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Abstract

The logical gap in the proof of non-stationary mixingale invariance principle by McLeish
(1977) is identified and fixed by a skipped sub-sampling of a partial sum process in the
continuous time. The corrected proof also delivers some extensions of the previous invariance
principle and several stronger versions of convergence in law.
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McLeish (1975, Theorem 1.6; 1977, Theorem 2.4) claims a proof of some invariance principle
based on a mixingale-type dependent process. Compared with his celebrated maximal inequal-
ity, however, his asymptotic normality have drawn less attention. One reason, as Wooldridge
and White (1988, p.214) suggest, is the non-primitive nature of his condition (1977, (2.6)) to
replace the assumption of asymptotic independent increments of Billingsley (1968, (19.14)).
Mixed with a logical gap remained in his original proof, the drawback of McLeish (1975, 1977)
has not been fixed for more than three decades since publication. The main purpose of this
note is to identify and fill the gap. The corrected proof allows several stronger versions of
convergence in law.

Definition 1 (Information Filtrations, Mixingale, C and D spaces)

(a) (2, F,P) is a probability space with a filtration F = (F;)ico,1) of a non-decreasing sequence
of sub-o-fields F; of F. Forp>1, |||, := (E[| - |P])'/? defines the L,-norm.

(b) (Xn,j) = (Xnj)nen,jey s an array of random variables where the set of discrete indices J
may depend on n. (I, ;) is an array of filtration of sub-o-fields L, ; of F non-decreasing

with respect to j for each n. (X ) is Ly-bounded if sup,, ; | X jll, < oc.

(¢c) An array of Li-bounded random wvariables paired with a filtration, (X, j,Zy;), is an Ly-
mizingale if there exist a non-negative array of heterogeneous coefficients (cp ;) and a non-

negative sequence of mizingale numbers (Y, )ren such that

| E[Xn,51Zn,j—]llp Cn,jVrs (1)
|’Xn,j_E[Xn7j‘In,j+r]”p < Cn,ijJrla (2)

IN

and P, — 0 as r — oo. For ¢ > 0, it is of size —¢ < 0 if P, = O(r=%) for some ¢pog > ¢,
or alternatively if 1, = O(r~¢=%) for some § > 0.

(d) (Xn,j) is uniformly integrable if lime—oo sup,, ; E[|Xn j|1l{x, ;j>c}) = 0 where 17y is the

indicator function, and is uniformly square integrable if (be’j) s uniformly integrable.

(e) C is the set of continuous functions on [0,1]. D is the set of cddldg functions on [0,1] so
that x € D is characterized by the existence of x(t+) for any t € [0,1) and x(t—) for any
t € (0,1], z(t) = z(t+) for any t < 1, and z(1) = x(1—). (D,dp) is the complete and
separable metric space where dp is the Billingsley’s metric (Davidson 2002, Section 28.3).
(D,B) is the measurable space where B is the Borel o-field generated by dp.

(f) Bn(t) = ZJLZJ Xy,j is the partial-sum process of a random array (X, ;) for t € [0,1] where
|-] is the greatest integer part. B,(0) = 0. Note that B,, = B,(-) € D. B, induces the
probability law p,(-) = P(By € ) on (D,B). (Bp)nen itself, or a sequence of probability
laws it induces, (fn)nen, s called uniformly tight if for any e > 0 there ezists a compact set
K. € B such that sup,en{pn(D \ Kc)} <e.

(9) LetT be a sub-o-field of F and (Zy)nen be a sequence of random vectors in the d-dimensional

Euclidean Borel-measurable space (R%, B(RY)). Z, converges I-stably in law to the canonical

Tt has been a standard argument to impose a near-epoch dependence on the class of mixingale processes so
that the asymptotic independent increments property hold (e.g., Potscher and Prucha 1991).



variable Z as n — oo, denoted by Z, dﬁ) Z, if, for any T-measurable bounded variable n,

(Zunyn) % (2%,0) and 7* £ Z. (3)
T

Zy converges I-mizing in law to Z as n — oo, denoted by Zy, (@) Z, if (8) holds with Z*
independent of T. An equivalent condition for Z, dﬂI) Z

YueR! YF e st. P(F)>0: lim E[e™?|F] = E[e™?] and 2* < Z. (4)

n—oo

Remarks. Definition 1-(g) follows Aldous and Eagleson (1978, Prop. 1-(B); 2-(B"); 2-(C")).
Because the conditional measure on F' € F with P(F) > 0 is characterized by P(:|F) =
P(-NF)/P(F), the conditional law u,(-|F) = P(B, € -|F) satisfies

VAEBRY) : pn(AIF) = P({B, € A} F)/P(F) < P(B, € A)/P(F) = un(A)/P(F), (5)
so that p,(-|F) satisfies any majorant inequalities for u, with majorant sides divided by P(F).

Theorem 1 (Correcting and improving on McLeish 1975 Theorem 2.6; 1977 Theorem 2.4)
Suppose the Ly-bounded random array paired with a filtration (X, ;,Z, ;) is such that

(a) it is an Lo-mizingale of size —1/2 with an array of heterogeneous coefficients (¢ ),
(b) (Xnj/cnj) is uniformly square integrable,
(C) Sups,t:0<s<t<1 lim Supnﬁ\oo( ) ijSLJmJ 721,] < 00,

(d) I, ; is the smallest o-field containing GUH,, j where (Hy ;) is a sub-filtration of F indepen-
dent of a sub-o-field G of F; (Xp ;) is (In;);-adapted with zero mean, and

(e) h™ 1E[(thn E;ZTJX )T, ns)] — 0 20 as n~l + h+ (nh)~' = 0 for any s,t such that

0<s<t<t+h<1where (01)cp,1) i non-negative, t-continuous, uniformly integrable
and G-measurable, and fol 0:dt is uniformly bounded away from zero.
Then, for each t € (0,1], there exists a limit variable Z ~ N(0,1) independent of G such that
¢ —1/2 [nt] i (G)
Bn(t) == (/ G@dv> ZXM ' Z. (6)
0

(Proof) Let us introduce another set of notations for the purpose of proof.

Definition 2 (A skipped subsample and the G-conditional characteristic function)
(a) For any integer k > 4 and any partition (tq)e=1..k 0f [0,1) such that 0 < t; < -+ <t < 1,

(Xn,lv In,l) ZS Lntk,gj

Xop nty_1 |+1—nte o] —1> L, nte_1 |+i—|nts_o]—1) 1> [ntr_2]

(Xn,lyin,l) = { (

forl € N and hj :=t; —tj_1 with sup; hj — 0 as n — oo.



(b) Ba(t) := (f10pdv) 2 %0, Z o= S0 waBa(ta) for u, € R, E*[] = E[|G], and

@Z(t,u) — I [eizkferiuén(t)]’ t>t s uER, i= —

(¢) Dg_1i=By(ty) — Bu(ts_s). Note that Ay_y = ([ 0,dv)=2/2 3 "]

j=Intk_1] Xnj-

(X1, Zny)i in Definition 2-(a) is a subsample of (X, j,Z,.;); avoiding |ntg_o| < j < |ntp_1].
Z, in Definition 2-(b) satisfies Zy_3 + uBB,(ty—2) = Zj_o for u = uj_o, which is assumed
subsequently without loss of generality. Because the partition (¢,) is arbitrary, let us assume

i + Byt + hi—1hy b+ (nhg)™H + (nhg—1) ™ = 0 as n— o0 (7)

i.e., h_1 — 0 faster than hy — 0, but both are slower than 1/n — 0 as n — oo. Note that

* i 2y iU\,
B (th, 1) — @ (g, u) _ F7 [T - ) -

t — th—2 tg — tg—2

Davidson (2002, Lemma 11.26) and the second-order Taylor expansion with a remainder imply

B 1 = ulp_y —uPA2 /24 c(ul_y), 9)
lc(uAgp_1)] < min{|ud,_1]? [ul,_1[3/6}. (10)

Using (7) to (10), mixingale property, t-continuity of §; and calculation in the appendix,

o* (¢ — o 2 0,
Yo € (tp—s,tx) : HGED) n(v; 1) v T
v

t —v 2 fo b

- @ (v,u) + Rp (11)

n

where R, is a G-measurable remainder asymptotically vanishing almost surely.

Conditions (a) to (c) for (X, ;,Z,;) can be applied to (X, ;,Z,;). Given (18) and the
subsequent discussion in the appendix, (a) and (b) imply that (B, ) is uniformly square integrable
so that (11) with the second moment of Aj_; holds in the limit without the remainder. (a) to
(c) combined with Lemma 4 in the appendix ensure that (B,) is also uniformly tight converging
in law to a P-a.s. continuous random process B. Moreover, the uniform tightness applies to
conditional laws (pin(-|G))nen for any G € G with P(G) > 0. Therefore, we can define ®*(¢, u)
for B like @7 (¢,u) for B, such that, P-almost surely, ®*(¢,u) is t-continuous with the right
t-derivative coincident with the two-sided t-derivative (Billingsley 1968, p155). Divide (11) by

¢ (v,u) and let n — oo to obtain

Oln®*(v,u) 45 u? 6,
Yo € (tg_3,1): —————— = —— . .

(12)
By integrating both sides of (12) with respect to v € (s,t) C (tx—3, 1) and exponentiating,
t t
B* (1, u) /D% (5, u) = exp <—(u2 /2) / Oudu) / Gvdv> . (13)
s 0

Set k =4 and t;_3 = t; = 0. The continuity of B and P(B(0) = 0) = 1 imply ®*(s,u) % 1 and

therefore ®F (t,u) % e*/2 as s — 0. The calculation in the appendix reveals

”Bn(t) - Bn(t)HQ — O, implying Bn(t) - B_n(t) £> 0 (14)



as n — oo given (7). Because e®Br®)=Bn(} _ 1 B 0 and (em{B()-Ba(} _ 1) is uniformly
integrable, |E[e™Br(t) — ¢tubn(®)|G]| < |letBaO)=Ba®} _ 1| /P(G) — 0 for any G € G with
P(G) > 0 so that E*[e"Br(t) — uBn()] 2% () given Lemma 1-(a) and (24) in the appendix.
Consequently,

E*[eiuBn(t)] _ E*[eiugn(t)] + E* [eiuBn(t) _ eiuBn(t)] a.8. e7u2/2

)

which does not depend on G. Therefore, B,,(t) — @ (g)

B(t) allows the result for ¢ — 1.

N(0,1) for any t € (0,1). The continuity of

O

Remarks. (e) is weaker than McLeish (1977, (2.6)) because we employ the probability limit
rather than L limit, and the conditional variance may not be time-homogeneous nor determin-

istic. The subsample (X, ;) is designed for ensuring A1 = By, (tx)—Bn(tg—2) o Z]Lmﬁtk 1 X

while By, (tx) — By (tg—m) ZW [t |41 Xn,j foranym € N. X, 4, .| in Zj_o and X, nty_1 ]
in Ag_1 are asymptotically separated given conditioning on Z,, |, ,| within E*, (7) and mixin-
gale properties because their displacement in continuous time is |ntg_1 | — |ntg_2] > nhi—1 — oo
as n — oo, whereas it does not disturb the asymptotic distribution as hy_; — 0 so that
the skipped part shrinks quickly. Given Z, := >.7_, uoB,(t,) based on (X, ;), Billingsley
(1968, p.160) assumes h™'FE [eiz’ﬁl{ei“(B“/(tk)_B”(tkﬂ)) —1}] — 0 or its variants as h | 0.
Because X, py, |41 0 Zg—1 and X, |, | in By(ty) — Bn(tg—1) are always two consecutive
sampling points, they cannot be separated asymptotically as n — oo. Although it is sufficient
for applications to martingale-difference or interchangeable variables with weaker dependence
(Billingsley 1968, Section 23, 24; Chow and Teicher 1997, Theorem 7.3.2), it is inappropri-
ate for our case with non-trivial dependence. McLeish (1975, p.175; 1977, p.620) assumes
h™'E [e!Zr-2 {e?Bn(tr)=Bn(tr-1)) _ 1}] — 0 as h | 0 so that X, Inty_o)+1 10 Zg—2 and X, 14, ||
in By, (tx) — Bn(tk—1) are separated asymptotically. However, (8) suggests that it is not linked
to Billingsley’s original strategy of approximating the characteristic function by that of a Gaus-
sian process. Theorem 1 fills this gap in a series of approximations from (8) to (11) for (X, ;)
together with (14). It also shows that the convergence occurs in the G-mixing sense.
Obviously, (b) and (c) are respectively implied by

(b") sup,, ; [|Xn,j/cnllr < oo for some r > 2, and
(¢’) sup; e, = O(n=1/2).

The next result offers conditions alternative to (e) in Theorem 1. The size of mixing numbers
below is defined similarly as that of mixingale numbers in Definition 1-(c).

Theorem 2 For (X, ;,Z, ;) in Theorem 1, define 6, = ZJLm[mJ . Suppose either

(1) Xnj = Yn,;jUn; where (yn ) is G-measurable and sup; Yn.jll2 = O(n_l/Q), and (U, ;) is
(Hn,j)-adapted, Ly-bounded and a- or ¢p-mizing of size —q/(q — 2) for some q¢ > 2, or

(it) (Xn;) is (Hn,j)-adapted and o- or ¢p-mizing of any negative size. Then,
vt € (07 1) Vh € (0, 1- t) : h_luE[(SZtJrh‘In,\_ntJ—r] - [ tt+h”|1 —0 as r— 0. (15)

(Proof) (i): Suppose Uy, ; is a-mizing with the a-mizing number au, of the assumed size so that

am = O(m —a/(4-2)- ) for some € > 0. The proof for ¢-mizxing case is almost identical. For



=€e(q—2)/q>0, m/2a{0 2/ — O(m==%/2). Define j Al = min{j,1}. Asr — oo,

[n(t+h)]

Z a](i\l Q)Lizqtj—f—r — 2nh +1 Z 05( —2/4 < 2nh + 1 —K/2 Z m”/2 q 2)/q _ O(nhrili/2)
Jil=|nt] m=r m—r

Note that 5t bh = ZLn HhJJ Yn,jYniUn,jUn. For j,1 > |nt], Uy Uy, is measurable with respect
to Hp max{jiy, which is later than Hy jni. Therefore, it is separated from Hy, |n)—r by at least
JAl—|nt]+r in the discrete index and the associated a-mizing number is at most QAL |t |47
Using the Minkowski, Hélder, norm, a-mizing and Cauchy-Schwarz inequalities in conjunction

with the above estimate and the given condition,

WG] sl o, [t ) = B [0 140 1
[n(t+h)]

< 6071 3 lymgllallym 2| Un sl Undllga i
Jil=|nt]
[n(t+h)]
< R~ (sup g o) (sup U o) Z alt 20
=|nt|

= o(r/?) =0 as r— oco.

(it): Notice that X, j is independent from G. Then, we can replace E[-|L, ;] and E[|G] by
E[|Hn ] and E[-]. The rest is identical to McLeish (1975, p.177).

O

Remarks. By combining McLeish (1975, Theorem 3.8; 1977, Corollary 2.11) with independence
between G and (H,,;), we can show that the size condition for a-mixing numbers of (U, ;) to
ensure the condition (a) in Theorem 1 is equivalent to the one for the case-(i) in Theorem 2.
Improving the size condition is left for a future research. (15) and Lemma 1-(¢) in the appendix
guarantee that it suffices to find the probability limit of A1 E[§? +¢+1|9] for 6 under Theorem 2.

Theorem 3 (FCLT) Suppose (X, ;) in Theorem 1 is independent of G and (01)yc(o,1) s deter-

ministic. For the standard Brownian motion (Wv)ye[o,l] independent of H,

-]
B,() ::ZXnJ m(3t) /01/2dW as n — oo.

j=1

(Proof) The scaling ( fg 6,dv)~'/? is not necessary because (6;) is not random. It suffices to
show that any finite-dimensional distributions conditional on each F' € H; with P(F) > 0
converge to those of an unconditionally Gaussian process because of the uniform tightness. We
can identify Z,, ; with H,, ; and E*[] with E[-|F] without loss of generality. We can apply the
proof of Theorem 1 to that of E*[e?*Br()] — e~ (W?/2) [5 0udv which is independent of H; for each
t. (13) reads

q)*(t, U) _ q)*(s? u>e—(u2/2) f; Hvdv7

with ®*(s,u) = e~ (u?/2) Jg fudv by setting k =5, t; =0, t2 = s < t3 <ty < t5 =t. Repeat this
argument as in Billingsley (1968, p.163) to ensure the independent incremental property and
convergence of any finite-dimensional distributions.



O

Remarks. This result improves McLeish (1977, Theorem 2.4), Wooldridge and White (1988,
Theorem 2.1) and De Jong (1997, Theorem 1) by replacing their time-homogeneous instanta-
neous variance ¢ € [0, 1] by a time-heterogeneous (0;);c(0,1]- The ease of proving this functional
result comes at the cost of a stronger non-randomness of (6;);c[o,1) than (e) in Theorem 1. We
conjecture the validity of a functional #;-stable convergence in law if (6;) is (H;)-adapted, but
its investigation is left for a future research.

s_(>I)

Theorem 4 If Y, . Y and Z, dﬂz) Z, then (Y, Zy) ds—(>I) (Y, Z). In particular, any
ds(G)

Y, =Y and (6) under Theorem 1 occur jointly as the G-stable convergence in law:

(Yo, Bn(t)) 4(9) (Y,Z), Z~ N(0,1) independent of G.

(Proof) The proof mainly follows Barndorff-Nielsen et. al. (2008, Proposition 5). Using Def-
inition 1-(g) and the equivalence of convergence in distribution and in characteristic function,
it is sufficient to show V := E[ei@ Yot/ Znticn] _ pleia’Y+i'Z+icn) _, () for any real vectors
a,b,c. Using the add-subtract trick, self-adjointness of conditional expectations (Kallenberg
2002, p.104) and independence of Z from Z,

V= E[ele"(E[eib/Z”|I] _E[eib’Z])eic’n] _|_E[(em’yn N €ia/Y)E[€ib/Z]€ic,n]. (16)

" do(T
E[e®'?] as a constant is taken out of the second expectation. Y;, *D ¥ means (Yo, m) KN (Y,n)

for any Z-measurable variable 7 or equivalently E[ei®Y»ticn] — E[eia’Y+icn] 5 () 5o that the
second term in the right hand side of (16) vanishes as n — oo. The first term in the right
hand side of (16) is bounded absolutely by E[|E[e?'%"|G] — E[e'Z]|], which tends to zero if

Ele?%0|7) 1 B[], Because E[e? % |F] — E[e®'?] for any F € T with P(F) > 0, (24) in
the appendix ensures E[e??'Zr|T] “% E[e?' %], implying Ele®' % (1] 4p [eiV'2],

O

These results are particularly useful in the context of estimating a quadratic variation of a
financial security price process given high-frequency intra-daily data with a stochastic-volatility
leverage effect and a microstructure effect. For instance, Theorem 1 can generalize Barndorff-
Nielsen et.al. (2008, Theorem 1 and Lemma 4) for the asymptotic normality of a cross term
in their realized-kernel estimator based on a serially independent microstructure effect to those
based on serially dependent one. The mixingale framework also naturally incorporates a case of
diurnally heteroskedastic microstructure effect as is documented by Kalnina and Linton (2008).
See Ikeda (2013a, b) for examples.



Appendix I. Results and proofs for the main theorems
Lemma 1 (Uniformly integrable arrays)
(a) If X, %X, X, Ix if and only if (X,,) is uniformly integrable.
(b) (Xn,;) is uniformly integrable if and only if
(i) sup,, ; E[| X, ;]] < oo and (i) limp( 4)_0 SUP,, ; E[|X, j1a] = 0.
(¢c) If (Xy ;) is uniformly integrable, so is (E[Xy, j|Tn;]) for any array of o-fields (Jy ;).

(d) If (Xp ;) and (Yy ;) are uniformly integrable, so is (Yn ;j — Xn ;).

(Proof) (a), (b): Kallenberg (2002, Proposition 4.12 and Lemma 4.10). (c): Yy, j := E[Xy, j|Tn ;]
satisfies sup,, ; E[|Yy j|] < sup,, ; E[|Xn ;|| < oo because of (b)-(i), the triangular inequality and
the law of iterated expectations. For ¢ >0 and A := {|Y;, ;| > (}, P(A) < sup,, ; E[|Yn[]/¢ — 0
as ¢ — 0o by the Markov’s inequality. The claim holds as E[|Y, |1y, ;>3] < E[|Xnjl1a] =0
by the uniform integrability of (X, ;), P(A) = 0 and Lemma 1-(b)-(ii). (d): Gut (2005, Theo-
rem 4.6).

Lemma 2 (Mixing inequalities; Davidson 2002, 14.2, 14.4) For s > p > 1, suppose a
random array (X, ;) is adapted to a filtration (I, ;), Ls-bounded with o-mizing numbers and

¢-mizing numbers, (a,) and (¢, ), respectively. Then,

1E[Xn|Tog—r] = EXngllly < min{22"7 + 1)ay/P71%, 26,715} X s (17)

p =1and s = ¢/2 is used in the proof of Theorem 2-(i) with multipliers of mixing numbers
dominated by 6. Besides, ||Uy ;Un,illq/2 < [|Un,jllq|Un,llg by the Cauchy-Schwarz inequality.

Lemma 3 A sequence of probability laws (fin)nen in (D,B) is uniformly tight if
(a) AN e NVn > N Vn>03M € (0,00): pn({z : |2(0)] > M}) <n.

(b)) ANENVR>NVe>0Vn>035€ (0,1): pn({z: w(x,0) >¢€}) <.
Moreover, any cluster point of (i), say p, satisfies u(C) = 1.

(Proof) See Appendix II.

Lemma 4 For the Li-bounded random array paired with o filtration (X, j, I ;) such that
(a) it is an Lo-mizingale of size —1/2 with an array of heterogeneous coefficients (cp ;),
(b) (Xn,j/cn;) is uniformly square integrable, and

lns] 2

(¢) SUp; .0<t<s<1 HMSUP,, (s — )t Zj:mtJ Cp,j < 00.

Let iy, be the probability law on (D,B) induced by X, (t) := Z]LZJ Xnj. Then, (fn)nen satisfies
Lemma 3-(a) and (b).



(Proof) Lemma 3-(a) is immediate by &},(0) = 0. For any 6 € (0,1] and ¢t € [0,1 — J],

2

Lns]
[Xa(s) — Xu(D)]? _ [Xn(s) = X(®)]? [ Ljoing i | (s —1)?
sup 5 = sup ] 5 — 5 (18)
SE[t,t+0] SE[t,t+0] (Zj:LntJ cn’j)2 s

(a) and (b) imply that {supsep¢45[Xn(s) — X, (0)]2/( ]Lisﬁntj ci7j)2}n€N is uniformly integrable
(Davidson 2002, Theorem 16.13; McLeish 1977, Proof of Theorem 2.4), and so is the supremum
of the left hand side of (18) with respect to § € (0,1], ¢t € [0,1 —¢] and n € N by (c) and
(s — t)? < 6. The uniform integrability of {supseit i+ 67X (s) — Xu())}se(0,1),t€[0,1—6)neN
guarantees that one can pick some ¢ sufficiently small and some N € N such that for any n > N,
t€[0,1—9], and ;e >0,

5 s sup a(s) — 2(t)] > €/2))

SE[t,t+0]
= §'P( sup |Xu(s) — Xu(t)| > €/2)
SE[t,t+0]

- 1 g [5*1(6/2)21
= ()27 {SUPe i) 51 (5)—Xn (D226 (¢/2)2}

1 -1 2
S (6/2)2E SES[FE_(;} ) ‘Xn(s) - Xn(t)’ 1{Supse[t,t+5] 6—1Xn(s)Xn(t)2>6—1(6/2)2}]

"
<
T (e/2)?

because (¢/2)2/§ can be sufficiently large. Since 1'/(€/2)? can be made arbitrarily smaller than
n/2 for any n > 0. Therefore, 36 € (0,1] IN e NVn > N Vt € [0,1 — 4] Ve > 0 Vn > 0:

(o sup Jr(s) — 2()] > ¢/2) < n/2. (19)
SE[t,t+0]

By multiplying both sides by ¢ and taking the supremum over ¢t € [0,1 — J], we have
36 € (0,1],AN € N,Vn > N,Ve > 0,Vn > 0 :

Sup fin ({x sup rx<s>—x<t>\2e/z}>sm/2. (20)

te[0,1-0] SE[t,t+4]

Davidson (2002, Lemma 27.13) implies Lemma 3-(b).

Proof of (11)

Since ty, — tg—2 = hi + hg—1, (11) follows immediately once the next relation is established:

O (th,u) — @ (tp—2,u)  w* Oy,

Py + hi—1 2 fg 0, dv

¥ (tp_o,u)| <R, 230. (21)



For any ¢ > 0,

hi 'E*le(ulg-1)l] < by E*min{|udg_1|?, [ulg_1]?/6}]
= By B min{ludg 1%, [ul1 P /63 (Lga, e + Lia2<cig)]
< ulPE* [ AR L, peeny) + (ul? /6)h ' EX AP Lga, s <(chgyer2y)
*[7 — 1/2
< JuPE T AR g a, pag] + uPCR. (22)

By substituting (22) and (9) in the right hand side of (8) and using the add-subtract trick, law
of iterated expectations, triangular inequality, |¢??%~2| = 1 and (hj + hx_1)"' < h,;l, the left
hand side of (8) is dominated by

[l E*[| B[y A1 Ty, 1] + (0 /2) E* (| E[(Ri—1 + i) " AR T ity o)) — O )
*[7 — 1/2
+u’E [hklA%fll{hglAi_lzg}] + \Ufgcs/zhk/ - (23)

Let us employ the notation E*[A,] = FE[A,|G](w) for w € Q to emphasize that E* is a
G-measurable random variable. Because Q2 = [ Feg F,

P ({w €Q: lim E*[A,] # c}) =P w e U P HIL%OE[An\g](w) #c

n—o0

Feg:
< > P{weF:ilm EAGIW) Ac}) = Y P(lim BX|F]£c) (24)
FEG:P(F)>0 e Feg:P(F)>0 e

for some constant ¢. To establish E*[A,] “3 ¢, therefore, it is sufficient to confirm E[A,|G] — ¢
for each G € G with P(G) > 0. Motivated by this fact, let us replace E* in (23) by E[-|G] for
G € G with P(G) > 0. Using a similar technique as in (5), the G-conditional version of (23) is
dominated by the following divided by P(G):

’u’HE[hlzlAkfl‘In,\_ntk,gj]Hl + (UZ/Q)HE[(hkfl + hk>_1A%71’In,Lntk_2J] - etk72 Hl
_ 1/2
+? Bl A g sl + w¢®?n?. (25)

(i) hlzlHE[Ak—1|In,Lntk,2J”|1: using Lemma 4-(a), the Minkowski/Cauchy-Schwarz/norm in-
equalities, |ntg_1] — |ntg—2] > |nhr—1] and mixingale properties,

hIZIHE[Akfl’In,Lntk,QJ]“l S hI:IHE[Akfl’In,tntkfgj]“Q

ity 1/2 . 1/2
—1 —1
< mt Y Ay Wt Y wr
J=|ntk—1] r=[nhj_1]

The condition-(c) bounds the first square root. (¢,.) of size —1/2 implies ¥2 = O(r~17%¢) for
some € > 0. Then, r92 = O(r~'7¢) and therefore

ht YD < )T Y e = oy, nhi] ),
r=|nhk_1| r=[nhp_1]
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which tends to zero if hy oc n™% and hy_1 oc n™? with b =¢/(1+¢) € (0,1) and 0 < a < b.

(ii) || B[(hr—r4Tor) " A [T ity o) )= Ot ol using (hp+hg—1) ™" = hi {1 =(hg+hi—1) " he—1}
and (hy, + hy—1)"hg—1 < hy 'hy_q from (7), it has the majorant

1E[h AR 11Tty o) = O 1+ (i b DILETR AR 41Tty 11 + 106y = 01, 1

Define Y, j, := E[h;1A271|In7Lntk_2J]. The first term tends to zero if Yj, , — 6;, , does in L; as
n — oo. Condition-(e) and Lemma 1-(a) guarantee that it is equivalent to the uniform inte-
grability of (Y, — 0i,_, )n.ken. Now the claim follows by the uniform integrability of (Gt)te[o,l]
as is assumed in (e), that of (h;'A2? |) confirmed in Lemma 4, and Lemma 1-(b), (c), (d).
By Lemma 4 and Lemma 1-(b)-(i), (h;lA%_l) is L1-bounded. Therefore, the second term is
dominated by Ay 'hy_1||hi A2 | |li = O(h; thi—1) = o(1) given h; 'hy—1 — 0 from (7). The
last term tends to zero by the P-a.s. continuity of 6; and hy_1 — 0.

(iii) E[h;lA%_l1{h;1|Ak71|2>C}] — 0 as ¢ — oo because (h,'AZ_)) is uniformly integrable.
(iv) C3/2hi/2 — 0 by designing ¢ = o(h,zl/?’) for hy — 0.

(21) holds because (25) vanishes P-almost surely. The case of v = t;_; follows by combin-
ing (11), (7) and continuity of ;. The specified range of v in (12) is justified because tx_o is
arbitrary as long as it is greater than tj_3, even if ¢ and ¢;_; approach t;_o under (7).

O

Proof of (14)

Apply the law of iterated expectations, add-subtract and multiply-divide tricks and the
Minkowski’s inequality to obtain the estimate

: . 1/2
1Bat) = Ba()ll2 < 1Ba(th_s) — Baltr_)llz < b2 ( /0 evdv) b,
1
s " -1 [ntk—1] 2 2
+h2 < / 9vdv> E |h ST Xag | Os|Tans)
0 ]:I_ntk—QJ"Fl 1

Because f(f 0,dv is uniformly bounded away from zero, the same argument as for (ii) in the
proof of Theorem 1 reveals that both terms tend to zero given (7).

O

Appendix II. Technical lemmas for uniform tightness

Lemma 5 (Davidson 2002, Theorem 28.12; Billingsley 1968, Theorem 14.3) K C D
is relatively compact, i.e., the closure of K, denoted by cl(K), is compact in (D, dpg), if

(a) Sup,e g SupPsepo 1 [2(t)| < o0, and

(b) lims 00 SUP,e e w'(2,0) = 0 where w'(x,0) = infy; max;—1_, SUP,sepr, 4, [7(s) — ()],
and 115 is a partition (t;)i=1,..» of [0,1] such that r < |1/] and min;—y _,(t; —ti—1) > 9.
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Lemma 5 is about the topological structure of D and is independent of any induced laws on it.

Lemma 6 (If part of Davidson 2002, Theorem 28.13) Let w'(z,d) be as in Lemma 5. A
sequence of probability laws (p,) on (D,dg,B) is uniformly tight if

(a) AN €NVn > N Vn >0 3IM < o0o: pup({x : supyepoq) [2(t)] > M}) <n, and

(b)) ANENVR>NVn>0Ve>030€ (0,1): pp({x:w'(x,8) >€}) <n.

Proof of Lemma 3

The proof traces Davidson (2002, Theorem 28.14) with minor modifications. w'(x,/2) > €
implies w(zx, ) > € because w'(z,d/2) < w(zx,d) (Davidson 2002, p.458). Combined with (ii),
pn({x s W' (2,6/2) > €}) < pp({x : w(z,d) > €}) < n, which is the condition (b) in Lemma 6.
Select any €, > 0. For such arbitrary ' > 0, (i) implies the existence of M’ € (0,00) such
that p,({z : |2(0)] > M'}) <n. Define k := 1+ |1/6] so that k6 > 1or1/k <é. Fori=1...k
and t € [0, 1], it is possible to find § > 0 and k such that

pn ({2 : t?[épu |z (ti/k) — x(t(i —1)/k)| > €}) < pn({z : w(z,6) > e}) <7 (26)

because ti/k—t(i—1)/k =t/k < 1/k < d so that sup,¢c(g 1) [z(ti/k) —2(t(i—1)/k)| < w(z,?), al-
lowing the application of (ii). By the add-subtract and telescopic-sum argument combined with
the triangular inequality, |z(t)| < |x(0)] —I—Zle |z(ti/k) —x(t(i—1)/k)| so that sup,cjo 1) [2(t)| >
a implies |z(0)| + S5, supsefo,1] |#(ti/k) — z(t(i — 1) /k)| > a. For any non-negative A, B,

pn(A+B = a+ ) < pn({A = ot U{B 2 B}) < pn(A 2 a) + un(B = B).

By a repeated application of this inequality,

k
i = sup 0] > M+ heh) < ol |0+ 3 s J6i/8) = (4= 101> 21+ e
te(o, i=1 t€l0,

k

< (= 2(0)] > M) + Y p({z w(,8/2) > €}) < (L+ k).
i=1

Because 7' and € can be arbitrarily small whereas ¢ and k are selected accordingly, we can make
n:= (1+ k)n’ arbitrarily small and select M := M’ + ke € (0,00) accordingly to guarantee the
condition (a) in Lemma 6. Consequently, the sequence (i) is uniformly tight.

Suppose (= limy_,o0 fin,, i.e. the limit of a converging subsequence (tn, )ren of (fn)nen.
For e = n = 1/j, define A := {z : w(z,d) > €} and B; := {z : w(z,d;) > 1/j} for some
d; > 0. We can select (J;) as a decreasing sequence of positive reals such that B; C int(A),
which is the interior of A. Because the weak convergence of (j, )ren is characterized by
liminfy o0 pin, (O) > p(O) for any open set O € B (Davidson 2002, Theorem 26.10-(c)),
int(A) C A and the condition (ii) ensure

u(B;) < pint(4)) < lim

k—

inf pp,, (int(A)) < liminf p,, (A) <n=1/j. (27)
0o k—oo

This means that u((;>,, B;) = 0 for any finite m € N. If we define B := (U;_, N}, Bj»
1(B) = i(Uny=1 Njzn Bi) < > on=1 (N2, Bj) = 0 or u(B€) = 1. 1t suffices to show B® C C.
Because B¢ = (7_, U5, Bf = {z : Vm > 1;3j > m : w(z,d;) < 1/j}, any = € B° satisfies
limgs_o w(x,d) = 0. This is the case when x has a continuous path.
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Finally, the above result applies to the conditional laws p, (-|G) for any G € G with P(G) > 0
for any majorant sides divided by P(G):

o tn({z:w'(x,0/2) > €}|G) < n/P(G) but the right hand side can be arbitrarily small;
o pn({z 2 supyepo ) |z(t)| > M’ + ke}|G) < (1 + k)’ /P(G) similarly; and

o for yu(-|G) = limy o0 pin, (-|G), (B|G) = 0 or u(B¢|G) = 1, implying p*(C) =" 1 because
B¢ C C regardless of the conditioning and a similar argument as for (24) implies that
P({weQ: 1 (B)(w) # 0}) < Yaegmso P (1(BIG) £ 0) = 0.

O
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