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Abstract: In this paper, we propose new resampling models in data envelopment 

analysis (DEA). Input/output values are subject to change for several reasons, e.g., 

measurement errors, hysteretic factors, arbitrariness and so on. Furthermore, these 

variations differ in their input/output items and their decision-making units (DMU). 

Hence, DEA efficiency scores need to be examined by considering these factors. 

Resampling based on these variations is necessary for gauging the confidence interval 

of DEA scores. We propose three resampling models. The first one assumes downside 

and upside measurement error rates for each input/output, which are common to all 

DMUs. We resample data following the triangular distribution that the downside and 

upside errors indicate around the observed data. The second model utilizes historical 

data, e.g., past-present, for estimating data variations, imposing chronological order 

weights which are supplied by Lucas series (a variant of Fibonacci series). The last one 

deals with future prospects. This model aims at forecasting the future efficiency score 

and its confidence interval for each DMU. 

 Keywords: Data error; resampling; triangular distribution; confidence interval; 

past-present-future intertemporal DEA 

1. Introduction 

The treatment of data variations by statistical methods has taken a variety of forms 

in DEA. Banker [1] and Banker and Natarasan [2] show that DEA provides a consistent 

estimator of arbitrary monotone and concave production functions when the (one-sided) 

deviations from such a production are degraded as stochastic variations in technical 

inefficiency. Simar and Wilson [7,8] turn to “bootstrap methods” which enable them to 
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deal with the case of multiple inputs and outputs. In this manner, the sensitivity of the 

efficiency score obtained by the variable returns-to-scale model can be tested by 

repeatedly sampling from the original samples. A sampling distribution of the efficiency 

score is then obtained, from which confidence intervals may be derived and statistical 

tests of significance developed. Tziogkidis [10] points out that “Bootstrap DEA is a 

significant development of the past decade; however, some of its assumptions and 

properties are still quite unclear, which may lead to mistakes in implementation and 

hypothesis testing”, and proposes a hypothesis testing procedure.  

However, as far as the author knows, most researches on this subject are 

modifications of Efron [6]. This ignores the characteristics of inputs and outputs, which 

differ from DMU to DMU. Originally, DEA stems from the individualization of DMUs 

which have different values in the specified input and output factors for each DMU. 

Mathematical programming approaches have succeeded in measuring efficiency within 

this individualization framework. Hence, even resampling should inherit this merit, 

which could not be explored and expected by using statistical methods as represented by 

bootstrapping. In DEA, the data may suffer from measurement errors. There are several 

researches on measurement errors. Gauss (1777-1852) was the first to demonstrate that 

the distribution of measurement errors follows the Gaussian distribution (the normal 

distribution). In recent years, an OR method PERT (program evaluation and review 

technique) utilizes three-point estimates; pessimistic, most likely and optimistic, for 

each activity in the concerned project.  

This paper deals with measurement errors in inputs and outputs and resamples data 

depending on the empirical distribution of errors.  

This paper unfolds as follows. Section 2 assumes that measurement error rates for 

inputs and outputs are common to all DMUs and errors follow the triangular distribution. 

Section 3 deals with historical data for estimating the distribution of input/output data 

and thus we learn the distribution of input/output values from history. We resample data 

using the discrete distribution with Lucas number weights to ages. In section 4, we 

extend the approach presented in section 3 to future forecast data and resample future 

data depending on the past-present-future intertemporal distribution. For forecasting, we 
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utilize the trend, the weighted average or the average of the trend and weighted average 

provided by past-present data. In all cases, we utilize the super-efficiency model and 

obtain the confidence intervals. Section 5 concludes the paper.    

2. The common upside and downside measurement errors case 

In this section, we introduce three estimations of input/output values and propose a 

resampling model based on the triangular distribution.  

2.1 The triangular distribution  

In this section, we assume that the data are bounded by upside and downside limits 

having a single mode. Like PERT, we denote the downside limit, the mode and the 

upside limit by a, m and b.  The observed input and output values represent the mode 

m. We employ the triangular distribution for data as exhibited in Figure 1. 

 

 

 

 

 

 

Figure 1: Triangular distribution 

We assume that the three estimates differ in their input and output. The reason why 

we employ the triangular distribution is that, although the Beta distribution is the 

representative one among the distributions having unimodal and bounded characters, 

this distribution requires four parameters to be decided and it is difficult to determine 

them for the input and output data for each individual DMU. Hence, we utilize the 

triangular distribution represented by three parameters a, m and b.  In this section, we 

assume that a and b can be expressed by the error rates   and   as follows: 
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   The error rates, and  , are decided externally, and differ in their input and 

output factors, but are common to all DMUs.  

2.2  Data generation process 

The triangular distribution has the following distribution function: 

2
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 Hence, using a uniform random number (0 1)r r  , we can obtain an input/output 

value z as follows:   

If , then ( )( ),

If , then z (1 )( )( ).

m a
r z a r m a b a

b a

m a
r b r b m b a

b a


    




     


           (3) 

2.3  How to determine  and    

There are several methods for estimating   and   , among which we point to 

the following: 

(1)  Expert knowledge can be applied. For some instances, data are intentionally 

underestimated or overestimated, for example, in the accounting statements. 

From experience, experts in the concerned areas can estimate them. 

(2) If historical data are available, we can apply the following procedure. Let the 

past T periods data for a certain input (output) i be ( 1, , )tz t T where T is the 

current (latest) period. Comparing with Tz , we evaluate downside (upside) error 

variation rates t

i  ( t

i ) for the period t. From the distribution of  ti  and 

 ti for all DMUs, we can decide their median or average as i and i .  
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2.4  An example 

Table 1 shows nineteen hospitals each having two inputs (doctor and nurse) and two 

outputs (inpatient and outpatient). 

Table 1: Hospital data 

  (I)Doctor (I)Nurse (O)Inpatient (O)Outpatient 

H1 116  545  603  1,295  

H2 136  482  618  1,300  

H3 125  616  561  1,071  

H4 140  554  679  1,182  

H5 137  633  622  1,147  

H6 109  613  651  1,457  

H7 101  491  540  1,067  

H8 133  479  505  1,081  

H9 121  501  486  904  

H10 148  611  586  1,321  

H11 102  501  479  1,113  

H12 158  737  743  1,714  

H13 120  697  634  1,872  

H14 116  517  623  2,009  

H15 166  817  877  2,155  

H16 81  378  406  897  

H17 112  663  709  1,733  

H18 63  381  463  872  

H19 95  320  490  1,034  

 

Table 4 reports the estimated error rates in percentage for each input and output 

which are obtained using past records in the manner described in (2) of section 2.3. 

Actually, we estimated the error rates for inputs (outputs) using the 

2008(Past)-2009(Current) data in Table 6 and decided i and i by their medians. For 

example, the 2008-2009 data of the input “Doctor” and its variation rates are exhibited 

in Table 2 while Table 3 shows downside, upside variations and their medians.    
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Table 2: Variation rate of Doctor from 2008 to 2009 

 
(I)Doc(2008) (I)Doc(2009) Variation rate 

H1 114  116  -0.017  

H2 133  136  -0.022  

H3 121  125  -0.032  

H4 138  140  -0.014  

H5 142  137  0.036  

H6 106  109  -0.028  

H7 103  101  0.020  

H8 118  133  -0.113  

H9 119  121  -0.017  

H10 106  148  -0.284  

H11 101  102  -0.010  

H12 147  158  -0.070  

H13 106  120  -0.117  

H14 110  116  -0.052  

H15 160  166  -0.036  

H16 68  81  -0.160  

H17 112  112  0.000  

H18 64  63  0.016  

H19 95  95  0.000  

 

Table 3: Downside, upside variations and median for Doctor 

 
Downside 

  
Upside 

H1 0.017 
 

H5 0.036 

H2 0.022 
 

H7 0.020 

H3 0.032 
 

H18 0.016 

H4 0.014 
 

Median(β) 0.020 

H6 0.028 
   

H8 0.113 
   

H9 0.017 
   

H10 0.284 
   

H11 0.010 
   

H12 0.070 
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H13 0.117 
   

H14 0.052 
   

H15 0.036 
   

H16 0.160 
   

Median(α) 0.034 
   

 

Table 4: The downside and upside error rates in percentage 

  Downside error rate 

  

Upside error rate 

  

Doctor 3.4% 2% 

Nurse 3.4% 2.8% 

Inpatient 1.4% 2.7% 

Outpatient 3.2% 1.8% 

 

We resampled the data using the data generation process described in section 2.2 

and evaluated the efficiency of hospitals by the input-oriented super SBM model under 

the constant-returns-to-scale condition (Tone [9], Cooper et al. [5]). We repeated this 

process 500 times. Table 5 shows the results, where the column DEA is the 

super-efficiency score of the original data in Table 1.  

Table 5: Results of 500 replicas 

DMU DEA 97.5% 75% 50% 25% 2.5% 

H1 0.8353 0.8603 0.8442 0.8351 0.8263 0.8148 

H2 0.8568 0.8775 0.8624 0.8535 0.8459 0.8296 

H3 0.6823 0.7047 0.6896 0.6821 0.6758 0.6619 

H4 0.8357 0.8699 0.8477 0.8364 0.8239 0.8051 

H5 0.7132 0.7374 0.723 0.7133 0.7043 0.6885 

H6 0.8839 0.9106 0.8916 0.8824 0.874 0.8595 

H7 0.8258 0.8488 0.834 0.8256 0.8179 0.8015 

H8 0.7111 0.727 0.7152 0.7087 0.7019 0.6896 

H9 0.6724 0.6971 0.6806 0.6726 0.6646 0.6507 
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H10 0.6924 0.7104 0.6982 0.6915 0.686 0.6754 

H11 0.7526 0.7749 0.7591 0.752 0.745 0.7339 

H12 0.7731 0.7946 0.7795 0.7724 0.7664 0.7521 

H13 0.8418 0.866 0.8508 0.8429 0.8336 0.8171 

H14 1.2785 1.3212 1.293 1.2762 1.2603 1.2308 

H15 0.8593 0.8841 0.8675 0.8589 0.8502 0.8365 

H16 0.8144 0.8371 0.822 0.8139 0.8062 0.7941 

H17 0.9386 1.0305 1.0169 0.9412 0.9303 0.9149 

H18 1.133 1.1631 1.1434 1.1328 1.1229 1.1052 

H19 1.1089 1.1303 1.1164 1.1088 1.1003 1.0862 

 

Figure 2 exhibits the 95% confidence interval and the original DEA score. The 

average of the confidence interval for all hospitals is 0.05 which is small in this case. 

Relatively small downside and upside error rates in Table 4 result in this number. 

 

 

Figure 2: 95% confidence interval and DEA score 
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3. Use of historical data for estimating data variations 

In the previous section, we applied the triangular distribution for simulating 

measurement errors. In this section, we make use of historical data for resampling 

purposes.  

3.1 Historical data and weights 

Let the historical set of input and output matrix be ( , ) ( 1, , )t t t TX Y where 

1t   is the first period and t T is the last period with 
1( , , )t t t

nX x x and

1( , , )t t t

nY y y . The number of the DMU is n and, and t m t s

j jR R x y are 

respectively input and output vectors of DMUj .  

(a) Super-efficiency scores of ( , )T T
X Y  

First we evaluate the super-efficiency scores of the last period’s DMUs. Then we 

gauge their confidence interval using replicas from ( , ) ( 1, , )t t t TX Y as follows. 

(b) Lucas weight 

We set the weight tw  to period t and assume the weights are increasing in t. For 

this purpose, the following Lucas number series 1( , , )Tl l  (a variant of Fibonacci 

series) is a candidate where we have  

2 1 1 2( 1, , 2; 1, 2).t t tl l l t T l l                   (4) 

Let the sum be 
1

T

t

t

L l


  and we define weight tw by 

( 1, , ).t tw l L t T                      (5) 

If T=5, we have 1 2 3 4 50.0526, 0.1053, 0.1579, 0.2631, 0.4211w w w w w     . 

Thus, the influence of the past period fades away gradually. 
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3.2 Cumulative weight and random sampling 

We regard the historical data ( , ) ( 1, , )t t t TX Y as discrete events with 

probability 
tw  and with the cumulative probability 

1

( 1, , ).
t

t i

i

W w t T


                      (6) 

Using a uniform random number (0 1)r r  , we resample ( , )t t
X Y if 

1t tW r W   , where we define 0 0W  . We evaluate the efficiency score of each DMU 

by using the super-SBM model. We repeat this process for the designated times. 

3.3 An example of historical data and resampling 

Table 6 displays the historical data of nineteen hospitals for the three years 

2007-2009. 

Table 6: Historical data 

 

2007 

   

2008 

   

2009 

   

 

(I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out 

H1 108  433  606  1,239  114  453  617  1,244  116  545  603  1,295  

H2 125  448  642  1,363  133  499  638  1,310  136  482  618  1,300  

H3 118  567  585  1,072  121  600  569  1,051  125  616  561  1,071  

H4 138  541  699  1,210  138  531  704  1,194  140  554  679  1,182  

H5 138  613  653  1,195  142  616  644  1,147  137  633  622  1,147  

H6 99  569  716  1,533  106  592  701  1,478  109  613  651  1,457  

H7 94  498  540  1,065  103  494  551  1,067  101  491  540  1,067  

H8 106  461  496  1,051  118  490  504  1,033  133  479  505  1,081  

H9 109  450  483  851  119  483  487  877  121  501  486  904  

H10 102  540  581  1,268  106  558  565  1,278  148  611  586  1,321  

H11 92  495  490  1,217  101  497  501  1,146  102  501  479  1,113  

H12 148  721  771  1,637  147  710  723  1,657  158  737  743  1,714  

H13 103  593  679  2,011  106  673  642  1,883  120  697  634  1,872  

H14 101  500  613  1,868  110  519  617  1,894  116  517  623  2,009  

H15 159  793  964  2,224  160  801  906  2,148  166  817  877  2,155  

H16 77  354  410  1,047  68  359  391  916  81  378  406  897  
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H17 111  663  717  1,674  112  645  702  1,774  112  663  709  1,733  

H18 62  388  480  913  64  385  467  907  63  381  463  872  

H19 98  323  508  1,192  95  314  483  1,018  95  320  490  1,034  

 

Table 7 exhibits results obtained by 500 replicas where the column DEA is the last 

period’s (2009) efficiency score.  

Table 7: DEA score and confidence interval with 500 replicas 

DMU DEA(2009) 97.5% 75% 50% 25% 2.5% 

H1 0.8353 0.9939 0.9509 0.9194 0.8396 0.8159 

H2 0.8568 0.9324 0.8904 0.8706 0.8514 0.8245 

H3 0.6823 0.7399 0.7165 0.7012 0.6893 0.6702 

H4 0.8357 0.9107 0.8801 0.8663 0.8439 0.817 

H5 0.7132 0.7654 0.7411 0.7255 0.7132 0.6916 

H6 0.8839 1.0125 0.9526 0.9257 0.8972 0.8698 

H7 0.8258 0.8586 0.8342 0.8247 0.8145 0.7975 

H8 0.7111 0.7797 0.7419 0.7169 0.6974 0.6785 

H9 0.6724 0.7406 0.7009 0.6856 0.6731 0.6533 

H10 0.6924 0.8619 0.82 0.768 0.6977 0.6617 

H11 0.7526 0.8213 0.7863 0.7723 0.7577 0.7356 

H12 0.7731 0.8205 0.7965 0.7814 0.7657 0.7441 

H13 0.8418 1.1023 1.067 0.9309 0.8591 0.8048 

H14 1.2785 1.3282 1.2332 1.1915 1.1426 1.0728 

H15 0.8593 0.947 0.8987 0.8807 0.8652 0.8382 

H16 0.8144 0.9344 0.8819 0.8423 0.8165 0.7861 

H17 0.9386 1.0238 0.9543 0.9382 0.9237 0.9029 

H18 1.133 1.1674 1.1283 1.1073 1.0796 1.0277 

H19 1.1089 1.135 1.106 1.09 1.0722 1.0438 

 

Figure 3 shows the 95% confidence intervals for the last period’s (2009) DEA 

scores. The average of the 95% confidence interval for all hospitals is 0.13 which is 

larger than the average in Figure 2. This reflects large variations in the past data. 
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Figure 3: 95% confidence interval 

 

3.4 Remarks on historical data 

Historical data may suffer from accidental or exceptional events, for example, oil 

shock, earthquake, financial crisis and so forth. We must exclude these from the data. If 

some data are under age depreciation, we must adjust them properly. 

4. Resampling with future forecasts 

In the previous section, we utilized historical data ( , ) ( 1, , )t t t TX Y to gauge the 

confidence interval of the last period’s scores. In this section, we forecast “future”

1 1( , )T T 
X Y by using “past-present” data ( , ) ( 1, , )t t t TX Y  and evaluate the 

efficiency scores of the future DMUs with their confidence intervals. 

4.1 Forecasting and efficiency score of the forecast DMUs 

Let ( 1, , )tz t T  be the observed historical data for a certain input/output of a 

DMU. We wish to forecast 
1Tz 
 from ( 1, , )tz t T . There are several forecasting 

engines available for this purpose. We must choose one or try several for deciding 

which one is best suited for the problem at hand. As candidates, we choose the 

following three scenarios: 
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(a) Trend analysis: a simple linear least square regression 

(b) Weighted average: weight by Lucas number 

(c) Average of trend and weighted average 

By applying a forecasting model, we obtain the data set 1 1( , )T T 
X Y . We evaluate 

the super-efficiency of the “future” DMU 1 1( , )T T 
X Y .  

4.2 Resampling by using past-present-future data 

We have the past-present-future intertemporal data set ( , ) ( 1, , 1)t t t T X Y . Thus, 

we can apply the resampling scheme in the previous section and obtain confidence 

intervals. 

4.3 An example of past-present-future DEA 

In this section, we apply our scheme for the dataset displayed in Table 6. In this case 

we regard 2007-2008 as the past-present and 2009 as the future. 

4.3.1 Forecast by trend case 

Table 8 reports the forecast 2009 data by trend. 

Table 8: Forecast 2009 data: forecast by trend 

DMU (I)Doc (I)Nurse (O)Inpatient (O)Outpatient 

H1 120 473 628 1249 

H2 141 550 634 1257 

H3 124 633 553 1030 

H4 138 521 709 1178 

H5 146 619 635 1099 

H6 113 615 686 1423 

H7 112 490 562 1069 

H8 130 519 512 1015 

H9 129 516 491 903 

H10 110 576 549 1288 

H11 110 499 512 1075 

H12 146 699 675 1677 
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H13 109 753 605 1755 

H14 119 538 621 1920 

H15 161 809 848 2072 

H16 59 364 372 785 

H17 113 627 687 1874 

H18 66 382 454 901 

H19 92 305 458 844 

  

Table 9 shows the forecast DEA score and confidence interval along with the 

actual super-SBM score for 2009. Figure 4 exhibits 97.5% percent, 2.5% 

percent, forecast score and actual score. 

 

Table 9: Forecast DEA score and confidence interval: Forecast by trend 

DMU Forecast 97.50% 75% 50% 25% 2.50% Actual 

H1 0.9633 1.0355 0.9959 0.9641 0.9359 0.8898 0.835319 

H2 0.8118 1.0102 0.882 0.8412 0.812 0.7816 0.856758 

H3 0.6917 0.7566 0.7282 0.7075 0.6879 0.6618 0.682268 

H4 0.96 0.977 0.9459 0.926 0.9057 0.8695 0.835736 

H5 0.7477 0.774 0.7555 0.7424 0.728 0.7027 0.713184 

H6 0.9223 1.028 0.974 0.9439 0.9263 0.8921 0.883851 

H7 0.8473 0.902 0.851 0.8303 0.8101 0.7773 0.825768 

H8 0.7013 0.7896 0.741 0.7148 0.692 0.6589 0.71106 

H9 0.677 0.759 0.709 0.6876 0.665 0.6354 0.672391 

H10 0.8035 0.8609 0.8246 0.8104 0.794 0.7657 0.692355 

H11 0.7825 0.8516 0.8079 0.7818 0.7629 0.7348 0.752595 

H12 0.7952 0.8537 0.8089 0.7824 0.7646 0.7381 0.773051 

H13 0.8501 1.1226 1.0809 1.0412 0.8865 0.8055 0.841793 

H14 1.0987 1.2584 1.1706 1.1354 1.1036 1.0361 1.278508 

H15 0.878 0.9647 0.9145 0.8876 0.8638 0.8343 0.859348 

H16 0.9046 1.0407 0.9417 0.9008 0.8613 0.7904 0.814377 

H17 1.0348 1.0387 1.0147 0.9777 0.9457 0.9093 0.938581 

H18 1.0963 1.1381 1.0938 1.072 1.05 0.9931 1.132974 
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H19 1.0779 1.152 1.1126 1.0877 1.0672 1.0262 1.108945 

 

 

 

 

Figure 4: Confidence interval, forecast score and actual 2009 score: Forecast by trend 

 

It is observed that, of the nineteen hospitals, the actual 2009 scores of fourteen are 

included in the 95% confidence interval. The average of Actual Forecast / Actual  

over the nineteen hospitals was 0.062 (6.2%). 

4.3.2 Forecast by Lucas weighted average case 

Table 10 reports forecast 2009 data by Lucas weight and Table 11 shows forecast 

2009 scores, confidence intervals. 

Table 10: Forecast 2009 data: Forecast by Lucas weight 

DMU (I)Doc (I)Nurse (O)Inpatient (O)Outpatient 

H1 112  446  613  1242  

H2 130  482  639  1328  

H3 120  589  574  1058  
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H4 138  534  702  1199  

H5 141  615  647  1163  

H6 104  584  706  1496  

H7 100  495  547  1066  

H8 114  480  501  1039  

H9 116  472  486  868  

H10 105  552  570  1275  

H11 98  496  497  1170  

H12 147  714  739  1650  

H13 105  646  654  1926  

H14 107  513  616  1885  

H15 160  798  925  2173  

H16 71  357  397  960  

H17 112  651  707  1741  

H18 63  386  471  909  

H19 96  317  491  1076  

 

Table 11: Forecast DEA score and confidence interval: Forecast by Lucas 

weight 

DMU Forecast 97.50% 75% 50% 25% 2.50% Actual 

H1 0.9556 1.0002 0.9703 0.9578 0.9448 0.9215 0.835319 

H2 0.8903 0.952 0.9025 0.8887 0.8745 0.8549 0.856758 

H3 0.7208 0.7453 0.7297 0.7205 0.7135 0.6968 0.682268 

H4 0.8939 0.9127 0.9023 0.895 0.8867 0.8734 0.835736 

H5 0.7398 0.7553 0.746 0.7412 0.7357 0.7214 0.713184 

H6 0.9763 1.0119 0.989 0.9758 0.9654 0.9476 0.883851 

H7 0.8222 0.8519 0.8301 0.8223 0.8141 0.7991 0.825768 

H8 0.7348 0.7657 0.7445 0.7336 0.7238 0.7108 0.71106 

H9 0.7034 0.7366 0.712 0.702 0.6935 0.6773 0.672391 

H10 0.8201 0.8441 0.8261 0.8182 0.8115 0.7999 0.692355 

H11 0.7912 0.824 0.7992 0.7895 0.7817 0.7669 0.752595 

H12 0.7895 0.8188 0.7954 0.787 0.7796 0.7672 0.773051 

H13 1.0628 1.0887 1.0715 1.0618 1.0522 0.9004 0.841793 
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H14 1.1123 1.1726 1.1379 1.1177 1.0906 1.0434 1.278508 

H15 0.9093 0.9448 0.9152 0.9055 0.8966 0.8843 0.859348 

H16 0.8819 0.9297 0.8999 0.8842 0.8683 0.8304 0.814377 

H17 0.9323 0.9565 0.9413 0.9322 0.9232 0.907 0.938581 

H18 1.0517 1.0903 1.064 1.0543 1.0438 1.0178 1.132974 

H19 1.0875 1.1277 1.1021 1.0891 1.0773 1.045 1.108945 

 

In this case, only four hospitals are included in the 95% confidence interval. The 

average of Actual Forecast / Actual  over the nineteen hospitals was 0.075 (7.5%). 

4.3.3 Comparisons 

We compare the correlation coefficients between the forecast 2009 scores and the 

actual 2009 scores. We have results as exhibited in Table 12. “Trend” gives a better 

correlation than “Lucas weight” in this case. Although we did not report the average of 

the trend and Lucas weight case in detail, this case gives the worst correlation.  

Table 12: Correlations between forecasted and actual scores 

 Trend Lucas weight Average of Trend 

and Lucas 

Correlation 0.900421 0.874473 0.868957 

 

5. Conclusion 

DEA is a non-parametric mathematical programming model that deals directly with 

input/output data. Using the data, DEA can evaluate the relative efficiency of DMUs 

and propose a plan to improve the inputs/outputs of inefficient DMUs. This function is 

difficult to achieve with similar models in statistics, e.g., stochastic frontier analysis. 

This is a great contribution of Charnes and Cooper (Charnes et al. [4])).  

DEA scores are subject to change by data variations. This subject should be 

discussed from the perspective of the itemized input/output variations. From this point 

of view, we have proposed three models. The first model assumes downside and upside 

error rates for each input and output which are common to all DMUs, and utilizes the 
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triangular distribution for the data generation process of resampling. Other data 

generation processes may be possible. This is a future research subject. The second 

model utilizes historical data for the data generation process, and hence this model 

resamples data from a discrete distribution. It is expected that, if the historical data are 

volatile, confidence intervals will prove to be very wide, even when the Lucas weights 

are decreasing depending on age. The choice of the length of historical span is a future 

research subject. Monte Carlo simulation will be useful for deciding the span. The third 

model aims to forecast the future efficiency and its confidence interval. For forecasting, 

we proposed three scenarios; the trend, the weighted average and their average. On this 

subject, Xu and Ouenniche [11] will be useful for the selection of forecasting models, 

and Chang et al. [3] will provide useful information on the estimation of the pessimistic 

and optimistic probabilities of the forecast future input/output values. 

We did not compare our resampling models with the bootstrapping models by Simar 

and Wilson, because the underlining concepts are different between the two models. 

However, comparative studies in theory and applications are interesting future subjects. 
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