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Abstract 

In DEA we are often puzzled by the big difference in CRS and VRS scores, and by the convex 

production possibility set syndrome in spite of the S-shaped curve often observed in many real 

data. In this paper we perform a challenge to these subjects.  

Keywords: Data envelopment analysis, S-shaped curve, CRS, VRS, scale elasticity, SAS 

1. Motivation 

In DEA (Data Envelopment Analysis), we are often puzzled by the big difference between the 

constant returns-to-scale score (CRS) and the variable returns-to-scale score (VRS). Several 

authors (Avkiran (2001), Avkiran et al. (2008), Bogetoft and Otto (2010) among others) 

proposed solutions for this problem. In this paper we propose a different approach and results. 

Another problem is the conventional convex production possibility set assumption which is 

closely related to the first problem. In this paper, we discuss these two basic subjects of DEA. 

Several researchers have discussed non-convex production possibility set issues, see Dekker 

and Post (2001), Kousmanen (2001), Podinovski (2004), Olsen and Petersen (2013), among 

others. However, we believe there is room for further research on this subject. 

Another objective of this paper is the measurement of scale elasticity of production. Most of 

researches on this subject are based on the convex production possibility set assumption. We 

propose a new scheme for evaluation of scale elasticity within the cluster each DMU belongs 

to. 

This paper unfolds as follows. In Section 2, we describe a decomposition of the CRS slacks 

after introducing basic notations, and define the scale-independent data set. In Section 3, we 

introduce clusters and define the scale&cluster-adjusted score (SAS). In Section 4 we explain 

our scheme using a tiny example. Two illustrative examples are presented in Section 5. In 

Section 6, we define the scale elasticity based on the scale-dependent data set. An empirical 

study on Japanese universities follows in Section 7. Extensions to the radial DEA models are 

presented in Section 8. The last section concludes this paper.    

2. Global issue 
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In this section we introduce notation and basic tools, and discuss a decomposition of slacks. 

2.1. Notation and basic tools 

Let the input and output data matrices be respectively  

  

( ( ) ( 1, , ; 1, , )) and

( ( ) ( 1, , ; 1, , )),

m n
R x i m j nij

s n
R y r s j nrj


   


   

X

Y
 (1) 

where m, s and n are the number of inputs, outputs and decision making units (DMUs).  

Then, the production possibility set for the constant returns-to-scale (CRS) and variable 

returns-to-scale (VRS) models are defined respectively by 

    ,( , ) , ,P
CRS

   x y x Xλ y Yλ λ 0  (2) 

    ,( , ) , , 1,P
VRS

    x y x Xλ y Yλ eλ λ 0  (3) 

where mRx , sRy  and ( ) nR λ 0 are input, output, and intensity vectors, and nRe  is the 

row vector with all elements equal to 1.  

Throughout this section, we utilize the input-oriented slacks-based measure (SBM) (Tone 

(2001)) for the efficiency evaluation of each DMU ( , ) ( 1, , )o ox y o n  regarding the CRS 

and VRS models as follows: 

  

1

1
[CRS] min1

subject to

, , .

mCRS i
o i

io

o

o

s

m x










 

 

 

 

  



Xλ s x

Yλ s y

λ 0 s 0 s 0

  (4) 

  

1

1
[VRS]  min1

       subject to

1

, , ,

mVRS i
o i

io

o

o

s

m x










 

 

 

 



  



Xλ s x

Yλ s y

eλ

λ 0 s 0 s 0

 (5) 
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where 
nRλ is the intensity vector and 


s , 


s are respectively input- and output-slacks. 

Although we present our model in the input-oriented SBM model, we can develop the model 

to the output-oriented and non-oriented SBM models as well as to the radial models (Section 

8). 

We define the scale-efficiency ( o ) of DMUo by 

   .
CRS

o
o VRS

o





   (6) 

We denote optimal slacks of the CRS model by 

   
* *( , )o o

 
s s .  (7) 

Although we utilize the scale-efficiency CRS/VRS as an index of scale merits and demerits, 

we can make use of other indexes appropriate for discriminating handicaps due to scale. 

However, the index must be normalized between 0 and 1, and the larger indicates the better 

scale condition.    

2.2. Decomposition of CRS slacks  

We decompose CRS slacks into scale-independent and –dependent parts as follows: 

  

* * *

* * *

(1 )

(1 )

o o o o o

o o o o o

 

 

  

  

  

  

s s s

s s s
  (8) 

If DMUo satisfies 1o  (so called in the most productive scale size), its slacks are all 

attributed to the scale-independent slacks. However, if 1o  , its slacks are decomposed into 

the scale-independent part 
* *( , )o o o o  

s s and the scale-dependent part 

* *((1 ) ,(1 ) )o o o o   s s .  

  Scale-independent slacks = 
* *( , )o o o o  

s s  (9) 

  Scale-dependent slacks = 
* *((1 ) ,(1 ) ).o o o o   s s  (10) 

2.3. Scale-independent data set 

We define the scale-independent data ( , ) ( 1, , )o o
o nx y by deleting and adding the 

scale-depending slacks as: 
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*

*

Scale-independent Input     (1 )

Scale-independent Output  (1 )

o o o o

o o oo









  

  

x x s

y y s
  (11) 

See Figure 1 for an illustration. 

 

Figure 1: Scale-independent input 

 

3. In-cluster issue: Scale&Cluster-adjusted DEA score (SAS) 

In this section we introduce the cluster of DMUs and define the scale&cluster-adjusted score 

(SAS).  

3.1. Cluster 

We classify DMUs into several clusters depending on their characteristics. They can be 

supplied exogenously (see Section 6 for an example), or determined posteriori depending on 

the degree of scale-efficiency. A sample of the latter case may go as follows. We already 

know returns-to-scale (RTS) characteristics of each DMU, i.e. IRS , CRS or DRS, from the 

VRS solution. We first classify CRS DMUs as Cluster C. Then we classify IRS DMUs 

depending on the degree of scale-efficiency σ. For example, for IRS DMUs with 1 > σ   0.8 

we classify them as I1, with 0.8 > σ   0.6 as I2, and so on. For DRS DMUs with 1 > σ   0.8 

we classify them as D1, with 0.8 > σ   0.6  as D2, and so on. We must decide the number of 

clusters and bandwidth considering the number of DMUs. 

We denote the name of cluster DMUj by Cluster(j) ( 1, , )j n . 

3.2. Solving the CRS model in the same cluster 

We solve the CRS model for each DMU ( , ) ( 1, , )o o
o nx y referring to the ( , )X Y  in the 

same Cluster (o) which can be formulated as follows: 

y 

  

x 

Scale-dependent 

slacks 

 

Scale-independent slacks 
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1

1
min1

subject to

0 ( : Cluster( ) Cluster( ))

, , .

cl
m i

i
io

cl
o

cl

o

j

cl cl

s

m x

j j o









 



 

 

  

  



Xμ s x

Yμ s y

μ 0 s 0 s 0

 (12) 

We denote an optimal in-cluster slacks by 
* *( , )cl cl

o o

 
s s . By adding the scale-dependent slacks 

and in-cluster slacks, we define the total slacks as 

  

* *

* *

Total input slacks     (1 )

Total output slacks  (1 )

cl
o o o o

cl
o o o o





  

  

  

  

s s s

s s s

 (13)  

Scale&cluster-adjusted data (projection) ( , )o ox y is defined by: 

  

* *

* *

Scale&cluster-adjusted input (Projected Input)       

(1 )

Scale&cluster-adjusted output (Projected Output) 

(1 )

cl
o oo o o o o

cl
oo o o o oo





  


 

     

     

x x s x s s

y y s y s s
 (14) 

See Figure 2 for an illustration. 

 

Figure 2: Scale&cluster-adjusted input 
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Up to this point, we deleted scale demerits and in-cluster slacks from the data set. Thus, we 

have obtained a scale free and in-cluster slacks free (projected) data set ( , ).X Y  

3.3. Scale&Cluster-adjusted score (SAS) 

In the input-oriented case, the scale&cluster-adjusted score (SAS) is defined by

 

* *

1 1

1 1
Scale&cluster-adjusted score (SAS)  1 1

cl
m mioSAS io io

o i i
io io

s ss

m x m x


  

 


    

. (15) 

The reason why we utilize the above scheme is as follows. First, we wish to eliminate scale 

demerits from the CRS slacks. For this purpose, we decompose the CRS slacks into scale-

dependent and –independent parts, in the recognition of scale demerits as represented by 1- 

o . If o =1, the DMU has no scale demerits and its slacks are attributed to itself. If o

=0.25, then 75% of the slacks are attributed to its scale demerits. After deleting the scale-

dependent slacks, we evaluate the DMU within the cluster it belongs to and find in-cluster 

slacks. If the DMU is efficient among its cluster, its in-cluster slacks are zero, while, if 

inefficient, the DMU has in-cluster slacks against the efficient DMU. Lastly, we add the in-

cluster and scale-dependent slacks to obtain the total slacks. Using the total slacks, we define 

the scale&cluster-adjusted score (SAS).   

 

[Proposition 1] The scale&cluster-adjusted score (SAS) is not less than the CRS 

score. 

   
SAS CRS

o o  .  (16) 

[Proposition 2] If 1CRS

o   then it holds
SAS CRS

o o  , but not vice versa. 

[Proposition 3] The scale&cluster-adjusted score (SAS) is decreasing in the increase 

of input and in the decrease of output so long as the both DMUs remain in the same 

cluster.  
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[Proposition 4] The projected DMU ( , )o ox y  is efficient under the SAS model among 

the DMUs in the cluster it belongs to. It is also CRS and VRS efficient among the 

DMUs in its cluster. 

All proofs are in Appendix A. 

4. How does it work 

We demonstrate the above procedure using a tiny example. 

Table 1 exhibits 5 DMUs with a single input x and a single output y. Figure 3 display them 

where the CRS efficient frontier is the line OA while the VRS efficient lines are AB and BC. 

We assume DMUs B and D belong to the same cluster b while others belong to themselves.  

Table 1: Five DMUs 

DMU (I)x (O)y Cluster

A 9 9 a

B 6 4 b

C 5 1 c

D 9 4 b

E 8 5 e  

 

 

Figure 3: DMUs 

For DMU B, we have 
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QB 2, PQ/PB 0.6667

Scale-dependent slack RB (1 ) 0.6667

In-cluster slack 0

Total slack 0.6667.

B B

B B

s

s









   

   





 

Hence 

  

RB 0.6667
1 1 0.8889

PB 6

Scale&cluster-adjusted input Total slack 5.3333.

SAS

B

B Bx x

     

  

 

For DMU D, we have 

  

QD 5, PQ/PB 0.6667

Scale-dependent slack SD (1 ) 1.6667

In-cluster slack RS 2

Total slack RD RS+SD 3.6667.

D D

D D

s

s









   

   

 

  

 

In-Cluster slack occurs against DMU B, because B and D belong to the same cluster b. Hence   

  

RD 3.666
1 1 0.5926

PD 9

Scale&cluster-adjusted input Total slack 5.3333.

SAS

D

D Dx x

     

  

 

The situation of DMU E differs from other DMUs. This DMU belong to the cluster consisting 

of itself and is inefficient regarding to both CRS and VRS models. See Figure 4.  
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Figure 4: DMU E 

 

DMU E has the following elements: 

 

 

0.625 : 0.825

PQ 5
0.7576

PR 6.6

QE 3

Scale-dependent slack SE (1 ) 0.7272

In-cluster slack 0

Total slack SE 0.7272

PS SE Total slack
Scale&cluster-adjusted score 1 1 0.9091

PE PE

CRS VRS

E E

E

E

E E

SAS

E

E

s

s

x

 











 

  

 

   



 

     

Scale&cluster-adjusted input Total slack 7.2728.E ex x  

 

DMU E has no In-cluster slack, because it is isolated in cluster. Its Scale&cluster-adjusted 

score SAS is larger than the VRS score. Table 2 exhibits results of computation and Figure 5 

displays Scale&cluster-adjusted projections. Frontiers are non-convex. The non-convexity is 

caused by the recognition of scale demerits and clusters. 

Even when o =1 for all DMUs, clustering may bring non-convex frontiers. 
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Table 2: Comparisons of three scores with projected input and output 

DMU CRS-I VRS-I SAS-I Input Output

A 1 1 1 9 9

B 0.6667 1 0.8889 5.3333 4

C 0.2 1 0.36 1.8 1

D 0.4444 0.6667 0.5926 5.3333 4

E 0.625 0.825 0.9091 7.2727 5

SAS Projection

 

 

 

Figure 5: Projected x and y (frontiers) 

 

5. Illustrative examples 

In this section we present two artificial examples with a single input and a single output. The 

first one is totally non-convex, and the second one is a mixture of non-convex and convex 

frontiers. We demonstrate the above procedures using them. 

5.1. Example 1 

Table 3 shows 19 DMUs with input x and output y, while Figure 6 exhibits them graphically. 

We assume that DMUs A, B and C belong to Cluster a, and DMUs K and L to Cluster k, 

while other DMUs belong to themselves.   
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Table 3: Example 1 

DMU (I)x (O)y Cluster DMU (I)x (O)y Cluster

A 2 0.5 a K 5 5 k

B 3 0.5 a L 6 5 k

C 3.5 0.6 a M 7 5.2 m

D 4 1 d N 7.5 5.3 n

E 4.25 1.5 e O 8 5.5 o

F 4.5 2 f P 8.5 5.8 p

G 4.6 2.5 g Q 9 6.2 q

H 4.7 3 h R 9.5 6.7 r

I 4.8 3.5 i S 10 7.3 s

J 4.9 4 j

 

 

 

Figure 6: Data plot of Example 1 

 

First, we solved the input-oriented CRS and VRS models, and obtained the scale-efficiency 

and CRS slacks which were decomposed into the scale-independent and –dependent parts. 

Table 4 exhibits them. Since the output y has no slacks in this example, we do not display 

them. 
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Table 4: CRS, VRS, Scale-efficiency and Slacks 

CRS Scale-Independent Scale-Dependent

Slacks Slacks Slacks

A 0.25 1 0.25 1.5 0.375 1.125

B 0.1667 0.6667 0.25 2.5 0.625 1.875

C 0.1714 0.5905 0.2903 2.9 0.8419 2.0581

D 0.25 0.5833 0.4286 3 1.2857 1.7143

E 0.3529 0.6275 0.5625 2.75 1.5469 1.2031

F 0.4444 0.6667 0.6667 2.5 1.6667 0.8333

G 0.5435 0.7246 0.75 2.1 1.575 0.525

H 0.6383 0.7801 0.8182 1.7 1.3909 0.3091

I 0.7292 0.8333 0.875 1.3 1.1375 0.1625

J 0.8163 0.8844 0.9231 0.9 0.8308 0.0692

K 1 1 1 0 0 0

L 0.8333 0.8333 1 1 1 0

M 0.7429 0.7764 0.9568 1.8 1.7222 0.0778

N 0.7067 0.7536 0.9377 2.2 2.0629 0.1371

O 0.6875 0.7609 0.9036 2.5 2.2589 0.2411

P 0.6824 0.7928 0.8606 2.7 2.3237 0.3763

Q 0.6889 0.8454 0.8149 2.8 2.2816 0.5184

R 0.7053 0.9153 0.7705 2.8 2.1574 0.6426

S 0.73 1 0.73 2.7 1.971 0.729

DMU CRS-I VRS-I Scale-Eff. s s  (1 )s 

 

 

Second, we deleted the scale-dependent slacks from the data and obtained the data set ( , )X Y . 

We solved the CRS model within the same cluster and found the in-cluster slacks. By adding 

the scale-dependent slacks and in-cluster slacks we obtained the total slacks.  

Table 5 records them. 
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Table 5: ( , )X Y , In-cluster slacks and Total slacks 

DMU Cluster
In-cluster

slacks

Scale-

dependent

slacks

Total

slacks

A a 0.875 0.5 0 1.125 1.125

B a 1.125 0.5 0.25 1.875 2.125

C a 1.4419 0.6 0.3919 2.0581 2.45

D d 2.2857 1 0 1.7143 1.7143

E e 3.0469 1.5 0 1.2031 1.2031

F f 3.6667 2 0 0.8333 0.8333

G g 4.075 2.5 0 0.525 0.525

H h 4.3909 3 0 0.3091 0.3091

I i 4.6375 3.5 0 0.1625 0.1625

J j 4.8308 4 0 0.0692 0.0692

K k 5 5 0 0 0

L k 6 5 1 0 1

M m 6.9222 5.2 0 0.0778 0.0778

N n 7.3629 5.3 0 0.1371 0.1371

O o 7.7589 5.5 0 0.2411 0.2411

P p 8.1237 5.8 0 0.3763 0.3763

Q q 8.4816 6.2 0 0.5184 0.5184

R r 8.8574 6.7 0 0.6426 0.6426

S s 9.271 7.3 0 0.729 0.729

x y

 

 

Finally we computed the adjusted score 
SAS and the projected input and output as exhibited 

in Table 6 while Figure 7 displays them graphically. 
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Table 6: Scale&cluster-adjusted score and projected input and output 

Adjusted-Score Projected x Projected y

A 0.4375 0.875 0.5 a

B 0.2917 0.875 0.5 a

C 0.3 1.05 0.6 a

D 0.5714 2.2857 1 d

E 0.7169 3.0469 1.5 e

F 0.8148 3.6667 2 f

G 0.8859 4.075 2.5 g

H 0.9342 4.3909 3 h

I 0.9661 4.6375 3.5 i

J 0.9859 4.8308 4 j

K 1 5 5 k

L 0.8333 6 5 k

M 0.9889 6.9222 5.2 m

N 0.9817 7.3629 5.3 n

O 0.9699 7.7589 5.5 o

P 0.9557 8.1237 5.8 p

Q 0.9424 8.4816 6.2 q

R 0.9324 8.8574 6.7 r

S 0.9271 9.271 7.3 s

DMU ClusterSAS ( )x ( )y

 

Figure 7: Projection (▲) and data (○) 
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We compare input-oriented CRS, VRS and SAS scores in Table 7 and Figure 8. Adjusted 

scores (SAS) of DMUs E to J and M to Q have larger than those of VRS model. This reflects 

non-convex characteristics of data set. 

 

Table 7: Comparison of three scores 

DMU CRS-I VRS-I SAS-I DMU CRS-I VRS-I SAS-I

A 0.25 1 0.4375 K 1 1 1

B 0.1667 0.6667 0.2917 L 0.8333 0.8333 0.8333

C 0.1714 0.5905 0.3 M 0.7429 0.7764 0.9889

D 0.25 0.5833 0.5714 N 0.7067 0.7536 0.9817

E 0.3529 0.6275 0.7169 O 0.6875 0.7609 0.9699

F 0.4444 0.6667 0.8148 P 0.6824 0.7928 0.9557

G 0.5435 0.7246 0.8859 Q 0.6889 0.8454 0.9424

H 0.6383 0.7801 0.9342 R 0.7053 0.9153 0.9324

I 0.7292 0.8333 0.9661 S 0.73 1 0.9271

J 0.8163 0.8844 0.9859

 

 

 

Figure 8: Comparison of three scores 

 

5.2. Example 2 

Table 8 and Figure 9 exhibit data for Example 2. These DMUs display a typical S-shaped 

curve.  
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Table 8: Example 2 

DMU (I)x (O)y Cluster

A 2 1 a

B 3 1.2 a

C 4 2 c

D 4.5 3 d

E 5 5 e

F 6 5.8 e

G 7 6.3 g

H 8 6.7 h

I 9 6.9 i

J 10 7 j  

 

Figure 9: Plot of Example 2 

 

Table 9 and Figure 10 summarize the results of the above procedures. The projected frontiers 

are a mixture of non-convex and convex parts. 
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Table 9: Results of Example 2 

DMU CRS-I VRS-I SAS-I Total slacks

Scale-

dependent

slacks

In-cluster

slacks

A 0.5 1 0.75 1.5 1 0.5 0.5 0

B 0.4 0.7167 0.6 1.8 1.2 1.2 0.7953 0.4047

C 0.5 0.6875 0.8636 3.4545 2 0.5455 0.5455 0

D 0.6667 0.7778 0.9524 4.2857 3 0.2143 0.2143 0

E 1 1 1 5 5 0 0 0

F 0.9667 1 0.9989 5.9933 5.8 0.0067 0.0067 0

G 0.9 1 0.99 6.93 6.3 0.07 0.07 0

H 0.8375 1 0.9736 7.7888 6.7 0.2112 0.2112 0

I 0.7667 1 0.9456 8.51 6.9 0.49 0.49 0

J 0.7 1 0.91 9.1 7 0.9 0.9 0

( )x ( )y

 

 

 

Figure 10: Projection (▲) and data (○) 

 

Figure 11 displays comparison of three scores. At DMUs C and D, Adjusted-scores are larger 

than VRS scores. This reflects non-convex characteristics of the data set.  
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Figure 11: Comparison of three scores 

 

6. Scale-dependent data set and scale elasticity 

So far we have discussed the efficiency score issue of our proposed scheme. In this section we 

deal with the scale elasticity issue. Many papers have discussed this subject under the globally 

convex frontier assumption. See Banker and Thrall (1992), Banker et al. (2004), Färe and 

Primond (1995), Førsund and Hjalmarsson (2004a, 2004b), Olsen and Petersen (2013), 

Podinovski (2004), Kousmanen (2001) among others. However, in case of non-convex 

frontiers, we believe there is room for further research on this subject. Based on the 

decomposition of CRS slacks mentioned in Section 2, we develop a new scale elasticity 

which can cope with non-convex frontiers. 

6.1. Scale-dependent data set  

We delete or add scale-independent slacks from the data, and thus define the scale-dependent 

data set ˆ ˆ( , )o ox y . 

  

*

*

ˆScale-dependent input    

ˆScale-dependent output 

o o o o

o o o o

x x s

y y s









 

 
 (17) 

Figure 12 illustrates an example. 
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Figure 12: Scale-dependent input 

 

We first project ˆ ˆ( , )o ox y onto the VRS frontier of ( ˆ ˆ,X Y ) in the same cluster. Thus, we 

denote them 
Proj Projˆ ˆ( , )o ox y : 

   
Proj Projˆ ˆ ˆ ˆ( , ) ( , )o o o ox y x y . (18) 

6.2. Scale elasticity 

The scale elasticity or degree of scale economies is defined as the ratio of marginal product to 

average product. In a single input/output case, if the output y is produced by the input x, we 

define the scale elasticity by 

   .
dy y

dx x
    (19) 

In the multiple input-output environments, it is determined by solving linear programs related 

to the supporting hyperplane at the respective efficient point. See Cooper et al. (2007, pp. 

147-149) for details.  

The production set (
Proj Projˆ ˆ,X Y ) defined above has convex frontiers at least within each 

cluster, we can find a supporting hyperplane at 
Proj Projˆ ˆ( , )o ox y that supports all projected DMUs 

in the cluster and has the minimum deviation t from them. This scheme can be formulated as 

follows: 

y 

  

x 

Scale-independent slacks 
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Proj

Proj

0

Proj Proj

0

0

min

subject to

ˆ 1

ˆ 1

ˆ ˆ 0 ( : Cluster( ) Cluster( ))

0 ( : Cluster( ) Cluster( ))

, , 0( ), 0 :  free in sign.

o

o

j j j

j

j

t

u

u w j j o

w t j j o

w j t u



 

      

    

    

vx

uy

vx uy

v 0 u 0

 (20)  

Let the optimal u0 be  
*

0u . We define the scale elasticity of DMU (xo,yo) by: 

  Scale Elasticity 
*

0

1

1
o

u
 


. (21) 

If 
*

ou is not uniquely determined, we check its min and max while keeping t at the optimum.  

The reason why we apply the above scheme is as follows.  

(1) Conventional methods assume a global convex production possibility set for identifying 

RTS characteristics of each DMU. However, as we observed, the data set not always 

exhibits convexity. Moreover, the RTS property is a local one, but not global, as the 

formula (19) indicates. Hence, we discuss this issue within the cluster the DMU belongs 

to, after deleting the scale-independent slacks. 

(2) Conventional methods usually find multiple optimal values of 
*

0u and there is a big gap 

between its min and max. The scale elasticity o defined above remains between the min 

and max, but has much small allowance. 

 

7. An empirical study 

In this section we apply our scheme to a data set comprising 37 Japanese National 

Universities with the faculty of medicine.  

7.1. Data 

Table 10 exhibits the data set of Japanese National Universities with the faculty of medicine 

at the year 2008 (Report by Council for Science and Technology Policy, Japanese 

Government, 2009). We chose two inputs: (I) Subsidy (unit: one million Japanese yen) and (I) 

No. of faculty, and three outputs: (O) No. of publication, (O) No. of JSPS (Japan Society for 

Promotion of Sciences) fund and (O) No. of funded research. We classified them into four 

clusters: A, B, C and D depending on the sum of No. of JSPS fund and No. of funded research. 

Cluster A is defined as the set of universities with the sum larger than 2000, Cluster B 

between 2000 and 1000, Cluster C between 1000 and 500, and Cluster D less than 500. 
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Table 10: Data set 

University (I)Subsidy (I)Faculty (O)Publication
(O) JSPS

fund

(O) No. of

funded res.
Cluster

A1 96174 4549 6359 2896 2280 A

A2 60868 3562 4776 2304 1504 A

A3 50717 2619 3786 1952 1382 A

A4 50615 2877 4009 1941 1357 A

A5 42398 2207 2605 1396 1186 A

A6 41014 2086 2560 1310 922 A

A7 35985 1792 2443 1351 796 A

B1 48106 1667 1549 911 507 B

B2 28896 1814 1362 811 543 B

B3 22898 1567 1089 751 401 B

B4 18245 1303 1143 606 453 B

B5 18255 1505 1264 606 430 B

C1 19200 1129 803 537 314 C

C2 17569 1010 722 446 302 C

C3 20467 1224 706 428 317 C

C4 16124 1151 582 309 418 C

C5 14515 867 643 351 321 C

C6 17154 1084 685 378 284 C

C7 13196 898 481 325 329 C

C8 12357 830 446 242 357 C

C9 14850 799 628 266 319 C

C10 13138 855 576 353 228 C

C11 16884 1121 531 311 265 C

C12 14589 970 562 277 274 C

C13 14436 976 550 311 229 C

D1 10631 629 293 199 231 D

D2 11319 795 465 190 233 D

D3 10202 657 300 170 240 D

D4 10953 668 311 184 191 D

D5 13017 859 382 201 159 D

D6 11355 775 339 191 156 D

D7 11522 779 391 162 171 D

D8 10637 785 287 174 142 D

D9 8936 656 267 157 153 D

D10 11054 692 343 158 134 D

D11 10888 749 323 157 132 D

D12 10686 645 254 152 135 D  

Figure 13 plots 47 universities regarding no. of faculty (input) and no. of publication (output). 

Globally non-convex characteristics are observed. Especially between big seven universities 

(A) and other universities (B, C and D), there is a gap. We can see similar gaps among other 

inputs vs. outputs.  
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Figure 13: Plot of no. of faculty (horizontal) vs. no. of publication (vertical) 

  

7.2. Adjusted score 

Table 11 compares the three scores and Figure 14 displays them graphically. 

Table 11: Comparisons of CRS, VRS and SAS (Adjusted score) 

DMU CRS-I VRS-I SAS-I DMU CRS-I VRS-I SAS-I DMU CRS-I VRS-I SAS-I

A1 0.9246 1 0.9943 C1 0.6824 0.9003 0.9232 D1 0.7301 1 0.9272

A2 0.9764 1 0.9994 C2 0.626 0.8921 0.8885 D2 0.6406 0.9857 0.8742

A3 1 1 1 C3 0.5265 0.7342 0.7287 D3 0.7604 1 0.9426

A4 1 1 1 C4 0.8013 0.8563 0.9872 D4 0.5777 0.9514 0.8033

A5 1 1 1 C5 0.7398 0.9713 0.938 D5 0.394 0.814 0.6426

A6 0.8415 0.9036 0.9891 C6 0.5478 0.8149 0.769 D6 0.4349 0.8796 0.6904

A7 1 1 1 C7 0.7865 0.9994 0.9545 D7 0.4713 0.916 0.7009

B1 0.6126 0.6776 0.9628 C8 1 1 1 D8 0.4089 0.8646 0.6481

B2 0.6645 0.7642 0.8576 C9 0.7554 1 0.9402 D9 0.523 1 0.7725

B3 0.7476 0.8759 0.963 C10 0.626 1 0.8601 D10 0.4029 0.9521 0.6556

B4 0.7794 1 0.9513 C11 0.5005 0.7255 0.6506 D11 0.3847 0.8991 0.6162

B5 0.7395 1 0.9321 C12 0.5985 0.8543 0.7641 D12 0.4206 0.9504 0.6381

C13 0.5107 0.843 0.7192  
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Figure 14: Comparisons of three scores 

 

The SAS of B1, B2 and B3 are remarkably larger than those of VRS, demonstrating the non-

convex structure of the data set. Universities in Cluster A are judged almost efficient by 

adjusted scores. Table 12 summarizes averages of CRS, VRS and SAS for each cluster. For 

Cluster A universities, gaps among three scores are small and have the highest marks in each 

model. For Cluster B universities, the average SAS is larger than the average of VRS scores. 

This indicates the existence of non-convex frontiers around B sized universities. For Cluster 

C universities, discrepancy between CRS and VRS comes large, and the average of SAS is 

between them, closer to VRS. For Cluster D universities, the discrepancy comes largest 

indicating the smallest scale-efficiency. Adjusted scores position around the middle of CRS 

and VRS. Average SAS decreases monotonically from A to D. 

Table 12: Average scores 

Cluster CRS-I VRS-I SAS-I

A 0.9632 0.9862 0.9975

B 0.7087 0.8635 0.9334

C 0.6693 0.8916 0.8556

D 0.5124 0.9344 0.7426  

7.3. Scale elasticity 

Table 14 reports the scale elasticity   computed by the formula (26). 
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Table 14: Scale elasticity 

DMU Scale El. DMU Scale El. DMU Scale El. DMU Scale El.

A1 0.961 B1 1.1522 C1 1.137 D1 1.6564

A2 0.9954 B2 1.0915 C2 1.422 D2 1.0532

A3 1.0267 B3 1.1965 C3 1.296 D3 1.7399

A4 1.0299 B4 1.3262 C4 1.152 D4 3.1328

A5 1.0525 B5 1.2003 C5 1.416 D5 1.9453

A6 1.051 C6 1.33 D6 2.034

A7 1.0669 C7 1.197 D7 1.9234

C8 1.139 D8 3.5783

C9 1.311 D9 2.1912

C10 1.56 D10 2.0527

C11 2.043 D11 2.1179

C12 2.02 D12 2.1913

C13 1.56

Ave. 1.0262 Ave. 1.1933 Ave. 1.429 Ave. 1.642

Max 1.0669 Max 1.3262 Max 2.043 Max 1.9736

Min 0.961 Min 1.0915 Min 1.137 Min 0.6433

StDev 0.0369 StDev 0.0863 StDev 0.303 StDev 0.4143  

We observe that for Cluster A universities the scale elasticity is almost unity with the max 

1.0669 and min 0.961. This cluster exhibits constant returns-to-scale. Clusters B, C and D 

universities have elasticity higher than unity and the averages are increasing in this order. 

They have increasing returns-to-scale characteristics.  

8. The radial model case 

In this section, we apply the above approaches to the radial DEA models. 

8.1. CCR and BCC models 

Throughout this section, we utilize the input-oriented radial measures: CCR (Charnes-

Cooper-Rhodes (1978)) and BCC (Banker-Charnes-Cooper (1984)) models, for the efficiency 

evaluation of each DMU ( , ) ( 1, , )o ox y o n  as follows: 

  

[CCR] min

subject to

, : free.

CCR

o

o

o

 













Xλ x

Yλ y

λ 0

                                                   (22) 
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[BCC]  min

       subject to

1

, : free,

BCC

o

o

o

 















Xλ x

Yλ y

eλ

λ 0

                                             (23) 

where 
nRλ is the intensity vector. 

Although we present our model in the input-oriented radial model, we can develop the model 

in the output-oriented radial model as well.  

We define the scale-efficiency ( o ) of DMUo by 

   

.
CCR

o
o BCC

o







                                            (24) 

8.2. Decomposition of slacks  

We decompose CRS score into scale-independent and –dependent parts as follows: 

The radial input-slacks can be defined as  

(1 ) .CCR m

o o o R   s x                                          (25) 

We decompose the radial input-slacks into scale-dependent and scale-independent slacks as: 

(1 )o o o o o     s s s                                             (26) 

Scale-dependent input slacks (1 ) (1 )(1 )

Scale-independent input slacks (1 )

ScaleDep CCR

o o o o o o

ScaleIndep CCR

o o o o o o

  

  

 

 

    

  

s s x

s s x
           (27) 

8.3. Scale-adjusted input and output 

We define scale-adjusted input ox  and output o
y  by 

( )

.

ScaleDep CCR CCR
o o o o o o o o

oo

       



x x s x

y y
                                  (28) 

[Definition 1] (Scale-adjusted score) 

We define scale-adjusted score by 
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.scale CCR CCR

o o o o o                                                               (29) 

ox  is the scale accounted (free) input. 

We have the following propositions. 

[Proposition 5] 

1 max( , )CCR CCR CCR

o o o o o o                                                  (30) 

  

[Proposition 6] 

1if and only if 1.CCR CCR

o o o o o                                         (31) 

Proofs are in Appendix A. 

8.4. In-cluster issue: Scale&cluster-adjusted score (SAS) 

In this section we introduce the cluster of DMUs and define the scale&cluster-adjusted score 

(SAS).  

We classify DMUs into several clusters depending on their characteristics. We denote the 

name of cluster DMUj by Cluster(j) ( 1, , )j n . 

8.5. Solving the CCR model in the same cluster 

We solve the input oriented CCR model for each DMU ( , ) ( 1, , )o o
o nx y referring to the 

( , )X Y  in the same Cluster (o) which can be formulated as follows: 

 

  

* min

subject to

0 ( : Cluster( ) Cluster( ))

, : free.

cl cl

o o

cl
oo

o

j

cl

o

j j o

 









 



  



Xμ x 0

Yμ y

μ 0
               (32) 
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Scale&cluster adjusted data (projection) ( , )o ox y is defined by: 

  

* *

Scale&cluster-adjusted input (Projected Input)       

( )

Output 

.

cl cl CCR CCR
o oo o o o o o o

oo

        



x x x

y y
                         

(33)

 

[Definition 2] (In-cluster score) 

We define 
*cl

o  as in-cluster score. 

Up to this point, we deleted scale demerits and in-cluster slacks from the data set. Thus, we 

have obtained a scale free and in-cluster slacks free (projected) data set ( , ).X Y  

8.6. Scale&cluster-adjusted Score (SAS) 

[Definition 3] (Scale&cluster-adjusted score) 

In the input-oriented case, the scale&cluster-adjusted score (SAS) is defined by 

 
*Scale&cluster-adjusted score (SAS)  ( )SAS cl CCR CCR

o o o o o o       
. 

(34)
 

 

Similarly to Propositions 1 to 4, we have the followings. 

[Proposition 7] The scale-cluster adjusted score (SAS) is not less than the CCR score. 

  
SAS CCR

o o 
.                                             (35) 

[Proposition 8] If 1CCR

o   then it holds
SAS CCR

o o  , but not vice versa. 

[Proposition 9] The scale-cluster adjusted score (SAS) is decreasing in the increase of input 

and in the decrease of output so long as the both DMUs remain in the same cluster.  

[Proposition 10] The SAS-projected DMU ( , )o ox y  is radially efficient under the SAS 

model among the DMUs in the cluster it belongs to. It is also CCR and BCC efficient among 

the DMUs in its cluster. 

 

9. Concluding remarks 
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We have developed a scale&cluster-adjusted DEA model assuming scale-efficiency and 

cluster of DMUs. This model can deal with S-shaped frontiers smoothly. The adjusted score 

(SAS) reflects the inefficiency of DMUs after deleting the inefficiency caused by scale 

demerits and accounting in-cluster inefficiency. We also propose a new scheme for evaluation 

of scale elasticity. We applied this model to a data set comprising Japanese universities. 

The managerial implications of this study are as follows.  

(1) We are free from the big difference in CRS and VRS scores. Hence, use of DEA becomes 

more convenient and simple. 

(2) We need not any statistical tests on the range of the intensity vector λ. 

(3) We can cope with the non-convex frontiers, e.g. S-shaped curve. In such cases, VRS 

scores are too stringent to the DMUs.  

 

The optimal slacks are not necessarily determined uniquely. In such a case, we can set the 

“importance level” of input (output) items and can solve the associated linear programs 

recursively. 

Although we presented the scheme in input-oriented form, we can extend it to output-oriented 

and non-oriented (both-oriented) model.  

Future research subjects include studies in alternative scale-efficiency measures other than the 

CRS/VRS ratio and clustering methods. Extensions to cost, revenue and profit models are 

also our future research subjects. 
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Appendix A  Proof of Propositions 

Let us define the production possibility sets ( , )P X Y and ( , )P X Y for ( , )j jx y and 

( , ) ( 1, , )j j
j nx y , respectively by  

 
 

 
1 1

1 1

( , ) ( , ) , ,

( , ) ( , ) , , .

n n

j j j jj j

n n

j j jjj j

P

P

 

 

 

 

    

    

 

 

X Y x y x x 0 y y λ 0

X Y x y x x 0 y y λ 0

            (A1) 

[Lemma 1] ( , )P X Y = ( , )P X Y . 

Proof . We define the scale&cluster-adjusted DMU ( , ) ( 1, , )j j
j nx y  by 
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*

*

(1 )

(1 ) .

j j j j

j j jj









  

  

x x s

y y s
                       (A2) 

If 1j   (DMUj is efficient), then we have j jx x  and j jy y . If 1j   (DMUj is 

inefficient), then  

   

* *

* *

(1 )

(1 ) ,

j j j j j j

j j j j jj





 

 

    

    

x x s x s

y y s y s
                (A3) 

where 
* *( , )j j j j

  x s y s    is the projection of ( , )j jx y  onto the P(X,Y) frontiers. Thus,  

( , ) ( 1, , )j j j nx y belongs to P(X,Y). Hence, efficient frontiers are common to P(X,Y) 

and ( , )P X Y .                                                                                                     Q.E.D. 

 

[Proposition 1] ( 1, , ).SAS CRS

o o o n    

Proof. The CRS scores for ( , )o ox y  and ( , )o ox y  are, respectively, defined by  

  

1

1
[CRS] min1

subject to

, , .

mCRS i
o i

io

o

o

s

m x










 

 

 

 

  



Xλ s x

Yλ s y

λ 0 s 0 s 0

                      (A4)
 

and 

  

*

1

(1 )1
[SAS]  min1

subject to

0 ( : Cluster( ) Cluster( ))

, , .

cl
mSAS i o i

o i
io

cl

o

cl

o

j

cl cl

s s

m x

j j o






 







 

 
 

 

 

  

  



Xμ s x

Yμ s y

μ 0 s 0 s 0

       (A5) 

We prove this proposition in two cases.  

 

(Case 1) All DMUs belong to the same cluster. 

In this case (A5) comes to: 
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1

(1 )1
[SAS] min1

subject to

, , .

mSAS i o o
o i

io

o

o

t s

m x




 







 

 
 

 

 

  



Xλ t x

Yλ t y

λ 0 t 0 t 0

         (A6) 

Let 
* * *( , , ) 
λ t t  be an optimal solution for (A5). Since ( , )P X Y  = ( , )P X Y  and both sets 

have the same efficient DMUs which span ( , )o o
x y , we have 

  

* * *

* * *

(1 )

(1 )

o o o o

o o o o





 

 

    

    

Xλ t x x s

Yλ t y y s
                  (A7) 

Hence, we have 

  

* * *

* * *

(1 )

(1 ) .

o o o

o o o





 

 

   

   

Xλ t s x

Yλ t s y
                 (A8) 

This indicates that 
* * * * *( , (1 ) , (1 ) )o o o o       λ t s t s  is feasible for (A4) and hence 

its objective function value is not less than the optimal value 
CRS

o .  

  

* *

1

(1 )1
1 .

mSAS CRSi o io
o oi

io

t s

m x


 

 



 
                (A9) 

 

(Case 2) Multiple clusters exist. 

In this case, we have additional constraints to (A6) for the cluster restriction as follows. 
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1

(1 )1
[SAS] min1

subject to

0 ( : Cluster( ) Cluster( ))

, , .

mSAS i o i
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m x
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
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 

 
 

 

 

  

  



Xλ t x

Yλ t y

λ 0 t 0 t 0

       (A10) 

Since adding constrains result in an increase in the objective value, it holds that 

   .SAs CRS

o o                         (A11)  

Q.E.D. 

[Proposition 2] If 1CRS

o   then it holds 1SAS

o  , but not vice versa. 

Proof. If 1CRS

o   then, we have  
* *and o o

  s 0 s 0 . Hence we have Total slacks = 0 and 

1SAS

o  .  The converse is not always true as demonstrated by the example below where all 

DMUs belong to an independent cluster.  
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DMU (I)x (O)y Cluster

A 2 2 a

B 4 2 b

C 6 2 c  
 

DMU CRS-I SAS-I Cluster

A 1 1 a

B 0.5 1 b

C 0.3333 1 c  
Q.E.D. 

[Proposition 3] The scale&cluster-adjusted score (SAS) is decreasing in the increase 

of input and in the decrease of output so long as the both DMUs remain in the same 

cluster. 

Proof. Let    , and , with and p p q q p q p q x y x y x x y y be respectively the original and 

varied DMUS in the same cluster. Since the projected point of   ,p px y  on the SAS 

frontiers is feasible for  ,q qx y and slacks between  ,q qx y and the frontier point are larger 

than the slacks between  ,p px y and the frontier point. We have this proposition.                                                   

                                                                                                                               Q.E.D. 

[Proposition 4] The projected DMU ( , )o ox y  is efficient under the SAS model among 

the DMUs in the cluster it belongs to. It is also CRS and VRS efficient among the 

DMUs in its cluster. 

Proof. From the definition of ( , )o ox y  it is SAS efficient. It is also CRS (VRS) efficient in its 

cluster.                                                                                                                                 Q.E.D. 

[Proposition 5] 

1 max( , )CCR CCR CCR

o o o o o o                                                  (A12) 

Proof.  (1 ) (1 ) max , .CCR CCR CCR CCR CCR CCR

o o o o o o o o o o o o                      

This term is increasing in o  and is equal to 1 when o =1.                                            Q.E.D. 

[Proposition 6] 

1if and only if 1.CCR CCR

o o o o o                                         (A13) 

Proof. If 1o   , it holds 1.CCR CCR

o o o o       
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Conversely, if 1CCR CCR

o o o o      , we have (1 ) 1CCR CCR

o o o      Hence, if 

1 1, else if 1 1and 1.CCR CCR BCC

o o o o o          
                                        Q.E.D. 

 


