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Abstract

This paper develops a novel and effi cient algorithm for Bayesian inference in inverse Gamma Stochastic

Volatility models. It is shown that by conditioning on auxiliary variables, it is possible to sample all the

volatilities jointly directly from their posterior conditional density, using simple and easy to draw from

distributions. Furthermore, this paper develops a generalized inverse Gamma process with more flexible

tails in the distribution of volatilities, which still allows for simple and effi cient calculations. Using several

macroeconomic and financial datasets, it is shown that the inverse Gamma and Generalized inverse Gamma

processes can greatly outperform the commonly used log normal volatility processes with student-t errors.
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1 Introduction

There is overwhelming empirical evidence in favor of Stochastic Volatility models with both macroeconomic (e.g.

Sims and Zha 2006) and financial data (e.g. Kim et al. (1998)). The first algorithms for posterior simulation

where developed for the case in which the volatility σ2t follows an autoregressive log-normal process. The

first algorithms used a single-move update for the volatilities (e.g. Jacquier, Polson and Rossi (1994)), which

implies that σ2t is generated conditionally on the volatility values in other periods (σ
2
1, ..., σ

2
t−1, σ

2
t+1, ..., σ

2
T ).

To improve the convergence speed, it was later proposed to sample several of the volatility values at a time

using blocking strategies (e.g. Shephard and Pitt (1997), Watanabe and Omori (2004), Asai (2005)). In an

influential paper, Kim et al. (1998) showed that by accurately approximating the likelihood with a mixture of

normals, it is possible to draw jointly all the latent log-volatilities given some auxiliary variables. Furthermore,

the log-volatilities can be integrated out when drawing the unknown parameters.

A more recent literature provides methods for Bayesian inference in models where σ2t follows some type

of gamma or inverse gamma process. In a multivariate stochastic volatility context, Philipov and Glickman

(2006) proposed a single-move algorithm whereas Fox and West (2011) proposed to sample all the volatility

matrices jointly in a Metropolis-step which conditions on auxiliary variables. Creal (2012), in the univariate

context, proposed maximum likelihood estimation by accurately approximating the likelihood with a finite state

Markov-switching model. In the multivariate context Casarin and Sartore (2007) proposed sequential monte

carlo and particle filters for estimation of the states and parameters and Triantafyllopoulos (2010) proposed

a simplified Wishart stochastic volatility model which allows for fast and simple computations. Abraham et

al. (2006) proposed method of moments estimators for gamma type univariate stochastic volatility models and

Gourieroux et al. (2009) develop maximum likelihood inference for a Wishart autoregressive process for observed

volatility. There is also a recent literature that deals with Ornstein-Ulhlenbeck processes with marginal gamma

laws (e.g. Barndorff-Nielsen and Shephard (2001), Roberts et al. (2004), Griffi n and Steel (2006a), Frühwirth-

Schnatter and Sögner (2009)).

A related strand of literature proposes flexible models for stochastic volatility. Although there are many

papers that provide alternative methods to model flexibly the distribution of the observed dependent variable

(e.g. Steel (1998), Durham (2007), Jensen and Maheu (2010), Delatola and Griffi n (2011), Griffi n and Steel

(2011)), there are few that model flexibly the distribution of the unobserved volatility. As argued by Janssen

and Drees (2013), the latter approach is more appropriate in datasets that exhibit persistence of volatility

outliers. In this line Griffi n and Steel (2006b) and Jensen and Maheu (2014) provide semiparametric methods

of inference based on infinite mixtures for the volatility distribution. However, there is a lack of models that

specify the volatility process in a flexible yet parametric manner. Flexible parametric models could potentially

perform better than semiparametric ones in some datasets, while taking advantage of simpler and more effi cient

computational methods.

The purpose of this paper is to develop effi cient posterior simulators for flexible inverse gamma stochastic

volatility models. We show that by conditioning on some auxiliary variables, it is possible to draw all the

volatilities jointly using simple distributions such as the Poisson and Gamma. Furthermore, it is possible

to generate the unknown parameters after integrating out all the volatilities. Because of these features, our

algorithm mimicks the effi cient algorithm that Kim et al (1998) developed for the lognormal model, without
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requiring the use of an approximation to the likelihood. Moreover, this paper proposes a generalized inverse

gamma time-series model that specifies a more flexible distribution for the volatility, allows for more abrupt

jumps in volatility, and can be estimated using simple and effi cient methods. In an empirical exercise we show

that the generalized inverse gamma process is especially suitable to model series with greater volatility jumps

and persistence in outliers. Furthermore, we use real and simulated data to illustrate the effi ciency of the new

algorithm and show that it is much more effi cient than the recently proposed Particle Markov Chain Monte

Carlo methods (Andrieu et al. 2010) which sample the volatilities and parameters in a joint move using a

particle filter.

This paper differs from previous work on gamma type stochastic volatility models in two main aspects.

Firstly, we find a method to sample all the volatilities jointly from the posterior using well-known distributions

such as the Poisson and Gamma, whereas previous work mostly used single-move or blocking strategies in

a Metropolis-step to sample the volatilities. As mentioned before, sampling the volatilities jointly from the

posterior is an important characteristic of effi cient algorithms. Secondly, we develop and study the properties of

a flexible inverse gamma time series model that can be estimated with simple and effi cient computations. Thus

this paper provides a new class of flexible stochastic volatility models that can be estimated with simple and

effi cient MCMC methods.

Section 2 describes the inverse gamma and generalized inverse gamma processes and Section 3 develops the

posterior simulators. Section 4 presents evidence on the computational effi ciency of the algorithms and Section

5 compares the empirical performance of different models using several macroeconomic and financial datasets.

Section 6 concludes.

2 Models

2.1 The Autoregressive Gamma Process (ARG)

We consider the following model of stochastic volatility:

yt = xtβ + σtet

et ∼ N(0, 1)

Although for simplicity in the exposition we are assuming normality for et, in the empirical applications

we will consider also models where et follows a student-t. The student-t can be easily incorporated into this

framework by writing it as a scale mixture of normals, as in Chib et al (2002). The stochastic process for the

volatility σ2t can be described by defining kt = σ−2t and assuming that kt = z′tzt, where zt is a n × 1 vector

distributed as a Gaussian AR(1) process:

zt = ρzt−1 + εt εt ∼ N(0, θ2In) (1)

Equation (1) implies that the conditional distribution of (kt/θ
2)|kt−1 is a noncentral chi squared, which is

also well defined for non-integer values of n, and therefore we will treat n as a continuous unknown parameter.
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The joint distribution of (k1, ..., kT ) is the multivariate gamma distribution analyzed by Krishnaiah and Rao

(1961). It was proposed for observed volatility (or intertrade durations) by Gourieroux and Jasiak (2006) and

for unobserved volatility by Creal (2012). In our case we are using it for the inverse of the unobserved volatility,

as this makes Bayesian computations simpler. This is in line with the Bayesian analysis of Fox and West (2011),

who specify a Wishart distribution for the inverse volatility matrix.

The properties of (k1, ..., kT ) are well known (e.g. Krishnaiah and Rao (1961), Gourieroux and Jasiak (2006))

and the most important ones can be summarized as:

• E(kt) = nθ2

1−ρ2 , E(k2t ) =
(

θ2

1−ρ2

)2
n(n+ 2)

• corr(kt, kt−h) = ρ2h

• E(kt|kt−1) = ρ2kt−1 + (1− ρ2)E(kt)

• The conditional distribution kt
θ2
|kt−1 is a noncentral chi squared.

• The stationary distribution of kt is aG(n/2, 2θ2

1−ρ2 ), whereG(.) represents the gamma distribution (Bauwens

et al. (1999, p. 290)).

• A necessary and suficient condition for stationarity is |ρ| < 1

In the following it will be assumed that k1 is drawn from the stationary distribution, that is k1 ∼ G(n/2, 2θ2/(1−
ρ2)). Note finally that the autocorrelations are defined by ρ2, so that they cannot be negative. In fact ρ enters

the likelihood always in the form of ρ2, so that the sign of ρ is not identified. For this reason in our empirical

section we will specify the prior not on ρ but directly on ρ2.

2.2 Flexible Tail Autoregressive Gamma Process (FTARG)

The parameters (n, θ2, ρ2) control the unconditional mean, variance and the first order correlation of kt. How-

ever, the degrees of freedom n also control the shape of the tails of the distribution of k and therefore it also

controls the tails of the distribution of y. Hence it might be desirable to consider models where the shape

of the tails is not determined by the first two unconditional moments of kt. There is previous literature that

develops more flexible gamma-type distributions, such as the generalized gamma distribution of Stacy (1962)

or the compound gamma of Dubey (1970) (see also Johnson et al. (1994, section 17.8) for a review). However,

here we propose a different type of distribution that lends itself better to the context of time-series and the

use of MCMC methods for computation. For this purpose we define the Flexible Tail Autoregressive Gamma

Process (FTARG). Recall that kt = z′tzt. Instead of zt = ρzt−1 + εt we now assume:

zt =

√
T̃t(ρzt−1 + εt) (2)

where (T̃2, ..., T̃T ) are independent draws from a Beta distribution B(α, β). Given that we are more concerned

with modelling the left tail of kt (which corresponds to the right tail of σ2t ) and given that the stationarity of

the process requires E(T̃t) < 1/ρ2, it seems appropriate to specify a distribution with bounded support for T̃t.
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If we write ρ̃t = ρ

√
T̃t and θ̃

2

t = T̃tθ
2 it is clear that the FTARG process arises from (1) by writing ρ̃t instead

of ρ and θ̃
2

t instead of θ
2, and therefore the FTARG is equivalent to the ARG with time-varying parameters.

Furthermore, the FTARG can be also compared to the ARG process by defining ρ̃ =

√
E(T̃t)ρ, θ̃

2
= E(T̃t)θ

2

and ε̃t ∼ N(0, θ̃
2
), such that (2) can be equivalently written as:

zt =

√
T̃t

E(T̃t)
(ρ̃zt−1 + ε̃t)

so that kt = z′tzt becomes:

kt =
T̃t

E(T̃t)
(ρ̃zt−1 + ε̃t)

′(ρ̃zt−1 + ε̃t) (3)

From this expression it is clear that when T̃t > E(T̃t) (T̃t < E(T̃t)), the value of kt is higher (lower) than

in the ARG model, which adds flexibility to the model. Furthermore, when the variance of T̃t approaches

0, the ratio T̃t/E(T̃t) behaves as a constant of value 1, and therefore the FTARG becomes equivalent to the

ARG. However this implies that when the variance of T̃t is close to 0, the mean of T̃t is poorly identified. To

avoid this local non-identification problem, we fix E(T̃t) = 1/2. For this purpose, we reparameterize (α, β) as

A = E(T̃t) = α/(α + β) and V = (α + β), and fix A = 1/2. Therefore with this normalization we have that

α = β = V/2. The parameter V controls the variance of T̃t and will be estimated.

The properties of the FTARG can be derived using basic properties of the gamma and beta distributions

and are summarized in the following proposition whose proof is in the appendix.

Proposition 1 Define ρ̃2 = E(T̃t)ρ
2 and θ̃

2
= E(T̃t)θ

2. The main properties of (k1, ..., kT ) implied by (2) are:

E(kt|kt−1) = ρ̃2kt−1 + (1− ρ̃2)E(kt) if ρ̃2 < 1 (4)

corr(kt, kt−h) = ρ̃2h if ρ̃2 < 1 (5)

E(kt|kt−1, T̃t) =
T̃t

E(T̃t)
(ρ̃2kt−1 + (1− ρ̃2)E(kt)) (6)

E(kt) =
nθ̃

2

1− ρ̃2
if ρ̃2 < 1 (7)

E(k2t ) =
(
θ2
)2
n(n+ 2)E(v2c,t) if ρ4E(T̃ 2t ) < 1 (8)

where vc,t = T̃t(1 + ρ2T̃t−1 + ρ4T̃t−1T̃t−2 + ρ6T̃t−1T̃t−2T̃t−3 + ...) and:

E(v2c,t) =
E(T 2)(1 + ρ̃2)

(1− ρ̃2)(1− ρ4E(T 2))
if ρ4E(T̃ 2t ) < 1

Higher moments of kt are given by:

E(kst ) = E(vsc,t)
(
θ2
)s s−1∏

i=0

(n+ 2i) if ρ2sE(T̃ st ) < 1
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where E(vsc,t) can be calculated recursively as:

E(vsc,t) =
E(T̃ st )

1− ρ2sE(T̃ st )

s−1∑
i=0

(
s

i

)
ρ2iE(vic,t) if ρ2sE(T̃ st ) < 1 (9)

and where the properties of the Beta distribution imply that:

E(T̃ st ) =

s−1∏
i=0

α+ i

α+ β + i

The stationary distribution of kt is that of the product of ε′tεt (i.e. a gamma distribution) and vc,t, where ε
′
tε

and vc,t are independent of each other. The sth moment E(
(
σ2t
)s

) = E(k−st ) is finite if and only if α > s and

n > s.

Since E(T̃t) is normalized to be 1/2, the condition for the first order moment of the stationary distribution

of kt to be finite is ρ2 < 2 However, the existence of higher moments of kt requires a tighter restriction on ρ2. In

the empirical analysis of Section 5 we only impose the restriction ρ2 < 2, implying that the first order correlation

coeffi cient ρ̃2 is allowed to vary on the whole range of the interval (0, 1). Note also that the restriction ρ2 < 2

is suffi cient for σ2t (i.e. the inverse of kt) to have finite moments up to the order min(α, n).

Equation (4) indicates that the conditional expectation of kt given kt−1 is a weighted average of kt−1 and

the unconditional mean E(kt), as in a standard AR(1) model. Furthermore, equation (5) indicates that the

autocorrelation structures of the ARG and the FTARG are the same.

The expression for E(kt|kt−1, T̃t) in equation (6) indicates that when T̃t > E(T̃t) (T̃t < E(T̃t)) the expected

value of kt|kt−1 is above (below) what would be expected in the ARG model, making the tails more flexible.

In particular, very small values of T̃t will imply low values for kt and consequently very large values for the

volatility σ2t . As we will see in the empirical section, this feature makes the FTARG model specially useful for

data with periods of greater instability.

Using the Poisson representation of the non-central chi-squared distribution (Muirhead (1982, p. 23)),

the conditional distribution of kt|kt−1 can be written as a Gamma G(n/2 + ht, 2θ
2T̃t), where ht follows a

Poisson distribution P (λt) with λt = ρ2kt−1/2θ
2 and T̃t follows a beta distribution (as described in Section

3.1). Therefore we are generalizing the conditional distribution of kt|kt−1 by using a scale mixture of gammas,
in which the mixing distribution is a beta distribution. Similarly, the stationary distribution of kt is a scale

mixture of Gammas, where the mixing distribution is that of vc,t. Note that restricting the support of T̃t to

(0, 1) does not restrict the support of vc,t, which is unbounded. This approach to generalize the distribution

is somehow analogous to the compound gamma distribution of Dubey (1970), which is also derived as a scale

mixture of gammas, but with a gamma as the mixing distribution. Our framework could be further generalized

by assuming that T̃t follows a discrete mixture of Beta distributions, as a mixture of beta distributions can

accurately approximate any distribution on the (0, 1) interval (e.g. Petrone, 1999).

Tables 1 and 2 show how V affects the percentiles of the stationary distribution of kt while keeping E(kt),

E(k2t ) and cov(kt, kt−1) constant. Even if the parameter for the degrees of freedom n increases from 1 to 100,

by decreasing V and θ in a suitable manner, the moments can be kept constant while the tail of the distribution
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V n θ2 ρ2 1% 5% 95% 99% var(T̃t)
∞ 1.28 0.078 1.96 0.003 0.031 8.78 14.53 0
15000 1.29 0.078 1.96 0.003 0.032 8.85 14.61 1.7E-05
7500 1.29 0.078 1.96 0.003 0.032 8.76 14.54 3.3E-05
1000 1.34 0.075 1.96 0.003 0.036 8.77 14.50 2.5E-04
500 1.40 0.072 1.96 0.004 0.041 8.65 14.58 5.0E-04
200 1.60 0.062 1.96 0.009 0.064 8.46 14.70 1.2E-03
150 1.76 0.057 1.96 0.012 0.080 8.32 14.92 1.7E-03
100 2.16 0.046 1.96 0.028 0.125 8.02 14.74 2.5E-03
50 6.31 0.016 1.96 0.203 0.396 7.12 13.85 4.9E-03
45 10.84 0.009 1.96 0.295 0.498 6.84 13.48 5.4E-03
42 22.04 0.005 1.96 0.380 0.581 6.71 13.37 5.8E-03
41 35.34 0.003 1.96 0.412 0.613 6.63 13.24 6.0E-03
40 96.20 0.001 1.96 0.451 0.645 6.54 13.24 6.1E-03

Table 1: Percentiles of kt for different values of V . The value of E(kt), E(k2t ) and cov(kt, kt−1) are kept equal
in all cases to 2.5, 16 and 0.98, respectively. The percentiles are calculated using 150000 independent draws.
The table does not show values of V smaller than 40 because it is not possible to maintain the same values of
(E(kt), E(k2t ), cov(kt, kt−1)) when V < 40.

varies considerably. In particular Table 1 shows that the 1% percentile varies from 0.003 to 0.45 as V varies

from ∞ to 40. In Table 2 the 1% percentile varies from 3.5E-12 to 0.2157 as V varies from ∞ to 27.4. Thus,

when V is large and n is small, the tail of kt towards 0 is fatter, whereas decreasing the value of V allows n to

be larger and in this way reduce the probability of values near 0. This implies that the right tail of the volatility

σ2t is fatter when V is large and n is small. To see the impact on the distribution of the volatility σ
2
t , Figures 1 -

3 plot one random realization of (σ21, ..., σ
2
1000) for 3 of the processes in Table 2 (those corresponding to V = 33,

V = 29 and V = 27.5). Even though the 3 processes imply the same values for E(kt), E(k2t ) and cov(kt, kt−1),

we can see that σ2t takes occasionally very large values (larger than 800 in Figure 1) when V = 33, but when

V = 27.5 the values for σ2t in Figure 3 are all below 11.

For simplicity, instead of assuming that k1 is drawn from the stationary distribution, it will be assumed that

k1 is drawn from a distribution which has the same mean as the stationary distribution: k1 ∼ G(n/2, 2θ̃
2
/(1−

ρ̃2)).

3 Computation by Gibbs Sampling

3.1 Autoregressive Gamma Process (ARG)

In this section we will use the notation ρ̃t =

√
T̃tρ and θ̃

2

t = T̃tθ
2 for t = 2, ..., T and ρ̃1 = ρ̃ =

√
E(T̃t)ρ,

θ̃
2

1 = θ̃
2

= E(T̃t)θ
2 with the understanding that in the ARG model T̃t = 1 and so ρ̃t = ρ and θ̃

2

t = θ2 for

every t. In this way the conditional posterior densities derived in this section will be valid for both the ARG

and the FTARG models when T̃ is among the conditioning variables. As noted before, the prior of kt
θ̃
2

t

|kt−1 is a
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V n θ2 ρ2 1% 5% 95% 99% var(T̃t)
∞ 0.327 0.183 1.96 4.0E-12 6.2E-08 8.12 18.39 0
15000 0.328 0.183 1.96 3.4E-12 6.2E-08 8.11 17.91 1.67E-05
40 1.09 0.055 1.96 0.0003 0.006 5.97 14.19 6.10E-03
35 1.59 0.038 1.96 0.0031 0.024 5.47 13.13 6.94E-03
33 2.04 0.029 1.96 0.0092 0.045 5.30 12.47 7.35E-03
30 4.00 0.015 1.96 0.0501 0.125 4.76 11.12 8.06E-03
29 6.28 0.010 1.96 0.0884 0.179 4.62 10.54 8.33E-03
28 16.0 0.004 1.96 0.1574 0.254 4.41 10.11 8.62E-03
27.6 45.0 0.001 1.96 0.1944 0.293 4.27 10.00 8.74E-03
27.5 83.8 0.001 1.96 0.2020 0.304 4.24 9.63 8.77E-03
27.4 631.2 9.5E-05 1.96 0.2157 0.314 4.19 9.53 8.80E-03

Table 2: Percentiles of kt for different values of V . The value of E(kt), E(k2t ) and cov(kt, kt−1) are kept equal
in all cases to 1.5, 16 and 0.98, respectively. The percentiles are calculated using 150000 independent draws.
The table does not show values of V smaller than 27.4 because it is not possible to maintain the same values of
(E(kt), E(k2t ), cov(kt, kt−1)) when V < 27.4.
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Figure 1: One random draw of (σ21, ..., σ
2
1000) with V = 33, n = 2.04, θ2 = 0.029 and ρ2 = 1.96. These values

imply that E(kt) = 1.5, E(k2t ) = 16, and cov(kt, kt−1) = 0.98.
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time

Figure 2: One random draw of (σ21, ..., σ
2
1000) with V = 29, n = 6.28, θ2 = 0.0095 and ρ2 = 1.96. The values for

E(kt), E(k2t ) and cov(kt, kt−1) are the same as in Figure 1.

8



0
2

4
6

8
10

V
 =

 2
7.

5
0 200 400 600 800 1000

time

Figure 3: One random draw of (σ21, ..., σ
2
1000) with V = 27.5, n = 83.77, θ2 = 0.00072 and ρ2 = 1.96. The values

for E(kt), E(k2t ) and cov(kt, kt−1) are the same as in Figure 1.

noncentral chi squared. From Muirhead (1982, p. 23) it turns out that a noncentral chi squared can be written

as a mixture of (central) chi-squared with degrees of freedom n + 2ht, where ht follows a Poisson. Using this

representation, the model can be written as:

yt = xtβ +

√
1

kt
et (10)

et ∼ N(0, 1)

kt|k1:(t−1), h1:t,Θ, β ∼ G(n/2 + ht, 2θ̃
2

t )

ht|k1:(t−1),h1:(t−1),Θ, β ∼ P (λt) with λt =
ρ̃2tkt−1

2θ̃
2

t

where G(.) represents the gamma distribution (Bauwens et al. (1999), p. 290), P (.) is the Poisson distribution

(Koop (2003), p. 325) and k1:(t−1) is notation for (k1, ..., k(t−1)). Let Θ = (n, θ2, ρ2), k = (k1, ..., kT ) and

h = (h2, ..., hT ). The representation (10) suggests the first Gibbs sampling algorithm that we consider:

The h-Gibbs

• Generate Θ|h, β (Metropolis step)

• Generate k|h,Θ, β (draw from independent gamma).

• Generate h|k,Θ, β (draw from independent Bessel distributions).

• Generate β|k, h,Θ (draw from a multivariate normal).

Note that for greater effi ciency Θ is drawn marginally on k. For this reason k needs to be drawn immediately

after Θ, so that the algorithm converges to the joint posterior distribution. An advantage of this algorithm is

that all the precisions in the vector k can be drawn jointly from the conditional posterior. Similarly, as noted

by Creal (2012), the vector h can be drawn jointly from the posterior conditional using a discrete distribution
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known as Bessel distribution (Yuan and Kalbfleisch (2000)). Devroye (2002) and Iliopoulos and Karlis (2003)

have developed effi cient algorithms to draw from the Bessel distribution. The conditional distributions needed

in the h-Gibbs algorithm are summarized in the following proposition, whose proof is in the appendix.

Proposition 2 Consider the model defined by (10), and define:

r2t = (yt − xtβ)2

r̃2t =

(
1 + ρ̃2t

θ̃
2

t

+ r2t

)−1
for t = 2, ..., T − 1

r̃2t =

(
1

θ̃
2

t

+ r2t

)−1
for t = 1 and t = T

h1 = hT+1 = 0

The conditional posteriors are as follows:

kt|h,Θ, β ∼ G((n+ 1)/2 + ht + ht+1, 2r̃
2
t ) for t = 1, ..., T

ht|k,Θ, β ∼ Bessel(
n− 2

2
, ρ̃t

√
ktkt−1

θ̃
2

t

) for t = 2, ..., T

and

p(Θ|Y, h, β) ∝
∫
p(Θ)p(k, h|Θ, β)L(Y |k, β)dk = (11)

(2π)
−T/2

T∏
t=1

[(
2r̃2t
)n+1

2 +ht+1+ht
Γ

(
n+ 1

2
+ ht+1 + ht

)]

T∏
t=2

1(
2θ̃
2

t

)n/2
(

ρ̃t

2θ̃
2

t

)2ht
ht!

1

Γ(n/2 + ht)

 (1− ρ̃2)n/2
(

2θ̃
2
)−n

2
(

Γ
(n

2

))−1
p(Θ)

where L(Y |k, β) is the density function of the observed data Y given the volatilities k and p(Θ) is the prior.

However, the convergence of this algorithm can be slow because of the high correlation between k and

h. Indeed, once we condition upon h, the different components of k become independent of each other, even

if unconditionally the serial correlation of kt is tipically very high. This suggests that h contains too much

information about k and so ideally we would like to draw k and h jointly. Thus we consider a second Gibbs

algorithm that surpasses this problem, and that also has the advantage of drawing from distributions that

are simpler than the Bessel. For this purpose we introduce two vectors of auxiliary variables, one of them

continuous m = (m2, ...,mT ) and another discrete d = (d2, ..., dT ), such that we will be able to draw (k, h)

jointly conditioning on (m, d) and viceversa. Let us introduce mt by assuming that mt conditional on ht has a

beta distribution:
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mt|ht ∼ B(αm + ht, βm), αm = (n− 1)/2, βm = 1/2 (12)

Note that this requires n > 1. This is a restriction that is also needed to ensure that E(σ2t ) is finite. The

advantage of this parameterization is that the posterior of ht|(k1:(t−1), h1:(t−1), m1:t) is a finite mixture of shifted

Poissons, whereas the posterior of kt|k1:(t−1), h1:t,m1:t continues to be a Gamma. This is what makes possible

the joint sampling of the two vectors k and h conditional on m. However, the calculation of the probabilities of

each component of the mixture could be time consuming, especially when T is large. For this reason it seems

preferable to condition on a mixture indicator dt, such that the conditional posterior of ht becomes simply a

shifted Poisson. This implies that conditional on (m, d), the two vectors k and h can be drawn jointly from the

conditional posterior using simple gamma and shifted Poisson distributions. In turn, (m, d)|(k, h) can be drawn

using independent beta distributions (for m) and the hypergeometric distribution for d.

A shifted Poisson results from adding a fixed constant to a random variable with Poisson distribution

(Winkelmann (2008, p.10)). We use the notation ht ∼ SP (λt, dt) to mean that (ht − dt) follows a Poisson

distribution (i.e. (ht − dt) ∼ P (λt)). The probability density function of a shifted Poisson distribution is:

fSP (h|λ, d) = λh−d
1

(h− d)!

1

exp(λ)
h = d, (d+ 1), ... (13)

Note that a draw from a shifted Poisson ht ∼ SP (λt, dt) can be obtained by first obtaining a draw x from the

Poisson distribution P (λt) and then calculating ht = x+ dt. The vector d is formally introduced in the model

by using a hypergeometric distribution (e.g. Monahan (2001, p. 305)) as a prior for each of the components of

d given h:

Pr (dt = s|ht, dt+1) =

(
Mdt
s

)(Ndt
−Mdt

ndt
−s

)
(
Ndt
ndt

) t = 2, ..., T

dT+1 = 0

0 ≤ s ≤ min((1 + dt+1), ht)

(14)

Mdt
= ht, ndt = 1 + dt+1, Ndt

= (n− 1)/2 + ht + dt+1

Because in our case Ndt
is not an integer, the corresponding binomial coeffi cient should be written using

the gamma function instead of the factorial, based on the relationship Γ(x + 1) = x! (see proof of Proposition

3 in the appendix for more details). There are several algorithms that effi ciently draw from the hypergeometric

distribution, are available in some standard statistical packages and are applicable in the case that Ndt
is not

an integer (e.g. Stadlober, (1989), Kachitvichyanukul and Schmeiser (1988) or see Monahan (2001, p. 306) for

a review). Note that dT can take only two values, 0 and 1. The support of dT−1|dT is from 0 up to (1 + dT ), so

dT−1 could at most take value 2. Similarly, the support of dt|d(t+1):T is from 0 up to (1 + dt+1), such that d2
could take at most value (T − 1). However, in our applications to real data we have found dt to be at most 20

even when T = 10168, and so each dt was drawn from a discrete distribution defined on a relatively small set

of values. Note also that dt ≤ ht, so if ht = 0 then dt should also be fixed to be 0.

Thus the Gibbs algorithm that uses (m, d) as auxiliary variables can be described as:

11



The m-Gibbs for the ARG model.

• Generate Θ|(m, d), β using a Metropolis step.

• Generate (k, h)|(m, d),Θ, β using gammas and poisson.

• Generate (m, d)|(k, h),Θ, β using beta and the hypergeometric distribution in (14).

• Generate β|k, h,Θ (draw from a multivariate normal).

Note that for greater effi ciency Θ is drawn marginally on (k, h). Therefore, the step to draw (k, h) needs to

come just after drawing Θ, so that the joint posterior continues to be the stationary distribution. The following

proposition describes the distributions that are used in the m-Gibbs.

Proposition 3 Given the model described in equations (10), (12), (14), and the following definitions:

r̂2T = r̃2T

r̂2t =

 1

r̃2t
−mt+1

(
ρ̃t+1

θ̃
2

t+1

)2
r̂2t+1

−1 for t = 1, ..., T − 1

m1 = 1, d1 = dT+1 = h1 = 0, λt =
ρ̃2tkt−1

2θ̃
2

t

, λ̂t = λt
mtr̂

2
t

θ̃
2

t

,

with r̃2t defined in Proposition 2, the conditional posteriors are as follows:

mt|k, h, d,Θ, β ∼ B((n− 1)/2 + ht, 1/2),

kt|k1:(t−1), h1:t,m, d,Θ, β ∼ G((n+ 1)/2 + ht + dt+1, 2r̂
2
t )

ht|k1:(t−1),h1:(t−1),m, d, ,Θ, β ∼ SP (λ̂t, dt)

The conditional posterior d|k, h,m is the same as the conditional prior in (14). In addition:

p(Θ|Y,m, d, β) ∝
∫
p(Θ)p(k, h,m, d|Θ)L(Y |k, β)dkdh = (15)

[
T∏
t=1

(
2r̂2t
)n+1

2 +dt+1+dt

] T∏
t=2

mt

(
ρ̃t

2θ̃
2

t

)2dt
×

[
T∏
t=2

1

dt!

Γ ((n+ 1)/2 + dt+1)

Γ ((n− 1)/2 + dt)

Γ(2 + dt+1)

Γ(2 + dt+1 − dt)

]
×[

T∏
t=2

mαm−1
t (1−mt)

βm−1

]
Γ ((n+ 1)/2 + d2)

Γ (n/2)
CpCLCBp(Θ)
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where

Cp =
(

1− ρ̃2
)n/2 T∏

t=1

(
2θ̃
2

t

)−n
2

CL = (2π)
−T/2

CB = (Γ (βm))
−(T−1) , βm = 1/2, αm = (n− 1)/2

and p(Θ) is the prior of Θ.

Using Proposition 3, a draw of (k, h)|(m, d) can be obtained by first drawing k1 from a Gamma (recall that

h1 = 0), then h2|k1 from a shifted Poisson, then k2|h2 again from a Gamma and so on until we finally draw

hT |kT−1 and kT |hT . Conversely, a draw from the conditional posterior of (m, d) is obtained by using the prior

distributions (12) and (14). Thus, mt is drawn using independent beta distributions, and dt is drawn recursively

using the hypergeometric distribution, starting with dT , and then dT−1|dT and so on until we finally draw d2|d3.
The vector of unknown parameters Θ is generated by targeting the kernel in (15) using a Metropolis step. It

seems recommendable to repeat the Metropolis step several times (between 5 and 15) since this could reduce

the autocorrelations while not having much impact on computation time.

3.2 Flexible Tail Autoregressive Gamma Process (FTARG)

As shown in the proof of Proposition 4 in the appendix, the conditional posterior density of T̃t|V, h,Θ is

proportional to: (
T̃t

)αt−1 (
1− T̃t

)V/2−1( 1

1 + T̃tSt

)vt
t = 2, ..., T (16)

with:

αt =
V

2
+ ht+1 +

1

2
vt =

n+ 1

2
+ ht + ht+1

St = θ2(r2t + ρ2/θ2) for t = 2, ..., T − 1 ST = θ2r2T

This kernel can be written as that of an infinite mixture of beta distributions if we write the last term of

this density as a series (e.g. Muirhead (1985, p. 259)):(
1

1 + T̃tSt

)vt
=

1

(1 + St)
vt

∞∑
s=0

(
St

1 + St
(1− T̃t)

)s
[vt]s
s!

Thus one possibility to draw T̃t is to draw from a mixture of betas. However, calculating the probability

of each component of the mixture requires evaluation of the hypergeometric function 2F1(.), which could be

computationally demanding. An easier method is to draw from (16) using a Metropolis-step with a random

walk proposal density. A third possibility is to introduce an auxiliary variable Jt such that T̃t|Jt and Jt|T̃t
can be both drawn from simple distributions. This variable Jt can be introduced as a negative binomial (e.g.

Johnson et al. (2005, p. 208)) discrete random variable with probability of success pt and number of failures vt
(denoted as Jt ∼ NB(vt, pt)):
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Pr
(
Jt = s|T̃t, St

)
= (1− pt)vt (pt)

s

(
vt + s− 1

vt − 1

)
(17)

pt =
St

1 + St
(1− T̃t) t = 2, ..., T

Draws from the negative binomial distribution can be obtained using effi cient algorithms which are imple-

mented in a wide range of statistical software. Alternatively, Jt can be drawn from a Poisson P (ct) where ct is a

draw from a Gamma G(vt, pt/(1− pt)) (e.g. Johnson et al. (2005, p.p. 212-213)). Furthermore, T̃t conditional
on Jt becomes a simple beta distribution B(αt, V/2 + Jt).

Therefore, a sampling algorithm for the FTARG model can be obtained by adding the following three steps

to sample T̃ = (T̃2, ..., T̃T ), J = (J2, ..., JT ) and V to any of the two algorithms described in the previous section:

Additional Steps for the FTARG

• J |(k, h),Θ, T̃ , V, β using the negative binomial distribution in (17).

• T̃ |(k, h),Θ, J, V, β using beta distributions.

• V |(k, h),Θ, T̃ , β using a Metropolis step.

Proposition 3 in the previous section and the following proposition describe the distributions that are nec-

essary in this algorithm.

Proposition 4 The conditional posterior densities for T̃ , and V in the FTARG model are as follows:

T̃t|Jt ∼ B(αt, V/2 + Jt)

p(V |Y, T̃ ) ∝ p(V )

(
Γ(V )

Γ(V/2)Γ(V/2)

)T−1 T∏
t=2

(
T̃t

)V/2−1 (
1− T̃t

)V/2−1
where p(V ) is the prior for V . The conditional posterior density for Jt is the same as the conditional prior

given in (17).

4 Evidence on the Effi ciency of the Algorithms

We use real and simulated data to compare the computational effi ciency of the two algorithms developed in

this paper (the h-Gibbs and the m-Gibbs) with the recently developed Particle marginal Metropolis - Hastings

sampler (PMMH, Andrieu et al. 2010) that updates jointly the unknown parameters Θ and the volatilities k.

The PMMH is a general purpose algorithm and it uses a particle filter to evaluate the conditional posterior of Θ

marginally on the volatilities. The effi ciency of the algorithm depends on the number of particles used, and as

the number of particles increases, the performance of the PMMH (in terms of autocorrelations) approaches that

of an ideal algorithm that generates Θ marginally on the volatilities. To be able to set optimally the proposal
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density for Θ in the PMMH algorithm, we simplify the estimation by keeping β equal to the OLS estimate, so

that (n, θ2, ρ2) remain as the only parameters to be estimated. In all algorithms we use a random walk proposal

density for Θ and for optimality we fix the variance-covariance matrix of the proposal density proportional to the

posterior variance-covariance matrix of Θ (Gelman et al. 1996), which is obtained in a previous estimation. For

simplicity in the PMMH algorithm we use the bootstrap filter (Gordon et al. 1993). In the h-Gibbs and m-Gibbs

algorithms, we repeat the Metropolis step 10 times to obtain a single value for Θ. This reduces significantly the

autocorrelation for the parameter n (not much for θ2 and ρ2) while increasing computation time by 60% or 70%

(when T=100) and 70% or 100% (when T=2000), respectively. In terms of comparing the effi ciency among the

algorithms, results would be very similar if we did not repeat the Metropolis-step.

We use the prior described in the appendix and in the Metropolis step we use a transformation of the

parameters that maps them into an unbounded space. In particular, we target the conditional posterior of

δ = (δ1, δ2, δ3) defined as: δ1 = ln(n) + ln(θ2) − ln(1 − ρ2), δ2 = ln(θ2) and δ3 = − ln(1 − ρ2). By this

transformation the only restriction on δ is δ3 > 0, which is likely to be satisfied provided that ρ2 is not close

to 0. To be more precise, we are not using a proposal density for Θ but for δ, calibrated using the posterior

var-cov of δ.

First we simulate a short time series of T = 100 using parameter values n = 2, θ2 = 0.15, ρ = 0.95 with

yt = 2 + σtet, and xt = (1, yt−1), so that the true value of β is β = (2, 0). We compare the effi ciency of

the algorithms using the effective sample size (e.g. Brooks (1999)). The effective sample size measures the

number of independent draws from the posterior that is equivalent to 1 draw from an MCMC algorithm. Thus,

algorithms with larger values of ESS are more effi cient. Since the computation time per iteration differs for

different algorithms, we present also the ESS adjusted for computation time (ESS/TIME), which is the number

of independent draws from the posterior obtained in one minute (using GAUSS software and Intel Xeon CPU

with 2.9 GHz).

The ESS of the PMMH depends on the number of particles used in the bootstrap filter. Table 3 shows

that when considering computation time choosing 50 particles gives better results (although for n choosing 25

particles gives slightly better results). However, the m-Gibbs sampler is 4.7 times better than the best PMMH

in terms of ESS/TIME to sample n, whereas the improvements for ρ and θ2 are 62% and 9.4%, respectively.

When we compare the m-Gibbs with the h-Gibbs, we can see that the m-Gibbs is between 4.9 and 6.2 times

more effi cient.

In Table 4 we can see that choosing 500 or 1000 particles gives roughly the same ESS for the PMMH,

indicating that there is not much further gain in increasing the number of particles. Thus we can expect that

the PMMH algorithm with 1000 particles has practically the same ESS as the ideal algorithm that samples Θ

marginally on the volatilities (Andrieu et al. (2010)). Thus it is interesting to compare the ESS sample size of

the m-Gibbs and the h-Gibbs with the ESS of such ideal algorithm. In Table 4 we can see that the m-Gibbs has

roughly the same ESS for n as the ideal algorithm, but the ESS for θ2 and ρ is 15% and 22.6%, respectively, of

the ideal algorithm. Because the number of observations is relatively small and the prior for ρ is quite spread,

the 95% posterior credible interval for ρ is wide and equal to (0.76, 0.98). Although not shown in the tables, all

algorithms produced the same summary of the posterior distribution, indicating the absence of programming

errors. Overall Tables 3 and 4 show that the m-Gibbs algorithm is much more effi cient than the best PMMH

even when T is as small as 100 and much more effi cient also than the h-Gibbs.
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h-Gibbs m-Gibbs P_25 P_50 P_100 P_500 P_1000
n 0.0037 0.0302 0.0113 0.015 0.021 0.042 0.028

[150.3] [730.6] [155.9] [122.9] [83.5] [14.9] [2.8]
θ2 0.0011 0.0105 0.015 0.029 0.034 0.063 0.069

[46.1] [253.2] [201.9] [231.3] [134.5] [22.4] [6.8]
ρ 0.0015 0.015 0.016 0.029 0.034 0.06 0.07

[60.1] [372.8] [219.3] [230.1] [137.5] [21.9] [6.8]
Accept R. 93% 93% 21% 34% 45% 50% 52%

Table 3: Effective Sample Size (ESS) and ESS over time (ESS/TIME) for the h-Gibbs, the m-Gibbs and PMMH
algorithms using 100 artificial observations. ESS/TIME is in squared brackets and represents the number of
independent samples per minute. The column P_25 refers to the PMMH algorithm that uses 25 particles. The
row Accept R. gives the acceptance rate in the Metropolis step. Note that in the h-Gibbs and m-Gibbs the
Metropolis step is repeated 10 times, and Accept R. is the probability of accepting a new value in the sequence
of 10 draws.

h-Gibbs m-Gibbs P_25 P_50 P_100 P_500 P_1000
n 13.1 107.7 40.3 54.9 74.2 149.2 100
θ2 1.6 15.3 21.4 42.3 49.0 91.9 100
ρ 2.2 22.6 23.3 42.3 50.3 90.2 100

Table 4: Effective Sample Size (ESS) as a proportion of the ESS of the PMMH with 1000 particles.

Let us now compare the effi ciency of the algorithms using 2000 daily observations of the exchange rate Yen

- US dollar (6th Aug 2003 - 15th Jul. 2011). yt is the first difference of the log exchange rate and xt−1 includes

a constant and a lag, so that β = (β0, β1). In Table 5 we can see that it is best to choose 500 particles for

the PMMH and that the m-Gibbs is 710 times more effi cient than the best PMMH to sample n, 15 times

more effi cient to sample ρ and 12 times more effi cient to sample θ2. With respect to the h-Gibbs algorithm,

the m-Gibbs is about 36 times more effi cient to sample θ2 or ρ and 4.6 times more effi cient to sample n. The

posterior 95% credible interval for ρ is (0.956, 0.99), which is quite close to 1. That is one reason why the relative

performance of the h-Gibbs is particularly bad in this case.

h-Gibbs m-Gibbs P_300 P_500 P_750 P_1000
n 0.004 0.041 0.002 0.004 0.007 0.007

[9.68] [44.26] [0.061] [0.062] [0.060] [0.032]
θ2 0.00001 0.0012 0.0016 0.0065 0.0079 0.0078

[0.033] [1.23] [0.058] [0.101] [0.064] [0.037]
ρ 0.00002 0.0014 0.0019 0.0062 0.0082 0.0091

[0.040] [1.450] [0.071] [0.096] [0.066] [0.044]
Accept R. 93% 96% 9% 20% 28% 34%

Table 5: Effective Sample Size (ESS) and ESS over time (ESS/TIME) for the h-Gibbs, the m-Gibbs and
PMMH algorithms using 2000 observations of the US-Japan exchange rate. ESS/TIME is in squared brackets
and represents the number of independent samples per minute. See explanation in Table 3 for other definitions.
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5 Empirical Application

The aim of this section is to compare the empirical performance of several models using real macroeconomic

and financial data. In addition to the ARG and FTARG described in Section 2, we consider the model where

σ2t follows a log-normal distribution (LNORM) (using the SvPack in Ox provided by Kim et al (1998)). In

addition, we consider 3 models where et follows a student-t distribution: ARG-T, FTARG-T and LNORM-T.

These 3 models are the same as the ARG, FTARG and LNORM models, respectively, but assume a student-t

distribution for et instead of normal. We run the models separately on 5 datasets, 4 of which are exchange

rates (2 daily exchange rates and 2 monthly) and one dataset corresponds to UK inflation (see Table 6 for more

details on the data). The dependent variable yt is either the level of inflation or the first difference of the log

exchange rate. When yt is the return of the exchange rate, xt contains a constant and a lag of yt. When yt is

inflation, xt contains a constant, two lags of inflation, the unemployment rate and two lags of the unemployment

rate (as in the estimation of a Phillips curve, e.g. Staiger et al. (1997) or Sargent et al. (2006)). The exchange

rate data was obtained from the Federal Reserve Bank of St. Louis, and the inflation and unemployment rate

data from OECD (2010).

Table 7 shows the value of the log-likelihood at the posterior median of parameters, calculated using the

bootstrap particle filter (e.g. Gordon et al. (1993)), and using the prior specification shown in the appendix.

Marginal likelihood values (calculated with the method of Chib and Jeliazkov, (2001)), show a similar patter

and are given in Table 8. We can see that the ARG model has a much higher value of the log likelihood than the

LNORM and LNORM-T models for the monthly India-US and Brazil-US exchange rates. The improvement in

the log-likelihood is as much as 30 (India-US) or 40 (Brazil-US) points over the LNORM-T. Furthermore, for

these two exchange rates the FTARG model is much superior than all the other simpler models (by more than

20 points or 36 points increase in the log likelihood with respect to the ARG). The extension to student-t errors

does not bring any noticeable improvement in the value of the log-likelihood of the ARG or FTARG models,

although it does increase the log likelihood of the LNORM model. In summary, the FTARG is a clear winner

in the case of the monthly India-US and Brazil-US exchange rates.

In the case of the Japan-US daily exchange rate, although the LNORM and LNORM-T are clearly superior

to the ARG and ARG-T, the FTARG-T model seems to be the best as it gains more than 30 points in the

log-likelihood over the second best model (LNORM-T) for just one extra parameter. For this dataset the

assumption of student-t errors greatly improves the performance of all models.

Regarding the EU-US exchange rate, the LNORM-T and ARG-T are substantially better than the LNORM

and ARG, again indicating that it is important to allow for student-t errors. Both the LNORM-T and the

ARG-T seem to perform equally well, whereas the FTARG and FTARG-T models do not bring any noticeable

increase in the log likelihood. Hence, the LNORM-T and ARG-T could be said to be joint winners for the

EU-US exchange rate, as confirmed by the marginal likelihood values in Table 8.

Finally, regarding the estimation of the Phillips curve for UK inflation, all models have very similar values

for the log likelihood, indicating that the simpler models (LNORM and ARG) might be more adequate in the

estimation of the Phillips curve with UK data.

Figure 4 shows the OLS residuals for each of the 5 datasets. We can observe larger jumps in volatility in the

exchange rates of India and Brazil, which might be one of the reasons why the inverse gamma models perform
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IND-US
Exchange rate Indian Rupee - US dollar, monthly average:

March 1973 - June 2013, 484 observations

BRA-US
Exchange rate Brazilian Real - US dollar, monthly average:

March 1995 - June 2013, 220 observations

JP-US
Exchange rate Japanese Yen - US dollar, daily: 6 Jan 1971 - 15

Jul 2011, 10168 observations

EU-US
Exchange rate Euro - US dollar, daily: 6 Jan 1999 - 17 May

2013, 3615 observations

UK-INFL
Quarterly Inflation based on GDP deflator, seasonally adjusted,

1971Q1 - 2011Q4, 162 observations.

UK-UR
Harmonized Unemployment Rate: All Persons for United
Kingdom, seasonally adjusted, 1971Q1 - 2011Q4, 162

observations.

Table 6: Description of variables used in empirical analysis

IND-US BRA-US JP-US EU-US UK-INFL
LNORM 1258.5 413.6 n.a. 13275.1 -198.7

(0.09) (0.21) (0.16) (0.32)
LNORM-T 1398.4 448.0 -7568.9 13285.8 -197.8

(0.23) (0.26) (0.64) (0.28) (0.16)
ARG 1427.2 490.5 n.a. 13276.5 -195.8

(0.08) (0.67) (0.05) (0.09)
ARG-T 1427.6 490.4 -7913.8 13287.0 -195.9

(0.09) (0.19) (0.71) (0.25) (0.08)
FTARG 1447.8 526.0 -7634.4 13276.2 -196.5

(0.09) (0.15) (0.82) (0.05) (0.07)
FTARG-T 1446.4 526.1 -7531.2 13286.1 -195.5

(0.09) (0.30) (0.62) (0.05) (0.12)

Table 7: Value of Log-Likelihood at the posterior median, calculated with a particle filter for different models
and datasets. Numerical standard error in brackets (obtained using independent estimates of the likelihood).
The particle filter failed to give estimates of the likelihood in the case of normal errors with the Yen-Dollar
dataset due to the presence of data points which were too far on the tails of the distribution, causing underflow.

much better than the log-normal models in these datasets. Another reason might be that inverse gamma models

allow for greater correlation in the volatility outliers than the LNORM-T model. To see this recall that the

LNORM-T model can be written as a mixture of normals: yt = xtβ + et, where et ∼ N(0, χ−1t σ2t ) and χt are

i.i.d. draws from a gamma distribution. Therefore the volatility of et has two components, one determined by

σ2t and another by χt. Because χt has no serial correlation, the LNORM-T model does not allow for persistence

in the volatility outliers. This is not so in the inverse gamma and generalized inverse gamma models, where the

volatility of et has only one component σ2t , which has positive correlation with σ
2
t−1 regardless of whether σ

2
t−1

was on the tail of the distribution or not.
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IND-US BRA-US JP-US EU-US UK-INFL
LNORM 1259.1 390.7 n.a. 13236.1 -236.7

(0.45) (0.21) (0.16) (0.32)
LNORM-T 1365.2 421.5 -7607.2 13247.2 -231.9

(0.23) (0.26) (0.64) (0.28) (0.16)
ARG 1400.9 467.2 n.a. 13241.0 -259.0

(0.08) (0.67) (0.05) (0.09)
ARG-T 1400.9 466.7 -7976.0 13249.8 -258.4

(0.09) (0.19) (0.71) (0.25) (0.07)
FTARG 1425.9 496.9 -7688.7 13234.5 -263.1

(0.12) (0.19) (0.82) (0.05) (0.09)
FTARG-T 1419.4 493.9 -7592.0 13242.2 -266.5

(0.09) (0.33) (0.70) (0.05) (0.12)

Table 8: Value of Marginal Likelihood calculated using the method of Chib and Jeliazkov (2001), but the
posterior ordinate for (n, θ2, ρ, V , $) was calculated using a normal approximation. Numerical standard error
in brackets.

Figure 4: OLS residuals for 5 different datasets: 4 exchange rates versus the US dollar and a Phillips Curve for
UK inflation.
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6 Conclusions

This paper has developed effi cient posterior simulators for inverse gamma and generalized inverse gamma

processes for stochastic volatility. By conditioning on some auxiliary variables, it is shown that it is possi-

ble to draw all the volatilities jointly using simple distributions such as Poisson and Gamma. Furthermore, the

unknown parameters can be drawn after integrating out the volatilities. Estimations with real and simulated

data show that the new algorithm is much more effi cient than the recently developed Particle MCMC algorithms

that generate the volatilities and unknown parameters in a joint move.

We also developed a new type of generalized inverse gamma time-series model and analytically derived its

properties. Using simulation we calculated the percentiles of the distribution and illustrated that the generalized

inverse gamma process has much greater flexibility in the right tail. In this way we provide a new class of flexible

stochastic volatility models that can be estimated with simple and effi cient MCMC algorithms. Furthermore,

the FTARG process can be further generalized by specifying T̃t to be a mixture of beta distributions, since

such a mixture can approximate any distribution in the interval (0, 1). Finally, the empirical exercise shows

that inverse gamma and generalized inverse gamma models outperform the lognormal volatility model with

student-t errors specially in the datasets that exhibit greater jumps and correlation of volatility outliers, such

as the exchange rates of Brazil-US or India-US.
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Appendix

Prior Specification in the Empirical Application

For the Gamma type models we specified the prior as: ln(n) ∼ N(ln(40), 1.5), ρ2 ∼ B(8, 1), θ2 ∼ G(1, 200),

ln(V ) ∼ N(ln(20), 1).

For the log-normal volatility model we use the same prior specification and the same notation as in Kim,

Shephard and Chib (1998): µ ∼ N(0, 10),
(
σ2η
)−1 ∼ G(2.5, 40), (φ+ 1)/2 ∼ B(20, 1.5).

In all models the prior for β is N(0, T I), where I is the identity matrix and T is the sample size.

For the models with student-t errors, we specify ln($) ∼ N(ln(40), 1.5), where $ is the parameter for the

degrees of freedom of the student-t.

For some datasets the log-normal volatility model did not converge with the baseline prior, and in those cases

we used a tighter prior for σ2η to ensure convergence:
(
σ2η
)−1 ∼ G(17.5, 57.14) (Brazil),

(
σ2η
)−1 ∼ G(22.5, 444.4)

(India, normal errors),
(
σ2η
)−1 ∼ G(17.5, 57.14) (India, student-t errors),

(
σ2η
)−1 ∼ G(3.5, 28.57) (UK inflation).

As mentioned above, in the Metropolis step we target the conditional posterior of δ = (δ1, δ2, δ3), defined

as: δ1 = ln(n) + ln(θ2) − ln(1 − ρ2), δ2 = ln(θ2) and δ3 = − ln(1 − ρ2). The inverse transformation is Θ(δ) =

(n(δ), θ2(δ), ρ2(δ)) = (exp(δ1 − δ2 − δ3), exp(δ2), 1− exp(−δ3)). Since our prior is defined on Θ∗ = (ln(n), θ2, ρ2), the

prior of δ can be written using the Jacobian as: p(Θ∗)θ2(1− ρ2), where p(Θ∗) is the prior of Θ∗ and [θ2(1− ρ2)]
is the Jacobian of the transformation.

In the FTARG model instead of specifying the prior on (ρ2, θ2) we specify it on (ρ̃2, θ̃
2
), and the Metropolis

step targets the conditional posterior of δ1 = ln(n) + ln(θ̃
2
)− ln(1− ρ̃2), δ2 = ln(θ̃

2
) and δ3 = − ln(1− ρ̃2).

Proof of Proposition 1

From equation (2) we can write the process for zt as:

zt =

√
T̃tεt + ρ

√
T̃t

√
T̃t−1εt−1 + ρ2

√
T̃t

√
T̃t−1

√
T̃t−2εt−2 + ρ3

√
T̃t

√
T̃t−1

√
T̃t−2

√
T̃t−3εt−3 + ...
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which implies that the stationary distribution of zt|T̃ is N(0, θ2vc,t) and so the stationary distribution of kt is

that of the product of vc,t and ε′tεt. Hence the moments of kt can be calculated as E(kst ) = E(vsc,t)E((ε′tεt)
s
).

Because (ε′tεt) is distributed as a G(n/2, 2θ2), its moments are given by (e.g. Johnson et al. (1994 p. 339)):

E(
(
ε′tεt

)s
) =

(
θ2
)s s−1∏

i=0

(n+ 2i)

To calculate E(vsc,t) note that we can write vc,t as vc,t = T̃t+ρ
2T̃tvc,(t−1). so that E(vsc,t) = E((T̃t+ρ

2T̃tvc,(t−1))
s).

Using the binomial theorem we can write:

E((T̃t + ρ2T̃tvc,(t−1))
s) = E(T̃ st )

s∑
i=0

(
s

i

)
ρ2iE(vic,(t−1)) (18)

Because E(vsc,t) = E(vsc,(t−1)), (18) implies property (9) and the other unconditional moments stated in Proposi-

tion 1. To obtain the conditional moments, note that equation (3) can be written as:

kt =
T̃t

E(T̃t)
(ρ̃2kt−1 + ε̃′tε̃t + 2ρ̃ε̃′tzt−1) (19)

Because ε̃t is independent of zt−1 and E(ε̃t) = 0 we obtain that E(ε̃′tzt−1) = 0. Taking into account that

E(ε̃′tε̃t) = nθ̃
2
we can take conditional expectations on both sides of (19) to get equations (4) and (6).

Let us calculate cov(kt, kt−h) as cov(kt, kt−h) = E(ktkt−h) − [E(kt)]
2. To derive E(ktkt−h) let us use iterative

expectations to rewrite equation (4) as:

E(kt|kt−h) = ρ̃2hkt−h +

h−1∑
i=0

ρ̃2i(1− ρ̃2)E(kt) (20)

Multiplying both sides of (20) by kt−h and then taking expectations with respect to kt−h we obtain:

E(ktkt−h) = ρ̃2hE(k2t−h) +

h−1∑
i=0

ρ̃2i(1− ρ̃2) [E(kt)]
2 = ρ̃2hE(k2t−h) + (1− ρ̃2h) [E(kt)]

2

where we have used the formula for the sum of a geometric series. Thus cov(kt, kt−h) = E(ktkt−h) − [E(kt)]
2 =

ρ̃2h(E(k2t−h)− [E(kt)]
2) = ρ̃2hvar(kt). Thus, the correlation between kt and kt−h is ρ̃2h.

Because the stationary distribution of σ2t = 1/kt is that of the product of (vc,t)
−1 and (ε′tεt)

−1, with (vc,t)
−1

being independent of (ε′tεt)
−1, the expectation E(σ2st ) is finite if and only if both E((vc,t)

−s) and E((ε′tεt)
−s

) are

finite. Because (ε′tεt)
−1 is an inverted gamma with n degrees of freedom, E((ε′tεt)

−s
) is finite only if s < n. In

addition, from vc,t = T̃t(1 + ρ2vc,(t−1)) it follows that:

1

vc,t
=

1

T̃t

1

1 + ρ2vc,(t−1)

Because (1 + ρ2vc,(t−1))
−s < 1, it follows that E((1 + ρ2vc,(t−1))

−s) is finite because the density function of vc,(t−1)
integrates up to 1. Because T̃t follows a B(α, β), E(T̃−st ) is finite if and only if α > s. Putting both conditions

together, E(σ2st ) is finite when α > s and n > s.
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Proof of Proposition 2

The likelihood is:

L(Y |k, β) = (2π)−T/2
[
T∏
t=1

(kt)
1/2

]
exp

(
−1

2

T∑
t=1

r2t kt

)
r2t = (yt − xtβ)2

The prior p(k, h|Θ, β) is equal to:

p(k1|Θ, β)

T∏
t=2

(p(kt|ht,Θ, β)p(ht|kt−1,Θ, β))

= p(k1|Θ, β)

T∏
t=2

p(kt|ht,Θ, β)

λ
ht
t
ht!

exp(λt)


The densities p(k1|Θ, β) and p(kt|ht,Θ, β) are Gamma densities:

p(k1|Θ, β) =
|k1|

n−2
2

c1
exp

(
−1− ρ̃2

2θ̃
2 k1

)
c1 = Γ

(n
2

)( 2θ̃
2

1− ρ̃2

)n/2
(21)

p(kt|ht,Θ, β) =
|kt|

n+2ht−2
2

ct
exp

(
− 1

2θ̃
2

t

kt

)
ct = Γ

(n
2

+ ht
)(

2θ̃
2

t

)n/2+ht
t = 2, ..., T

Thus, the product of the prior and the likelihood, p(Θ, β)p(k, h|Θ, β)L(Y |k, β), can be written as:

(2π)−T/2
[
T∏
t=1

(kt)
n+2ht−2

2
+ 1
2

]
exp

(
−1

2

T∑
t=2

kt

(
1

θ̃
2

t

+ r2t

))
× (22)

exp

(
−1

2
k1

(
1− ρ̃2

θ̃
2 + r2t

)) T∏
t=2

 λ
ht
t
ht!

exp(λt)

( T∏
t=1

ct

)−1
p(Θ)

Recalling that λt = ρ̃2tkt−1/(2θ̃
2

t ) and also that (ρ̃2t/θ̃
2

t ) = (ρ̃2t+1/θ̃
2

t+1), it is clear that kt|h,Θ, β ∼ G((n+ 1)/2 +ht +

ht+1, 2r̃
2
t ). To find the conditional distribution of h given k note that ct depends on ht and putting together the

terms in (22) that depend on ht we get:

T∏
t=2

 1

ht!

1

Γ(n/2 + ht)

((
ρ̃t

2θ̃
2

t

)2
ktkt−1

)ht
which shows that ht|k,Θ, β ∼ Bessel(n−2

2
, ρ̃t

√
ktkt−1

θ̃
2
t

) for t = 2...T . The expression for p(n, θ2, ρ2|Y, h, β) can be

obtained by integrating (22) with respect to k using basic properties of the Gamma distribution.

Proof of Proposition 3:

For the proof let us write the hypergeometric distribution in (14) using the gamma function and the factorial
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instead of the binomial coeffi cients, so that Pr (dt = s|ht, dt+1) is equal to:

ht!

dt!(ht − dt)!
Γ((n+ 1)/2 + dt+1)

Γ((n− 1)/2 + dt)

Γ(2 + dt+1)

Γ(2 + dt+1 − dt)
Γ((n− 1)/2 + ht)

Γ((n+ 1)/2 + dt+1 + ht)

Thus, the joint prior of (d = (d2, ..., dT )) given (h, k,m), denoted as π(d|h, k,m), can be written as:

π(d|h, k,m) =

2∏
t=T

p (dt|ht, dt+1) with dT+1 = 0

and we will also use the notation p(d2:T−l|dT−l+1, h, k,m) for:

p(d2:T−l|dT−l+1, h, k,m) =

2∏
t=T−l

p (dt|ht, dt+1)

The prior p(k, h,m|Θ, β) is equal to:

p(k1|Θ, β)

T∏
t=2

(p(kt|ht,Θ, β)p(mt|ht)p(ht|kt−1,Θ, β))

= p(k1|Θ, β)

T∏
t=2

p(kt|ht,Θ, β)

λ
ht
t
ht!

mht
t

exp(λt)

Γ(αm + βm + ht)

Γ(αm + ht)Γ(βm)
mαm−1
t (1−mt)

βm−1


where p(k1|Θ, β) and p(kt|ht,Θ, β) have been defined in (21), and where αm = (n − 1)/2, βm = 1/2, as defined

before.

Thus, the product of the prior and the likelihood, p(k, h,m, d|Θ, β)L(Y |k, β), can be written as:

(2π)−T/2
[
T∏
t=1

(kt)
n+2ht−2

2
+ 1
2

]
exp

(
−1

2

T∑
t=2

kt

(
1

θ̃
2

t

+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃
2 + r21

))
×

T∏
t=2

 λ
ht
t
ht!

mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)Γ(βm)
mαm−1
t (1−mt)

βm−1

×
π(d|h, k,m)

(
T∏
t=1

ct

)−1

It is clear that the conditional posterior of kT |hT ,m, d is a G((n+ 1)/2 + hT , 2r̂
2
T ). Integrating out kT we find:

Γ ((n+ 1)/2 + hT )
(
2r̂2T

)n+1+2hT
2 (2π)−T/2

[
T−1∏
t=1

(kt)
n+2ht−2

2
+ 1
2

]
× (23)

exp

(
−1

2

T−1∑
t=2

kt

(
1

θ̃
2 + r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃
2 + r21

))
×

T∏
t=2

 λ
ht
t
ht!

mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)Γ(βm)
mαm−1
t (1−mt)

βm−1

 p(d|h, k,m)

(
T∏
t=1

ct

)−1
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In order to find out the posterior conditional of hT , note that cT depends on hT and so the terms that contain

hT in expression (23) can be written as:

Γ ((n+ 1)/2 + hT )
(
2r̂2T

)hT λhTT
hT !

mhT
T

Γ(n/2 + hT )

Γ((n− 1)/2 + hT )
× (24)(

2θ̃
2

T

)−hT
Γ(n/2 + hT )

hT !

(hT − dT )!

Γ((n− 1)/2 + hT )

Γ((n+ 1)/2 + dT+1 + hT )

=
(
λ̂T
)hT 1

(hT − dT )!

where we have implicitly used that:

λ̂T =

(
λT

mT r̂
2
T

θ̃
2

T

)
and dT+1 = 0

Recall that the restriction dT ≤ hT comes from the prior of dT . Therefore (24) implies that hT |kT−1,m, d is a
SP (λ̂T , dT ). Summing up expression (24) over all values of hT ∈ [dT ,∞) gives

(
λ̂T
)dT

exp(λ̂T ). Thus, integrating

out hT from (23) we obtain:

(
λ̂T
)dT

exp
(
−(λT − λ̂T )

)
× (25)

(
2r̂2T

)n+1
2 (2π)−T/2

[
T−1∏
t=1

(kt)
n+2ht−2

2
+ 1
2

]
×

exp

(
−1

2

T−1∑
t=2

kt

(
1

θ̃
2

t

+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃
2 + r21

))
×

T−1∏
t=2

 λ
ht
t
ht!

mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)

 T∏
t=2

(
1

Γ(βm)
mαm−1
t (1−mt)

βm−1
)
×

1

dT !

Γ((n+ 1)/2)

Γ((n− 1)/2 + dT )

Γ(2)

Γ(2− dT )
×

(
2θ̃

2

T

)−n/2
p(d2:T−1|dT , h, k,m)

(
T−1∏
t=1

ct

)−1

Noting that:

exp
(
−(λT − λ̂T )

)
= exp

(
−1

2

(
ρ̃2T

θ̃
2

T

−mT

(
ρ̃T

θ̃
2

T

)2
r̂2T

)
kT−1

)

we obtain that:

exp

(
−1

2
kT−1

(
1

θ̃
2

T−1

+ r2T−1

))
exp

(
−(λT − λ̂T )

)
= exp

(
− 1

2r̂2T−1
kT−1

)
Therefore the conditional posterior kT−1|hT−1,m, d is a G((n + 1)/2 + dT + hT−1, 2r̂

2
T−1). Thus, integrating out

kT−1 from (25) we obtain:
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(
2r̂2T

)n+1
2
(
2r̂2T−1

)n+1
2

+hT−1+dT Γ ((n+ 1)/2 + dT + hT−1)× (26)(
mT

2

(
ρ̃T

θ̃
2

T

)2
r̂2T

)dT
(2π)−T/2

[
T−2∏
t=1

(kt)
n+2ht−2

2
+ 1
2

]
×

exp

(
−1

2

T−2∑
t=2

kt

(
1

θ̃
2

t

+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃
2 + r21

))
×

T−1∏
t=2

 λ
ht
t
ht!

mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)

 T∏
t=2

(
1

Γ(βm)
mαm−1
t (1−mt)

βm−1
)
×

1

dT !

Γ((n+ 1)/2)

Γ((n− 1)/2 + dT )

Γ(2)

Γ(2− dT )

(
2θ̃

2

T

)−n/2
p(d2:T−1|dT , h, k,m)

(
T−1∏
t=1

ct

)−1

The terms that depend on hT−1 are:

Γ ((n+ 1)/2 + dT + hT−1)
(
2r̂2T−1

)hT−1 λhT−1T−1
hT−1!

m
hT−1
T−1 × (27)

Γ(n/2 + hT−1)

Γ((n− 1)/2 + hT−1)

(
Γ (n/2 + hT−1)

(
2θ̃

2

T−1

)hT−1)−1 (hT−1)!

(hT−1 − dT−1)!
Γ((n− 1)/2 + hT−1)

Γ((n+ 1)/2 + dT + hT−1)

=
(
λ̂T−1

)hT−1 1

(hT−1 − dT−1)!

where:

λ̂T−1 = λT−1
mT−1r̂

2
T−1

θ̃
2

T−1

This shows that hT−1|kT−2,m, d is a SP (λ̂T−1, dT−1). Therefore, if we integrate out hT−1 from (26) we get:

(
λ̂T−1

)dT−1
exp

(
−(λT−1 − λ̂T−1)

) (
2r̂2T

)n+1
2
(
2r̂2T−1

)n+1
2

+dT ×(
mT

2

(
ρ̃T

θ̃
2

T

)2
r̂2T

)dT
(2π)−T/2

[
T−2∏
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(kt)
n+2ht−2

2
+ 1
2

]
×

exp

(
−1

2

T−2∑
t=2

kt

(
1

θ̃
2

t

+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃
2 + r21

))
×

T−2∏
t=2

 λ
ht
t
ht!

mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)

 T∏
t=2

(
1

Γ(βm)
mαm−1
t (1−mt)

βm−1
)
×

1

dT !

1

(dT−1)!

Γ((n+ 1)/2)

Γ((n− 1)/2 + dT )

Γ(2)

Γ(2− dT )

Γ((n+ 1)/2 + dT )

Γ((n− 1)/2 + dT−1)

Γ(2 + dT )

Γ(2 + dT − dT−1)
×

(
2θ̃

2

T

)−n/2 (
2θ̃

2

T−1

)−n/2
p(d2:T−2|dT−1, h, k,m)

(
T−2∏
t=1

ct

)−1

This shows that kT−2|hT−2,m, d is a G((n + 1)/2 + hT−2 + dT−1, 2r̂
2
T−2). The other results in Proposition 3
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can be obtained by using similar operations to recursively integrate out (kT−2, hT−2, ..., k2, h2, k1).

Proof of Proposition 4

The conditional posterior of T̃ , which is given in (16), comes simply from finding the terms that depend on

T̃ in the product of expression (11) times the prior for T̃ . Multiplying expression (16) times the conditional

prior of J (17) gives T̃ |J , which is clearly a Beta distribution. Similarly, the conditional posterior of V |T̃ is
proportional to expression (11) times the prior of V and the term (Γ(V )/(Γ(V/2)Γ(V/2)))T−1, which comes from

the prior for T̃ .
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