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Abstract 
Firstly, we discuss differences between Farrell and Pareto-Koopmans efficiency 
measures in DEA, and propose a composite method for discriminating them. Then, 
we extend the method to so-called “epsilon based-measure (EBM).” The EBM can 
examine the robustness and stability of efficiency measure of DMUs regarding 
parametric change of input multiplier variables. Lastly, we propose a scheme for 
selecting an appropriate value of epsilon with recourse to actual cost shares of input 
resources. 
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1. Introduction 

In the seminal paper (Charnes et al. (1978)), Charnes, Cooper and Rhodes have 
succeeded in implementing Farrell’s efficiency (Farrell (1957)) in the linear 
programming framework called the CCR model. On the other hand, in the welfare 
economics, Pareto-Koopmans concept of efficiency (Pareto (1909), Koopmans (1951)) 
says “A DMU (decision-making unit) is fully efficient if and only if it is not possible to 
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improve any input or output without worsening some other input or output (Cooper et al. 
(2007), p.45).” Hereafter we will cite this as Koopmans efficiency. Between the CCR 
efficiency and Koopmans efficiency there is a gap regarding slacks. Many researches 
have been done on this subject. See Cooper et al. (2001) and Cooper et al. (2007) among 
others. In this paper we revisit this subject and propose a practical scheme for 
discriminating the both. In the latter half of this paper we extend our approach to 
stability analysis of DEA scores against the lower bound of the shadow price of 
multipliers. There are several methods for dealing with multiplier restrictions, e.g. the 
assurance region (AR) models (Thompson et al (1986)) and the cone-ratio models 
(Charnes et al. (1990)). The AR models impose the upper and lower bounds for the ratio 
of multipliers for pair of inputs or outputs, or both, while the cone-ratio models impose a 
set of linear restrictions that define a convex cone. In this paper, we investigate the 
situation that the lower bounds of shadow prices of input resources vary parametrically 
and efficiency scores are subject to change accordingly. Suppose that two DMUs A and B 
utilize two input resources R1 and R2 for producing the same amount of products, and A 
consumes more R1 than B whereas A uses less R2 than B. We assume that A and B are 
judged to be efficient when we impose no restrictions on the multipliers (shadow prices) 
of input resources. However, if the (shadow) price of R1 goes up, the relative efficiency of 
A would be turn down compared with B, since A consumes more R1 than B. This kind of 
price change is not unusual in actual business situations, since resource acquisitions 
are becoming more competitive in recent days. Using this model, we can see how stable 
DMUs are against the stress of input price increases. This is a new feature of our model 
which, as far as we know, other previous researches have not yet pointed to. We further 
propose a method for estimating the degree of input price stress based on an analogy 
between the virtual (shadow) price and the actual price of input resources. 

 The rest of this paper unfolds as follows. Section 2 defines Koopmans efficiency and 
introduces two-stage approach for finding Koopmans efficiency. Utilizing the strong 
theorem complimentarity we introduce the epsilon-based measure model (EBM). In 
Section 3 we prove the equivalence of Koopmans efficiency and the EBM model, and 
discuss the subject how to determine the magnitude of epsilon referring to an 
illustrative example. Motivated by these observations, we extend the EBM model by 
employing the epsilon as a parameter and apply it for testing stability of EBM scores in 
Section 4. We demonstrate an example of the extended EBM model in Section 5. We 
propose a scheme for finding an appropriate level of epsilon based on an analogy 
between the shadow price and the actual price of input resources in Section 6. We 
demonstrate another interpretation of the EBM and point that EBM is a composite of 
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technical efficiency model and cost minimizing model in Section 7. We conclude this 
paper in Section 8.  
2. Koopmans efficiency and epsilon-based model (EBM) 
In this section, we define Koopmans efficiency and introduce an epsilon-based model. 
We deal with n DMUs each having m inputs {x( 1, , )j = K n mij} ( 1, , )i = K and s outputs {yij} 

. We denote DMU j by ( 1, , )i = K s ),,1(),( njjj K=yx with m
j R∈x and s

j R∈y , and the 

input/output data matrices by ( ) nm
ij Rx ×∈=X and ( ) ns

ij Ry ×∈=Y , respectively. 

Throughout this paper we assume and . >X 0 >Y 0

2.1. Two-stage approach  

The input-oriented CCR model (Charnes et al. (1978)) for evaluating the efficiency of 
the DMU is described in the multiplier form [D] and the development form [P] as 
follows: 

( , )o ox y
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where is the input slacks. [P] and [D] are primal-dual each other.  mR− ∈s

  Let an optimal solution of [P] be * * *( , , )θ −λ s . We have two definitions of efficiency. 
[Definition 1] (Weak efficient) 

If DMU fulfills , then it is called weak efficient. ( , )o ox y * 1θ =

[Definition 2] (Strong efficient) 

If DMU fulfills and ( , )o ox y * 1θ = *− =s 0 for all optimal solution, then it is called strong 
efficient.  
 
In order to check the strong efficiency, we have two-stage approach as follows. 
[Two-stage approach] 

First stage: Solve [P] and obtain *θ . 
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Second stage: Solve 
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where mR∈e is the row vector with all elements being unity. 
[Definition 3] Koopmans efficiency (K-eff) 

A DMU is Koopmans efficient if it satisfies: ( , )o ox y
* *1 and  0.wθ = =                                 (4) 

Otherwise, is Koopmans inefficient, i.e.  ( , )o ox y * * *1 or ( 1 and  0).wθ θ< >=

 
Koopmans efficiency is equivalent to the strong efficiency. 
2.2. Strong theorem of complimentarity and its applications 

[Definition 4] K-eff set 

We define the set of the Koopmans efficient DMUs as:  

KE ={ }.( , ) is o oo K −x y eff                             (5) 

[Property 1] 

If is K-eff, then by the strong theorem of complimentarity there exists for the 
solution of [D] such that . 

( , )o ox y *
ov

*
o > 0v

[Definition 5]  Minimum tolerance ( *ε ) 

We define a minimum tolerance *ε by: 

*
,

*min 1, , : ,
i o

x oio iomv i m o KEε ⎧
⎨
⎩ ⎭

= = ∈ v > 0K * ⎫
⎬ .                       (6) 

2.3 An ε*-based measure model (EBM) 

Using the minimum tolerance ε*, we define ε*−based measure model (EBM) as follows. 
[D(ε*)] 

*

*
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                                (7) 

[P(ε*)] 
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[P(ε*)] and [D(ε*)] are mutually primal-dual. We notice that the EBM is a “mixed” type 
model, since it has both the radial factor τ and the slacks in the objective function of 
[P(ε*)]. This feature is quite different from the CCR that has only the radial factor in the 
objective function and the SBM (slack-based measure (Tone (2001))) that has only the 
slacks in the objective function. We also notice that the radial factor 

π

τ is not upper 
bounded by 1, although the optimal objective value * *( )τ ε is bounded by 1.   
[Lemma 1]  

Between [P] and [P(ε*)], we have the following inequality. 

* *( )* 10 θτ ε ≤ ≤≤ .                                   (9) 

Let an optimal solution of [P( *ε )] be . We define EBM- efficiency as follows. * * *( , , )τ ξ π

[Definition 6] EBM-eff 
DUM is EBM-efficient if it holds that ( , )o ox y

*( )* 1τ ε = .                             (10) 

Otherwise if *( )* 1τ ε < , DUM is EBM-inefficient.  ( , )o ox y

If DUM is EBM-efficient, we have an optimal solution represented by . 
However, multiple optima, i.e. , may exist. Even in such case, we designate 
the solution as the representative one for the efficient . 

( , )o ox y * *1,τ = =π 0
* *1,τ > ≠π 0

* *1,τ = =π 0 ( , )o ox y

 
3. Equivalence of Koopmans efficiency and the EBM efficiency  
In this section we first demonstrate equivalence of Koopmans efficiency and EBM 
efficiency, and discuss how to determine ε* for practical use.  
3.1. Equivalence of two efficiencies 

[Theorem 1] 

If is K-eff, then is EBM-eff, i.e. ( , )o ox y ( , )o ox y * *( )* 1and τ ε = =π 0 . 

Proof: Since is K-eff, there exists ( , )o ox y ( )* *,v u such that 
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Let us define * * *and *= =ν v µ u in [D(ε*)]. Then  is [D(ε*)]-efficient. Hence, 

. Therefore on the [P(ε*)] side, we have  

( , )o ox y

*( )* * 1τ ε θ ==

*
*

1
( ) .* 1 1 m i

i iom x
πετ ε

=
= ≤ − ∑                                (12) 

This leads to .                                                      Q.E.D. * =π 0
 
[Theorem 2] 
If is EBM-eff, then is K-eff. ( , )o ox y ( , )o ox y

Proof: Since is EBM-eff, there exists ( , )o ox y ( )* *,ν µ such that 
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Le us define ** *and ==v ν u µ . Then ( )* *,v u is optimal for [D] and we have * 1θ = . Let an 

optimal solution for [P] be * *, o
⎛ ⎞−
⎜
⎝ ⎠
λ s ⎟

*s. By the complimentarity between  we 

have . Since , we have 

* and ov

* * 0 ( 1, , )i iov s i m− = = K * 0iv > * 0 ( 1, , )ios i− = = K m . Thus, ( , is K-eff. 
Q.E.D. 

)o ox y

 
[Corollary 1] 
If is K-ineff, then is EBM-ineff and vice-versa. ( , )o ox y ( , )o ox y

3.2. How to determine ε* 

We have defined ε* by (6). However, (*
o > 0v o KE∈ ) is usually not determined uniquely. 

So, ε* may be non-unique but positive. Determination of ε* has been a controversial 
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issue for a long time. Originally, it was introduced as a non-Archimedean number 
(Charnes et al. (1978)) but not for computational purpose. The composite single-stage 
approach like the EBM was commented in Ali (1994) (see also Ali and Seiford (1993)) 
and he reported that, in certain settings of ε* and the tolerance of LP convergence 
criteria, the single-stage approach produced unbounded solution and hence 
miss-identification of efficiency occurred. See also Johnson and Ruggiero (2009) for 

further reference to this subject. In our model, theoretically, unbounded solution never 
occurs for ε* in the range [0, 1]. (See Section 4.2 for detail.) We do not intend the EBM as 
a computational tool.1 Our final target is to check stability of scores against push-up of 
the dual variables ν (shadow prices) corresponding to inputs in [D(ε*)] by means of ε*. 
This will be discussed in Section 4.  

However, if we employ EBM as a computational purpose, we suggest to set ε* to 410− . 
The reason is that, from the objective function form of [P(ε*)], the order of the coefficient 
of ε* is around unity. Hence contribution of the ε* term to the efficiency score is around 
 ε*. In real world application of DEA, the expected reliability of the efficiency score is 
usually . For example we cannot differentiate the scores 0.9999 and 1 
practically. We illustrate this issue using examples. Table 1 exhibits five DMUs (A, B, C, 
D and E) with two inputs 

310 10− −4

1 2( , )x x and single output with the value unity ( . C, D 
and E have slacks against A and B in 

( )y 1y = )

1x or 2x . Figure 1 depicts the situation. So, A and B 

are efficient in the Koopmans definition. 

Table 1: Example 1 

DMU 1x  2x  y  

A 1 2 1 
B 2 1 1 
C 4 1 1 
D 1 4 1 
E 1 8 1 
   
 

                                                  
1 If identification of Koopmans efficiency is the main concern, we can do it by using the 
Additive model (Charnes et al. (1985)) or if evaluation of scores based on remaining 
slacks is the target, we can use the SBM model (Tone (2001)) and its variants (Tone 
(2009)). 
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Figure 1: Example 1 

 
Table 2 reports EBM scores for several ε* values. The last column is the SBM which 
corresponds to 1τ =  and .* 1ε = 2

Table 2: EBM score of Example 1 

DMU * 0ε = (CCR) * 0.0001ε =  * 0.01ε =  *1, 1τ ε= = (SBM) 
A 1 1 1 1 
B 1 1 1 1 
C 1 0.999975 0.9975 0.75 
D 1 0.999975 0.9975 0.75 
E 1 0.9999625 0.99625 0.625 

 

We observe its dual problem. Corresponding to the constraint , we have, 

for case, five line segments in Figure 2. On each line segment, we maximize u 

subject to . DMU A is efficient on the line segment 

1 1 2 2 1v x v x+ =

* 0ε =

1 1 2 2 0 ( A,B,C,D,E)j jv x v x u j− − + ≤ = 1 2P P , 

while B is efficient on 2 3P P . DMUs D and E is efficient only at the point 
whereas C is efficient only at the point1 1 2P ( 1, 0)v v= = 3 1 2P ( 0, 1)v v= = . C, D and E are 

inefficient in the Pareto-Koopmans definition.  
 

                                                  
2 See Proposition 3 in Section 4.2. 
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Figure 2: Dual side of Example 1 

 
Now we introduce the constraints . These constraints are consistent 

with the setting . Figure 3 depicts this addition. Points 
and are cut off from the feasible region and hence C, D and E 

are no more efficient as exhibited in Table 2. Depending on the increases in ε*, their 
efficiency scores decrease.  

1 20.05 and 0.05v v≥ ≥

* 0.1ε =

1 1 2P ( 1, 0)v v= = 3 1 2P ( 0, 1)v v= =
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Figure 3: Introduction of positive dual variables 

 
One of the drawbacks of the positive setting * 10ε 4−=  is that, in some exceptional 

cases, efficient DMUs may be cut off and judged inefficient. Table 3 exhibits such a case, 
where DMUs D and E have . D is no more inferior to A, although E is 

dependent on D. The efficient line segment for D is a very short range from 
to . If we set , we restrict 

=0.0000125. Thus, this efficient line segment for D is cut off and D is 

judged inefficient as Table 4 demonstrates. However, if we set 

1 0.99999x =

1 2( 0.99999, 0.000005)v v= = 1 2( 1.00001, 0)v v= = * 0.0001ε =

2 0.0001 / (2 * 4)v ≥

0.000001ε = (this 
corresponds to =0.000000125), a portion of the efficient line segment 

for D still remains valid and hence D can be identified as efficient. Here we notice that 
in most DEA applications the degree of accuracy of efficiency score is within 0.001 and 
hence we need not use a very small ε*. As we see from Table 4, practically no difference 
exists among the efficiency scores of A, B, C, D and E. They can be regarded as unity.   

2 0.000001 / (2 * 4)v ≥

In Table 4, we also described the results for 0.1ε = , 1ε = and the slacks-based measure 
(SBM)( 1, 1τ ε= = ) cases. All EBM scores are not increasing in ε contrary to the SBM score. 
For example, D has EBM score 0.750005 for 1ε = while its SBM score is 1 verifying its 
efficient status. The difference is caused by the constraint 1τ = in the SBM whereas τ  
is free in the EBM. Actually, the EBM optimal solution of D for 1ε =  is 

1 21.00001, 0, 2.00004,τ π π− −= = = 1, 0 ( )A j j Aξ ξ= = ≠ . Hence, D 1 2( 0.99999, 4)x x= =  is projected 

(referred) to A so that the projected D is efficient for 1 2( 1, 2x x= = ) 1ε = . This increase in 

1x  never occurs in the traditional radial (CCR) and non-radial (SBM) models. 

 

Table 3: Example 2 

DMU 1x  2x  y  

A 1 2 1 
B 2 1 1 
C 4 1 1 
D 0.99999 4 1 
E 0.99999 8 1 
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Table 4: EBM score of Example 2 

DMU 0ε = (CCR) 0.0001ε =  0.000001ε =  0.1ε =  1ε =  1, 1τ ε= = (SBM)

A 1 1 1 1 1 1 
B 1 1 1 1 1 1 
C 1 0.999975 0.9999997 0.975 0.75 0.75 
D 1 0.999985 1 0.9750095 0.750005 1 
E 1 0.9999725 0.9999997 0.9625095 0.625 0.625 
 
4. Extension of the EBM  

So far ε* is defined by (6), or, as we noticed in Section 3.2, we set . In this 
section, we extend the role of ε* as a parameter ranging the interval [0, 1].  

* 10ε −= 4

4.1 Extended EBM 

We define the primal and dual pair [P(ε )] and [D(ε )] as follows: 
[P(ε )]   

1
( )*

, ,
min m i i

i io

w s
x

ε ε
θ

θ θ
−

=− −= ∑λ s
                      (14a) 

subject to  oθ −− − =x Xλ s 0                       (14b) 

.

o

−

≥
≥
≥

Yλ y
λ 0
s 0

                           (14c) 

 
[D(ε )] 

( )* max oεθ =
v,u
uy                           (15a) 

subject to 1o =vx                            (15b) 
− + ≤vX uY 0                         (15c) 

( 1, , )i
i

io
i

x
wv mε

=≥ K                      (15d) 

,≥u 0                                     

 
where  is the weight (relative importance) of input i which is supplied exogenously 

and satisfies .

iw

1
1 ( 0 )

m
i ii

w w
=

= ≥ ∀∑ i 3 As can be seen from the term i i

io

w s
x

−
 in the objective 

                                                  
i3 We can impose weights individually to DMUo such that

1
1 ( 0 )

m
io ioi

w w
=

= ≥ ∀∑ . 
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function of [P(ε )], i

io

s
x

−
 is units-invariant and so  should be a units-invariant value 

reflecting the relative importance of resource i. We will discuss this subject later in 
Section 4.3. This model is also an extension of the weighted SBM by Tsutsui and Goto 
(2009). 

iw

[P(ε )] has a feasible solution 1, 1, 0 ( )o j j oθ λ λ= = = ≠ and − =s 0 . Hence we have *( ) 1θ ε ≤ . 

The constraint ( 1, , )i
i

io
i

x
wv mε

=≥ K  restricts the lower bound of the shadow price  of 

input resource i. This bound becomes proportionally tight in ε and . 

iv

iw

  Let an optimal solution of [P(ε )] be * * *( , , )θ −λ s . Similarly to Definition 6 in Section 2, 
we have: 
[Definition 7] (EBM-efficient) 

 DMUo is called EBM-efficient if *( ) 1θ ε = . 
 

If DMUo is EBM-efficient, then 1θ = , 1, 0 ( )o j j oλ λ= = ≠ , − =s 0 gives an optimal solution. 

However, there might be other optimal solutions that have 1θ >  and . − ≠s 0

If DMUo is EBM–inefficient, we define its projection as follows. * *( , )o ox y

[Definition 8] (EBM-projection) 
* * *

* *.
o o

o

θ *−= = −

=

x Xλ x s

y Yλ
                             (16) 

[Theorem 4] 

The projected is EBM-efficient. * *( , )o ox y

See Appendix A for a proof. 
4.2. Several properties of the EBM model 

[Proposition 1] 

( )*θ ε  in [P(ε )] is units-invariant, i.e. ( )*θ ε  is independent of the units in which the 

inputs and outputs are measured. 
[Proposition 2] 

If we set 0ε =  in [P(ε )], then [P(0)] reduces to the input-oriented CCR model. 
[Proposition 3] 

If we set 1θ =  and 1ε =  in [P(ε )], then [P(1)] reduces to the input-oriented SBM model. 
 
Thus, [P(ε )] includes the radial CCR and the non-radial SBM models as special cases, 
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but it is basically non-radial. 

 The constraints (15b) and (15d) lead to 
1

1
m

o i ioi
v x ε

=
= = ∑vx ≥ . Thus, ε must be not 

greater than unity. 
[Proposition 4] 

[P(ε )] and [D(ε )] have a finite optima for [0,1]ε ∈ . 
[Proposition 5] 

For 1ε > , [D(ε )] has no feasible solution and [P(ε )] has unbounded solution. 
[Proposition 6] 

*( )oθ ε is non-increasing in ε. 
4.3 On the weight { }iw  

We have several options for choosing the weight , e.g. using an objective gauge based 

on actual data or employing a subjective judgment of decision makers.  
iw

(a) Objective way 
From (15d), we have . This suggests that  has the same 
dimension with , i.e. the virtual cost of input . Thus, if the unit price  of 

( 1, , )i io iv x w i mε≥ = K iw

i iov x i ioc

iox  is available, the following scheme might be a choice. The input cost  is 

calculated as  and the cost share  of input i is defined by 

oC

1

m
o ii

C c
=

= ∑ o iox ior

io io io or c x C= . We can define a cost share based weight as the average of  over the 

entire DMUs as follows. 
ior

1
1

( 1, , )
n

i ijn j
w r i

=
= =∑ K m .                              (17)  

Then, the objective function (14a) can be rewritten as  

1
( )*

, ,
min
λ s

m io i
i o

c s
C

ε ε
θ

θ θ
−

=− −= ∑ ,                      (18) 

in which the second term means the value of input slacks in the total cost.   
(b) Subjective way 

If decision makers have some special preference on the weight of input resources, 
they can determine  subjectively. In actual situation, there usually exist multiple 

criteria for deciding the weights. For example, in the hospital case, if we choose 
doctor and nurse as main resources, their importance should be estimated by 
considering several factors such as salary, cost of education, principle of scarcity and 
so forth. For this purpose, the AHP (analytic hierarchy process (Saaty (1980)) would 
be of help. We remind that we are estimating (value/unit)×(amount) of resource i, i.e. 
the value of resource i, but not the value/unit itself.  

iw
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4.4 Comparison of CCR, SBM and EBM models 

We compare the differences among CCR, SBM and EBM by illustration. Figure 4 
depicts an example with two inputs and single output case. We assume the output value 
equal to unity. Efficient frontiers are line segments AB  and BC . We denote an 
inefficient DMU by . The CCR model contracts  radially to P, while the SBM 

projects  to some point on the line segments 
ox ox

ox QB  and BR . Since the EBM imposes 
no restriction on the expansion or reduction rateθ , the point oθx  may move up and  

may be projected to some point on the line segments 
ox

AB  and BC . Hence, it may occur 
that some inputs increase at the expense of decrease of other inputs. This conforms with 
Koopmans concept of efficiency. Thus, the potential reference sets of the three models 
satisfy the relation CCR . The optimal SBM EBM⊂ ⊂ θ  is determined as the solution of 
[P(ε )] and it may be less than, greater than, or equal to unity. 

 

 

Figure 4: Comparison of CCR, SBM and EBM 

 
5. An example of the extended EBM model 

We applied EBM in Section 4 to hospitals A to L exhibited in Table 5. They have two 
inputs (doctor and nurse) and two outputs (outpatient and inpatient). We analyzed this 
in two ways: one objective and the other subjective weighting. 

Table 5: Hospital 

 Inputs Outputs 
DMU Doctor Nurse Outpatient Inpatient 

 A  20 151 100 90
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 B  19 131 150 50

 C  25 160 160 55

 D  27 168 180 72

 E  22 158 94 66

 F  55 255 230 90

 G  33 235 220 88

 H  31 206 152 80

 I  30 244 190 100

 J  50 268 250 100

 K  53 306 260 147

 L  38 273 250 133

 
5.1 Case 1: Objective weighting 

We employed weights to doctor vs. nurse as . This is an average ratio 

of cost shares between doctor and nurse as demonstrated in Table 8. 
1 20.44, 0.56w w= =

Table 6 and Figure 5 report EBM score of hospitals corresponding to  

where “Stability” is defined by  

0, 0.1, 0.2, , 1ε = K

* *(1) (0)θ θ−

Table 6: EBM score for Case 1 

ε  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Stability
A 1 1 1 1 1 1 1 1 1 1 1 0
B 1 1 1 1 1 1 1 1 1 1 1 0
C 0.883 0.881 0.878 0.876 0.873 0.871 0.868 0.865 0.862 0.859 0.856 -0.0266

D 1 1 1 1 0.996 0.991 0.986 0.981 0.976 0.971 0.966 -0.0342

E 0.763 0.763 0.763 0.763 0.762 0.761 0.761 0.760 0.759 0.758 0.757 -0.00663

F 0.835 0.825 0.815 0.806 0.796 0.784 0.771 0.759 0.746 0.733 0.721 -0.11388

G 0.902 0.901 0.900 0.900 0.899 0.898 0.897 0.896 0.896 0.895 0.894 -0.00798

H 0.796 0.796 0.796 0.796 0.794 0.791 0.788 0.786 0.783 0.780 0.778 -0.01872

I 0.960 0.954 0.948 0.942 0.935 0.929 0.923 0.917 0.910 0.904 0.898 -0.06244

J 0.871 0.865 0.860 0.855 0.848 0.839 0.830 0.820 0.811 0.802 0.793 -0.07765

K 0.955 0.949 0.943 0.937 0.929 0.921 0.912 0.904 0.895 0.886 0.878 -0.07727

L 0.958 0.956 0.953 0.951 0.948 0.946 0.943 0.941 0.938 0.936 0.933 -0.02485
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Figure 5: Variation of EBM scores in terms ofεfor Case 1 
 
Observations: 
a. Hospitals A and B keep the status of full efficiency throughout the interval [0,1] of  

ε. They are relatively the most robust against the stress of the lower bounds of input 
shadow prices. 

b. Hospital D is efficient for 0ε = -0.3. However, it drops to inefficient at 0.4ε = . (We 
can calculate the exact turning point by applying the parametric programming 
technique in ε.) This hospital is not robust as A and B against the stress of input 
shadow prices. Relatively large number of doctors forces this hospital to inefficiency 
as the stress  to doctor increases. At 1v 1ε = , D has the optimal solution 

. Projected numbers of doctor and 
nurse are respectively 24.35 and 170.68 as contrasted to the observed values 27 and 
168. Thus, this hospital is recommended to reduce doctors and increase nurses 
under the stress of input prices. 

*
1 2(1) 0.966, 1.016, 0.212, 1.059, 3.078, 0A B s sθ θ λ λ − −= = = = = =

c. Hospital F is the most sensitive to the input stress. It drops from 0.8348 ( 0ε = ) to 
0.721 ( 1ε = ). 

d. Hospitals E, G, I and L are stable throughout the interval [0, 1] of ε. Their 
references are mostly A and B.  

e. Rank reversals of efficiency scores are observed in many instances reflecting the 
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comparative weakness of respective hospitals against input price impacts.  
 
5.2 Case 2: Subjective weighting 

Since the role of doctor is increasing in medical services, we assume a scenario that 
the weight of doctor is five times that of nurse, i.e. . Table 7 and 

Figure 6 show the results of EBM scores under this weight setting.  
1 20.833, 0.167w w= =

Table 7: EBM score for Case 2  

ε  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Stability
A 1 1 1 1 1 1 1 1 1 1 1 0.000 
B 1 1 1 1 1 1 1 1 1 1 1 0.000 

C 0.883 0.879 0.874 0.869 0.863 0.858 0.852 0.847 0.841 0.836 0.830 -0.052 

D 1 1 0.997 0.987 0.978 0.968 0.959 0.949 0.940 0.930 0.921 -0.079 

E 0.763 0.763 0.763 0.761 0.759 0.757 0.756 0.754 0.752 0.750 0.749 -0.015 

F 0.835 0.816 0.798 0.775 0.751 0.728 0.704 0.680 0.656 0.632 0.609 -0.226 

G 0.902 0.902 0.901 0.901 0.901 0.901 0.901 0.900 0.900 0.900 0.900 -0.002 

H 0.796 0.796 0.794 0.789 0.784 0.779 0.774 0.769 0.764 0.759 0.754 -0.043 

I 0.960 0.959 0.957 0.955 0.953 0.951 0.949 0.947 0.946 0.944 0.942 -0.019 

J 0.871 0.861 0.850 0.833 0.815 0.798 0.780 0.763 0.746 0.728 0.711 -0.160 

K 0.955 0.944 0.931 0.915 0.899 0.882 0.866 0.850 0.834 0.817 0.801 -0.154 

L 0.958 0.957 0.957 0.956 0.955 0.955 0.954 0.953 0.952 0.952 0.951 -0.007 
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Figure 6: Variation of EBM scores in terms ofεfor Case 2 
Observations  
Generally, EBM scores go down in Case 2 compared with Case1. For example, Hospital 
D loses it efficiency status at 0.2ε =  in Case 2 whereas it becomes inefficient at 0.4ε =  
in Case 1. These are caused by the large weight to Doctor. Stability becomes weak on 
average in Case 2 compared with Case 1, exception being Hospitals G, I and L. These 
three hospitals employ relatively large number of nurse. 
 
6. How to find an appropriate ε  

Looking at the above examples, we are solicited to gauge an appropriate level of ε at 
the current stage. The following is our attempt for this purpose based on an analogy 

between the shadow cost and the actual cost. Recalling the constraint ( 1, , )i
i

io

wv i
x
ε

≥ = K m , 

we obtain a bound of ε by 

( 1, , )io io

i

v x i
w

ε ≤ = K m ,                             (19) 

where wi denotes the weight (relative importance) of input i, which can be determined 
objectively or subjectively based on the average cost share of input i (See Section 4.3). 
And thus, ε is bounded by the ratio of shadow cost (vioxio) and utilized weight (wi).  
 

Let the unit price (or its proxy) of input resource i for DMUo be . Then the total ioc
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input cost  of DMUo is obtained as oC

1

m
o ii

C c
=

= ∑ o iox .                                   (20) 

This leads to  

1
1

m io
ioi o

c x
C=

= ∑ .                                   (21) 

Recalling the constraint  of (15b), it looks like that cost share of input i 

expressed as 

1
1

m
o i ioi

v x
=

= ∑vx =

io io
io o

c xr C=  can play the role of vixio as proxy. Then, we can assume the 

bounds on shadow cost as 

min( ) max( )ij i io ijj j
r v x r≤ ≤ .                                (22) 

Then, inserting (22) into (19), we can obtain  

min( )
( 1,..., )

ijj i

i i

r r
i

w w
ε ≤ = = m .                             (23) 

where min( )iji j
r = r  is the minimum cost share of input i among the entire DMUs. 

Hence we have an approximation of ε by 

min i
i i

r
w

ε
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

.                                      (24a) 

which indicates that ε can be determined as the minimum ratio between the minimum 
cost share ir  as a proxy of a bound on shadow cost and the average cost share wi.  
Cost share  and its minimum value among DMUs ior ir  may be obtained directly from 

financial data even when we have no unit price information. We also notice that, when 
we have no data on the cost share but its proxy is available, we can estimate the 

appropriate level by  
ior ir

 min i
i i

r
w

ε
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

.                                  (24b) 

 
[Definition 8] (Cost critical resource) 

Let resource  be the resource that gives the minimum of (24a) or (24b). We call 
the cost critical resource for the DMUo. 

*i
*i

 
We applied the above scheme to the hospital case in Table 5 and obtained the results 
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exhibited in Table 8 where  and indicate unit prices of doctor and nurse, and  
and  are cost share of doctor and nurse, respectively. We set the weights to doctor 
and nurse as  in Case 1 which are their average cost shares and, 

in Case 2 by a subjective judgment. From the results we can see 
that, in Case 1, ε

1c 2c 1r

2r

1 20.44 and 0.56w w= =

1 20.833 and 0.167w w= =

ο are determined case by case by the cost share of doctor or nurse (the 
shaded number in Table 8) and hence the cost critical resource for hospitals is different 
from hospital to hospital. The minimum is attained at hospital F with 0.807ε = . Hence 
we may safely select 0.8ε =  as appropriate in Case 1. The results are quite different in 
Case 2. All εο are determined by doctor and hence doctor is the cost critical resource for 
all hospitals. The minimum is attained at hospital E with 0.448ε = . Hence we may 
safely select 0.4ε =  as appropriate in Case 2. 

.   

Table 8: Cost data and Appropriate choice ofεfor Case 1 and Case 2 

     Cost Cost share Case 1 Case 2 
 Doctor Nurse Doctor Nurse Input Doctor NurseDoctorNurse Doctor Nurse
 1x  1c  2x  2c  1 1c x  2 2c x C 1r  2r  ε1 ε2 ε1 ε2

 A 20 500 151100 10000 15100 25100 0.398 0.602 0.905 1.074 0.478 3.610 
 B 19 350 131 80 6650 10480 17130 0.388 0.612 0.882 1.092 0.466 3.671 
 C 25 450 160 90 11250 14400 25650 0.439 0.561 0.997 1.003 0.526 3.368 
 D 27 600 168120 16200 20160 36360 0.446 0.554 1.013 0.990 0.535 3.327 
 E 22 300 158 70 6600 11060 17660 0.374 0.626 0.849 1.118 0.448 3.758 
 F 55 450 255 80 24750 20400 45150 0.548 0.452 1.246 0.807 0.658 2.711 
 G 33 500 235100 16500 23500 40000 0.413 0.588 0.938 1.049 0.495 3.525 
 H 31 450 206 85 13950 17510 31460 0.443 0.557 1.008 0.994 0.532 3.340 
 I 30 380 244 76 11400 18544 29944 0.381 0.619 0.865 1.106 0.457 3.716 
 J 50 410 268 75 20500 20100 40600 0.505 0.495 1.148 0.884 0.606 2.970 
 K 53 440 306 80 23320 24480 47800 0.488 0.512 1.109 0.915 0.585 3.073 
 L 38 400 284 70 15200 19880 35080 0.433 0.567 0.985 1.012 0.520 3.400 
 

Table 9 compares the EBM scores corresponding to three ε values. The case 0ε =  
corresponds to no restriction on dual shadow prices, while 1ε =  corresponds to the 
most stringent case. The columns  exhibit scores for Case1 and Case 
2. 

0.8 and 0.4ε ε= =

Table 9: Comparisons of EBM scores corresponding to Case 1 and Case 2.  
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 Case 1 Case 2 

ε  0 0.8 1 0 0.4 1 
A 1 1 1 1 1 1 
B 1 1 1 1 1 1 
C 0.883 0.862 0.856 0.883  0.863  0.830  
D 1 0.976 0.966 1 0.978  0.921  
E 0.763 0.759 0.757 0.763  0.759  0.749  
F 0.835 0.746 0.721 0.835  0.751  0.609  
G 0.902 0.896 0.894 0.902  0.901  0.900  
H 0.796 0.783 0.778 0.796  0.784  0.754  
I 0.960 0.910 0.898 0.960  0.953  0.942  
J 0.871 0.811 0.793 0.871  0.815  0.711  
K 0.955 0.895 0.878 0.955  0.899  0.801  
L 0.958 0.938 0.933 0.958  0.955  0.951  

 
7. Another interpretation of the EBM: from CCR to the cost efficiency model 
In this section, we demonstrate another interpretation of the EBM and point that it is a 
composite of the technical (radial) and the non-radial value-dependent factors, and that, 
if we employ the cost share of each DMU as weight , EBM reduces to the projection to 
the cost minimizing point for

w

1ε = . 
 In the [P(ε )] ((14a)-(14c)), let us define  by x

oθ −= −x x s .                                       (25) 
Then, we can rewrite [P(ε )] as: 

1 1

( )( ) (1 )*
, , , , , ,
min minm mi io i i i

i iio io

w x x w x
x x

θε ε ε θ ε
θ θ

θ θ
= =− −

−
− = − += ∑ ∑λ x s λ x s

           (26) 

subject to  

, .

o

o

θ −

−

− =

− + =

≥

≥ ≥

x Xλ 0

x x s 0
Yλ y

λ 0 s 0

                                            (27) 

The last expression of the objective function (26) specifies the EBM score as a convex 
combination of the technical efficiency term θ  and the weighted average of the 
normalized inputs where weights associate with the value of input resources.  
 In the case 0ε = , it reduces to the CCR (radial) model, whereas in accordance with the 
increase in ε, more emphasis is put on the non-radial (value dependent) part. At the 
another end 1ε = , if we employ the cost share of each DMU as weight , we can show ow
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that [P(1)] produces the same optimal solution with the cost efficient model which can 
be described as follows. 

1

1

1

[CM]

subject to  ( 1, )

( 1, , )

0 ( ).

min
m

io ioi

n
i ij jj

n
io ij jj

j

c x

x x i m

y y i

j

λ

λ

λ

=

=

=

= =

≤ =

≥ ∀

∑
∑
∑

x,λ

K

K s

                       (28) 

This model aims to obtain the cost minimizing input for producing the given output 
. If we employ the cost share  (C

x

oy /io io oc x C o = total input cost of DMUo) as the weight 
, the EBM [P(1)] reduces to: iow

1,

1min

subject to  

, .

m
io iio

o

o

c x
Cθ

θ

− =

−

−

− =

− + =

≥

≥ ≥

∑,λ,x s

x Xλ 0

x x s 0
Yλ y

λ 0 s 0

                       (29) 

Let an optimal solution to (29) be * * * *( , , , )θ −x λ s . Then,  is feasible for [CM]. 
Conversely, let an optimal solution to [CM] be 

* *( , )x λ
* *

( , )x λ . We define 

*
*

max ( 1, , )i

io

x i
x

θ
⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

K m  and * *
oθ

− *
= −s x x .              (30) 

Then, * * * *
( , , , )θ

−
x λ s  is feasible for (29). Thus, we have the equality between the two 

optimal solutions: 

**
o o=c x c x .                                  (31) 

Hence,  is optimal for [CM] and the projected solution  is the cost 
minimizing point.  

* *( , )x λ * =x Xλ*

                                                 

Thus, under the assumption that the cost share of each DMU is employed as weight 
, the projected point of the EBM model moves from the CCR projected point to the 

cost minimizing point in line with the increase of ε from 0 to 1. Thus, the EBM model 
includes the cost model as a special case.

ow

4

 

 
4 However, we notice that we are not discussing cost efficiency but cost minimizing point, 
since this subject needs care in handling. See Tone (2002). 
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8. Concluding remarks 
In this paper we have proposed an epsilon-based measure (EBM) model which can 

discriminate Farrell and Pareto-Koopmans efficiencies practically. Then, we extended 
EBM to the stability analysis of efficiency score employing the lower bounds of shadow 
prices of input resources as a parameter. Furthermore, we proposed a tentative scheme 
for determining an appropriate level of the parameter referring to the actual cost 
information. As a result, we can evaluate technical efficiency of DMUs based on the cost 
share of input resources. This subject needs further clarification. The EBM scores are 
affected by the weight { }iw  which can be determined objectively or subjectively. The 
selection of { }iw  is an important subject of management decision to be explored further. 

We also demonstrated that EBM is a composite of the radial (technical) efficiency and 
the non-radial (value-dependent) efficiency, and that it includes the CCR and the cost 
minimizing model as special cases. This might be a new finding for connecting technical 
and cost models in a unified framework.  

Although we have dealt with the constant returns-to-scale situation, we can apply 
this model to other returns-to-scale cases by imposing constraints on the primal 
intensity vector. 
  Future research subjects include extensions to output-oriented (revenue) and 
non-oriented (profit) models.  
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Appendix A. Proof of Theorem 4 
Since  is EBM-inefficient, it holds that ( , )o ox y

*
* *

1
( ) 1.

m i i
i io

w s
x

θ ε θ ε
−

=
= − ∑ <                            (A1) 

Let an optimal solution for  be . The EBM objective function 
value is: 

* *( , )o ox y ** ** ** **( ( ), , , )θ ε θ −λ s
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**

** **
*1

( ) .
m i i
i io

w s
x

θ ε θ ε
−

=
= − ∑                            (A2) 

The corresponding constraints for  are: * *( , )o ox y
** * ** ** * **,o oθ −= + ≤x Xλ s y Yλ .

.

                          (A3) 
This reduces to: 

** * * ** ** ** * * **, o oθ θ θ− −= + + ≤ ≤x Xλ s s y y Yλ                (A4) 
This is another expression for  and its objective function value is: ( , )o ox y

** ** * **
** * ** *

1 1

( ) ( ) .
m mi i i i i
i iio io

w s s w sf
x x

θθ θ ε θ θ ε ε
− − −

= =

+
= − = −∑ ∑              (A5) 

We have three possibilities as follows: 
i) The case . In this case, it holds that ** 1θ < *( )f θ ε< . This contradicts the 

optimality of *( )θ ε  for ( , . Thus, this case never occurs. )o ox y

ii) The case . In this case, by the optimality of ** 1θ = *( )θ ε  for ( , , we have )o ox y
** 0 ( )is i− = ∀ . Thus,  and  is EBM-efficient. **( ) 1θ ε = * *( , )o ox y

iii) The case . From the optimality of ** 1θ > *( )θ ε  for , it holds that ( , )o ox y

**
** * *

1
( ) ( ).

m i i
i io

w s
x

θ θ ε ε θ ε
−

=
− ≥∑  

Hence we have  
**

**
* 1

1
( )

m i i
i io

w s
x

εθ
θ ε

−

=
≥ + ∑ .                           (A6) 

Suppose that  is EBM-inefficient, i.e. * *( , )o ox y
**

** **
*1

( ) 1.
m i i
i io

w s
x

θ ε θ ε
−

=
= − <∑  Then 

we have: 
**

**
*1

1
m i i
i io

w s
x

θ ε
−

=
< + ∑ .                              (A7) 

We compare the terms *( ) ioxθ ε  in (A6) and *
iox  in (A7). Since * *

io io i
*x x sθ −= − , we 

have 
*

* * * * * *
1

( ) ( ( ) ) 0.
m k k

io io io i io ik ko

w sx x x s x s
x

θ ε θ ε θ ε
−

− −
=

⎛ ⎞
− = − − = − − ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

Thus, it holds that 
*( ) .io io

*x xθ ε ≤                                 (A8) 
Comparing (A6) and (A7), we have 

** **
** **

*1 1
1 1

( )

m mi i i i
i iio io

w s w s
x x* .θ ε ε

θ ε

− −

= =
≥ + ≥ + >∑ ∑ θ              (A9) 

This cannot occur. Thus, in this case,  is EBM-efficient.        Q.E.D. * *( , )o ox y
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