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Abstract 

Modern theories of trade and economic geography pay particular attention to the role of product 

differentiation under monopolistic competition in manufacturing, while agriculture is considered 

to produce homogeneous goods. By contrast, agribusiness studies shed light on active 

entrepreneurs who have high productivity and are engaged in product differentiation by creating 

new products in their niches. Given these two contradicting views of agriculture, we examine the 

incidence of farm heterogeneity and product differentiation. This study uses microdata of 

Japanese farmers to estimate their total factor productivity. We find that heterogeneity is relatively 

low in the horticulture, grain and soybean (excluding rice), and fruit farming sectors, and high in 

the livestock sectors. In addition, the degree of product differentiation is relatively high in the 

livestock sectors, and the elasticity of substitution is as high as three, which is similar to findings 

in earlier studies on agriculture and manufacturing. 

Keywords 

Agricultural productivity; firm heterogeneity; product differentiation; total factor productivity

                                                      

† We thank Mototsugu Fukushige, Tomoki Ishikura, Yoko Konishi, and Shingo Takagi for their helpful 

comments and suggestions. This study is supported by JSPS KAKENHI Grant (Nos. 16K07907, 16KT0036, 

and 19K01622) and GRIPS Policy Research Center. Usual disclaimers apply. 
‡  Corresponding author. Address: 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan. E-mail: 

akune.yuko@nihon-u.ac.jp. 



 

Page 1 

1. Introduction 

 Agriculture is often described as a homogeneous good sector in many economic 

analyses, which implies that product differentiation among farmers is low. By contrast, 

agribusiness studies highlight heterogeneity of productivity among farmers by scale and location 

and explore how farmers are engaged in product differentiation through breeding for better taste 

and a longer expiration date, branding based on geographical and traditional identities and 

producers, marketing for new sales destinations, and timely supply to avoid competition with 

other sources. Although these activities are well described by a framework of monopolistic 

competition (Dixit and Stiglitz (1977)), those agribusiness studies do not employ this framework, 

but mostly conduct descriptive case studies of product development and marketing for Japanese 

farmers and food companies (Tanaka (2006), Akashi and Tanemura (2006), Nakamura et al. 

(2011), Ministry of Agriculture, Forestry and Fisheries (MAFF) (2018b)). Empirical studies using 

statistical data are indeed scant in this field. Only Kano et al. (2013), Takechi (2015), and Ihara 

et al. (2015) have estimated the elasticity of substitution among varieties for vegetables farming 

in a new economic geography model (Krugman (1980)). 

 The modern trade theory initiated by Melitz (2003) examined heterogeneity among 

firms in analysis of international trade and regional science. This theory shows that product 

differentiation needs to be considered jointly with variations in productivity. Product 
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differentiation incurs various pecuniary and nonpecuniary costs, including risks, for production 

facilities and breeding, development of cultivation technologies, branding and marketing, 

intellectual property right protection, and so on. Only highly productive entrepreneurs are allowed 

to access new products to expand their business and increase profits. 

 Based on those theoretical frameworks, empirical studies have investigated total factor 

productivity (TFP) of Japanese manufacturing firms, and its heterogeneity incidence (Wakasugi 

et al. (2014) and Mizuno et al. (2012)) and size distributions (Fujimoto and Ishikawa (2011)). 

Wakasugi et al. (2014) confirmed that the patterns of productivity, exports, and foreign direct 

investment were consistent with the assumptions of modern trade theory. By contrast, agricultural 

productivity studies in Japan have very often measured productivity by using single input 

productivity, typically, land and labor productivity (e.g., MAFF (2008)). This is partly because 

no microdata of Japanese farmers have been available publicly, and partly because of their 

practical convenience in estimation. As agriculture employs farmland intensively, a simple 

productivity measure such as land productivity has been used extensively. However, omitting 

other factor inputs could lead to biases in productivity estimates. To take account of the 

contribution of multiple inputs, Hu (1995) and Kunimitsu (2011) employed a Törnqvist 

productivity index, and Kondo and Yamamoto (2003) and Yamamoto et al. (2007) used a 

Malmquist productivity index. These indexes still have a shortcoming, in that the input shares, 
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which are used as weights for combining multiple inputs, are assumed to be exogenous. 

Furthermore, in their approach, the validity of the input shares cannot be tested. An econometric 

approach allows us to estimate a production function that considers all the inputs, such as capital, 

labor, and land, to measure TFP, or the Solow residual, as Wakasugi et al. (2014) and Mizuno et 

al. (2012) did for manufacturing. Studies in many other countries have used this approach in 

agricultural productivity analysis. For example, the Economic Research Service of the US 

Department of Agriculture regularly estimated TFP with microdata (Ball et al. (2013) and 

Shumway et al. (2016)). 

 These previous studies measured average productivity only; they ignored heterogeneity 

among farmers. A lack of farm-level data necessitated the use of aggregate data for Japan and its 

subregions for TFP estimation (Hu (1995) and Kunimitsu (2011)). While aggregate data analyses 

allow us to estimate TFP with a small number of observations, we cannot examine variation 

within a group. Even if farmers are categorized into several groups, as in Kuroda (2013), the 

resolution of analysis is still inadequate to identify heterogeneity within agriculture. A wide 

variety of farmers, including very productive entrepreneurs and smallholders who are aged and 

almost fully depend on pensions, grow crops for their own use. 

 Agriculture consists of many subsectors, often characterized by their products. Previous 

studies have not analyzed agriculture comprehensively, but rather, have focused on particular 
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farming sectors, such as paddy rice, vegetables, fruit, beef cattle, and so on. The most popular 

sector for research has been paddy rice farming (Kondo et al. (2005), Yamamoto et al. (2007), 

and Kunimitsu (2014)). These sector-focused studies enable us to control for product- or sector-

specific factors that affect farming activities, such as input prices, production technology, and 

weather conditions. However, it is solely a farmer’s choice what product to grow with what 

production technology and inputs, given his or her farmland. We should assume a general 

production function behind the farmer’s choice in estimating productivity so as not to cause any 

unintended biases because of a priori assumptions about the effect of these factors on farming 

activities. From this perspective, Kuroda (2017) adopted a notable approach by using a multiple-

product translog cost function. 

 Based on the above-mentioned literature review, there has been no productivity study 

in Japan allowing for farm heterogeneity in estimation or estimated productivity distributions 

indicating the farm heterogeneity incidence. Modern trade theory shows that firm heterogeneity 

determines patterns of production and exports. A simplifying assumption for a representative farm 

with average productivity may allow us to overlook this key feature in agriculture. In this study, 

we use farm-level microdata, Nogyo Keiei Tokei Chosa (Statistical Survey on Farm Management 

and Economy) by MAFF, and estimate production functions to measure TFP in agriculture. 

Exploiting the benefit of our microdata, we depict the distributions of TFP and estimate the 
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elasticity of substitution among varieties to quantify the degree of product differentiation at the 

subsector level. 

 This paper proceeds as follows. In Section 2, we present our framework, covering 

production functions, density functions of productivity, and estimation methods of these functions 

and the implied elasticity of substitution among varieties. Section 3 shows the estimated 

production functions and presents the distributions of TFP and the elasticity of substitution for 

the subsectors. The estimated TFP is compared with the conventional measures of labor and land 

productivity. Section 4 concludes the paper and discusses the limitations and possible extensions 

of this study. 

 

2. Models and Estimation 

 There are three steps in our model estimation: (1) estimation of production functions for 

TFP, (2) estimation of the shape parameter of a Pareto distribution of TFP, and (3) estimation of 

farm size distributions for the elasticity of substitution among differentiated goods. In the first 

step, we use alternative estimation methods to address the well-known endogeneity bias, and 

include additional dummy variables to control for sector-specific factors in the production 

function. 
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2.1 Production Function 

 We consider a standard Cobb–Douglas production function (1), 

𝑌௜௧ ൌ 𝐴௜௧𝐾௜௧
ఉభ𝐿௜௧

ఉమ𝐿𝐷௜௧
ఉయ    ሺ1ሻ 

where 𝑌௜௧, 𝐾௜௧, 𝐿௜௧, and 𝐿𝐷௜௧ are the output, capital input, labor input, and land use of farmer i 

in year t, respectively. 𝛽ଵ , 𝛽ଶ , and 𝛽ଷ  are their input shares (0 ൏ 𝛽௙ ൏ 1, 𝑓 ൌ 1,2,3). We 

estimate the TFP of farmer i in year t, 𝐴௜௧. Log-linearization of (1) yields, 

𝑦௜௧ ൌ 𝛼௜௧ ൅ 𝛽ଵ𝑘௜௧ ൅ 𝛽ଶ𝑙௜௧ ൅ 𝛽ଷ𝑙𝑑௜௧    ሺ2ሻ 

where 𝑦௜௧ ൌ 𝑙𝑛𝑌௜௧, 𝑘௜௧ ൌ 𝑙𝑛𝐾௜௧, 𝑙௜௧ ൌ 𝑙𝑛𝐿௜௧, 𝑙𝑑௜௧ ൌ 𝑙𝑛𝐿𝐷௜௧, and 𝛼௜௧ ൌ 𝑙𝑛𝐴௜௧. This is estimated 

with an error term 𝜀௜௧, 

𝑦௜௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑘௜௧ ൅ 𝛽ଶ𝑙௜௧ ൅ 𝛽ଷ𝑙𝑑௜௧ ൅ 𝜀௜௧    ሺ3ሻ 

where 𝛼௜௧ ൌ 𝛽0 ൅ 𝜀𝑖𝑡 . It is widely acknowledged that the endogeneity problem of explanatory 

variables in panel data estimation must be addressed (Marschak and Andrews (1944), Olley and 

Pakes (1996), Levinsohn and Petrin (2003), and Mollisi and Rovigatti (2017)). We split the error 

term 𝜀௜௧ in (3) into an observable shock 𝜔௜௧ and an unobservable shock 𝜉௜௧, 

𝑦௜௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑘௜௧ ൅ 𝛽ଶ𝑙௜௧ ൅ 𝛽ଷ𝑙𝑑௜௧ ൅ 𝜔௜௧ ൅ 𝜉௜௧   ሺ4ሻ 

 In its estimation, we use (log of) real value added produced by farmer i in year t for 𝑦௜௧, 

real capital stock for 𝑘௜௧, total work hours for 𝑙௜௧, and operating cultivated land area for 𝑙𝑑௜௧. To 

address the endogeneity, we consider the options developed by Olley and Pakes (OP) (1996) and 
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Levinsohn and Petrin (LP) (2003), and the extensions of these about labor input by Ackerberg, 

Caves, and Frazer (ACF) (2015). We use the real value of investment for 𝜔௜௧ in the OP and OP-

ACF methods and intermediate inputs for the LP and LP-ACF methods. With this setup, we 

estimate the unknown parameters 𝛽଴, 𝛽1, 𝛽2, and 𝛽3. 

 In addition to this standard specification, we add several binary dummy variables to (4) 

to control for sector-specific effects, 

𝑦௜௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑘௜௧ ൅ 𝛽ଶ𝑙௜௧ ൅ 𝛽ଷ𝑙𝑑௜௧ ൅ 𝛽ସ𝐷௜
௞𝑘௜௧ ൅ 𝛽ହ𝐷௜

௟ௗ𝑙𝑑௜௧ ൅ ෍ 𝛽଺௝𝐷௜௝
௝

൅ 𝜔௜௧ ൅ 𝜉௜௧  ሺ5ሻ 

where 𝐷௜
௞ is a dummy variable for farmer i in capital-intensive sectors, 𝐷௜

௟ௗ is a dummy variable 

for that in land-intensive sectors, and 𝐷௜௝ is a dummy variable for farmer i in farming sectors 

𝑗 ൌ 1, … , 14 . Factor intensity varies widely among farming sectors and determines their 

susceptibility to particular input-related shocks, such as sunshine duration, temperature, and 

precipitation. Their effects are controlled for by the coefficient dummy variables, 𝐷௞ and 𝐷௟ௗ.1 

Other miscellaneous effects are controlled for by the intercept dummy variables 𝐷௝ for farming 

sector j. By estimating (4) or (5), we can compute TFP,  𝐴௜௧ ൌ 𝑒𝑥𝑝ሺ𝛼௜௧ሻ. As mentioned above, 

                                                      

1 These coefficient dummy variables take the value 1 if a sector’s capital and land intensity, relative to 

labor input, exceeds their median values among the 14 farming sectors, respectively. Paddy field, upland 

field, fruit, dairy, fattening cattle, pig, poultry egg, and miscellaneous farming are categorized as capital-

intensive sectors; paddy field, upland field, outdoor-grown vegetables, dairy, breeding cattle, fattening 

cattle, and miscellaneous farming sectors are categorized as land-intensive sectors. Details are provided in 

the Appendix. Although we use coefficient dummy variables defined for each of the 14 farming sectors 

instead of factor-intensity-based dummy variables, we cannot improve our estimation results. 
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our main data source is Nogyo Keiei Tokei Chosa (Statistical Survey on Farm Management and 

Economy) for 2012–2015. This survey consists of several sections, among which we use 

microdata of Einou Ruikei Betsu Keiei Toukei (Statistics on Management by Farming Type), 

which reports farming activities for three management types: individual management, 

management by corporate organization, and management by community-based farm cooperative 

(for details, see the Appendix). 

 

2.2 Estimation of Pareto’s k 

 Following previous studies, such as Mayer and Ottabiano (2007) and Wakasugi et al. 

(2014), we assume productivity follows a Pareto distribution. A cumulative distribution function 

for TFP is assumed as follows, 

𝐹ሺ𝑇𝐹𝑃௜௧; 𝑘ሻ ൌ 1 െ ൬
𝑇𝐹𝑃௜௧

𝑇𝐹𝑃ெ
൰

ି௞

, 𝑇𝐹𝑃௜௧ ൐ 𝑇𝐹𝑃ெ    ሺ6ሻ 

where k is the shape parameter of a Pareto distribution (hereafter Pareto’s k), and 𝑇𝐹𝑃୑ is the 

minimum value of all TFP estimates, which is also the mode of this distribution. Log-

transformation of (6) yields, 

𝑙𝑛൫1 െ 𝐹ሺ𝑇𝐹𝑃௜௧ሻ൯ ൌ 𝑙𝑛 𝐵 െ 𝑘 𝑙𝑛ሺ𝑇𝐹𝑃௜௧ሻ    ሺ7ሻ 

where 𝐵 ൌ 𝑇𝐹𝑃ெ
௞. We estimate Pareto’s k in (8) by the ordinary least squares (OLS) method. 

𝑙𝑛൫1 െ 𝐹ሺ𝑇𝐹𝑃௜௧ሻ൯ ൌ 𝑏 െ 𝑘 𝑙𝑛ሺ𝑇𝐹𝑃௜௧ሻ ൅ 𝑒௜௧    ሺ8ሻ 
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where 𝑏 ൌ 𝑙𝑛𝐵, and 𝑒௜௧ is an error term. 

 

2.3 Estimating Elasticity of Substitution among Varieties 

 Crozet and Koenig (2010) estimated the elasticity of substitution among varieties by 

using Pareto’s k in the trade equations. They assume one farmer produces only one variety, and 

formulate the following exponential function, which describes the relationship between an 

individual farmer’s productivity and production. 

𝑋௜௧ ൌ 𝜆𝑇𝐹𝑃௜௧
ିሺ௞ିఙାଵሻ    ሺ9ሻ 

where 𝑋௜௧ is cumulative production of farmers with a higher productivity than farmer i in each sector 

and year t, and 𝜎 is the elasticity of substitution among varieties. Log-linearization yields (10) 

for our estimation. 

𝑥௜௧ ൌ 𝑏଴ ൅ 𝑏ଵ 𝑙𝑛ሺ𝑇𝐹𝑃௜௧ሻ ൅ 𝑠௜௧    ሺ10ሻ 

where 𝑥௜௧ ൌ 𝑙𝑛𝑋௜௧, 𝑏଴ ൌ 𝑙𝑛 𝜆, 𝑏ଵ ൌ െሺ𝑘 െ 𝜎 ൅ 1ሻ, and 𝑠௜௧ is an error term. The elasticity of 

substitution 𝜎 can be computed by combining the estimate of k in (7) with that of b1 in (10). 

 

3. Estimation Results 

3.1 Production Function and TFP 

 We try four alternative estimation methods that can address the endogeneity problem. 
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For simplicity, we do not consider any dummy variables in this first step. In the next step, we 

examine the benefits of factor intensity and subsector dummy variables. Table 1 reports the 

estimation results of the production function (4), showing the benefits of elaborations with the 

OP, LP, and ACF methods. Explicitly controlling for the effects of investment or intermediate 

inputs on output with 𝜔௜௧, OP (1-3) and LP (1-4) yields smaller shares of capital input compared 

with OLS (1-1). Applying the ACF method that elaborates the assumption for labor input, we can 

improve estimation of the share parameters for labor and land. The labor input share by OP-ACF 

(1-5) and LP-ACF (1-6) are closer to that by OLS than to those by simple OP and LP. The fixed 

effect (FE) model does not perform well. In general, OP-ACF and LP-ACF perform better than 

others. Thus, in the next step, we examine the effects of the dummy variables while employing 

these methods. 
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Table 1: Estimation Results of Production Function (4) without Dummy Variables 

 

Note: Standard errors are in parentheses. *** and ** indicate significance at the 1% and 5% levels, 

respectively. The numbers of observations used for OP and OP-ACF are smaller than those for 

the other methods. OP and OP-ACF use investment data to control for observed productivity 

shocks. As investment is not carried out in some years in the dataset, these observations are not 

included in our estimation. 

 

 Table 2 reports the estimation results of (5) by the OP-ACF and LP-ACF methods. 

Compared with (1-5) and (1-6), which have no dummy variables, (2-1) and (2-4) with the farming 

sector intercept dummy variables show smaller labor shares. Furthermore, (2-2) and (2-5) with 

the factor intensity coefficient dummy variables show smaller land shares. Incorporating both 

types of dummy variables, (2-3) and (2-6) show similar share parameter estimates of around 0.8 

for labor, 0.1 for capital, and 1.4 for land. Considering the overall performance, we use the LP-

(1-1) (1-2) (1-3) (1-4) (1-5) (1-6)

OLS FE OP LP OP-ACF LP-ACF

Labor 0.901*** 0.485*** 0.675*** 0.526*** 0.928*** 0.935***

(0.0075) (0.0254) (0.0127) (0.0130) (0.0075) (0.0079)

Capital 0.139*** 0.00789 0.0255** 0.0237** 0.0773*** 0.0391***

(0.0048) (0.0078) (0.0112) (0.0101) (0.0150) (0.0101)

Land 0.163*** 0.0777*** 0.100*** 0.0572*** 0.206*** 0.228***

(0.0049) (0.0228) (0.0089) (0.0060) (0.0095) (0.0161)

Observations 16,099 16,099 15,544 16,099 15,544 16,099
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ACF model (2-6) to estimate TFP (Figure 1).2 

 

Table 2: Estimation Results of Production Function (5) with Dummy Variables 

 

Note: Standard errors are in parentheses. *** and * indicate significance at the 1% and 10% levels, 

respectively. 

 

 TFP is a sophisticated productivity index, taking account of multiple inputs used in 

production. Instead, alternative productivity indexes, such as land and labor productivity, are 

commonly used for convenience. We compare these alternatives with TFP to examine their 

performance. Land or labor productivity is defined as inputs per unit of value added in each farm 

(Figure 1). The distribution of land productivity is skewed significantly right (skewness = 0.999) 

with a nonsmooth right shoulder. Labor productivity and TFP have left-skewed distributions 

                                                      

2 Summary statistics of TFP estimates are shown in the Appendix. 

(1-5) (2-1) (2-2) (2-3) (1-6) (2-4) (2-5) (2-6)

OP-ACF LP-ACF

Labor 0.928*** 0.808*** 0.967*** 0.807*** 0.935*** 0.810*** 0.956*** 0.799***

(0.0075) (0.0045) (0.0173) (0.0151) (0.0079) (0.0084) (0.0081) (0.0097)

Capital 0.0773*** 0.0853*** 0.0651*** 0.105*** 0.0391*** 0.0526*** 0.0216* 0.113***

(0.0150) (0.0156) (0.0193) (0.0127) (0.0101) (0.0098) (0.0126) (0.0129)

Land 0.206*** 0.255*** 0.166*** 0.139*** 0.228*** 0.263*** 0.127*** 0.148***

(0.0095) (0.0054) (0.0177) (0.0127) (0.0161) (0.0083) (0.0200) (0.0117)

Intercept dummy N Y N Y N Y N Y
Coefficient dummy N N Y Y N N Y Y
Observations 15,544 15,544 15,544 15,544 16,099 16,099 16,099 16,099
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(skewness = –0.953 and –1.583, respectively). 

 

 

Figure 1: Distributions of TFP, Labor, and Land Productivity 

 

 The correlation coefficients among these three productivity measures are presented in 

Table 3. For the whole agriculture sector, the correlation between TFP and labor productivity is 

0.853 and between TFP and land productivity is 0.575. Scrutinizing these correlation coefficients 

by subsector, we find that TFP exhibits high correlation with these conventional productivity 

measures: 0.730–0.982 with labor productivity and 0.617–0.860 with land productivity. In all but 
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the dairy and fattening cattle farming sectors, TFP is more strongly correlated with labor than 

with land productivity. This implies that labor productivity could be a better proxy for TFP than 

land productivity, although land productivity is often used to measure productivity in agriculture. 

 

Table 3: Correlations among Three Productivity Measures 

 

 

 The correlation coefficient between labor and land productivity for the agriculture sector 

is small, at 0.377. It is also small in several subsectors. This implies weak reliability of these 

single-factor productivity measures. Even if (or because) one measure reports high productivity 

for a sector, another measure does not necessarily do so. By contrast, TFP is found to be a robust 

TFP vs. Labor productivity vs.

Labor productivity Land productivity Land productivity

Agriculture 0.853 0.575 0.377

1. Paddy field 0.938 0.779 0.617

2. Upland field 0.917 0.620 0.315

3. Outdoor-grown vegetables 0.882 0.617 0.385

4. Greenhouse-grown vegetables 0.967 0.655 0.496

5. Fruit 0.982 0.810 0.698

6. Outdoor-grown flowers 0.957 0.769 0.659

7. Greenhouse-grown flowers 0.962 0.830 0.724

8. Dairy 0.730 0.801 0.193

9. Breeding beef cattle 0.906 0.827 0.593

10. Fattening beef cattle 0.881 0.860 0.543

11. Pig 0.981 0.809 0.689

12. Poultry egg 0.957 0.749 0.550

13. Poultry broiler 0.900 0.675 0.417

14. Miscellaneous 0.936 0.758 0.534
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measure and correlates well with the single-factor productivity measures. 

 

3.2 Pareto’s k and Elasticity of Substitution among Varieties 

 Figure 2 shows the TFP distribution for the whole agriculture sample. This figure 

indicates an obvious inconsistency with the assumption for a Pareto distribution—the minimum 

value of the distribution must be equal to its mode. The subsample below the mode (0.530) 

accounts for 25% of the full sample.3 

 

                                                      

3 There are 4,047 observations found below the mode in the full sample of 16,099 observations. Our 

microdataset is unique, encompassing smallholder samples. Many productivity analyses for Japanese 

manufacturing (e.g., Wakasugi et al. (2014)) have used the Basic Survey of Japanese Business Structure 

and Activities by the Ministry of Economy, Trade and Industry, which covers only enterprises with 50 or 

more employees and whose paid-up capital or investment fund is over 30 million JPY (roughly 270,000 

USD). In this sense, they use already-truncated data in their manufacturing analyses, while we use data 

without any systematic truncation by farm size at the survey design stage. 
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Figure 2: TFP Distribution for the Agriculture Sector 

Note: For simplicity of presentation, one observation of paddy field farming (TFP = 22.884) is 

dropped. 

 

 In Figure 3, the TFP distributions show the unique characteristics of subsectors, 

including the different degrees of heterogeneity and modes. For example, the distribution of 

fattening cattle farming has the same shape as a Pareto distribution. In the fruit and greenhouse-

grown flower farming sectors, the distributions have many observations below the mode values. 

The number of below-mode observations varies widely by sector. As many studies of productivity 
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analyses and econophysics have reported, the power law is observed only for the upper part of 

the right shoulder of the productivity distributions. Therefore, they visually choose cutoff points 

and focus on the particular part of distributions to measure their regularity (Gabaix (2009)). We 

truncate the data at the mode and estimate Pareto’s k for the upper part of their distributions. At 

the same time, following Crozet and Koenig (2010), we estimate the distributions of cumulative 

production, which are not truncated, and compute the elasticity of substitution among varieties σ 

using the estimate of k.4 

                                                      

4 The summary statistics of TFP and the estimation results of Pareto’s k with the full and truncated samples 

are shown in the Appendix. 
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Figure 3: TFP Distributions for Farming Sectors 

Note: The TFP distribution of paddy field farming is truncated by dropping the largest TFP 

observation (= 22.884). OG and GG stand for “outdoor-grown” and “greenhouse-grown,” 

respectively. 

 

 Table 4 reports the estimates of Pareto’s k and the elasticity of substitution among 

varieties σ. Pareto’s k is found to be relatively large for greenhouse-grown vegetables (2.60), 
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fruit (2.59), greenhouse-grown flowers (2.57), and upland field framing (2.54). 5  Many low 

productivity farmers operate in these farming sectors, implying low heterogeneity among farmers. 

By contrast, fattening cattle farming (1.17), poultry egg farming (1.34), and poultry broiler 

farming (1.65) have greater heterogeneity. 

 

                                                      

5 The large estimate of Pareto’s k for pig farming (2.67) must be interpreted carefully. In its original TFP 

distribution, only 32% of observations exceed the mode value. Dropping the larger values may result in the 

underestimation of heterogeneity among farmers. When we use the mode of the distribution of the whole 

agriculture sector (0.530) as an alternative cutoff, we use 76% of the full sample and obtain an estimate of 

k = 1.61, which is comparable to the estimates for the other livestock farming sectors. 
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Table 4: Estimates of Pareto’s k and Elasticity of Substitution among Varieties 𝜎 

 

Note: All estimates are statistically significant at the 1% level. 

 

 The elasticity of substitution among varieties 𝜎  is largest for greenhouse-grown 

vegetable farming (3.30), followed by pigs (3.10), greenhouse-grown flowers (2.82), upland field 

farming (2.71), and fruit (2.70). The degree of product differentiation is relatively low in these 

sectors. By contrast, livestock farming sectors, such as poultry broiler (1.47), fattening cattle 

(1.54), and dairy (1.85), have smaller elasticities of substitution and thus, seem to differentiate 

their products highly. 

From Eq. (8) From Eq. (10)

Agriculture 2.31 (0.94) 0.74 (0.62) 2.58

1. Paddy field 2.45 (0.91) 0.98 (0.59) 2.48

2. Upland field 2.54 (0.93) 0.83 (0.44) 2.71

3. Outdoor-grown vegetables 2.15 (0.88) 0.95 (0.63) 2.20

4. Greenhouse-grown vegetables 2.60 (0.95) 0.30 (0.39) 3.30

5. Fruit 2.59 (0.88) 0.89 (0.55) 2.70

6. Outdoor-grown flowers 1.71 (0.93) 0.69 (0.66) 2.02

7. Greenhouse-grown flowers 2.57 (0.93) 0.75 (0.48) 2.82

8. Dairy 1.90 (0.97) 1.04 (0.78) 1.85

9. Breeding beef cattle 2.11 (0.93) 0.73 (0.50) 2.38

10. Fattening beef cattle 1.17 (0.82) 0.62 (0.54) 1.54

11. Pig 2.67 (0.96) 0.56 (0.58) 3.10

12. Poultry egg 1.34 (0.88) 0.72 (0.75) 1.63

13. Poultry broiler 1.65 (0.89) 1.19 (0.78) 1.47

14. Miscellaneous 1.55 (0.89) 0.65 (0.64) 1.90

𝑘 𝑅ଶ 𝑘 െ 𝜎 ൅ 1
𝜎

𝑅ଶ
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 Let us compare our elasticity estimates with those in earlier studies. Kano et al. (2013) 

and Takechi (2015) used wholesale market data for fruits and vegetables to estimate new 

economic geography models for Japan. Their estimates were about 3–5 for leaf vegetables 

(cabbage, Chinese cabbage, lettuce, spinach, and green onion) and nearly 2 for root vegetables 

(carrot and potato). Ihara et al. (2015) also estimated the same model using data from Seisan 

Nogyo Syotoku Tokei (Statistics of Agricultural Income Produced) and obtained an elasticity 

estimate of 2.869 for vegetables. These results are generally consistent with our elasticity 

estimates of 2.20–3.30 for the vegetables sectors and 2.71 for upland field farming, which 

includes potato farming. Our estimates for the entire agriculture sector are also similar to the 

elasticity estimate of 3.79 for US manufacturing by Bernard et al. (2003), which is often used in 

empirical studies on manufacturing with the Melitz (2003) model. 

 

4. Concluding Remarks 

 In this study, we estimated the incidence of farm heterogeneity in the Japanese 

agricultural sectors by measuring TFP using farm-level microdata. Using the same dataset, we 

also estimated the elasticity of substitution among varieties to quantify the incidence of product 

differentiation jointly. Our TFP estimates are a viable productivity indicator, and are well 

correlated with conventional single-factor productivity measures. The estimated TFP distributions 
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imply relatively low heterogeneity in the greenhouse horticulture, upland field, and fruit farming 

sectors, while heterogeneity in the livestock sectors, such as fattening cattle and poultry egg, is 

found to be high. The elasticities of substitution among varieties for the livestock sectors are 

relatively low, indicating significant product differentiation. 

 In agricultural policy making, heterogeneity among farmers needs to be taken into 

account. Shocks, such as climate and extreme weather conditions and trade regime changes, affect 

farmers unevenly. Smallholders are often susceptible to negative shocks and need longer periods 

to recover because of low productivity in the absence of economies of scale. Highly motivated 

entrepreneurs may exploit the opportunity to expand their business. Measuring their heterogeneity 

with microdata helps us to form policies tailored to each group. 

 There are several limitations to our study. In Japan, the productivity of farmers has been 

improved by research and development activities at local public research laboratories and by 

spatial spillovers of farming and management skills from nearby entrepreneurs. Using these 

spatial factors could improve our TFP estimates. While our TFP estimates use aggregate data for 

14 sectors, subsector data for commodities such as apples and Japanese wagyu beef may reveal 

different aspects of farm heterogeneity. 
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Appendix: Details of Data 

A.1 Data Sources 

 We use the microdata of three types of farmers—individual management, management 

by judicial organization, and management by arbitrary organization—in Nogyo Keiei Tokei Chosa 

(Statistical Survey on Farm Management and Economy) for 2012–2015.6 Using this dataset, we 

compute value added by subtracting material inputs from total agricultural sales, which are 

deflated by relevant price indexes reported in Nogyo Bukka Tokei Chosa (Statistical Survey on 

Prices in Agriculture). Labor input is measured by man-hours of time of employers, their families, 

and employees. Capital stock data are fixed capital stock, such as buildings, automobiles, farming 

machines, plants, and end-of-year cattle stock values (land is considered separately, as explained 

later). Their book values are converted into market values. Following Inui et al. (2011), we use 

the following formula to convert the book value of capital stock of farmer i in year y 𝐾𝑁𝐵௜௧ to 

its market value 𝐾௜௧, 

𝐾௜௧ ൌ 𝐾𝑁𝐵௜௧
𝐾௧

஺ீ

𝐾𝑁𝐵௧
஺ீ  

using the ratio of the market value of the total agricultural capital stock 𝐾௧
஺ீ , obtained from 

Nogyo-Shokuryo Kanren-sangyo-no Keizai-keisan (Economic Accounts for Agriculture and Food 

                                                      

6 The full sample contains about 20,300 observations. After dropping observations with missing values, 

we obtain an unbalanced panel with 16,099 observations. This dataset has 3,193 sample farmers with 

complete observations for the 4 years. 
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Related Industries) by MAFF, vis-à-vis its book value 𝐾𝑁𝐵௧
஺ீ , which is constructed by 

aggregating the book value of farmer i in farming sector j in year t 𝐾𝑁𝐵௜௝௧, weighted by the 

sampling rate 𝑟𝑠𝑚𝑝௝௧ (𝐾𝑁𝐵௧
஺ீ ൌ ∑ ∑ 𝐾𝑁𝐵௜௝௧ ൈ 𝑟𝑠𝑚𝑝௝௧௝௜ ሻ.7 

 Land input data are obtained from Nogyo Keiei Tokei Chosa (Statistical Survey on Farm 

Management and Economy), covering owned and borrowed land to cultivate agricultural products. 

The summary statistics are reported in Table A.1. 

 

Table A.1: Summary Descriptive Statistics of the Sample 

 

Note: Land consists of cultivated land for paddy and upland field farming and pasture. Values are 

deflated using the relevant price indexes. 

 

 The coefficient dummy variables reflect factor intensity. Capital and land inputs relative 

to labor input are defined as capital and land intensity, respectively. When a sector has capital (or 

                                                      

7 Matsuura et al. (2007) attributed this conversion method with the book value–market value ratios to 

Tokui et al. (2007). This conversion method was also used by Wakasugi et al. (2014) and Inui et al. 

(2011). 

Units Observations Mean S.D. Min Max
Value-added thousand JPY 16,099 10,814 22,991 0 626,628
Labor hours 16,099 66,146 150,517 5 4,188,609
Capital thousand JPY 16,099 4,744 6,600 18 174,136
Land ares 16,099 1,353 2,404 1 35,560
Investments thousand JPY 16,099 2,926 14,817 0 558,073
Intermediates thousand JPY 16,099 10,418 24,603 26 605,689
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land) intensity exceeding its median value among the 14 sectors in 2015, it is categorized as a 

capital- or land-intensive sector, whose dummy variable takes the value 1. Capital-intensive 

sectors are paddy field farming, upland field farming, fruit, dairy, fattening cattle, pigs, poultry 

egg, and other sectors. Land-intensive sectors are paddy field farming, upland field farming, 

outdoor-grown vegetables, dairy, breeding cattle, fattening cattle, and miscellaneous farming 

sectors (Figure A.1). 

 

 

Figure A.1: Capital-labor and Land-labor Ratios in 2015 

Note: OG and GG are “outdoor-grown” and “greenhouse-grown,” respectively. 
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A.2 Data Truncation 

 When we use the full TFP sample, we obtain Pareto’s k = 1.08 (Table A.2), which looks 

too small with a poor fit of R2 = 0.63 (the broken line in Figure A.2).8 Thus, we truncate the 

distribution with a strictly positive cutoff for 𝑇𝐹𝑃ெ  in (6). When the mode of the TFP 

distribution is used for this cutoff, we obtain a reasonable estimate of k = 2.31 (Table A.2) with a 

good fit of R2 = 0.94 (the solid line in Figure A.2). In the literature, the cutoff point is often 

visually determined (Gabaix (2009)); few systematic or statistical methods have been applied 

(Fujimoto and Ishikawa (2011)).9 Figure A.2 indicates that the fit could be improved further with 

a larger cutoff, leading to a larger estimate of k. Our estimate of k thus implies the lower bound 

of possible estimates. 

 

                                                      

8 Our dataset includes smallholder observations, which are often noisy. Many productivity analyses for 

Japanese manufacturing (e.g., Wakasugi et al. (2014)) have used the Basic Survey of Japanese Business 

Structure and Activities by the Ministry of Economy, Trade and Industry of Japan, which covers only 

enterprises with 50 or more employees and whose paid-up capital or investment fund is over 30 million 

JPY (roughly 270,000 USD). In this sense, they used pretruncated data in their manufacturing analyses, 

while we use data without any systematic truncation by farm size at the stage of survey design. 
9 Fujimoto and Ishikawa (2011) assumed a joint log-normal distribution and a Pareto distribution and 

estimated their cutoff point statistically. 
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Table A.2: Estimates of Pareto’s k for the Full and Truncated Samples 

 

Note: Standard errors in parentheses. *** indicates significance at the 1% level. 

 

 

Full sample Trancated sample

lnTFP -1.0839*** -2.3136***

(0.0065) (0.0055)

Constant -1.3145*** -1.2421***

(0.0051) (0.0023)

Observations 16,098 12,051

R2 0.63 0.94

RMSE 0.606 0.2506
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Figure A.2: Pareto’s k Estimated for the Full and Truncated Samples 

Note: The mode is 0.530; log(0.530) = −0.64. 
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A.3 Summary Statistics of TFP Estimates 

 

Table A.3: Summary Descriptive Statistics of TFP Estimates

 

Note: The mode (𝑇𝐹𝑃ெ) is 0.530. 

Observations Mean S.D. Min Max

Full samples 16,099 0.930 0.662 0.00003 22.884

12,052 1.128 0.651 0.53014 22.884

4,047 0.341 0.133 0.00003 0.5299

𝑇𝐹𝑃௜௧ ൒ 𝑇𝐹𝑃ெ

𝑇𝐹𝑃௜௧ ൏ 𝑇𝐹𝑃ெ
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Table A.4: Summary Descriptive Statistics of TFP Estimates by Farming Sector 

 

 

Full samples

Observations Mean S.D. Min Max Mode Observations Mean S.D.

1. Paddy field 7,286 0.887 0.597 0.001 22.884 0.530 5,334 1.087 0.575

2. Upland field 2,414 0.872 0.536 0.000 7.012 0.550 1,769 1.064 0.496

3. Outdoor-grown vegetables 606 0.770 0.477 0.007 5.531 0.339 528 0.849 0.458

4. Greenhouse-grown vegetables 369 0.903 0.560 0.000 4.299 0.595 261 1.108 0.542

5. Fruit 2,021 1.046 0.554 0.026 3.608 0.614 1,557 1.238 0.482

6. Outdoor-grown flowers 189 0.933 0.731 0.010 4.217 0.363 159 1.063 0.725

7. Greenhouse-grown flowers 252 0.937 0.534 0.044 2.806 0.637 179 1.154 0.478

8. Dairy 1,448 1.005 0.910 0.021 10.227 0.414 1,273 1.102 0.929

9. Breeding beef cattle 416 0.843 0.602 0.009 5.055 0.407 347 0.963 0.586

10. Fattening beef cattle 396 1.259 1.269 0.027 9.663 0.238 340 1.442 1.279

11. Pig 280 1.312 1.064 0.003 5.881 1.559 90 2.510 1.024

12. Poultry egg 136 1.159 0.928 0.161 4.789 0.298 125 1.240 0.924

13. Poultry broiler 129 0.939 0.745 0.086 5.431 0.318 117 1.009 0.748

14. Miscellaneous 157 0.865 0.673 0.041 5.052 0.244 147 0.912 0.669

𝑇𝐹𝑃௜௧ ൒ 𝑇𝐹𝑃ெ
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Figure A.3: TFP Distributions Truncated at the Modes 

Note: For clarity, the TFP distribution of paddy field farming is truncated by dropping the largest 

TFP observation (= 22.884). OG and GG are “outdoor-grown” and “greenhouse-grown,” 

respectively. 
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