7,557 14,147 159,267 -0.322  Congestion
94 1.030 -52.81 0 284.33 7,669 15,014 163,723 -0.254 Congestion
95 1,011 -56.77 o 305.66 7,670 15,022 163,764 -0.254  Congestion
96 1.000 0 0 7,822 16,191 169,786
97 1.007 0 -105.09 226.18 7,831 16,864 168,568 -0.216  Congestion
98 1.000 ) 0 7,201 17,627 167,187
99 1.000 0 -921.99 1984.28 7,281 17,442 167,522 -0.232 Congestion
00 1.000 0 -2260.37 2706.52 7,053 17,438 165,554 -0.145 Congestion
01 1.000 0 0 0 6,067 16,176 154,671

Average 1.048

and shortfalls in the output. This finding, along with the downward
trend in the scale elasticity (see Figure 5), suggests that more efforts on
intense business restructuring be required to wash away diseconomies
of scale. The results on our weak congestion model reveal that there
is a change in the source of input congestion over time. This change
occurred from the number of chain stores in late 70s and late 80s to the
area of chain stores in late 90s. This model is helpful to find the sources
of congestion, although it was found case sensitive in this study.

3. The analyses developed here are associated with the time series data of
27 years. Hence, the performance of a certain year is compared with all
the years including later years. This might sound strange if we stick to
the view that a reference is consisted only of preceding years. We can
cope with this view in a way that we evaluate the year T within the
data set consisting of 1, 2,...T years. However, from managerial point
of view, it is useful to utilize the all past data for the evaluation of
future store planning. This can be realized by adding a new plan, i.e.,
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DSE

(Number, Area and Sales) to the existing data set, and then analyze
the augmented data set. In this way we can evaluate the scale elasticity
of the new plan, and check if it is in a status being under congestion,
DRS, CRS or IRS.

A A ¢ &L &L O HFHp P HS

Year

Figure 5: Scale Elasticity Comparison in Three Models

6 Concluding Remarks

Investigation of scale elasticity for obtaining optimal scale of operations has
significant bearings while recommending policy for restructuring any sec-
tor in a competitive economy. In recent years the BCC model has enjoyed
widespread popularity in the non-parametric literature for computing the
scale elasticity in production. However, there is a difficulty with the use of
BCC model since this model does not take the congestion factors into con-
sideration. When congestion is present in production, BCC model overstates
true scale elasticity estimates. It is of interest, then, to determine the im-
pact of congestion on scale elasticity parameter of incorporating congested
production factors into the model.
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In this paper, we have developed a new scheme to evaluate the scale
elasticity in the presence of congestion within a unified framework. We have
applied this method to a data set of the Japan Chain Store Association,

“and found that the association had been operating under DRS for the last
ten years. Even more, strong congestion was observed in the last few years,
while weak congestion was found in the number of stores in 70’s and 80’s,
and in the area of stores in 90’s. These findings are helpful for managers to
numerically check their future plans for restructuring their business.

To note here that ‘scale economies’ is meant throughout in this paper
‘returns to scale’, but not ‘economies of scale.” However, a well distinction
exists in the literature in which it is implicitly maintained that in the special
case of given input factor prices, the cost structure is entirely determined
from the underlying production technology where IRS implies economies of
scale. However, as the input market is typically imperfect in the real world,
these two concepts can no longer be the same. A description concerning the
conceptual differences between these two concepts lies beyond the scope of
this study. However, the interested readers can refer to our earlier studies,
e.g., Sahoo et al. (1999) and Tone and Sahoo (2002a,b) in which both the
concepts are critically analyzed and distinguished in the light of classical and
neoclassical perspectives, and it is shown that they have distinctive causative
factors that do not permit them to be used interchangeably.

This study points to avenues for future research. First, in any empirical
study one needs to quantitatively examine the extent to which the loss (in
terms of cost/profit) occurs due to congestion. Secondly, the issue of strong
vis-a-vis weak congestion needs to be further addressed from an empirical
perspective depending upon the nature of inputs used and outputs produced
by the business entities in any economic environment.

References

(1] Banker, R. D., A. Charnes and W.W. Cooper. 1984. Models for the
Estimation of Technical and Scale Inefficiencies in Data Envelopment
Analysis. Management Science, 30, 1078-1092.

(2] Banker, R. D. and R.M. Thrall. 1992. Estimation of Returns to Scale
Using Data Envelopment Analysis. Furopean Journal of Operational Re-

26



search, 62: 74-84.

[3] Banker, R. D., I. Bardhan and W.W. Cooper. 1996a. A Note on Returns
to Scale in DEA. European Journal of Operational Research, 88, 583-585.

[4] Banker, R. D., H. Chang and W. W. Cooper. 1996b. Equivalence and Im-
plimentation of Alternative Methods for determining Returns to Scale in
Data Envelopment Analysis. Buropean Journal of Operational Research,
89, 473-481.

(5] Baumol, W. J., J. C. Panzar, and R. D. Willig. 1988. Contestable Mar-
kets and The Theory of Industry Structure. Harcourt Brace Jovanovich,
New York.

(6] Brockett, P. L., W. W. Cooper, H.C. Shin and Y. Wang. 1998. Ineffi-
ciency and Congestion in Chinese Production Before and After the 1978
Economic Reform. Socio-Economic Planning Sciences, 32, 1-20.

[7] Charnes A., W. W. Cooper and E. Rhodes. 1978. Measuring the Effi-
ciency of Decision Making Units. Buropean Journal of Operational Re-
search 2: 429-444.

[8] Cooper, W.W., L.M. Seiford and K. Tone. 1999. Data Envelopment
Analysis — A Comprehensive Tezt with Models, Applications, Refer-
ences and DEA-Solver Software Norwell Mass: Kluwer Academic Pub-
lishers.

[9] Cooper, W.W., H. Deng, B.S. Gu, S.L. Li and R.M. Thrall. 2001. Using
DEA to Improve the Management of Congestion in Chinese Industries
(1981-1997). Socio-Economic Planning Sciences, 35, 227-242.

(10] Cooper, W.W., B.S. Gu and S.L. Li. 2001. Comparisons and Evalua-
tion of Alternative Approaches to the Treatment of Congestion in DEA.
European Journal of Operational Research, 132, 62-74.

[11] Cooper, W.W., L.M. Seiford and J. Zhu. 2000. A Unified Additive Model
Approach for Evaluating Inefficiency and Congestion. Socio-Economic
Planning Sciences, 34, 1-26.

27



[12] Fére, R. and L. Svensson. 1980. Congestion of Factors of Production.
FEconometrica, 48, 1745-1753.

[13] Fire, R., S. Grosskopf and C. A. K. Lovell. 1985. The Measurement of
Efficiency of Production Boston: Kluwer NijhofF.

[14] Fére, R., S. Grosskopf and C. A. K. Lovell. 1986. Scale Economies and
Duality. Journal of Economics, 46, 175-182.

[15) Fire, R., S. Grosskopf and C. A. K. Lovell. 1988. Scale Elasticity and
Scale Efficiency. Journal of Institutional and Theoretical Economics,
144, 721-729.

[16] Fire, R., S. Grosskopf and C. A. K. Lovell. 1994, Production Frontiers
Cambridge: Cambridge University Press.

[17] Fersund, F. R. 1996. On the Calculation of Scale Elasticity in DEA
Models. Journal of Productivity Analysis, 7, 283-302.

[18] Fgrsund, F. R. and L. Hjalmarsson. 2002. Are All Scales Optimal in
DEA? Theory and Empirical Evidence.
http://www.handels.gu.se/epc/data/html/html/PDF/gunwpe0066.pdf.

[19] Frisch, R. 1965. Theory of Production Dordrecht: D. Reidel Publishing
Company.

[20} Fukuyama, H. 2001. Returns to Scale and Scale Elasticity in Farrell,
Russell and Additive Models. Journal of Productivity Analysts, 16, 225-
239.

[21] Grosskopf, S., D. Margaritis and V. Valdmanis. 2001. Costs of Teaching
on Hospital Productivity. Socio-Economic Planning Sciences, 35, 189-
204. ‘

[22] Hanoch, G. 1970. Homotheticity in Joint Production. Journal of Eco-
nomic Theory, 2, 423-426.

(23] Loéthgren, M. and Tambour, M. 1996. Alternative Approaches to Esti-
mate Returns to Scale in DEA-Models. Stockholm School of Economics
Working Paper No. 90.

28



[24] Panzar, J. C. and R.D. Willig. 1977. Economies of Scale in Multi-output
Production. Quarterly Journal of Economics, XLI, 481-493.

[25] Sahoo, B. K., P. K. J. Mohapatra and M. L. Trivedi. 1999. A Compar-
ative Application of Data Envelopment Analysis and Frontier Translog
Production Function for Estimating Returns to Scale and Efficiencies.
International Journal of Systems Science, 30, 379-394.

[26] Starrett, D. A. 1977. Measuring Returns to Scale in the Aggregate, and
the Scale Effect of Public Goods. Fconometrica, 45, 1439-1455.

[27] Sueyoshi, T. 1997. Measuring Efficiencies and Returns to Scale of Nippon
Telegraph & Telephone in Production and Cost Analyses. Management
Science, 43, 7T79-796.

[28] Sueyoshi, T. 1999. DEA Duality on Returns to Scale (RTS) in Pro-
duction and Cost Analyses: An Occurrence of Multiple Solutions and
Differences Between Production-based and Cost-based RTS Estimates.
Management Science, 45, 1593-1608.

[29] Tone, K. 2001. A Slacks-based Measure of Efficiency in Data Envelop-
ment Analysis. European Journal of Operational Research 130: 498-509.

[30] Tone, K. and B. K. Sahoo. 2002a. Scale, Indivisibilities and Production
Function in Data Envelopment Analysis. GRIPS Research Report Series
I-2001-0003.

[31] Tone, K. and B. K. Sahoo. 2002b. Cost Efficiency and Returns to Scale in
Life Insurance Corporation of India Using Data Envelopment Analysis.
GRIPS Research Report Series I-2002-0001.

29



