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Abstract 
In DEA, we have two measures of technical efficiency with different characteristics: radial and 

non-radial. In this paper we compile them into a composite model called “epsilon-based measure 

(EBM).” For this purpose we introduce two parameters which connect radial and non-radial models. 

These two parameters are obtained from the newly defined affinity index between inputs or outputs 

along with principal component analysis on the affinity matrix. Thus, EBM takes into account 

diversity of input/output data and their relative importance for measuring technical efficiency. 
Keywords: Data envelopment analysis, Radial, Non-radial, CCR, SBM, EBM, Principal component 

analysis 

1. Introduction 
DEA (data envelopment analysis) is a data driven tool for measuring efficiency of decision making 

units (DMU) and shows a sharp contrast to so-called “parametric methods” such as SFA. The latter 

methods assume specific production function forms to be identified. This assumption is not so 

reasonable in several instances and aspects. Since DEA can deal with multiple input vs. multiple 

output relations in a single framework, it has been becoming a method of choice for efficiency 

evaluation in recent days. However, DEA has several shortcomings to be explored further. In DEA, 

we have two measures of technical efficiency with different characteristics: radial and non-radial. 

Historically, the radial measure, represented by the CCR model (Charnes, Cooper and Rhodes [5]), 

was the first DEA model, whereas the non-radial model, represented by the SBM model 

(slacks-based measure by Tone [8], see also Cooper et al. [6]) was a latecomer. For instance, in the 

input-oriented case, the CCR deals mainly with proportionate reduction of input resources. In other 

words, if the organisational unit under study, also known as a DMU, has two inputs, this model 

aims at obtaining the maximum rate of reduction with the same proportion, i.e. a radial contraction 

in the two inputs that can produce the current outputs. In contrast, the non-radial models put aside 
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the assumption of proportionate contraction in inputs and aim at obtaining maximum rates of 

reduction in inputs that may discard varying proportions of original input resources. 
  In this paper, after introducing radial and non-radial models briefly, we propose a composite 

model which combines both models in a unified framework. This model has two parameters: one 

scalar and one vector. In order to determine these two parameters, we introduce a new affinity 

index associated with inputs or outputs. We apply principal component analysis to thus defined 

affinity matrix.  

  This paper unfolds as follows. In Section 2, we briefly survey radial and non-radial models in 

DEA. In Section 3, we propose the epsilon-based measure of efficiency (EBM). EBM needs two 

parameters. After observing two extreme diversities of dataset, we introduce a new correlation 

coefficient called “affinity index” in Section 4. We utilize this index for defining affinity matrix 

among input/output data. From this matrix we derive two parameters for EBM in Section 5. We 

discuss rationality of the scheme in Section 6. We demonstrate illustrative examples in Section 7. In 

Section 8 we extend the model to other orientations and variable returns-to-scale environment. We 

conclude this paper in Section 9. 

2. Radial and non-radial measures of efficiency 
In this section we introduce the CCR and SBM models as representative radial and non-radial 

measures of efficiency respectively, and point out their shortcomings. Throughout this paper, we 
deal with n DMUs ( 1, , )j n= K having m inputs ( 1, , )i m= K  and s outputs ( 1, , )r s= K . The input 

and output matrices are denoted by { } m n
ijx R ×= ∈X  and { } s n

rjy R ×= ∈Y , respectively. We assume 

X >0 and Y>0. 

2.1 The CCR and SBM Models 

We briefly explain the CCR and SBM models, and compare their inefficiency status. 

(a) The CCR Model 

The input-oriented CCR model evaluates the technical efficiency *θ of DMU ( , )o ox y by solving 

the following linear program: 

[CCR-I] 

*

, ,
min

θ
θ θ

−
=

λ s
                                             (1) 

subject to 
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o

o

θ −

−

= +

≤

≥ ≥

x Xλ s
y Yλ

λ 0 s 0

                                            (2) 

where λ represents the intensity vector and −s denotes the non-radial slacks. 
Usually, we solve [CCR-I] in a two phase process. In the first phase, we solve [CCR-I] and obtain 

*θ (weak efficiency). Then, in the second phase, we maximize 
1

m i
i

io

s
x

−

=∑ in terms of λ  and −s , 

subject to (2) and *θ θ= . 

(b) The SBM Model 

Here, we continue with input orientation consistent with our exposition of the CCR model in the 

preceding paragraph. The input-oriented SBM model under the constant returns-to-scale 

assumption evaluates the efficiency *τ  of DMU ( , )o ox y by solving the following linear program 

where the abbreviations I and C indicate Input-oriented and Constant-returns-to-scale, respectively. 

[SBM-I-C] 

*
1

1

1

1min1

subject to

      ( 1, , )

      ( 1, , )

0 ( ), 0 ( ),

m i
i io

n
io ij j ij

n
io ij jj

j i

s
m x

x x s i m

y y i s

j s i

τ

λ

λ

λ

−

=

−
=

=

−

= −

= + =

≤ =

≥ ∀ ≥ ∀

∑

∑
∑

K

K

                          (3) 

whereλis the intensity vector, and −s represents non-radial input slacks vector. 

 Let an optimal solution of [SBM-I-C] be * *( , )−λ s . Then, the objective function can be rewritten as 
*

*
1

1 .
m io i
i io

x s
m x

τ
−

=

−
= ∑                                    (4) 

Hence the SBM score *τ  is the average of the component-wise reduction rates which may vary 

from one input to another. The SBM model is non-radial. On the other hand, as noted in (2), the 

CCR score θ* satisfies the relationship * * * * *
oθ − −= + = +x Xλ s x s . 

Hence, we have  
* *

* ( ).io i

io

x s i
x

θ
−+

= ∀                                           (5) 

The component-wise reduction rates are the same for all inputs. This same proportional reduction 

rate, i.e. radial reduction rate, is the CCR score. 

  Between the SBM *τ  and the CCR θ* we have the inequality * *τ θ≤ . See Tone [8] for more 

details of their comparisons. 
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2.2 Shortcomings of the radial and non-radial models 

In this section we point out shortcomings of the radial and non-radial DEA models. 

(a) Shortcomings of the CCR Model 

The main shortcoming of the CCR model is the neglect of non-radial slacks *−s in reporting of the 

efficiency score *θ . In many cases, we find a lot of remaining non-radial slacks. So, if these slacks 
have an important role in evaluating managerial efficiency, the radial approaches may mislead the 

decision when we utilize the efficiency score *θ  as the only index for evaluating performance of 
DMUs. Furthermore, as to the proportional change *

oθ x , if we employ labor, materials and capital 

as inputs, some of them are substitutional and do not change proportionally. The radial (CCR) 

model cannot cope with such cases properly. 

(b) Shortcomings of the SBM Model 

Since models such as SBM capture the non-radial slacks directly, the optimal efficiency value 
*τ accounts for the non-radial slacks which are not considered in the radial models. The 

SBM-projection to the efficient frontier is defined by *
o o

−= −x x s . Thus, the projected DMU may 

lose the proportionality in the original ox  because *−s is not necessarily proportional to ox . This is 

characteristic of the non-radial models, and if the loss of the original proportionality is 

inappropriate for the analysis, then this becomes a shortcoming for non-radial models. Yet another 

equally significant shortcoming of SBM arises from the nature of the linear programming solution, 

where the optimal slacks tend to exhibit a sharp contrast in taking positive and zero values. See 

Avkiran et al. [4] for more detailed comparisons of the zero and non-zero patterns in the optimal 

slacks in the SBM model.  

3. An epsilon-based measure of efficiency (EBM) 
As pointed out in the preceding section, both radial and non-radial models have merits and demerits 

regarding the proportionality of the inputs/outputs change. In this section, we propose a 

compromised model called “epsilon-based measure (EBM)” which has both radial and non-radial 

features in a unified framework.  

We define the primal and dual pair [EBM-I-C] and [Dual] as follows: 

[EBM-I-C]   

*
1, ,

min m i i
x i io

w s
x

γ ε
θ

θ
− −

=− −= ∑λ s
                            (6) 

subject to  oθ −− − =x Xλ s 0                         (7) 

.

o

−

≥
≥
≥

Yλ y
λ 0
s 0

                               (8) 

 
[Dual] 
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* max oγ =
v,u

uy                                        (9) 

subject to 1o =vx                                  (10) 
− + ≤vX uY 0                                   (11) 

( 1, , )x i
i

io
i m

x
wv ε −

=≥ K                               (12) 

,≥u 0                                             

where iw−  is the weight (relative importance) of input i and satisfies 
1

1 ( 0 )
m

i ii
w w i− −

=
= ≥ ∀∑ , and 

xε is a key parameter which combines the radial θ and the non-radial slacks terms. 

Parameters xε and −w  must be supplied prior to the efficiency measurements. As can be seen from 

the term i i

io

w s
x

− −
 in the objective function of [EBM-I-C], i

io

s
x

−
 is units-invariant and so iw−  should 

be a units-invariant value reflecting the relative importance of resource i. We will discuss this 

subject in the succeeding sections. 

[Proposition 1] 
*γ  in [EBM-I-C] satisfies *1 0γ≥ ≥ and is units-invariant, i.e. *γ  is independent of the units in 

which the inputs and outputs are measured. 

[Proposition 2] 
If we set 0xε =  in [EBM-I-C], then it reduces to the input-oriented CCR model. 

[Proposition 3] 

If we set 1θ =  and 1ε =  in [EBM-I-C], then it reduces to the input-oriented SBM model. 

 

Thus, [EBM-I-C] includes the radial CCR and the non-radial SBM models as special cases, but it is 

basically non-radial. 

 The constraints (10) and (12) lead to 
1

1
m

o i io xi
v x ε

=
= = ≥∑vx . Thus, xε  must be not greater than 

unity. 

[Proposition 4] 
[EBM-I-C] and [Dual] have a finite optima for [0,1]xε ∈ . 

[Proposition 5] 
For 1xε > , [Dual] has no feasible solution and [EBM-I-C] has unbounded solution. 

[Proposition 6] 
*γ is non-increasing in xε . 

[Definition 1] (EBM input-efficiency) 

DMUo is called EBM input-efficient if * 1γ = . 
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[Definition 2] (EBM projection) 

Let an optimal solution to (6)-(8) be * * *( , , )θ −λ s . We define the projection of DMU ( , )o ox y as 

follows. 
* * * *

* *.
o o

o

θ −= = −

=

x Xλ x s

y Yλ
                               (13) 

[Proposition 7] 

The projected DMU * *( , )o ox y  is EBM input-efficient. (See Appendix A for a proof.) 

 

[EBM-I-C] can be manipulated in another form by introducing a variable oθ −= −x x s as follows. 

*
1, , ,

min (1 )

subject to  

, .

m i i
x x i io

o

o

w x
xθ

γ ε θ ε

θ

−

−

=

−

−

= − +

− =

= −
≥

≥ ≥

∑x λ s

x Xλ 0

x x s
Yλ y

λ 0 s 0

                         (14) 

This formulation indicates that *γ is obtained as the optimal internally dividing value between the 

radial θ  and the non-radial term
1

/
m

i i ioi
w x x−

=∑ . Since θ  is not restricted, its optimal value *θ  

can be greater than 1, and hence the optimal *x is not necessarily less than or equal to ox . We 

notice that the composite single stage approach like the EBM was commented in Ali and Seiford 

[3] and further developed by Johnson and Ruggiero [7]. However, our objective is quite different 

from the preceding ones as can be seen in the following sections.  

4. How to determine epsilon and weights  
In EBM, the values of xε  and −w  play the central role for evaluating efficiency of DMUs. We 

would like to determine them from the data set (X, Y), since DEA is a data driven method. In this 

section firstly we observe two extreme cases. Then we introduce an affinity index between two 

vectors which replaces the Pearson’s correlation coefficient. 

4.1 Two extreme cases 

(1) Narrow range case 

 Figure 1 plots an example of data concerning inputs x1 and x2 concentrating in a narrow range. If 

all inputs and outputs go along with the similar behavior, the assumption of proportional (radial) 
model can be effected. Thus, in such case, we have xε ≐ 0 and the CCR model is a valid choice. 
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Figure 1: Narrow range case 

 

(2) Widely scattered case 

In the other extreme case, if the observed data scatters widely as exemplified in Figure 2, the 
non-radial model can be applied. Thus, we have xε ≐ 1 and the SBM model with θ = 1is a choice 

although we do not shut off the assumption of radial models depending on the characteristics of 

problems.  

Figure 2: Widely scattered case 

 
These extreme cases suggest that xε  can be determined in the context of the degree of 

correlations among inputs (outputs).  

Several authors, e.g. Ueda and Hoshiai [9] and Adler and Golany [1, 2] among others, utilized 

correlation matrix of inputs (outputs) and applied principal component analysis (PCA) to DEA. 

Their main objectives were integration of inputs (outputs) to other representative indicators.  
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 In this paper, we employ similar but different correlation matrix as described in the next section 

in order to gauge affinity among inputs which will be utilized to estimate parameters xε  and −w  

in the EBM. 

4.2 Diversity index and affinity index 

Let and n nR R+ +∈ ∈a b be two positive vectors with dimension n. They represent observed values for 

certain input items over n DMUs. We define an affinity index ( , )S a b between a and b with the 

following properties. 
(P1) ( , ) 1 ( )S = ∀a a a  Identical 

(P2) ( , ) ( , )S S=a b b a  Symmetric 

(P3) ( , ) ( , ) ( 0)S t S t= ∀ >a b a b  Units-invariant and 

(P4) 1 ( , ) 0 ( , )S≥ ≥ ∀a b a b . 

The usual Pearson’s correlation coefficient introduces the translation of origin in calculating 

correlations. In our model, we wish to evaluate affinity of two vectors without translation of origin. 

Therefore, we introduce another correlation coefficient called “affinity index.”  

 Let us define  

{ } { }
1

max min

ln ( 1, , )

1

max and min .

j
j

j

n
jj

j j
jj

b
c j n

a

c c
n

c c c c

=

= =

=

= =

∑

K

                      (15) 

[Definition 3] (diversity index) 

We define the “diversity index” of vectors a and b as the deviation of { }jc from the average c  in 

the following way. 

1

max min

max min

( )
( )

0 if  .

n
jj

c c
D

n c c
c c

=
−

=
−

= =

∑
a,b                                 (16) 

 

[Proposition 8] 
1
20 ( ) ( )D D≤ = ≤a,b b,a .                               (17) 

See Appendix B for a proof. ( ) 0D =a,b occurs if and only if two vectors a and b are proportional.  

[Definition 4] (affinity index) 
We define the “affinity index” ( )S a,b between two vectors a and b by 

( ) 1 2 ( )S D= −a,b a,b .                                 (18) 

[Proposition 9] 
It holds1 ( ) 0S≥ ≥a,b . ( )S a,b  satisfies properties (P1), (P2), (P3) and (P4).  
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The reason why we employ the affinity index (15) instead of the Pearson’s correlation coefficient 

is the following: 

1. Pearson’s correlation coefficient is defined by 

1

2 2
1 1

( )( )
( )

( ) ( )

n
j jj

n n
j jj j

a a b b
r

a a b b

=

= =

− −
=

− −

∑
∑ ∑

a,b , 

where and a b are respectively averages of { } { }and j ja b . In this formula, the absolute magnitude of 

ja and jb effects ( )r a,b strongly. In contrast, in DEA, the relative measure, e.g. j
j

b
a , is a main 

concern.  
2. Pearson’s correlation coefficient results in the range 1 ( ) 1r− ≤ ≤a,b . Hence, in the principal 

component analysis we will utilize in the next section, it is not guaranteed that the principal vector 
consists of non-negative components. Although it is possible to adjust ( )r a,b into [0, 1], this might 

bring a skew distribution, since most of ( )r a,b  are non-negative in DEA applications. 
3. We employ the logarithmic function ln /j jb a instead of /j jb a , because the latter violates the 

property (P2).   

5. Use of affinity matrix in EBM 
In this section, we measure the diversity of production possibility set by means of the affinity 

matrix derived from the observed inputs and outputs. Although we describe the method in the 

input-oriented model under the constant returns-to-scale (CRS) assumption, we can modify it to the 

output-oriented and non-oriented models under constant or variable returns-to-scale (VRS) 

assumptions. We discuss this subject in Section 8.  

Step 1. Creation of projected VRS-efficient DMUs 

  In most DEA models, the production possibility set is spanned by the efficient DMUs which 

usually consist of a small portion of the entire DMUs. In order to increase the accuracy of our 

estimation, we first project all DMUs to the VRS (variable returns-to-scale)-efficient frontiers using 

the Additive model or non-oriented SBM model below1.  

                                                  
1 We can employ the observed data (X, Y) instead of the projected DMUs in this step. However, 
we utilized the projected DMUs, because our main concerns are the shape of frontiers. 
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[ADD] 

1 1

1

1

1

max

subject to

      ( 1, , )

      ( 1, , )

      1

0 ( ), 0 ( ), 0( ).

m si i
i iio io

n
io ij j ij

n
io ij j ij

n
jj

j i i

s s
x y

x x s i m

y y s i s

j s i s i

λ

λ
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λ

− +

= =

−
=

+
=

=

− +

+

= + =

= − =

=

≥ ∀ ≥ ∀ ≥ ∀

∑ ∑

∑
∑

∑

K

K

                  (19) 

[SBM] 

1

1

1

1

1

11
min

11

subject to

     ( 1, , )

     ( 1, , )

      1

0 ( ), 0 ( ), 0( ).

m i
i io
s i
i io

n
io ij j ij

n
io ij j ij

n
jj

j i i

s
m x

s
s y

x x s i m

y y s i s

j s i s i

λ

λ

λ

λ

−

=

+

=

−
=

+
=

=

− +

−

+

= + =

= − =

=

≥ ∀ ≥ ∀ ≥ ∀

∑

∑

∑
∑

∑

K

K

                (20) 

Using the optimal slacks * *and − +s s we define the projected input and output for DMUo by 
*

*

( 1, , )

( 1, , ).

io io i

io iio

x x s i m

y y s i s

−

+

= − =

= + =

K

K
                      (21) 

We notice that [ADD] and [SBM] may produce different projections but they are on the efficient 

frontiers of the production possibility set.  

Thus, we have n VRS-efficient DMUs denoted by 

111 1

1

11 1 1

1

n

mm mn

n

ss sn

x x

x x

y y

y y
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

x

xX

yY

y

L

LLLL L

L

L

LLLLL

L

                           (22) 

All CRS (constant-returns-to-scale) efficient DMUs are included in this set along with 

VRS-efficient DMUs.  

Step 2. Formation of affinity matrix 

In the input-oriented case, we calculate the affinity matrix m m
ijs R ×⎡ ⎤= ∈⎣ ⎦S with the elements 
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( , ) ( , 1, , )i jijs S i j m= =x x K                         (23) 

All elements of the matrix S satisfy the bounds: 
1 0 ( ( ))ijs ij≥ ≥ ∀ .                             (24) 

Step 3. Solving the largest eigenvalue and eigenvector of the affinity matrix 

By the formation rule, S is symmetric and non-negative with the diagonal elements equal to unity. 

It has m pairs of eigenvalue and eigenvector. By the Perron-Frobenius theorem for non-negative 
matrices, S has the largest eigenvalue xρ with its associated non-negative eigenvector ( )x ≥w 0 . The 

non-negative xw corresponds to the weight of input factors. Since S is non-negative definite, we 

have 1xm ρ≥ ≥ .  

Step 4. Calculation of xε  and −w for the EBM 

We define xε  and −w  in the EBM as follows.  

(if 1)
1

0 (if 1).

x
x

m m
m

m

ρ
ε

−
= >

−
= =

                        (25)  

1

.x
m

xii
w

−

=

=

∑
ww                            (26) 

The thus defined xε  and −w  satisfy the relationship 0 1 and 1xε −≤ ≤ =ew .  

Step 5. Use of xε  and −w  in the EBM 

These parameters are utilized in the EBM model [EBM-I-C]. 

6. Rationale of the proposed EBM 
In this section we demonstrate the rationale of the scheme proposed in the preceding section.  

 Before going into theoretical discussions, we show some real world data concerning input/output 

items. Figure 4 depicts 814 samples of no. of doctors (as input) vs. no. of beds (as input) of 

Japanese municipally-owned hospitals. Figure 5 shows no. of doctors (as input) vs. revenue/day (as 

output) in the same 814 sample hospitals. Since the municipal hospitals are, to some extent, 

standardized under the control of respective administrative offices, many inputs and outputs have 

positive relationship and hence the affinity matrix is expected to have high affinity values. 

Consequently, its principal eigenvalue will be large and hence ε  will be small.  
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Figure 4: Empirical data 1 
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Figure 5: Empirical data 2 

Figures 6 and 7 exhibit two plotted data concerning no. of employees vs. no. of visitors and area 

vs. no. of visitors for Japanese regional museums. Since museum business is not standardized 

compared with regional hospitals, they are distributed widely. In this case, the affinity matrix is 

expected to consist of low values with relatively small principal eigenvalue and hence large ε . 
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Figure 6: Empirical data 3 
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Figure 7: Empirical data 4 

Figures 8 and 9 plot data of 273 electric power plants in the U.S. concerning the generating 

power capacity (GW) (input) vs. no. of employees (input) and the consumed fuel (million BTU) 

(input) vs. no. of employees (input). They are positively correlated but considerably diversified.  
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Figure 8: Empirical data 5 
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Figure 9: Empirical data 6 

 

The ellipsoid 1T =w Sw  has the principal axis in the first (positive) quadrant as exemplified in 

Figure 10. As the degree of affinity becomes higher and higher, the shape of the ellipsoid comes to 
be flat and the largest eigenvalue xρ tends to m. Thus, xε in (25) tends to 0. This comes close to 

the CCR model, i.e. all inputs and outputs follow proportional changes. 
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Figure 10: Ellipsoid of affinity matrix 

 
Depending on the degree of affinity among inputs, the principal eigenvalue xρ  increases up to m. 

Conversely, the more the data scatters widely, the more xρ tends to 1 and the more xε grows up. 

Hence, the model behaves SBM-like. Therefore, it can safely be said that xε condenses the affinity 

matrix in a single value reflecting the scattering of the data set.  
 We now turn to the positive eigenvector xw corresponding to the eigenvalue xρ . First of all, we 

notice that xw is units-invariant, since the affinity matrix is units-invariant. Suppose that, in the 

affinity matrix ( )ijs=S , 1 2 0 ( 3, , )j js s j m> ≥ = K , then it holds that 1 2w w− −> . This indicates that the 

item which has higher affinity with others has a large portion in the eigenvector, whereas item i 

with unrelated to others, i.e., ijs ≐ 0 ( )j i∀ ≠ has iw− ≐ 0. Thus, the magnitude of elements of −w  

indicates importance of the item among the whole items. We can strengthen the discrimination 

power on efficiency by imposing weight to slacks in proportion to −w . Thus, this scheme is an 

application of the principal component analysis (PCA) to DEA. 
  We note here that, in the input-oriented model, we estimate xε depending only on the input data 

X , but not on the output data Y . This means that the objective function in [EBM-I-C] relates to 
the radial factorθ and the diversity indicator xε . The former represents the radial feature of inputs 

and the later implies the non-radial characteristics of inputs. The interactions between input X and 

output Y are described in the constraints of [EBM-I-C] through the intermediary of the intensity 

vector λ.  

7. Illustrative examples 
In this section, we explain the EBM using three examples and compare the results with the radial 

1x  

2x

0
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(CCR) and non-radial (SBM) scores. 

7.1 Example 1 

Table 1 reports comparisons of CCR-I, SBM-I-C and EBM-I-C scores for six DMUs A, B, C, D, E 

and F with two inputs (x1, x2) and a single output (y = 1). Figure 11 plots them graphically. This 

figure indicates that the data are concentrated in a narrow gauge. See also Figure 12. 

Table 1: 

 1x  2x   y  CCR-I SBM-I-C EBM-I-C 
A 1 1 1 1 1 1 
B 2 3 1 0.500 0.417 0.500  
C 3 2 1 0.500 0.417 0.500  
D 4 3 1 0.333 0.292 0.333  
E 5 6 1 0.200 0.183 0.200  
F 7 6 1 0.167 0.155 0.167  

0
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Figure 11: Example 1 
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Figure 12: Comparison of scores 

As can be seen, EBM scores are the same with the CCR scores. We illustrate the EBM scheme in 

order. 

Step 1: We used [ADD] for finding slacks and projected DMUs to efficient frontiers, as shown in 
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Table 2. They are all projected to the only one efficient DMU A. 

 

Table 2: Projected DMUs 

 1x  2x  y  

A 1 1 1 

B 1 1 1 

C 1 1 1 

D 1 1 1 

E 1 1 1 

F 1 1 1 

 

Step 2: We calculated the diversity matrix by the formula (16). See Table 3. Since the set of 

efficient DMUs consists of only one DMU A, no diversity exists. 

Table 3: Diversity matrix for Example 1 

 1x  2x  

1x  0 0 
2x  0 0 

 
Step 3: The affinity matrix is calculated by the formula (23) and displayed in Table 4. 

Table 4: Affinity matrix for Example 1 

 1x  2x  

1x  1 1 
2x  1 1 

 
Step 4: The largest eigenvalue and eigenvector of the affinity matrix are 2xρ = and (0.5, 0.5)x =w . 

Hence we have 

1 2( ) / ( 1) 0, 0.5, 0.5.x xm m w wε ρ − −= − − = = =  

  In this case, the ellipsoid is perfectly flat. 
Step 5: Using these parameter values we applied EBM-I-C to the six DMUs. Since we have 0xε = , 

the scores are identical with the CCR scores.  

 

7.2 Example 2 

This example has diversified DMUs as exhibited in Table 5 and Figure 13.  

 

Table 5: Example 2 

 1x  2x  y CCR-I SBM-I-C EBM-I-C
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A 2 6 1 1 1 1 
B 6 3 1 1 1 1 
C 10 3 1 1 0.8 0.8 
D 2 10 1 1 0.8 0.8 
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Figure 13: Example 2 

 

The projected data are exhibited in Table 6. 

Table 6: Projected data for Example 2 

 1x  2x  y  

A 2 6 1 
B 6 3 1 
C 6 3 1 
D 2 6 1 

 
The diversity matrix for the EBM-I-C model is displayed in Table 7 along with the affinity matrix 

in Table 8.  

Table 7: Diversity matrix for Example 2 

 1x  2x  

1x  0 0.5  
2x  0.5  0  
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Table 8: Affinity matrix for Example 2 

 1x  2x  

1x  1  0  
2x  0  1 

The largest eigenvalue and eigenvector of the affinity matrix are 1xρ = and (0.5,0.5)x =w . 

 Hence we have 

1 2

( ) / ( 1) 1

0.5, 0.5.
x xm m

w w

ε ρ
− −

= − − =

= =
 

The value 1xε =  is the largest one showing the diversity of the data set and EBM-I-C results are 

identical with the SBM results. 

7.3 Example 3 

Table 9 reports efficiency scores of 12 hospitals. We utilized numbers of doctors and nurses as 

inputs, and numbers of outpatients and inpatients per month as outputs. Figure 14 displays 

comparisons of three scores: CCR-I, SBM-I-C and EBM-I-C. 

Table 9: Hospital data and efficiency scores 

 (I)Doctor (I)Nurse (O)Outpatient (O)Inpatient CCR-I SBM-I-C EBM-I-C

 A  20 151 100 90 1 1 1

 B  19 131 150 50 1 1 1

 C  25 160 160 55 0.883 0.852  0.868 

 D  27 168 180 72 1 1 0.986 

 E  22 158 94 66 0.763 0.756  0.761 

 F  55 255 230 90 0.835 0.704  0.771 

 G  33 235 220 88 0.902 0.895  0.898 

 H  31 206 152 80 0.796 0.774  0.788 

 I  30 244 190 100 0.960 0.905  0.931 

 J  50 268 250 100 0.871 0.781  0.829 

 K  53 306 260 147 0.955 0.866  0.912 

 L  38 284 250 120 0.958 0.936  0.946 
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Figure 14: Comparisons of scores (hospital) 

We utilized [ADD] for projecting the dataset to the VRS-efficient frontiers and obtained the new 

dataset exhibited in Table 10. 

 

Table 10: Projected DMUs (hospital) 

 Doctor Nurse Outpatient Inpatient 

 A  20.00 151.00 100.00 90.00  

 B  19.00 131.00 150.00 50.00  

 C  24.59 160.00 160.00 72.98  

 D  27.00 168.00 180.00 72.00  

 E  22.00 156.79 158.26 66.00  

 F  35.06 255.00 230.00 108.90  

 G  33.00 235.00 220.00 88.04  

 H  27.44 206.00 162.03 102.41  

 I  30.00 223.45 190.00 102.29  

 J  50.00 268.00 250.00 100.00  

 K  53.00 306.00 260.00 147.00  

 L  38.00 284.00 250.00 120.00  

 
The diversity matrix is displayed in Table 11 along with the affinity matrix in Table 12. 

Table 11: Diversity matrix for Example 3 

 Doctor Nurse 
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Doctor 0 0.265 
Nurse 0.265 0 

 

Table 12: Affinity matrix for Example 3 

 Doctor Nurse 

Doctor 1 0.471  

Nurse 0.471  1 
 

This affinity matrix has the largest eigenvalue and eigenvector: 
1.471, (0.5,0.5)x xρ = =w  

Hence we have: 

1 2

( ) / ( 1) 0. 529

0.5, 0.5.
x xm m

w w

ε ρ
− −

= − − =

= =
 

The EBM scores were obtained using these xε and −w values.   

Table 13 exhibits θ and slacks 1 2 1 2, , and s s s s− − + + in the solution of the EBM-I-C model. It is 

interesting to notice that hospital D is inefficient with the score 0.986 , in contrast to the CCR and 

SBM score 1 (efficient). The EBM model imposes no restriction on θ , and D has an 

optimal 1.016( 1)θ = > . Thus the optimal solution insists that all inputs are multiplied by 1.016 and 

further no. of doctor is decreased by the slacks 1s
− = 3.078. The projected inputs for D are 

27 1.016 3.078 24.35× − = for Doctor and 168 1.016 170.68× = for Nurse. D’s references are A 
( 0.2118Aλ = ) and B ( 1.0588Bλ = ). D is recommended to reduce doctors from 27 to 24 and increase 

nurses from 168 to 171 in order to improve efficiency. This is one of characteristics of the 

composite model EBM, whereas such substitution of inputs cannot occur in the CCR or the SBM 

models. 

 

Table 13: θ and slacks 

DMU Score Rank  θ 1s
−  2s−  1s

+  2s+  

 A  1 1 1 0 0 0 0 
 B  1 1 1 0 0 0 0 
 C  0.868  8 0.885 1.644 0 0 0 
 D  0.986  3 1.016 3.078 0 0 0 
 E  0.761  12 0.766 0.461 0 0 0 
 F  0.771  11 0.846 15.696 0 0 0 
 G  0.898  7 0.902 0 3.349 0 0 
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 H  0.788  10 0.804 1.887 0 0 0 
 I  0.931  5 0.960 0 27.206 0 0 
 J  0.829  9 0.885 10.404 0 0 0 
 K  0.912  6 0.964 10.328 0 0 0 
 L  0.946  4 0.958 0 12.6 0 0 
 
8. Extensions to other orientations and variable returns-to-scale models 
So far, we have developed the EBM in the input-orientation under the constant returns-to-scale 

environment. However, we can extend it to other orientations and returns-to-scale environment as 

follows. In every variation we follow Step 1 in Section 5 and obtain the set of projected 

VRS-efficient DMUs (22). 

8.1 Output-oriented EBM 

Step 2. Formation of affinity matrix 

In the output-oriented case, we calculate the affinity matrix s s
ijs R ×⎡ ⎤= ∈⎣ ⎦S with the elements 

( , ) ( , 1, , )ij i js S y y i j s= = K                         (27)  

Step 3. Solving the largest eigenvalue and eigenvector of the affinity matrix 
We solve the largest eigenvalue yρ and eigenvector yw of the affinity matrix S in (27).   

Step 4. Calculation of yε and +w . 

We define  

1

(if 1), 0 (if 1)
1

.

y
y

y
s

yii

s
s s

s

w

ρ
ε

+

=

−
= > = =

−

=

∑
w

w
                         (28) 

Using and yε +w we solve the following linear program: 

[EBM-O-C] 

*
1

1 /
, ,

max s i i
y i io

w s
y

τ η ε
η

+ +

=+
+= ∑λ s

                            (29) 

subject to  o≤Xλ x                                            (30) 

0

.

oη +

+

− =+
≥
≥

y Yλ s
λ 0
s 0

                                   (31) 

 

8.2 Non-oriented (both-oriented) EBM 

We apply Steps 2 and 3 for the input-oriented and the output-oriented affinity matrix separately, and 
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obtain , , , and .x yε ε − +w w  The non-oriented EBM can be formulated in the following fractional 

program which can be solved as a linear program using the Charnes-Cooper transformation. (See 

Cooper et al. [6].) 

1*

, , ,

1

min

subject to 

, , .

m i i
x i io

s i i
y i io

o

o

w s
x

w s
y

θ η

θ ε
κ

η ε

θ

η

− +

− −

=

+ +

=

−

+

− +

−
=

+

− − =

− + =

≥ ≥ ≥

∑
∑λ,s s

x Xλ s 0

y Yλ s 0

λ 0 s 0 s 0

                              (32) 

8.3 Variable returns-to-scale EBM 

All models can be modified to variable returns-to-scale (VRS) ones by adding the condition: 

1 2 1.nλ λ λ+ + + =L                                      (33) 

9. Concluding remarks 
In this paper, we have proposed EBM as a third pole of technical efficiency in DEA by combining 

radial and non-radial models in a unified framework. Since DEA is a data driven method, we need 

to measure technical efficiency from the observed data under less assumptions on its distribution. 

For this purpose we introduced a new index called “affinity index” for measuring similarity 

between two vectors for use in DEA. Using this index, we defined a scalar measure epsilon ( ε ) 

that represents the diversity or the scattering of the observed dataset. We proposed a scheme for 

setting weights to slacks based on the principal component analysis. We also extended it to other 

orientations and returns-to-scale assumptions. 

 Future research subjects include search for other measure of affinity index that satisfies the 

properties (P1) to (P4), extensions to Super-EBM and identifications of returns-to-scale and scale 

efficiency under this model.  
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Appendix A. Proof of Proposition 7 
Since ( , )o ox y  is EBM input-inefficient, it holds that 

*
* *

1
1.

m i i
x i io

w s
x

γ θ ε
− −

=
= − <∑                            (A1) 

Let an optimal solution for * *( , )o ox y  be ** ** ** **( , , , )γ θ −λ s . The EBM objective function value is: 

 
**

** **
*1

.
m i i

x i io

w s
x

γ θ ε
− −

=
= − ∑                            (A2) 

The corresponding constraints for * *( , )o ox y  are: 
** * ** ** * **, .o oθ −= + ≤x Xλ s y Yλ                           (A3) 

This reduces to: 
** * * ** ** ** * * **, .o oθ θ θ− −= + + ≤ ≤x Xλ s s y y Yλ                (A4) 

This is another expression for ( , )o ox y  and its objective function value is: 

** ** * **
** * ** *

1 1

( ) .
m mi i i i i

x xi iio io

w s s w sf
x x

θθ θ ε θ γ ε
− − − − −

= =

+
= − = −∑ ∑              (A5) 

We have three possibilities as follows: 

i) The case ** 1θ < . In this case, it holds that *f γ< . This contradicts the optimality of *γ  
for ( , )o ox y . Thus, this case never occurs. 

ii) The case ** 1θ = . In this case, by the optimality of *γ  for ( , )o ox y , we have ** 0 ( )is i− = ∀ . 

Thus, ** 1γ =  and * *( , )o ox y  is EBM input-efficient. 

iii) The case ** 1θ > . From the optimality of *γ  for ( , )o ox y , it holds that 
**

** * *
1

m i i
x i io

w s
x

θ γ ε γ
− −

=
− ≥∑  

Hence we have  
**

**
* 1

1 .
mx i i
i io

w s
x

εθ
γ

− −

=
≥ + ∑                           (A6) 
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Suppose that * *( , )o ox y  is EBM-inefficient, i.e. 
**

** **
*1

1.
m i i

x i io

w s
x

γ θ ε
− −

=
= − <∑  Then we 

have: 
**

**
*1

1 .
m i i

x i io

w s
x

θ ε
− −

=
< + ∑                              (A7) 

We compare the terms *
ioxγ  in (A6) and *

iox  in (A7). Since * * *
io io ix x sθ −= − , we have 

*
* * * * * *

1
( ) 0.

m k k
io io io i x io ik ko

w sx x x s x s
x

γ γ θ ε
− −

− −
=

⎛ ⎞
− = − − = − − ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

Thus, it holds that 
* * .io iox xγ ≤                                 (A8) 

Comparing (A6) and (A7), we have 
** **

** **
* *1 1

1 1 .
m mi i i i
i iio io

w s w s
x x

θ ε ε θ
γ

− − − −

= =
≥ + ≥ + >∑ ∑              (A9) 

This cannot occur. Thus, in this case, * *( , )o ox y  is EBM input-efficient.        Q.E.D. 

Appendix B. Proof of Proposition 8 
(a) Proof of D(a,b)=D(b,a) 

Let ln( / ) ( 1, , ))j j jd a b j n= = K , { } { }max minmax , minj jd d d d= = , and 1
jnd d= ∑ . Then it holds that 

max min min max( 1, , ), , , and .j jd c j n d c d c d c= − = = − = − = −K  Hence, we have 

max min min max
( ) ( ).

( ) ( )
j jd d c c

D D
n d d n c c

− − +
= = =

− − +
∑ ∑b,a a,b                   (B1) 

(b) Proof of D(a,b) ≤ 1/2 
If a and b are proportional, then it holds that max min and ( ) 0c c D= =a,b . Otherwise if a and b are not 

proportional, then max min and ( ) 0c c D> >a,b . Let 1 2and N N be respectively the set of j such that 

jc c≤ and jc c> , and 1 1 2 2and n N n N= = . We have 1 2n n n= + . The numerator of D(a,b) can be 

transformed into the following:  

1 21

1 min 2 max
22

max min 1 1

( ) ( )

( ) ( )

( )( ).

n
j j jj j N j N

n

c c c c c c

n c c n c c

c c nn n

= ∈ ∈
− = − + + −

≤ − + + −

= − −

∑ ∑ ∑
                      (B2) 

The last term in the last expression attains the maximum 2
1/ 4 at / 2n n n=  

Hence, we have 

1

max min

1( , ) .
( ) 2

n
jj

c c
D a b

n c c
=

−
= ≤

−

∑
                                      (B3) 

( )D a,b ≐1/2 holds when { }jc distributes as exemplified in Figure B1. 
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Figure B1: The case ( )D a,b ≐1/2 

cmin 

cmax 

c  

1 n 


