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Abstract: 

 By building and solving numerical models of the parts supply problems (an 

example of the adverse selection problems), and analyzing various issues of the contract 

theory, we demonstrate the benefits of the numerical approach. First, this approach 

facilitates the understanding of the contract theory by beginners, who find it difficult to 

comprehend the theoretical and general models. Second, this approach could extend the 

analysis areas beyond those of the theoretical models, which are limited by the simplifying 

assumptions imposed in order to make their analysis possible. The expansion of the number 

of the supplier types is one example.  
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1. A Numerical Approach  

 In this paper, we build and solve various numerical models of the “parts supply 

problems” as an example of the adverse selection problems for the following two purposes. 

First, the paper aims to facilitate beginners of the contract theory to understand it with the 

numerical models. Since many earlier studies have developed the contract theory models in 

a theoretical and general manner, the beginners often encounter difficulties of 

understanding them. Second, we demonstrate some advantages of the numerical approach 

over that theoretical approach. For example, we can easily assume a larger number of the 

supplier’s types than two or three, which is often assumed in theoretical studies. 

Furthermore, we can extend the analysis area that is limited by some simplifying 

assumptions used in those theoretical studies. In addition by applying the Monte Carlo 

simulation method, we can investigate the likelihood that those assumptions hold. To 

understand the numerical models fully, the readers must know the computer programs, 

which will be explained in details in the earlier part of this paper. 

 To analyze the parts supply problems, we formulate the models as non-linear 

programming problems. Then, by specifying functional forms and feeding some numbers 

into parameters, we build and solve the numerical computer models. In this numerical 

approach, we obtain not only the optimal values of the primal variables, such as the parts 

quality and the price to be paid to the supplier, but also the optimal values of the Lagrange 

multipliers of the imposed constraints. The information rent, which is the most important 

variable in problems with asymmetric information, can be derived directly from the solved 

values of some Lagrange multipliers. Furthermore, we can easily conduct comparative 

statics by changing the values of some parameters. 

 To build and solve the numerical models, we use GAMS (General Algebraic 
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Modeling System) as computation software.1 While in this paper we explain the essential 

GAMS syntax, refer to Hosoe et al. (2010, Chapter 3) for more detailed explanation. The 

readers can realize the contract theory well, by playing around with the models presented in 

this paper, i.e., changing the values of some parameters in our sample programs with use of 

the trial version of GAMS. 

 On one hand, of course, we must be careful in deriving any general conclusions 

from numerical models which are based on specific functional forms and assumed 

parameters. In addition, it is not an easy job to master a new computer language to deal 

with numerical models freely. On the other hand, our approach to develop numerical models, 

which depict the essence of the theoretical models, will afford the readers ease in 

comprehending the contract theory. The authors hope the readers find the heuristic 

usefulness in this paper. 

 This paper originates from our previous paper by Hashimoto et al. (2011) written in 

Japanese where various numerical models of the parts supply problems are developed, 

based on the theoretical models by Itoh (2003). We also use the analytical frameworks 

demonstrated by Itoh (2003) when we develop our numerical examples. 

 

2. Adverse Selection: the Parts Supply Problem 

 The parts supply problems are the basic problems of adverse selection. A maker (a 

principal, called with a female pronoun), making a unit of a final product, purchases its 

parts from a supplier (an agent, called with a male pronoun) for her production. There are 

several technical types (efficient or inefficient, etc.) of the supplier. Only the supplier knows 

about his type (i.e., private information). Under these circumstances, the maker is supposed 

                                                      

1 GAMS is commercial software; however, its trial version can be downloaded from the website of 

GAMS Development Corporation (http://www.gams.com/dowmload/) and used without charge. The 

numerical models presented in this paper are so small that they can be solved with the trial version. 
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to offer a contract that maximizes her utility. 

 The contract that the maker offers is the mechanism to determine the quality of 

the parts ix  to be produced by the i -th type supplier and the price iw  to be paid to him, 

in such a way as to maximize the maker’s utility, based on the supplier’s report about his 

type. If, hypothetically, the maker knew the supplier’s type (symmetric information), there 

were no possibility that the supplier would report his type falsely; thus, the first-best would 

be realized. However, in reality, the maker does not know the supplier’s type (asymmetric 

information) and, thus, must offer a contract in such a way as to make the supplier obtain no 

extra gain, even if he should report his type falsely. Such a contract is the second-best 

optimal in the sense that it minimizes the inefficiency resulted from asymmetric 

information. As the maker must be compromised with the supplier exploiting his 

asymmetric information, her second-best utility level is lower than the first-best one. 

 The supplier’s type in our modelｓ is a discrete variable. In Section 2.1, we consider 

the cases with two supplier types (efficient and inefficient). We solve the first-best 

equilibrium by assuming no asymmetric information as the benchmark case. Next, we 

present the second-best model, where the (global) incentive compatibility conditions are 

needed to prevent the supplier from reporting his type falsely. Subsequently, we consider the 

cases with three supplier types in Sections 2.2 and 2.3. When the number of types increases–

from two to N in general, the incentive compatibility conditions become complicated. 

Because the number of possible combinations that the i -th type supplier reports his type 

truly or falsely as “type j” increases, that of incentive compatibility conditions to prevent his 

false reporting increases rapidly. Additional assumptions–the Spence-Mirrlees single 

crossing property (SCP) and monotonicity (MN)–are introduced to simplify these conditions. 

(The SCP and monotonicity will be explained in details in Section 2.2.3.) These simplifying 

assumptions make the analysis of the theoretical contract models possible.  

 In Section 2.2, we examine the simplest models with these two assumptions. In 

Section 2.3, we extend the models in two directions. First, we increase the number of 
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supplier types. It can be done easily without complicated programming techniques. Second, 

we deal with the models where these assumptions of the SCP and MN do not hold. This also 

can be done without causing technical difficulties. Finally, in Section 2.4, applying the 

Monte Carlo simulation method, we “estimate” the likelihood that such assumptions as the 

SCP and MN hold, and discuss the importance of these assumptions in a contract theory 

analysis. 

  

2.1 The 2-type Models 

 We consider two supplier types (efficient and inefficient). In the former part of this 

subsection, we develop the first-best models, where the maker knows the supplier’s type, i.e., 

his marginal cost of the parts production. For benefits of those unfamiliar to GAMS 

computer models, we first present the model only with the efficient supplier; then, the one 

only with the inefficient supplier separately. Next, we combine these two models into one 

model that includes both types.  

 In the latter part, we present the second-best model, where the maker does not 

know the supplier’s type. Then, we develop one model that includes both the first-best and 

the second-best. Finally, we compare the second-best solutions with the first-best solutions. 

 

2.1.1 The First-best Model with Only One Supplier Type  

 The first-best model (or, the benchmark model) of the parts supply problem is for 

the maker to offer a contract that determines the parts quality ix  to be produced by the 

supplier and the price iw  to be paid to him, knowing the supplier’s marginal cost i , 

theta(i). In the first, we build a model of the case that the maker knows the supplier is 

efficient, and in the second a model of the case that the maker knows the supplier is 

inefficient. These models are built separately. The models are to simply maximize the 

maker’s utility under non-negativity constraints on the decision variable ix . 
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2.1.2 The Fist-Best Model with the Efficient Supplier (PS2_F_eff.gms)2 

 Let us go through the input file of the first-best model with the efficient supplier 

(List 2.1). The first-best model when the supplier type is known to be efficient is expressed 

as the following maker's utility maximization problem:  

      
i

iii xcxbUtilmax      (2.1) 

subject to 

   5.0
ii xxb   i       (2.2) 

   0 iiii xxc   i       (2.3) 

 

List 2.1: The First-best Model with the Efficient Supplier (PS2_F_eff.gms) 
...  

7 * Definition of Set 
8 Set     i       type of supplier        /eff/; 
9 * Definition of Parameters 
10 Parameter 
11         theta(i)        efficiency      /eff    0.2/; 
12 * Definition of Primal/Dual Variables 
13 Positive Variable 
14         x(i)            quality 
15         b(i)            maker's revenue 
16         c(i)            cost; 
17 Variable 
18         Util            maker's utility; 
19 Equation 
20         obj             maker's utility function 
21         rev(i)          maker's revenue function 
22         pc(i)           participation constraint; 
23 * Specification of Equations 
24 obj..   Util =e= sum(i, (b(i)-c(i))); 
25 rev(i)..b(i) =e= x(i)**(0.5); 
26 pc(i).. c(i)-theta(i)*x(i) =e= 0; 
27  

                                                      

2 Those in the parentheses after the section titles show GAMS input file names shown in the following 

part. 
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28 * Setting Lower Bounds on Variables to Avoid Division by Zero 
29 x.lo(i)=0.0001;; 
30  
31 * Defining and Solving the Model 
32 Model FB1 /all/; 
33 Solve FB1 maximizing Util using NLP; 
34  
35 Parameter 
36                 db(i)   derivative of b 
37                 w(i)    price 
38 ; 
39 db(i)   =0.5*x.l(i)**(-0.5); 
40 w(i)    =c.l(i); 
41  
42 Display x.l, b.l, c.l, util.l, db, w; 
43 * End of Model 

 

 In Line 8, the supplier’s type is expressed right after the Set directive as an index 

i (i.e., the suffix i  in ordinary algebraic equations), such as i =eff (the efficient supplier) 

and i =inf (the inefficient supplier). As this model has only the efficient supplier, the index 

i can be omitted. However, the index i is kept because the same model is used later as the 

model with an inefficient supplier by replacing eff with inf. The efficiency of each supplier 

type, denoted by his marginal cost of the parts theta(i) ( i  in the mathematical model) is 

shown in Line 11. 

 In Lines 13–18, the decision (endogenous) variables are declared. The decision 

variables are the quality of supplier i ’s parts x(i), the maker’s revenue received from 

supplier i ’s parts b(i), and supplier i ’s cost c(i). And, as these variables must be 

non-negative, they are declared with the Positive Variable directive. 3  The other 

endogenous variable is the value of the objective function, whose name is defined as Util. 

As the sign of the value of Util is not known before solving the model, it must be declared 

with the Variable directive so that its value can be either positive or negative. Lines 19–22 

show the names of the objective function (i.e., the maker’s utility function) and the 
                                                      

3 In GAMS, Positive Variable means non-negative variable; thus, it can be zero. 
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constraints or the equations (i.e., revenue function and cost function). In GAMS programs, 

names must be given to all equations (including the objective function).4 The names of the 

objective function (2.1), revenue function (2.2), and cost function (2.3) are named as obj, 

rev(i), and pc(i)in the program, respectively. 

 Lines 24–26 define the equations (including the objective function), which 

constitute the maximization problem presented above. Line 24 shows the objective function.5 

Line 25 expresses the maker’s revenue  b , which is assumed to be a simple concave 

function   5.0
ii xxb  . Line 26 shows the supplier’s cost  ic  as a linear function of ix  

with the constant marginal cost i . In GAMS, “=e=” means strict equality, “*”(unless it 

appears in the first column in a line) is multiplication, and “**” means power. 

 In Line 29, an arbitrary very small positive value is assigned as the lower bound of 

x(i) so as to avoid computational problems (e.g., division by zero). If a solution matches this 

lower bound, we must reconsider the lower bound, because this solution may be affected by 

this artificially-set lower bound. Line 32 gives the model name FB1 to the model consisting 

of all the equations including the objective function. Line 33 is a statement to solve the 

model FB1 maximizing Util by using a non-linear programming problem (NLP) solver. 

 The lines after Line 34 are added for further analyses. The symbol db(i) means 

the value of the first-order derivative of b(i) with respect to x(i) evaluated at the solution 

of x(i). Although the contract must include not only the parts quality x(i) but also the 

                                                      

4  While we often use mechanical equation names, such as Equation 1, Equation 2, etc. in 

mathematical expressions, we can freely make names that suggest the meanings of the equations in 

GAMS. 

5 The objective function is the weighted sum of the difference between revenues and costs for all i . 

The sum in algebraic equations ...i  is expressed as “sum(i, …)” in GAMS. The summation, 

however, does not carry any significance here because we consider only one supplier type for i . 
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2    7  * Definition of Set 
3    8  Set     i       type of supplier        /eff/; 
4    9  * Definition of Parameters 
5   10  Parameter 
6   11          theta(i)        efficiency      /eff    0.2/; 
7   12  * Definition of Primal/Dual Variables 
8   13  Positive Variable 
9   14          x(i)            quality 

... 
11                S O L V E      S U M M A R Y 
12 
13      MODEL   FB1                 OBJECTIVE  Util 
14      TYPE    NLP                 DIRECTION  MAXIMIZE 
15      SOLVER  CONOPT              FROM LINE  33 
16 
17 **** SOLVER STATUS     1 NORMAL COMPLETION          
18 **** MODEL STATUS      2 LOCALLY OPTIMAL            
19 **** OBJECTIVE VALUE                1.2500 

...   
21  ** Optimal solution. Reduced gradient less than tolerance. 

... 
23                        LOWER     LEVEL     UPPER    MARGINAL 
24 
25 ---- EQU obj             .         .         .        1.000       
26 
27   obj  total surplus function 
28 
29 ---- EQU rev  maker's revenue function 
30 
31        LOWER     LEVEL     UPPER    MARGINAL 
32 
33 eff      .         .         .        1.000       
34 
35 ---- EQU pc  participation constraint 
36 
37        LOWER     LEVEL     UPPER    MARGINAL 
38 
39 eff      .         .         .       -1.000       
40 
41 ---- VAR x  quality 
42 
43        LOWER     LEVEL     UPPER    MARGINAL 
44 
45 eff 1.0000E-7     6.250     +INF       EPS        
46 
47 ---- VAR b  maker's revenue 
48 
49        LOWER     LEVEL     UPPER    MARGINAL 

GRIPS Policy Research Center Discussion Paper : 11-27



 

 

Page 11 

50 
51 eff      .        2.500     +INF       .          
52 
53 ---- VAR c  cost 
54 
55        LOWER     LEVEL     UPPER    MARGINAL 
56 
57 eff      .        1.250     +INF       .          
58 
59                        LOWER     LEVEL     UPPER    MARGINAL 
60 
61 ---- VAR Util           -INF      1.250     +INF       .          

... 
63 ----     42 VARIABLE x.L  quality 
64 
65 eff 6.250 
66 
67 
68 ----     42 VARIABLE b.L  maker's revenue 
69 
70 eff 2.500 
71 
72 
73 ----     42 VARIABLE c.L  cost 
74 
75 eff 1.250 
76 
77 
78 ----     42 VARIABLE Util.L              =        1.250  total surplus
79 
80 ----     42 PARAMETER db  derivative of b 
81 
82 eff 0.200 
83 
84 
85 ----     42 PARAMETER w  price 
86 
87 eff 1.250 

... 

 

 In the first part of the output file, the codes originally put in the input file appear 

with their line numbers (i.e., echo print). Make sure that “**optimal solution” appears 

in the SOLVE SUMMARY part after this echo print as shown in Line 21 of List 2.2. (If not, 

whatever results are meaningless as solutions.) Then, there are two types of solutions; EQU 
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(mainly, expressing the Lagrange multipliers of the constraints) and VAR (mainly, the solved 

values of the decision or endogenous variables). The EQU block comes first. In the EQU block, 

the Lagrange multipliers are shown in the column under MARGINAL.7 For example, the 

Lagrange multiplier of constraint rev(i) is 1.000. (Incidentally, in any maximization 

problem, the Lagrange multiplier of the objective function is always unity.)  

 The following VAR block contains the solutions of the decision or endogenous 

variables. We can see that the maker’s marginal revenue db(i) evaluated at the solved 

parts quality x(i) is equal to the supplier’s marginal cost theta(i). As the maker exploits 

her bargaining power in her take-it-or-leave-it offer to the supplier and does not allow any 

gains captured by him, the price w(i) is as low as the supplier’s cost. Thus, this problem to 

maximize the maker’s utility can be also considered as a maximization problem of the total 

surplus (Table 2.1). 

 

Table 2.1: Numerical Solution of the First-best Model for the Efficient Supplier 
Variable Variable Names in the GAMS 

Program 
Solved Values 

Parts Quality x(i) 6.250 
Maker’s Revenues b(i) 2.500 
Maker’s Costs c(i) 1.250 

ii dxdb  db(i) 0.200 

Price w(i) 1.250 
Maker’s Utility 
(or Total Surplus) 

Util 1.250 

 

                                                      

7 When the constrained maximization is expressed as follows: 

  xfmax  

subject to    0xgi  i  

their Lagrange multipliers are positive (Varian 1992, Chapter 27). As the maximization problems in 

this paper are not necessarily expressed in such a form for the convenience of interpretation, most 

Lagrange multipliers end up with negative values. This effects no substance. 
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2.1.3 The First-best Model with the Inefficient Supplier (PS2_F_inf.gms) 

 The first-best model with the inefficient supplier can be built by making the 

following two changes in the original input file of PS2_F_eff.gms:  

 

 in Line 8, replace eff appearing as the element of set i by inf  

 in Line 11, put the marginal cost of the inefficient supplier for theta(i) 

 

 The solutions of the maximization problem and the values computed from the 

solutions are in Table 2.2. As pointed out in Section 2.1.2, the maker’s marginal revenue 

db(i) evaluated at the solved parts quality x(i) is equal to the supplier’s marginal cost 

theta(i), and this utility maximization coincides with the maximization of the total 

surplus. 

 

Table 2.2: Numerical Solution of the First-best Model for an Inefficient Supplier 
Variable Variable Names in the GAMS 

Program 
Solved Values 

Parts Quality x(i) 2.778 
Maker’s Revenues b(i) 1.667 
Maker’s Costs c(i) 0.833 

ii dxdb  db(i) 0.300 

Price w(i) 0.833 
Maker’s Utility 
(or Total Surplus) 

Util 0.833 

 

2.1.4 The First-Best Model with Both Supplier Types (PS2_F.gms) 

 Now that we deal with a model that includes both supplier types, we introduce an 

ex-ante probability ip  which indicates the i -th type exists. We assume that the maker 

knows this probability (common knowledge). The maximization problem of the first-best 

model is written in the following: 

    
i

iii wxbpUtilmax      (2.1’) 

subject to 
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   5.0
ii xxb   i       (2.2) 

 ruxw iii   i       (2.3’) 

In comparison with the maximization problem consisting of (1.1)-(1.3), there are two 

changes made. The first change is made in the objective function (2.1’). Now, the maker’s 

utility weighted with the probability is maximized. The second change is made in (2.3’). In 

the previous model, by assuming the take-it-or-leave-it offer on an a priori basis, no surplus 

is given to the supplier; thus, ic  is solved first. Then, ic  is equated to iw . In the present 

model, we explicitly use iw  as a decision variable. Then, we introduce the participation 

constraint that the supplier’s (net) utility, i.e., his receipt from the maker w(i) minus the 

production cost theta(i)*x(i), must be greater than or equal to the reservation utility 

ru–the minimum utility with which the supplier participates in the contract. If this 

condition is not satisfied, the supplier does not accept the contract offered by the maker. 

 The explanation on the input file of the computer model in the following will be 

centered on the differences from the previous models (List 2.3). In Line 8, both supplier 

types eff and inf are put as the elements of Set i. In Lines 11–16, the marginal costs 

theta(i) and the probability p(i) of both supplier types are put. In Line 17, the 

reservation utility ru is given. Although ru is set to be zero in this numerical example, it can 

be any number. 

 In Lines 20–25, the decision variables are defined. Differently from the previous 

models, w(i) is defined as a decision variable in this model. In Lines 26–29, the names of 

the objective functions and the equations are shown. Lines 32–34 contain the equations of 

the maximization problem. Line 32 shows the objective function. The maker’s utility is the 

sum of net revenues (i.e., the profit margin between b(i) and w(i)) weighted with the 

probability. Line 33 is the revenue function, defined as 
5.0

ii xb   as in the previous models. 

Line 34 represents the participation constraint. The inequality symbol   is expressed as 

“=g=” in GAMS programs. Line 40 defines the model that consists of all the equations, and 
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Line 41 is a directive to solve the model by maximizing the maker’s utility Util. 

 

List 2.3: The Integrated First-best Model for Two Supplier Types (PS2_F.gms) 
... 

7 * Definition of Set 
8 Set     i       type of supplier        /eff, inf/; 
9 
10 * Definition of Parameters 
11 Parameter 
12         theta(i)        efficiency      /eff    0.2 
13                                             inf     0.3/ 
14         prob(i)         probability of type 
15                                             /eff    0.2 
16                                             inf     0.8/; 
17 Scalar  ru  reservation utility        /0/; 
18 
19 * Definition of Primal/Dual Variables 
20 Positive Variable 
21         x(i)            quality 
22         b(i)            maker's revenue 
23         w(i)            price; 
24 Variable 
25         Util            total surplus; 
26 Equation 
27         obj             supplier's profit function 
28         rev(i)          maker's revenue function 
29         pc(i)           participation constraint; 
30 
31 * Specification of Equations 
32 obj..   Util =e= sum(i, prob(i)*(b(i)-w(i))); 
33 rev(i)..b(i) =e= x(i)**(0.5); 
34 pc(i).. w(i)-theta(i)*x(i) =e= 0; 
35 
36 * Setting Lower Bounds on Variables to Avoid Division by Zero 
37 x.lo(i)=0.0000001; 
38 
39 * Defining and Solving the Model 
40 model FB1 /all/; 
41 solve FB1 maximizing Util using NLP; 
42 
43 * End of Model 

 

The Lagrange multipliers of the participation constraints pc(i) are binding for both 

supplier types (Lines 128-133, of List 2.4). This means that the maker, who knows the 
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supplier type, offers him the price, depending upon his type, with which his utility is 

indifferent from the reservation level ru. The solved values of the parts quality x(i), the 

maker’s revenue b(i), and the maker’s utility Util are shown in the VAR block. 

  

List 2.4: Output File of the Integrated First-best Model (PS2_F.lst) 
74                S O L V E      S U M M A R Y 
75  
76      MODEL   FB1                 OBJECTIVE  Util 
77      TYPE    NLP                 DIRECTION  MAXIMIZE 
78      SOLVER  CONOPT              FROM LINE  41 
79  
80 **** SOLVER STATUS     1 NORMAL COMPLETION          
81 **** MODEL STATUS      2 LOCALLY OPTIMAL            
82 **** OBJECTIVE VALUE                0.9167 
...  
117 ---- EQU obj             .         .         .        1.000       
118  
119   obj  supplier's profit function 
120  
121 ---- EQU rev  maker's revenue function 
122  
123        LOWER     LEVEL     UPPER    MARGINAL 
124  
125 eff      .         .         .        0.200       
126 inf      .         .         .        0.800       
127  
128 ---- EQU pc  participation constraint 
129  
130        LOWER     LEVEL     UPPER    MARGINAL 
131  
132 eff      .         .         .       -0.200       
133 inf      .         .         .       -0.800       
134  
135 ---- VAR x  quality 
136  
137        LOWER     LEVEL     UPPER    MARGINAL 
138  
139 eff 1.0000E-7     6.250     +INF  2.0951E-9       
140 inf 1.0000E-7     2.778     +INF       EPS        
141  
142 ---- VAR b  maker's revenue 
143  
144        LOWER     LEVEL     UPPER    MARGINAL 
145  
146 eff      .        2.500     +INF       .          
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147 inf      .        1.667     +INF       .          
148  
149 ---- VAR w  price 
150  
151        LOWER     LEVEL     UPPER    MARGINAL 
152  
153 eff      .        1.250     +INF       .          
154 inf      .        0.833     +INF       .          
155  
156                        LOWER     LEVEL     UPPER    MARGINAL 
157  
158 ---- VAR Util           -INF      0.917     +INF       .          
159  
160   Util  total surplus 

 

 The solutions of this model, shown in Table 2.3, coincide with those of the models 

(Tables 2.1 and 2.2), which are constructed for each supplier type separately.  

 

Table 2.3: Numerical Solutions of the Integrated First-best Model 
Variables Variable Names in 

GAMS Program 
Supplier’s Type Solved Values 

Parts Quality x(i) efficient (eff) 6.250 
  inefficient (inf) 2.778 
Maker’s Revenue b(i) efficient (eff) 2.500 
  inefficient (inf) 1.667 
Price w(i) efficient (eff) 1.250 

 inefficient (inf) 0.833 
Maker’s Utility 
(or Total Surplus) 

Util  0.917 

 

2.1.5 The Second-Best Model with Both Supplier Types (PS2_S.gms) 

 The second-best model of the parts supply problem is constructed in such a way 

that the maker offers a contract regarding the parts quality ix  and the price iw  to be paid 

to the supplier without knowing the supplier’s type. The efficient supplier may report falsely 

the marginal cost higher than his real one to obtain the extra gain by exploiting the 

information asymmetry. To avoid such a situation, the maker takes account of the incentive 

compatibility condition–that any supplier can obtain no extra gain even though he reports 

his type falsely. 

GRIPS Policy Research Center Discussion Paper : 11-27



 

 

Page 18 

 The second-best model can be constructed by adding the incentive compatibility 

condition (2.4) to the first-best model with (2.1’), (2.2), and (2.3’) shown in Section 2.1.4. 

While the first-best models can be built for the efficient supplier and the inefficient supplier 

either separately or jointly, the second-best model must include both suppliers in one model. 

This is because the parts quality x(i) and the price w(i) of both suppliers must be included 

in the incentive compatibility condition. 

 The second-best model is as follows: 

    
i

iii wxbpUtilmax      (2.1’) 

subject to 

   5.0
ii xxb   i       (2.2) 

 ruxw iii   i       (2.3’) 

 
jijiii xwxw    ji       (2.4) 

The left-hand side of (2.4) is the i -th type supplier’s utility gained by reporting his type 

“type i ” truly, and the right-hand side is his utility gained by reporting his type falsely 

“type j ”. By offering a contract satisfying the condition that the value of the right-hand 

side cannot exceed that of the left-hand side, the maker does not give any type of suppliers 

opportunities to earn extra even though they reports their types falsely. The directive Alias 

in Line 9 means that i and j are used interchangeably.  

 In Line 30, the names of the incentive compatibility conditions ic(i, j) are given; 

in Line 36 the incentive compatibility conditions are specified. These constraints can be 

rewritten in the following four equations: 

 
infeffinfeffeffeff xwxw        (2.4a) 

 
effeffeffeffeffeff xwxw        (2.4b) 

 
effinfeffinfinfinf xwxw        (2.4c) 

 
infinfinfinfinfinf xwxw        (2.4d) 
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The new model system includes the above four equations, compared with two equations of 

the original system (2.4).8 Equations (2.4b) and (2.4d) trivially holds with strict equality and, 

thus, are redundant in light of the original constraint (2.4). Consequently, there is no 

difference between the system stated above and the original system of (2.4).  

 

List 2.5: Input File of the Second-best Model (PS2_S.gms) 
...  

7 * Definition of Set 
8 Set     i       type of supplier        /eff, inf/; 
9 Alias (i,j); 
10 * Definition of Parameters 
11 Parameter 
12         theta(i)        efficiency       /eff    0.2 
13                                              inf     0.3/ 
14         prob(i)         probability of type 
15                                              /eff    0.2 
16                                              inf     0.8/; 
17 Scalar  ru              reservation utility     /0/; 
18  
19 * Definition of Primal/Dual Variables 
20 Positive Variable 
21         x(i)            quality 
22         b(i)            maker's revenue 
23         w(i)            price; 
24 Variable 
25         Util            maker's utility; 
26 Equation 
27         obj             total surplus function 
28         rev(i)          maker's revenue function 
29         pc(i)           participation constraint 
30         ic(i,j)         incentive compatibility constraint; 
31  
32 * Specification of Equations 
33 obj..   Util =e= sum(i, prob(i)*(b(i)-w(i))); 
34 rev(i)..b(i) =e= x(i)**(0.5); 
35 pc(i).. w(i)-theta(i)*x(i) =g= ru; 

                                                      

8 If you feel uneasy with this redundancy, you can rewrite Line 36 as: 

 ic(i,j)$(ord(i) ne ord(j))..w(i)-theta(i)*x(i) =g= w(j)-theta(i)*x(j); 

where “$(…)” means a dummy variable expressing a condition that the relation inside the parenthesis 

holds. And, ”ord(i)” means the order of index i in the defined set, and “ne” means “not equal.” 
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36 ic(i,j)..w(i)-theta(i)*x(i) =g= w(j)-theta(i)*x(j); 
37  
38 * Setting Lower Bounds on Variables to Avoid Division by Zero 
39 x.lo(i)=0.0000001; 
40  
41 * Defining and Solving the Model 
42 model SB1 /all/; 
43 solve SB1 maximizing Util using NLP; 
44  
45 * End of Model 

 

 The input file is shown in List 2.5: its solution is printed in the output file (List 

2.6). 

 

List 2.6: Output File of the Second-best Model (PS2_S.lst) 
...  
123 ---- EQU rev  maker's revenue function 
124  
125        LOWER     LEVEL     UPPER    MARGINAL 
126  
127 eff      .         .         .        0.200       
128 inf      .         .         .        0.800       
129  
130 ---- EQU pc  participation constraint 
131  
132        LOWER     LEVEL     UPPER    MARGINAL 
133  
134 eff      .        0.237     +INF       .          
135 inf      .         .        +INF     -1.000       
136  
137 ---- EQU ic  incentive compatibility constraint 
138  
139            LOWER     LEVEL     UPPER    MARGINAL 
140  
141 eff.inf      .         .        +INF     -0.200       
142 inf.eff      .        0.388     +INF       EPS        
143  
144 ---- VAR x  quality 
145  
146        LOWER     LEVEL     UPPER    MARGINAL 
147  
148 eff 1.0000E-7     6.250     +INF  6.7551E-8       
149 inf 1.0000E-7     2.367     +INF       .          
150  
151 ---- VAR b  maker's revenue 
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152  
153        LOWER     LEVEL     UPPER    MARGINAL 
154  
155 eff      .        2.500     +INF       .          
156 inf      .        1.538     +INF       .          
157  
158 ---- VAR w  price 
159  
160        LOWER     LEVEL     UPPER    MARGINAL 
161  
162 eff      .        1.487     +INF       .          
163 inf      .        0.710     +INF       .          
164  
165                        LOWER     LEVEL     UPPER    MARGINAL 
166  
167 ---- VAR Util           -INF      0.865     +INF       .          
...  

 

2.1.6 The First-Best and the Second-Best Integrated Models (PS2_F&S.gms) 

 In the previous sections, we built and solved the first-best and second-best models 

individually. Now we present a program to solve both models as one model. Note that the 

difference between both the first-best and second-best models is found only in the use of the 

incentive compatibility conditions. The codes up to Line 39 in the new model (List 2.7) are 

identical to those in the second-best model (List 2.5). Line 42 defines the first-best model as 

FB1, which consists of three equations, obj, rev(i), and pc(i), and Line 43 directs the 

computer to solve the model FB1 by maximizing Util. Similarly, Line 45 defines the 

second-best model as SB1, which consists of four equations, obj, rev(i), pc(i), and 

ic(i,j). The equation ic(i,j) is the incentive compatibility conditions. Line 46 directs 

to solve the model SB1 by maximizing Util.  

 There are two technical points in the programming. First, in the previous models, 

when we define the model, we include “all” the equations described in the preceding lines; 

so we express the model contents as: 

 Model model-name /all/;  
 
Alternatively, we can express more explicitly like: 
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 Model model-name /obj, rev, pc/; 
 
In other words, inside of “/…/”, we exactly place the equation names used for the model. 

Note that the indices such as “(i)” are not used in “/…/”. 

 

List 2.7: The First-best and the Second-best Integrated Model (PS2_F&S.gms) 
...  

7 * Definition of Set 
8 Set     i       type of supplier        /eff, inf/; 
9 Alias (i,j); 
10 * Definition of Parameters 
11 Parameter 
12         theta(i)        efficiency      /eff    0.2 
13                                             inf     0.3/ 
14         p(i)             probability of type 
15                                             /eff    0.2 
16                                             inf     0.8/; 
17 Scalar  ru              reservation utility     /0/; 
18  
19 * Definition of Primal/Dual Variables 
20 Positive Variable 
21         x(i)            quality 
22         b(i)            maker's revenue 
23         w(i)            price; 
24 Variable 
25         Util            maker's utility; 
26 Equation 
27         obj             maker’s utility function 
28         rev(i)          maker's revenue function 
29         pc(i)           participation constraint 
30         ic(i,j)         incentive compatibility constraint; 
31  
32 * Specification of Equations 
33 obj..   Util =e= sum(i, p(i)*(b(i)-w(i))); 
34 rev(i)..b(i) =e= x(i)**(0.5); 
35 pc(i).. w(i)-theta(i)*x(i) =g= ru; 
36 ic(i,j)..w(i)-theta(i)*x(i) =g= w(j)-theta(i)*x(j); 
37  
38 * Setting Lower Bounds on Variables to Avoid Division by Zero 
39 x.lo(i)=0.0001;; 
40  
41 * Defining and Solving the Model 
42 Model FB1 /obj,rev,pc/; 
43 Solve FB1 maximizing Util using NLP; 
44  
45 Model SB1 /obj,rev,pc,ic/; 
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46 Solve SB1 maximizing Util using NLP; 
47  
48 * End of Model 

 

 Second, as we now solve multiple models in one computer program using the Solve 

directive for several times, the same number of SOLVE SUMMARY’s appear in the output file. 

At the top of each of SOLVE SUMMARY, the model name such as FB1 appears in Line 81 and 

SB1 in Line 197 (List 2.8). You will find the output files of this new model encompassing the 

solutions of the first-best and the second-best models.  

 

List 2.8: Output File of the First-best and the Second-best Integrated Model (PS2_F&S.lst) 
...  
79                S O L V E      S U M M A R Y 
80  
81      MODEL   FB1                 OBJECTIVE  Util 
82      TYPE    NLP                 DIRECTION  MAXIMIZE 
83      SOLVER  CONOPT              FROM LINE  43 
84  
85 **** SOLVER STATUS     1 NORMAL COMPLETION          
86 **** MODEL STATUS      2 LOCALLY OPTIMAL            
87 **** OBJECTIVE VALUE                0.9167 

...  
195                S O L V E      S U M M A R Y 
196  
197      MODEL   SB1                 OBJECTIVE  Util 
198      TYPE    NLP                 DIRECTION  MAXIMIZE 
199      SOLVER  CONOPT              FROM LINE  46 
200  
201 **** SOLVER STATUS     1 NORMAL COMPLETION          
202 **** MODEL STATUS      2 LOCALLY OPTIMAL            
203 **** OBJECTIVE VALUE                0.8654 
...  

 

2.1.7 Comparison of the Solutions between the First-best and the Second-best 

 Models 

 The comparison of the solutions between the first-best and the second-best models 

are summarized in Table 2.4. The incentive compatibility condition is binding only for the 

efficient supplier (i.e., the Lagrange multiplier for the efficient supplier is non-zero). In other 
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words, the efficient supplier’s utility generated when he reports his type truly is indifferent 

to the one obtained when he reports his type falsely. In contrast, since the inefficient 

supplier has no incentive to report his type falsely, the incentive compatibility condition is 

not binding. The comparison is further summarized below. 

 

Table 2.4: Numerical Solutions of the First-best Model and the Second-best Model 
Variables and 
Constraints 

Variable Names 
in the GAMS 

Program 

Supplier Type Second-best 
Model Solution*

First-best 
Model Solution

Parts Quality x(i) Efficient(eff) 6.250 6.250 
  Inefficient(inf) 2.367 2.778 
Maker’s 
Revenues 

b(i) Efficient(eff) 2.500 2.500 
 Inefficient(inf) 1.538 1.667 

Price w(i) Efficient(eff) 1.487 1.250 
 Inefficient(inf) 0.710 0.833 

Maker’s 
Utility 

Util  0.865 0.917 

Supplier’s 
Utility (=Info. 
Rent) 

pc.l(i) 
-pc.lo(i) 

Efficient(eff) 0.237 0.000 
Inefficient(inf) 0.000 0.000 

Lagrange 
Mult. of the 
Incentive 
Comp. Const. 

iceff(”eff”,”inf”) 
“Efficient” pretends “inefficient.” 

–0.200 –

icinf(”inf”,”eff”) 
“Inefficient” pretends “efficient.” 

0.000 –

Participation 
Constraint 

pc.m(i) Efficient(eff) 0.000 –0.200 
 Inefficient(inf) –0.100 –0.800 

Note: Solved values in the first-best model are all identical to those shown in Table 2.3. 

 

  First, the maker offers to the efficient supplier a price w(“eff”) which is higher 

than the one that would be offered in the first-best case. This is because the maker wants to 

dampen the efficient supplier’s motive to obtain an extra gain by reporting his type falsely. 

As a result, a slack, i.e., the information rent, is generated in the participation constraint of 

the efficient supplier. The value of this slack is 0.237, which corresponds to the difference 

between the LEVEL value pc.l(“eff”) and the LOWER value pc.lo(“eff”)of the 
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pc(“eff”).9 Because the reservation utility ru is assumed to be zero in the present model, 

the information rent matches the efficient supplier’s utility. Even though the efficient 

supplier enjoys a higher price, his parts quality remains as the same level in the first-best 

case. His higher price results solely from his information rent.  

 Second, while in the second-best case the efficient supplier earns the information 

rent, the maker does not allow the inefficient supplier to earn any information rent. The 

maker offers the inefficient supplier a price w(“inf”), which is lower than the one in the 

first-best case, in order not to make the efficient supplier’s information rent too liberal. As a 

result, the inefficient supplier ends up with the lower quality. Third, the maker’s utility 

decreases partly because of the information rent (0.237), which the maker must pay to the 

efficient supplier and partly because of the loss resulted from the degraded parts quality 

(0.411) made by the inefficient supplier. 

 

2.2 The 3-Type Models 

2.2.1 Outline of the 3-Type Models  

 In this section, we present the models distinguishing three supplier types (0, 1, 2; 

the smaller number indicates the higher efficiency). The key difference of the N-type 

( 3N ) models from the 2-type models lies in the complexity regarding the incentive 

compatibility conditions of the second-best models. The 2-type models need incentive 

compatibility conditions to prevent a false-reporting only for two cases. The one is the case 

that the efficient supplier falsely reports “inefficient”, while the other is the case that the 

inefficient supplier falsely reports “efficient”. In general as we must concern all the 

combinations of each supplier against all the other suppliers,  NN 1  incentive 

                                                      

9 As for the meanings on the values under LOWER, LEVEL, and UPPER in the EQU, refer to McCarl 

(2009, §2.4.5.2). If “Option solslack=1;” is put at any place before the SOLVE statement in the 

program; then, SLACK appears instead of LEVEL in the output file. 
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compatibility conditions are needed in the N-type models. A 3-type model requires six 

incentive compatibility conditions; that maybe fine. But, a 10-type model requires 90 

conditions! 

 The incentive compatibility conditions as “a round robin” are called the global 

(incentive compatibility) conditions. To cope with the complexity regarding a large number 

of the global conditions (often in the theoretical models), we substitute the two local 

(incentive compatibility) conditions for the global condition by introducing an assumption, 

the Spence-Mirrlees single crossing property (SCP). The local conditions are to simply 

prevent the supplier from falsely reporting his type as one type lower or higher than his real 

type. Furthermore, we add another assumption of the monotonicity (MN) of the parts 

quality ix  with respect to the supplier type index i  indicating efficiency. That is, as the 

supplier’s efficiency increases, his parts quality improves. This assumption allows us to 

make the 3-type models with only one local condition. 

 The following subsections go as follows. In Section 2.2.2, we build the first-best 

model, which has nothing to do with the SCP and the monotonicity assumptions, because 

the incentive compatibility conditions are not needed. In Section 2.2.3, on the basis of the 

first-best model, we develop the second-best model with the local conditions, assuming that 

both the SCP and the monotonicity assumption hold. In Section 2.2.4, we build the 

second-best model, by replacing the local conditions with the global conditions, and show the 

solutions of this model coincide with those of the model with the local conditions of 

developed in Section 2.2.3. In Section 2.3, we deal with the models where neither the SCP 

nor the monotonicity assumption holds. 

 

2.2.2 The First-best Model (PS3_F.gms) 

 The 3-type first-best model can be made by extending the 2-type model discussed in 

Section 2.1.4 with the following amendments. In Line 8 of List 2.9, three types are defined. 

(The most efficient type is defined as 0i .) In Lines 12–14, the marginal costs theta(i) 
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are put, and in Lines 13–18 the ex-ante probability is given for each supplier type. In Line 

42, the model name FB2 replaces the previous name FB1. 

 

List 2.9: The 3-type First-best Model (PS3_F.gms) 
...  

7 * Definition of Set 
8 Set     i       type of supplier        /0,1,2/; 
9 Alias (i,j); 
10 * Definition of Parameters 
11 Parameter 
12         theta(i)        efficiency      /0      0.1 
13                                             1       0.2 
14                                             2       0.3/ 
15         p(i)             probability of type 
16                                             /0      0.2 
17                                             1       0.5 
18                                             2       0.3/; 
19 Scalar  ru              reservation utility     /0/; 
20  
21 * Definition of Primal/Dual Variables 
22 Positive Variable 
23         x(i)            quality 
24         b(i)            maker's revenue 
25         w(i)            price; 
26 Variable 
27         Util            maker's utility; 
28 Equation 
29         obj             maker’s utility function 
30         rev(i)          maker's revenue function 
31         pc(i)           participation constraint 
32  
33 * Specification of Equations 
34 obj..   Util =e= sum(i, p(i)*(b(i)-w(i))); 
35 rev(i)..b(i) =e= x(i)**(0.5); 
36 pc(i).. w(i)-theta(i)*x(i) =g= ru; 
37  
38 * Setting Lower Bounds on Variables to Avoid Division by Zero 
39 x.lo(i)=0.0001;; 
40  
41 * Defining and Solving the Model 
42 Model FB2 /all/; 
43 Solve FB2 maximizing Util using NLP; 
44  
45 * End of Model 
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2.2.3 The Second-best Model with the Local Incentive Compatibility Conditions 

 (PS3_S.gms) 

 The second-best model must have the incentive compatibility condition, which is 

the only difference from the first-best model. As stated before, the complexity of the 

second-best model is centered on the incentive compatibility condition.  

 Before moving into the second-best model, we explain the relationships between 

the global and local incentive conditions in a matrix format (Table 2.5). In that table all the 

types that the i -th type supplier can report truly and falsely are shown as dark and light 

grey areas.  

 

Table 2.5: Global and Local Incentive Compatibility Conditions 
 Reported Supplier Type 

0 … 1i  i 1i  … 1N  

T
ru

e 
S

u
pp

li
er

 T
yp

e 

0  00 |U  …  01 | iU  0|iU   01 | iU …  01 | NU
…    …    

1i      1| iiU     

i   iU  |0  …  iiU  |1  iiU  |   iiU  |1
…  iNU  |1

1i      1| iiU     

…    …    
1N      1| NiU     

 

 For the sake of the explanation below, we define the i -th supplier’s utility 

generated when he reports his type as the j -th supplier as  ijU  | . The global incentive 

compatibility conditions to discourage him from false reporting can be written as follows: 

    ijii UU  ||   j  

This is equivalent to: 

    iii UU  || 0  

    iii UU  || 1  

    iii UU  || 2  
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 … 

    iiii UU  || 1  

    iiii UU  ||   (Note that this is a trivial one.) 

    iiii UU  || 1  

 … 

    iNii UU  || 1  

 One can see that the number of the global conditions increases rapidly, as the 

number of types increases. There are two methods to cope with this difficulty. The first 

method is to introduce the SCP assumption and to substitute the local conditions for the 

global ones. If the SCP assumption holds, only two conditions are needed for each supplier 

among these many. The one condition, denoted as LICD, is to discourage a supplier from 

reporting his type as one type lower than his real type. The other condition, denoted as 

LICU, is to discourage him from reporting one type higher: 

    iiii UU  || 1  i      (LICU) 

    iiii UU  || 1  i      (LICD) 

These conditions are imposed for the cases shown in the dark grey areas in Table 2.5. 

 The second method to cope with the difficulty is to add the condition of the 

monotonicity (MN) regarding the parts quality ix  as: 

 Nxx  ...0  

If the monotonicity condition is added, either LICD or LICU is sufficient for the local 

conditions. 

 The commonly used approach to the second method is to build and solve the model 

without imposing MN, and ascertain that the solutions do satisfy MN. If the solutions 

satisfy MN, the omission of MN in the model is justified. Conversely, if MN is not satisfied in 

the solutions, one must rewrite the model in such a way as to add either MN or LICD (or 
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LICU) explicitly. (More detailed explanation will be given in Section 2.3.3.) We follow this 

approach here. 

 In our assumed supplier’s utility  iiii xuwU ,  and   iiii xxu  , , the first 

derivative of u  with respect to ix , i.e., xu  is a decreasing function with respect to i ; 

therefore, the SCP is satisfied. Accordingly, we can simplify the model by replacing the 

global conditions with the local conditions. 

 In the following, we develop the model with LICD but without MN as:. 

    
i

iii wxbpUtilmax      (2.1’) 

subject to 

   5.0
ii xxb   i       (2.2) 

 ruxw iii   i       (2.3’) 

 11   iiiiii xwxw   i      (2.5) 

In the model (PS3_S.gms), LICD (2.5) appears in Line 38. The supplier who is by one type 

less efficient than the i -th type supplier can be written as 1i , as intuition tells you. 

 The participation constraint is set for all the suppliers as in the first-best model to 

compute the information rent earned by each supplier, which is indicated as the solved 

slacks of the constraints (Line 37 of List 2.10). As this constraint is not binding for other 

than the supplier 2i  (i.e., the most inefficient supplier), none of these extra constraints 

does not distort the solutions at all. 

 

List 2.10: The 3-type Second-best Model (PS3_S.gms) 
...  

7 * Definition of Set 
8 Set     i       type of supplier        /0,1,2/; 
9 Alias (i,j); 
10 * Definition of Parameters 
11 Parameter 
12         Theta(i)        efficiency       /0      0.1 
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13                                              1       0.2 
14                                              2       0.3/ 
15         p(i)             probability of type 
16                                              /0      0.2 
17                                              1       0.5 
18                                              2       0.3/; 
19 Scalar  ru              reservation utility     /0/; 
20  
21 * Definition of Primal/Dual Variables 
22 Positive Variable 
23         x(i)            quality 
24         b(i)            maker's revenue 
25         w(i)            price; 
26 Variable 
27         Util            maker's utility; 
28 Equation 
29         obj             maker’s utility function 
30         rev(i)          maker's revenue function 
31         pc(i)           participation constraint 
32         licd(i)        incentive compatibility constraint; 
33  
34 * Specification of Equations 
35 obj..   Util =e= sum(i, p(i)*(b(i)-w(i))); 
36 rev(i)..b(i) =e= x(i)**(0.5); 
37 pc(i).. w(i)-theta(i)*x(i) =g= ru; 
38 licd(i)..w(i)-theta(i)*x(i) =g= w(i+1)-theta(i)*x(i+1); 
39  
40 * Setting Lower Bounds on Variables to Avoid Division by Zero 
41 x.lo(i)=0.0001;; 
42  
43 * Defining and Solving the Model 
44 Model SB3 /all/; 
45 Solve SB3 maximizing Util using NLP; 
46  
47 * End of Model 

 

 The solution of the model is shown in its output file shown in List 2.11. 

 

List 2.11: Output File of the 3-type Second-best Model (PS3_S.lst) 
...  
125 ---- EQU rev  maker's revenue function 
126  
127      LOWER     LEVEL     UPPER    MARGINAL 
128  
129 0      .         .         .        0.200       
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130 1      .         .         .        0.500       
131 2      .         .         .        0.300       
132  
133 ---- EQU pc  participation constraint 
134  
135      LOWER     LEVEL     UPPER    MARGINAL 
136  
137 0      .        0.522     +INF       .          
138 1      .        0.088     +INF       .          
139 2      .         .        +INF     -1.000       
140  
141 ---- EQU licd  incentive compatibility constraint 
142  
143      LOWER     LEVEL     UPPER    MARGINAL 
144  
145 0      .         .        +INF     -0.200       
146 1      .         .        +INF     -0.700       
147 2      .         .        +INF       .          
148  
149 ---- VAR x  quality 
150  
151      LOWER     LEVEL     UPPER    MARGINAL 
152  
153 0 1.0000E-7    25.000     +INF  5.7724E-8       
154 1 1.0000E-7     4.340     +INF       EPS        
155 2 1.0000E-7     0.879     +INF       EPS        
156  
157 ---- VAR b  maker's revenue 
158  
159      LOWER     LEVEL     UPPER    MARGINAL 
160  
161 0      .        5.000     +INF       .          
162 1      .        2.083     +INF       .          
163 2      .        0.937     +INF       .          
164  
165 ---- VAR w  price 
166  
167      LOWER     LEVEL     UPPER    MARGINAL 
168  
169 0      .        3.022     +INF       .          
170 1      .        0.956     +INF       .          
171 2      .        0.264     +INF       .          
172  
173                        LOWER     LEVEL     UPPER    MARGINAL 
174  
175 ---- VAR Util           -INF      1.161     +INF       .          
...  
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2.2.4 Comparison of the First-best and the Second-best Solutions  

 The comparison of the first-best (PS3_F.lst) and second-best solutions 

(PS3_S.lst) is shown in Table 2.6. 

 

Table 2.6: Solutions of the 3-type First-best and Second-best Models 

Variable 
Variable 

Name in the 
Program 

Supplier 
Type 

Second-best 
Solution 

First-best 
Solution Gap 

Parts Quality x(i) 0 25.00 25.00 0.00 
 1 4.34 6.25 –1.91 
 2 0.88 2.78 –1.90 

      
Maker’s 
Revenue 

b(i) 0 5.00 5.00 –0.00 
 1 2.08 2.50 –0.42 
 2 0.94 1.67 –0.73 

      
Price w(i) 0 3.02 2.50 0.52 

 1 0.96 1.25 –0.29 
 2 0.26 0.83 –0.57 

      
Maker’s Utility Util  1.16 1.37 –0.21 
      
Supplier’s 
Utility (=Info. 
Rent) 

pc.l(i) 
-pc.lo(i) 

0 0.52 0.00 0.52 
1 0.09 0.00 0.09 

 2 0.00 0.00 0.00 
      
Lag. Mult. of 
Incentive 
Comp. Const. 

licd.m(i) 0 –0.20 – – 
 1 –0.70 – – 
 2 0.00 – – 

      
Lag. Mult. of 
Participation 
Constraint 

pc.m(i) 0 0.00 0.00 – 
 1 0.00 0.00 – 
 2 –1.00 –1.00 – 

 

 Compared with the first-best solutions, the parts quality x(i) in the second-best 

solutions is the same only for the most efficient supplier; the quality is lower for all the other 

suppliers. This corresponds to the fact that the price w(i) net of the information rent 

remains the same for the most efficient supplier increases, while that of all the others 

decreases. 

 In order to prevent the (not-the-least efficient) suppliers from reporting the less 

efficient suppliers’ types, the maker must make a liberal offer to these suppliers in the 
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second-best case than the one in the first-best case. The maker need not be too liberal; this 

liberality is determined at such a level that these suppliers can receive no extra gain even 

though they report their types falsely. The incentive compatibility conditions are binding 

only for 0i  and 1i . Those conditions are not binding for the least efficient supplier 

2i , because he has no less-efficient supplier to pretend for an extra gain. Therefore, his 

participation constraint is binding; he can obtain just as much as his reservation utility 

level. 

 The information rents gained by the more efficient suppliers ( 0i  and 1i ) are 

shown as the slacks in their respective participation constrains (Lines 137 and 138 of List 

2.11). As the reservation utility is set at zero, their rents immediately indicate their utility 

levels. The price of the intermediately efficient supplier ( 1i ) becomes lower than that in 

the first-best case, but he obtains strictly positive utility generated by his information rents 

offsetting the losses from the lower price. Needless to say, the utility of the most efficient 

supplier ( 0i ) increases. 

 The maker’s utility decreases for two reasons. The first is the loss resulted from the 

degraded parts quality supplied by those but the most efficient one. The second is the 

information rents exploited by those but the least efficient one. 

 The solutions show the monotonicity of the parts quality ix . In other words, the 

more efficient the supplier is, the higher his parts quality is. Thus, the omission of MN in 

the models can be justified.  

 

2.2.5 The Second-best Model with the Global Conditions (PS3_S_GIC.gms) 

 In this subsection, we develop the second-best model by replacing the local 

conditions in the previous model with the global conditions, and analyze the solutions. Line 

38 of List 2.12 shows the conditions of (2.4). Note that the constraint ic carries two suffixes: 

i and j, and “,” is inserted between i and j. The incentive compatibility constraint 

ic(i,j) prevents the i -th type supplier from gaining extra by reporting his type as “j”. 
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This includes the case of ji  , where he reports his own type truly. Because the constraint 

obviously holds with strict equality in the case of ji  , this redundant constraint does not 

distort the solution at all. 

 

List 2.12: The 3-type Second-best Model with Global Conditions (PS3_S_GIC.gms) 
...  
28 Equation 
29         obj             maker’s utility function 
30         rev(i)         maker's revenue function 
31         pc(i)           participation constraint 
32         ic(i,j)        incentive compatibility constraint; 
33  
34 * Specification of Equations 
35 obj..   Util =e= sum(i, p(i)*(b(i)-w(i))); 
36 rev(i)..b(i) =e= x(i)**(0.5); 
37 pc(i).. w(i)-theta(i)*x(i) =g= ru; 
38 ic(i,j)..w(i)-theta(i)*x(i) =g= w(j)-theta(i)*x(j); 
39  
40 * Setting Lower Bounds on Variables to Avoid Division by Zero 

...  

 

 The solutions of the second-best model with the global conditions are equal to those 

of the second-best model with the local conditions, because the present model satisfies the 

SCP (List 2.13).10 Among the six constraints of the (global) conditions, only two constraints–

those do not let the type 0 supplier to report his type as type 1 (Line 145) and the type 1 

supplier to report his type as type 2 (Line 148)–are binding. (Type 2 does not have any 

less-efficient type to pretend.) In other words, only the constraints to prevent a supplier from 

reporting his type as one-type less efficient are binding. The other constraints are not 

binding; thus, they can be omitted. If we omit these non-binding constraints, the model is 

                                                      

10 The solutions of the Lagrange multipliers are reported in a different format between these two 

output files, just because the one-dimensional constraint of licd(i) is replaced by the 

two-dimensional one of ic(i,j) (List 2.13). However, the binding equations do not change in 

essence. 
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boiled down into the model with the local conditions of LICD (2.5). Therefore, the solutions 

of the two models are naturally identical (Lists 2.10 and 2.11). 

 

List 2.13: Output File of the 3-type Second-best Model with the Global Condition 
(PS3_S_GIC.lst) 

...  
133 ---- EQU pc  participation constraint 
134  
135      LOWER     LEVEL     UPPER    MARGINAL 
136  
137 0      .        0.522     +INF       .          
138 1      .        0.088     +INF       .          
139 2      .         .         +INF     -1.000       
140  

141 ---- EQU ic  incentive compatibility constraint 

142  

143        LOWER     LEVEL     UPPER    MARGINAL 

144  

145 0.1      .         .        +INF     -0.200       

146 0.2      .        0.346     +INF       .          

147 1.0      .        2.066     +INF       EPS        

148 1.2      .         .        +INF     -0.700       

149 2.0      .        4.478     +INF       .          

150 2.1      .        0.346     +INF       .          

...  

 

2.3 The Extensions of the Models 

 In this section, the models developed so far will be extended in the following two 

directions. The first one is to increase the number of supplier types. In Section 2.3.1, we 

present the model with 10 types. The second one is to develop models without the 

simplifying assumptions, such as the SCP and MN. In Section 2.3.2, we develop the model 

where the SCP does not hold. In Section 2.3.3, we deal with the model where the sufficient 

condition of monotonicity does not hold, while the SCP is satisfied.  

 

2.3.1 The Models with a Large number of Supplier Types (PS10_S.gms) 

 When the number of types increases, the theoretical models become difficult in 

conducting analyses. However, only minimal adjustments are required for our numerical 
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models with a large number of supplier types. For example, to prepare a 10-type model 

( 9...,,2,1,0i ), it is sufficient to rewrite the Set statement for the supplier types as follows 

(List 2.14): 

 

 Set i type of supplier /0*9/; 
 

 The symbol “*” (asterisk) simplifies the expression of the indices as consecutive 

numbers. The program stated above equivalently can be written as follows: 

 

 Set i type of supplier /0,1,2,3,4,5,6,7,8,9/; 
 

List 2.14: The 10-type Model (PS10_S.gms) 
...    

7 * Definition of Set 

8 Set     i       type of supplier        /0*9/; 

9 Alias (i,j); 

10 * Definition of Parameters 

11 Parameter 

12         theta(i)        efficiency 

13         p(i)             probability of type; 

14 theta(i)=ord(i)/card(i); 

15 p(i)=1/card(i); 

...    

 

(In a 100-type model, it is sufficient to replace “9” by “99” though the trial version of GAMS, 

however, cannot solve the 100-type model because of the model size limitation.) Lines 14–15 

of List 2.14 compute the value of efficiency parameter i  with the same intervals for all i ’s 

and the ex-ante probability ip  over all i ’s with random draws from a uniform distribution. 

Instead, specific numbers can be given, if one wishes. 

 

2.3.2 The Second-best Models where the SCP does not Hold (PS3_SCP.gms) 

 When the SCP does not hold, we must use the global conditions, instead of the local 
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conditions. The structure of the model is the same as the model with the global conditions 

shown in Section 2.2.5. As an example, let us consider the i -th type supplier’s utility 

function:     iiiiii xxu 21,    ,where 10  ix , 10  i , in place of the 

original one:   iiii xxu  , . With this alternative  u  function, the value of its cross 

partial derivative with respect to ix  and i  (i.e., ixu  21 ) is positive if 5.0i  

but negative if 5.0i . Thus, this  u  does not satisfy the SCP assumption.   

 The maker’s utility maximization problem is as follows: 

    
i

iii wxbpUtilmax      (2.1’) 

subject to 

   5.0
ii xxb   i       (2.2) 

    ruxw iiiii  21   i     (2.3’’) 

      jiiijiiiii xwxw 22 11    ji    (2.4’) 

 In List 2.15, the participation constraints (2.3”) is declared as pc(i), and the 

global conditions as ic(i,j). The function sqr(…) means square. Line 52 defines the 

second-best model with the global conditions as SB_gic_wo_SCP. 

 Just for the sake of comparison, in the same program, we use the local conditions 

(LICD, LICU) although the model must be solved with the global conditions for the correct 

solution. In Lines 43–46, these local conditions are shown as licd(i) and licu(i). In Line 

53, the model with the local conditions is defined as SB_lic_wo_SCP. 

 

List 2.15: The Second-best Model that Does not Satisfy the SCP (PS3_S_SCP.gms) 
...  
10 * Definition of Parameters 
11 Parameter 
12         theta(i)        efficiency      /0      0.1 
13                                            1       0.4 
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14                                            2       0.9/ 
15         p(i)            probability of type 
16                                            /0      0.2 
17                                            1       0.5 
18                                            2       0.3/; 

...  
28 Equation 

...  
32         ic(i,j)         incentive compatibility constraint 
33         licd(i)         incentive compatibility constraint 
34         licu(i)         incentive compatibility constraint; 
35  
36 * Specification of Equations 
37 obj..   Util =e= sum(i, p(i)*(b(i)-w(i))); 
38 rev(i)..b(i) =e= x(i)**(0.5); 
39 pc(i)..  w(i)  -(theta(i)+(1-theta(i)+sqr(theta(i)))*x(i)) 
40              =g= ru; 
41 ic(i,j)..w(i)  -(theta(i)+(1-theta(i)+sqr(theta(i)))*x(i)) 
42     =g=  w(j)  -(theta(i)+(1-theta(i)+sqr(theta(i)))*x(j)); 
43 licd(i)..w(i)  -(theta(i)+(1-theta(i)+sqr(theta(i)))*x(i)) 
44     =g=  w(i+1)-(theta(i)+(1-theta(i)+sqr(theta(i)))*x(i+1)); 
45 licu(i)..w(i)  -(theta(i)+(1-theta(i)+sqr(theta(i)))*x(i)) 
46     =g=  w(i-1)-(theta(i)+(1-theta(i)+sqr(theta(i)))*x(i-1)); 
47  
48 * Setting Lower Bounds on Variables to Avoid Division by Zero 
49 x.lo(i)=0.0001; 
50  
51 * Defining and Solving the Model 
52 Model SB_gic_wo_SCP /obj, rev, pc, ic/; 
53 Model SB_lic_wo_SCP /obj, rev, pc, licd, licu/; 
54  
55 Solve SB_gic_wo_SCP maximizing Util using NLP; 
56 Solve SB_lic_wo_SCP maximizing Util using NLP; 
57 * End of Model 

 

 In the second-best model with the global conditions, the solutions of the parts 

quality do not satisfy the monotonicity (Table 2.7). However, because the local conditions are 

not used, the monotonicity is not required; thus, the solutions are correct. 

 The Lagrange multipliers of three cases (Type 0 reports “Type 2”, Type 1 does “Type 

0”, and Type 1 does “Type 2”) are non-zero in the global-condition model; thus, the conditions 

for these three cases cannot be omitted. However, in the local-condition model, among these 

three global conditions, the condition to prevent Type 0 from reporting “Type 2” is not 
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included.11 As a result, the solutions of the local-condition model mistakenly deviate from 

those of the global-condition model.  

 

Table 2.7: Results of Global Condition Model and Local Condition Model when the 
 SCP does not Hold 

Variable 
Variable Name in 

the GAMS 
Program 

Supplier Type 
Global 

Constraint 
Model 

Local 
Constraint 

Model 
Parts Quality x(i) 0 0.22 0.30 
  1 0.43 0.51 
  2 0.22 0.16 
     
Maker’s 
Revenue 

b(i) 0 0.47 0.55 
 1 0.66 0.71 
 2 0.47 0.40 

     
Price 
 

w(i) 0 1.10 1.12 
 1 1.26 1.31 
 2 1.10 1.04 

     
Maker’s Utility Util  –0.62 –0.61 
     
Supplier’s 
Utility (=Info. 
Rent) 

pc.l(i) 
-pc.lo(i) 

0 0.80 0.75 
1 0.53 0.52 
2 0.00 0.00 

     
Lagrange 
Multiplier of 
Global Cons. 

ic.m(i,j) Type 0  ”Type 1” 0.00 – 
 Type 0  ”Type 2” –0.40 – 
 Type 1  ”Type 0” –0.20 – 
 Type 1  ”Type 2” –0.30 – 
 Type 2  ”Type 0” 0.00 – 
 Type 2  ”Type 1” 0.00 – 

     
Lagrange 
Multiplier of 
the Local Cons. 

licd.m(i) 0 – –0.20 
 1 – –0.70 
 2 – 0.00 

licu.m(i) 0 – 0.00 
 1 – 0.00 
 2 – 0.00 

     
Lagrange Mult. 
of the Particip. 
Cons. 

pc.m(i) 0 0.00 0.00 
 1 0.00 0.00 
 2 –1.00 –1.00 

  

                                                      

11 The constraint against the case that Type 2 reports “Type 0” is not imposed either but is not binding 

in the global-condition model. Thus, the omission of this constraint makes no difference. 
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2.3.3 The Second-best Model where the Sufficient Condition of Monotonicity does 

 not Hold (PS3_S_MN.gms) 

 In Section 2.2.3, assuming that the models satisfy MN for simplicity and following 

the common solution practice discussed in Section 2.2.3, we build the model without MN. 

After obtaining the solutions, we ascertain whether the solutions satisfy MN to justify our 

simplifying assumption.  

 In this subsection, we examine a more general situation where the models may not 

satisfy the MN but do the SCP. The sufficient condition of monotonicity, which holds 

depending on the functional form of  u , ip , and i , is explained in details in Section 3.2. 

As we cannot assume MN holds a priori, we must impose either MN or LICU (in addition to 

LICD) explicitly. Thus, the new model is as follows: 

    
i

iii wxbpUtilmax      (2.1’) 

subject to 

   5.0
ii xxb   i       (2.2) 

 ruxw iii   i       (2.3’) 

 11   iiiiii xwxw   i      (2.5) 

 1 ii xx   i       (2.6) 

 It is difficult to solve this problem analytically but easy to numerically. In our 

program, we have to add only two lines to the original model shown in List 2.10 as follows 

(PS3_S_MN.gms): 

 Equation 
 … 
 mn(i)  monotonicity constraint;  
 … 
 mn(i).. x(i) =g= x(i+1); 
 
 As long as we assume the original parameter set, which satisfies MN as explained 
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in Section 3.1, the solutions of the new model with MN perfectly match those of the original 

model without MN. The output file shows (PS3_S_MN.lst) that the newly introduced 

constraint mn(i) is not binding. 

 In contrast, let us consider the following two cases where the parameter sets are 

modified regarding with the modified ex-ante probability ip  (Case A) and regarding the 

modified efficiency i  (Case B) so that their solutions do not satisfy MN. We solve these 

models with MN (correctly) and without MN (incorrectly) (Table 2.8). 

 

Table 2.8: Solutions of Models that do not Satisfy Monotonicity 
 Case A Case B 

 w/ MN w/o MN w/ MN w/o MN 

0x  25.000 25.000 25.000 25.000 

1x  1.680 1.000 1.902 1.731 

2x  1.680 1.860 1.902 2.250 

 

 In these numerical examples, we can obtain the correct solutions only when MN (or 

LICU) is imposed. The correct solutions show step-wise monotonicity of the parts quality ix . 

(We can verify that these solutions are correct, by comparing them with those computed by 

the global-condition models.) Note, however, that we are discussing the sufficient condition; 

thus, we may obtain the correct solutions even if neither MN nor LICU is imposed. This is to 

be discussed in the next section. 

 

3. The Monotonicity Conditions 

 In Section 2, we build the model where the sufficient condition of monotonicity of 

the parts quality holds and the one where it does not hold, and discuss the differences in 

their solutions. The natural question would be twofold. The first is to what extent the 
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sufficient condition of monotonicity holds. The second is how much likely we can get correct 

solutions even without imposing MN. In this section, by fully exploiting the advantages of 

the numerical approach in combination with a Mote Carlo simulation method, we try to 

obtain some idea about these questions. 

 We first formulate of the sufficient condition in our model framework. Then, we 

directly focus on the question stated above by computing two kinds of probabilities. That is, 

we derive (A) the probability that the sufficient condition of the monotonicity holds and (B) 

the probability that monotonicity occurs, whether the sufficient condition holds or not. 

 

3.1 The Sufficient Condition of Monotonicity 

 In the theoretical models, they assume two sufficient conditions for MN as follows: 

For all  , ' , 

(1)    is quasi-concave and has an interior solution for the maximization problem 

with respect to x , 

(2)    ',,'  xx xx   for all Xx where 

        1
1 ,,,, 
  iiii
i

i
iiii xuxu

p

F
xSx   for Ni ...,,0  and 

    iiiii xxbxS  , . 

 In our numerical models, (1) is satisfied as we assume    in the above manner. 

The condition (2) holds, if we consider only the case where the intervals of i  are same for 

all i ’s, and the monotone hazard rate condition (MHRC) is to be satisfied. Its discrete 

version is written as follows: 

 
1

21







 
iN

iN

iN

iN

p

F

p

F
        (3.1) 

where   



i

j
jii pF

0

Pr  , 1NF . 
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3.2 The Probability that Monotonicity Holds (PS3_S_MN.gms) 

 To estimate the probability (A) that monotonicity holds, we prepare a model 

distinguishing 10 types of suppliers assuming (1) i  whose intervals are the same for all 

i ’s and (2) the ex-ante probability ip  over all i ’s generated with random draws from a 

uniform distribution. 

 In the first stage to estimate the probability that the sufficient condition of 

monotonicity, i.e., MHRC (3.1), holds, we simulate 1,000 Monte Carlo draws. This result 

implies the degree of its restrictiveness. 

 In the second stage, we make two models (SB_lic and SB_lic2); the one without 

the monotonicity constraint mn(i) and the one with its constraint. While the latter model 

always yields correct solutions, the former one may do so because the omitted condition 

MHRC (3.1) is just a sufficient condition–not the necessary one. If both models generate the 

identical solutions, it means that monotonicity holds, whether the sufficient condition of 

monotonicity hold. The probability (B) that such cases occur is the one that we pursue to 

obtain in the second stage. The input file of the second stage looks complicated partly 

because its randomly computes the ex-ante probability p(i) and partly because the 

program includes two models with and without MN (SB_LIC and SB_LIC2). 

 The results are as follows. In the first stage, MHRC (3.1) holds in only one case 

among the randomly generated 1,000 cases. (In other words, the probability (A) that the 

sufficient condition of monotonicity holds is 0.1%.) In the second stage, with the same 

random parameter sets of ip  for 1,000 cases, the two models with and without MN yield 

the identical solutions only in seven cases. (In other words, the probability (B) that 

monotonicity holds–whether its sufficient condition holds or not–is 0.7%. 

 It should be noted that the probabilities mentioned above may differ depending on 

many parameters. When we consider more supplier types, we find their likelihood decreases 
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because MHRC (3.2) is a joint condition for all the chains between adjacent supplier types. 

For example, if we consider only five supplier types (PS5_S_MN.gms), the probability of (A) 

is 24% and (B) is 36%. Although we need some reservations in generalizing the results of our 

numerical experiments, the MHRC would be a more restrictive condition than usually 

expected. 

 

4. Concluding Remarks 

 In this paper, we build and solve the numerical 2-type and 3-type models of the 

parts supply problems. Although their solutions depend on our assumed functional forms 

and parameters, we obtain the reasonable solutions as their theories predict. For example, 

in the second-best model, only the most efficient supplier maintains the first-best level parts 

quality. Since that the suppliers except for the least efficient one can report his type falsely 

under asymmetric information, they can obtain extra gains as information rents. In contrast, 

the least efficient supplier can obtain no extra gain. In total, the maker’s utility level 

decreases from her first-best level. 

 We formulate the parts supply problems as non-linear programming problems. 

Then, by specifying their functional forms and feeding illustrative values into parameters, 

we build and solve them numerically. Taking advantage of this numerical approach, this 

paper demonstrates the usefulness of this approach for the contract theory analysis in 

various ways. First, the information rent, which is the most crucial variable in the 

asymmetric information problems, can be directly computed as the solutions of the Lagrange 

multipliers for the incentive compatibility constraints as shown in the EQU block of the 

GAMS output file. Second, when the number of supplier types increases, the theoretical 

models need additional assumptions such as the SCP and monotonicity to simplify their 

analyses. As a result their analyses are confined to the cases that those assumptions hold. In 

contrast, numerical models can deal with the cases whether those simplifying assumptions 

hold or not. Third, we apply the Monte-Carlo simulation method so that we can infer how 
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restrictive the assumption of monotonicity is. 

 At the same time, we must recognize the limitations of our numerical approach. 

Just as the application of the theoretical models is narrowed by those simplifying 

assumptions, our numerical approach depends on our assumed functional forms and 

parameter sets. We should not hastily claim any general conclusion from numerical model 

solutions. It would be useful to take both the theoretical approach and the numerical one 

complementarily. We had better go back and forth between the theoretical models and the 

numerical models. 

 At the end, all the models developed in this paper are listed in Table 2.9. 

 

Table 2.9: Models for the Parts Supply Problem 

Input File Name No. of 
Types 

Asymmetric 
Information

Incentive 
Compatibility 

Constraint 

Monotonicity 
Constraint Note 

PS2_F_eff.gms 2 No – – Only for efficient 
suppliers  

PS2_F_inf.gms 2 No – – Only for 
inefficient 
suppliers 

PS2_F.gms 2 No – –  
PS2_S.gms 2 Yes Local No  
PS2_F&S.gms 2 No/Yes Local No  
PS3_F.gms 3 No – –  
PS3_S.gms 3 Yes Local No  
PS3_S_GIC.gms 3 Yes Global –  
PS3_S_SCP.gms 3 Yes Global/Local – The solution of 

the local 
constraint model 
is incorrect. 

PS3_S_MN.gms 3 Yes Local Yes  
PS5_S_MN.gms 5 Yes Local/Global Yes/ 

No 
The solution of 
the model without 
MN is incorrect. 

PS10_S.gms 10 Yes Local No  
PS10_S_MN.gms 10 Yes Local/Global Yes/ 

No 
The solution of 
the model without 
MN is incorrect. 
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