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A Comparative Evaluation of
Parametric and Nonparametric Methods to
Estimating Degree of Scale Economies

Kaoru Tone*and Biresh K. Sahoo |
National Graduate Institute for Policy Studies i

Abstract

Policy recommendations based on elasticity parameters have as-
sumed greater significance for the firm’s financial viability and suc-
cess in a competitive set up. So there is a need to examine with more
prudence the elasticity estimates obtained from various parametric as
well nonparametric methods. The main aim of this paper is fixst to
critically examine these methods, then to point out their limitations,
and finally to propose an alternative method to be considered for while
pursuing further elasticity studies.

Keywords: DEA; cost efficiency; production elasticity; cost elas-
ticity; returns to scale.

1 Introduction

Intensifying pressures in competitive environment have motivated many in-
dustries to build larger operating units to achieve the widely advantages of
‘scale economies.” This is apparent not only in manufacturing industries but
also in regulated/state-owned industries such as electricity, water, telecom,
etc., and public sector units such as hospitals and schools. This reflects the
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spread of faith in the underlying benefits of ‘scale increases’ in the minds of
economists, engineers, industrial managers, and governments. From a policy
point of view, the estimation of scale elasticity (returns to scale, RTS) pa-
rameter is of particular importance concerning whether there is any scope for
increased productivity by expanding/contracting, whether minimum efficient
scales will allow competitive markets to be established, and if the existing
size distribution of firms is consistent with a competitive market outcome. So
there is a need that these estimates should be examined with more prudence
for the firm’s financial viability and success.

We find in the economics literature (Fare et al., 1988 and Fgrsund, 1996)
that there are two approaches to the estimation of scale elasticity or de-
gree of scale economies (DSE): the neoclassical production (cost) function
approach (Frisch, 1965) and axiomatic approach (Shephard, 1970). The
former approach (whose estimation method is parametric econometric ap-
proach) gives us quantitative measure of scale economies whereas the latter
approach (whose estimation method is the nonparametric data envelopment
analysis (DEA) by Charnes et al., 1978) yields qualitative information on
scale economies. Recently, we find in the literature that DEA models also
generate quantitative information of scale econmomies (Banker et al., 1996b,
Fgrsund, 1996, Sueyoshi, 1997). Both the methods have become important
analytical tools in the empirical evaluation of elasticity. The main purpose
of this paper is to empirically examine the nature of scale properties in both
the methods, then to point out the limitations, and finally to propose an
alternative to get rid of such limitations.

This paper is organized as follows. In Section 2, we first introduce the
nonparametric DEA models for the qualitative evalustion of returns to scale,
discuss the quantitative evaluation of elasticity in the existing DEA mod-
els, then point out their limitations and suggest an alternative method in
the same existing DEA framework. Section 3 deals with the discussion of
quantitative evaluations of elasticity in the recent parametric models. For
empirical comparison, we employ the Nippon Telegraph & Telephone (NTT)
data in Sueyoshi (1997) and two other data sets to demonstrate the choice of
superior model in Section 4. Section 5 ends with some concluding remarks.



2 Nonparametric DEA Models

Throughout this paper, we deal with n decision making units (DMUs)/firms,
each uses m inputs to produce s outputs. For each DMU, (0 = 1,...,n),
we denote respectively the input/output vectors by x, € R™ and y, € R°.
The input/output matrices are defined by X = (®4,...,®,) € R™™ and
Y =(yy,...,Y,) € R**™. We assume that X > O and ¥ > O.

2.1 Technology and Scale Elasticity

The technology (I"), which converts inputs into outputs at any given point
of time is defined as the set of all feasible input-output combinations,

T = {(=,y) | = can produce y}.

The standard neoclassical characterization of production function for multi-
ple outputs and multiple inputs is the transformation function (zx, y) which
exhibits the following properties:

W(@,y) =0, %‘:’y) <0 (¥r) and % > 0 (¥).

Alternatively, the technology can be described by its input set
Liy)={z | (z,y) €T} foral y,
or by its output set
P(z) = {y | (x,y) € T} for all .
Following Shephard (1970), the output distance function is defined as
D,(z,y) = inf{é | y/d € P(x),d > 0}.

For any output vector ¥, y/Dqy(x, y) is the largest output quantity vector on
the ray from the origin through ¥ that can be produced from 2. Assuming
free disposability, the following holds true:

y € P(z) if and only if Dy(z,y) < 1.



Thus, Dy(z,y) provides a representation of the technology.

The returns to scale (RT'S) or scale elasticity in production (p,) or de-
gree of scale economies (DSE) or Passus Coefficient, is defined as the ratio
of the maximum proportional () expansion of outputs to a given propor-
tional (1) expansion of inputs. So differentiating the transformation function
¥(pe, fy) = 0 w.r.t. scaling factor y, and then equating it with zero yields
the following local scale elasticity measure:

po(@:Y) = = 6:1:,/z "0y,

See Hanoch (1970), Starrett (1977), Panzar and Willig (1977) and Baumol
et al. (1988) for the detailed discussion.

However, in case of single input and single output technology p, is simply
expressed as the ratio of marginal product (MP)[=dy/dz] to average product

(AP) [=y/$], Le.,

MP  dy/dz
pl@y) = 55 = z;x

The scale elasticity also reflects the sensitivity of the output distance func-
tion with respect to changes in the input quantity vector where ¥(z,y) =
Do(m,y) — 1 = 0 (Fare et al., 1986, and Ray, 1999). Assuming D,(z,y) to
be continuously differentiable, p, is then defined by

7, 2Do(@.Y)
i=]1 "1 31:,'

Do(x,y)

For a neoclassical ‘S-shaped production function’ (or Regular Ultra Pas-
sum Low (RUPL) in the words of Frisch, 1965), p,(z,y) takes on values
ranging from ‘greater than one’ for suboptimal output levels, through ‘one’
at the optimal scale level, and to values ‘less than one’ at the superoptimal
output levels. So the production function satisfies RUPL if dp,/0y < 0 and
Op,/0z < 0 (Fgrsund and Hjalmarsson, 2002). RTS are increasing, constant
and decreasing if p, > 1, p, =1, and p, < 1 respectively.

Following Baumol et al. (1988), the dual measure of production elasticity,
called cost elasticity (p.), is defined in multiple input and multiple output

environment as 86’ )
'w

pe = Clw,y / Z Y
r=1 6?,’,-

pp(w’ y) =-
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where C(w,y) = ming{w.z | £ € L(y)} is the minimum cost of producing
output vector ¥y when input price vector is w. However, p, can be expressed
as the ratio of average cost to margianl cost in the case of single output.
RTS are increasing, constant or decreasing depending upon whether p, > 1,
pe =1, or p. < 1 respectively.

2.2 Qualitative Information on RT'S

The CCR output oriented model (Charnes et al., 1978), which is based on
the assumption of constant returns to scale, is used to qualitatively describe
local RTS for DMU,,.

[CCR-O] max 6

™
subject to Y zyA; <z, (i=1,...,m)
j=1

=2 YN+ S0 (r=1,...,s)

j=1

A 2 0. (¥7)

If 3°%_1 A; = 1 in any alternate optima, then constant returns to scale (CRS)
prevails on DMU,; if 3°7_; A; < 1 for all alternate optima, then increasing
returns to scale (IRS) prevails; and if 337_, A; > 1 for all alternate optima,
then decreasing returns to scale (DRS) prevails.

The dual of the BCC model (Banker et al., 1984), which is based on the
assumption of variable returns to scale (VRS), is also used for obtaining the
qualitative information on local RTS for DMU,.

[BCC-O] min ¢= ) vZi +

i=1

s m
subject to - Zuryrj + Z'Uimij +v, 2 0, (.7 =1,... ,n)

r=1 i=1

2
Z UrYro = 1
r=1
ur,v; 2> 0, and v, : free.

If v = 0 (* represents optimal value) in any alternate optimal then CRS
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prevails on DMU,, if v} < 0 in all alternate optimal then IRS prevails, and
if v} > 0 in all alternate optimal then DRS prevails on DMUS,,.

Fare et al. (1985) introduced the following ‘scale efficiency index’ (SEI)
method, which is based on non-increasing returns to scale (NIRS), to deter-
mine the nature of local RTS for DMU, as follows:

[SEI-O] max f

n
subject to Y @yA; <z (i=1,...,m)
j=1

—Zy,.j)\j-i-fyoﬁO(rzl,...,s)

J=1

da <1
i=1
Aj > 0. (V)

If 8* = ¢*, then DMU, exhibits CRS; otherwise if §* < ¢*, then DMU,
exhibits DRS iff ¢* > f*, and DMU, exhibits IRS iff ¢* = f*.

These three different RTS methods are equivalent to estimate RTS pa-
rameter (Banker et al., 1996b and Fare and Grosskopf, 1994). In empirical
applications one, however, finds that the CCR, and BCC RTS methods may
fail when DEA models have alternate optima. However, the scale efficiency
index method does not suffer from the above problem, and hence is found
robust. An elaborate discussion on the qualitative evaluation of RTS of dif-
ferents DEA models is found in Léthgren and Tambour (1996) and Tone and
Sahoo (2002a).

In the light of all possible multiple optima problem in the CCR and BCC
methods, Banker and Thrall (1992) generalized by introducing new variables
v} and v, which represent optimal solutions obtained by solving the dual of
the output-oriented BCC model, with one more constraint } 7" v;Z;0+v, = 1
and replacing the objective function in this model by either v} = maxw, or
or v; = minv,. They show here that IRS operates iff v} > v, > 0, DRS
operates iff 0 > v} > v, and CRS operates iff v} > 0 > v}

Banker et al. {1996b) point out that the concept of RTS is unambiguous
only at point on the efficient facets of production technology. So the RTS
for the inefficient units may depend upon whether the efficiency estimation
is made through an input-oriented or output-oriented manner. A detailed
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method of doing so is found in the studies of Banker et al. (1996a), Tone
(1996) and Cooper et al. (1999).

2.3 Quantitative Information on RTS

In this subsection we first discuss the quantitative evaluation of production
as well as cost elasticity, then point out their limitations, and finally suggest
an alternative measure to get rid of such limitations.
2.3.1 Production Elasticity
If a DMU, is efficient in [BCC-O], then it holds that
-] m
- Zu:y'ro + Z'U::L"io +'U: =0
r=1 t=1

In order to unify multiple outputs and multiple inputs, let us define a
scalar output y and scalar input z respectively as

8 m
*
y= Zu,",‘ym, and z = Z'ui Tio-
i=1

r=1

Then, we have output (y) to input (z) relationship as
y=z+v,.

From this equation, we define MP as

dy
MP=-—"=1
dz ’
and AP as
Y 1 1 . Z *
AP == =T sincey =3 uye =1.

o r=1

Now, the production elasticity (p,) is defined as

— *
— =1-0

Pp= 3P



However, if DMU, is inefficient, then p, equals (1 — ‘;—,.'uz). RTS are increas-
ing, constant and decreasing if v} < 0, v} = 0 and v} > 0 respectively.
To note here that as pointed out by Fgrsund and Hjalmarsson (2002), the
production elasticity, p, does not satisfy fully the requirement of RUPL as
Opp(zv) _ _00/9) _

8.%,, ° ax’io

IRS (v} < 0) implies decreasing production elasticity in accordance with
RUPL, while DRS (v} > 0) implies an increasing p,, thus violating the law.

(1/@52)’1);1}5, 1= 11 cees MM

2.3.2 Cost Elasticity
Sueyoshi (1997) used the following dual of the VRS cost DEA model

[COST] " =max > wYro+ W,

r=1

m S
subject t0  — vy + > Urlrs + wo < 0, (V4)
i=1 r=1

v < w;, (Vi)
Ur, ¥; 2 0, (V7,1), w,: free

to compute cost elasticty/DSE for DMU, (where * represents optimal value).
Following Baumol et al. (1988), he computed DSE at (w,,y,) as

pc(-: DSE) = '}’*/(Zi; u:yro)a

and shows the equivalence of IRS with DSE > 1, CRS with DSE = 0 and
DRS with DSE < 1.

It is to be noted here that under the assumption of unique optimal solu-
tion, the production elasticity (p,) in the BCC-O model and cost elasticity
(pc) in VRS Cost model are same when ¢* = 1 and v} = w}/(w} — v*).
Otherwise,

Pe _ = — w;i’r*
P 1- :;T'U;
However, the the details of the duality relationship between p, and p, can be

found in Cooper et al. (1996) and Sueyoshi (1999, pp.1603-1604).
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2.3.3 An Alternative Measure of Scale Elasticity

This cost model however suffers from two problems: 1) cost elasticity p, is no
different from its dual counterpart, i.e., production elasticity p,, thus giving
the illusion that RTS and economies of scale are the one and same, and 2)
this cost model declares a cost inefficient DMU as efficient one.

Concerning the first problem, it is to be noted here that in the above
production-cost relationship it has been implicitly maintained that in the spe-
cial case of given input factor prices, the cost structure is entirely determined
from the underlying production technology where IRS implies economies of
scale. However, as the input market is typically imperfect in the real world,
these two concepts can no longer be the same. A description concerning the
conceptual differences between these two concepts lies beyond the scope of
this study. However, the interested readers can refer to our earlier studies,
e.g., Sahoo et al. (1999) and Tone and Sahoo (2002a) in which both the
concepts are critically analyzed and distinguished in the light of classical
and neoclassical perspectives, and it is further shown there that they have
distinctive causative factors that do not permit them to be used interchange-
ably.

As regards the second problem, Tone (2001) has recently shown that if
any two DMUs (A and B, say) have same amount of inputs and outputs, i.e.,
x4 = xp and Y4 = Yp, and the unit cost of DMU A is twice that of DMU B
for each input, i.e., w, = 2wpg, then both the DMUs exhibit the same cost
and allocative efficiencies. This finding is very ‘strange’ because they have
achieved the same cost efficiency irrespective of their cost differential’ . These
problems are due to the structure of the supposed production possibility set
P as defined by

P={(z,y) x> X\y<YAex=1,A2>0}

P is defined only by using technical factors X = (@1,...,2,) € B™*" and
Y = (yy,...,¥, € R™*®, but has no concern with the unit input cost
w = (wy,... ,"wn).

Let us define an another cost-based production possibility set P, as

P.={(z,y)|z > XAy<Yiex=12> 0},

1 See Tone (2001), Tone and Sahoo (2002b,c) for the detailed explanation.
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where X = (@1, ey Ein) with @j = (’I.U]_jﬁ!:lj, ey wmj:vmj)T.

Here, we assume that the matrices X, C and hence X are all positive.
Also we assume that the elements of Z;; = (wj;zi;) (V(4, 7)) are denominated
in homogeneous units, e.g., dollar, cent or pound so that adding up the
elements of Z;; has a meaning.

The new cost efficiency 4* is defined as

¥ = eZ:/e,,
where &} is the optimal solution of the LP given below.

[NCOST] ez’ = min eZx
subject to &> XA
Yo S YA
ex=1
A>0.

The new cost efficiency is evaluated by the program [NCOST). The constraint
includes m inequalities, since & is an m-vector. Considering the objective
function form e® and the intput constraints in [NCost], the aggregation of
these m constraints into one yields the following new program [NCOST-1]:

[NCOST-1]  min ez
subject to  e® > eXA
Yo S YA
ex=1
A>0.

This program is simpler than the former in that it has only one aggregated
constraint on the input part.

This aggregated model presents a correspondence between cost (input)
and production (outputs). Let us denote eZ; by w;, i.e.,

m
’LT)J' =injwij. (j = 1,...,Tb)

i=1

w; is the input cost for the DMUj for producing the output vector y;. Using
this notation and notifying the expressions in [NCOST-1], the new aggregated
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scheme reduces to the following LP:

[NCOST—2] min Z 'U_)j}\j
j=1
subject to  y, <Y A
eA=1

A>0.

In order to compute the cost elasticity, we consider the dual LP for
[NCOST-2] to serve the purpose.

[NCOST(Dual)]  max»_ uryro + 6o

r=1

subject to > uy +E<W; (j=1,...,n)

r=1

ur > 0 (V5), 6 : free.
We have the cost elasticity at (,,¥,) as

1
Pe =1 5wy

RTS are increasing if §* > 0 (p. < 1), constant if §* = 0 (p. = 1), and
decreasing if §* < 0 (p. > 1).

If there are multiple optima in 6*, then let its sup (inf) be §* (§*). Then
RTS are characterized as increasing if §* > 0 (p, > 1), constantif §* > 0 > §*
(pe <1< p.), and decreasing if §* < 0 (p, < 1).

To note that the method discussed above for characterizing RTS holds
true for efficient DMU. However, if a DMU is found inefficient, then project
it onto the efficient frontier, and then solve the above LP to compute p,.
A detailed method of doing so is extensively discussed in Tone and Sahoo
(2000c). The applications of this new method in the area of life insurance
and telecommunication are found in Tone and Sahoo (2002b,c).
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3 Parametric Models

Following Griliches and Ringstad (1971) and Christensen et al. (1973), the
technology characterized by translog production function is represented by

Iny = a, + Zazln:cz 4= L$ > Z o Inz; Inzy
i=11i=1

with the following restrictions to ensure linear homogeneity in input quanti-
ties:

m ™m s
Zai=1, Zaii"=0('i’=1s-'-xm)s ZCI{;I:O(i’:l,...,m).
i=1

i=1 ir=1

The production elasticity p, is computed by

_malny_m ‘ 1'""'“ lm“ |
Pp = ; 5o z; = ;[at-% 2‘;’2::104;31 Inzy -+ 2;%%111%,]_

Following Ray (1999), the technology characterized by a translog output
distance function is represented by

InD,(z,y) = a,+ Z o;lnz; + Zﬁr Iny.

1—1 r=1

+- Z Z aInz;Inzy + = z Z B In gy In gy

z’—-l 1r'=1

+Z Z’Yir lnmilnyr

i=1r=1

with the following restrictions to ensure linear homogeneity in output quan-
tities:

Zﬁ,—l Zﬁm—o(r—l , 8)

S Bw=0("=1,...,8), Z%r=0 (i=1,...,m).
r=1 r=1
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Then, p, is computed by

R O0nDy(z,y)
Pr = Bln:z:i

z—l
= — Z [az + = Z o Inzy + = }: ap; Inzy + Z Yir lnyr]
z’—l z’—l

The following translog cost function

nCw,y) = a+> ahw;+> G Iny,

i=1 r=1

+2 Z Z i Inw; Inwy + = Z Z Brr Iny, InT

i=1 =1 1pf=]
m s

+>3°3 v Inw;Iny,

i=1r=1

can be employed to estimate the cost-production relationship with the fol-
lowing restrictions:

Zai=1, Zaii:=0(i=1,...,m)

i=1 ir=1
m m
Yow=0@{F=1,...,m), % =0(r=1,...,s)
i=1 i=1

to ensure linear homogeneity in input prices. The cost elasticity p. is then
computed by

0ln C(w,vy)

P = 1/ Z Olny.
= 1/ Z [ﬁr + = Z ﬁ'm"’ In Ypt -+ - Z ﬁ.rlr In Ypt + Z’Y‘W‘ In w":l

1,.r_]_ i=1

To note here that in the multiple input and multiple output environment,
at the cost minimizing input vector z*(w,y), the production elasticity (p,)
and cost elasticity (pe) are same, i.e.,

=2 T 2 ot S 2000,
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See Baumol et al. (1988, p.55) for its proof. Further, it is shown there that
any differentiable cost function, whatever the number of outputs involved,
and whether or not it is derived from a homogeneous production process,
has a local degree of homogeneity, which is reciprocal of the homegeneity
parameter of the production process.

4 Empirical Results
4.1 The Data

For the empirical application, we have used the Japanese telecommunication
industry data (NTT), which have been used in the earlier study? in which
three outputs (Toll revenues, y;, Local revenues, y, and Other, y;) and three
inputs (Total assets, z;, Employess, z2 and Access lines, z3) were considered
for 39 financial years (from 1953-54 to 1991-92). Each year’s NTT annual
performance is considered here a distinct DMU. We have made some changes
in the data concerning the aggregation of outputs and scaling of data. First,
for the estimation of parameters of both translog production and cost func-
tions with greater precision, since the number of observations is less, we
have considered only one output, i.e., total revenue, which is the sum of toll
revenues, local revenues and other. Second, since price data are in decimal
terms, taking logarithm of these data points yields negative scores. We have
therefore scaled up these scores by multiplying each with 100 ensuring that
the logarithmic transformation does not yield negative values. The units of
original financial data are in one billion yen, but now they are in 10 million
yen. Since the units of revenue and total assets data are also in one billion
yen, we have multiplied them by 100 in order to maintain parity at least in
terms of expressing them all in the same unit, i.e., 10 million yen. The data
are reported in Appendix A.

A closer look at data set reveals that there is a trend associated with
output and cost over years. And as regards the curvature of the cost frontier,
the scatter plot of output vis-a-vis cost is shown below in Figure 1, and the
frontier is then drawn keeping in mind the fact that the cost-based technology
set is convex.

2 See Sueyoshi (1997, pp.788-789).
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Figure 1: Cost Frontier in NTT

4.2 RTS Results from Nonparametric Models
4.2.1 RTS: Qualitative Information

We have employed CCR-O, BCC-O and SEI-O DEA models to obtain the
qualitative information on returns to scale in production for 39 years of op-
eration of NTT. The results are reported in Table 1. We find here that all
the three methods are in agrement that NTT has been operating under IRS
for the first 34 years, CRS for the last five years, and no DRS for any year
of our sample period. However, the trend of degree of scale economies is not
clear here.
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Table 1: Qualitative Information on RTS in DEA

CCR Model BCC Model  SEI Model
DMU Z,- Aj RIS wo RTS RTS
1953/54  0.023 IRS 0428 IRS  IRS
54/55 0.025 IRS -1.121 IRS IRS
55/56  0.029 IRS -1.0098 IRS IRS
56/57 0,082 IRS -0.295 IRS IRS
57/58  0.036 IRS -0.262 [RS IRS
58/59  0.041 IRS -0.241 1IRS IRS
59/60  0.047 IRS -0.206 IRS IRS
60/61  0.059 IRS -0.363 IRS IRS
61/62  0.072 IRS -0.377 IRS IRS
62/63  0.085 IRS -0.344 IRS IRS
63/64 0.108 iRS 0,297 iRS IRS
64/65  0.128 IR§ -0.254 IRS IRS
65/66  0.150 IRS -0.222 1IRS IRS
66/67 0.174 IRS -0.186 IRS IRS
67/68  0.199 IRS -0.158 IRS IRS
68/69  0.215 IRS -0.111 IRS IRS
69/70 0.236 IRS -0.094 IRS IRS
70/71  0.266 IRS -0.060 IRS IRS
71/72  0.305 IRS -0.053 IRS IRS
72/73 0359 IRS  -0.030 IRS IRS
73/74 0.411 IRS -0.026 IRS IRS
7475  0.465 IRS -0.023 IRS IRS
75/76  0.516 IRS -0.021 IRS IRS
76/77 0.564 IRS8 -0.017 IRS IRS
T7/78  0.641 IRS -0.021 IRS IRS
7879  0.722 IRS -0.025 IRS IRS
79/80 0.772 IRS -0.029 IRS IRS
80781  0.802 IRS -0.028 IRS IRS
81/82  0.820 IR -0.027 IRS IRS
82/83  0.857 IRS -0.025 IRS IRS
83/84 0.885 IRS -0.024 IRS IRS
84785  0.918 IR§ -0.023 IRS IRS
85/86  0.935 IRS -0.022 IRS IRS
86/87  0.974 IRS -0.021 IRS IRS
87/88 1.000 CRS © CRS CRS
88/89  1.000 CRS © CRS CRS
89/90  1.000 CRS © CRS CRS
20/91  1.000 CRS 0 CRS CRS
91/92  1.000 CRS © CRS CRS

4.2.2 RTS: Quantitative Information

Let us now turn to see the quantitative information on scale economies, i.e.,
production elasticity and cost elasticity. The results are reported in Table 2.
We observe here that the production elasticity has exhibited a declining trend
since the begning period of our study, and the trend has become flat for the
last five years of operation of NTT characterized by constant returns to
scale. The economic interpretation here is that NTT has exploited all the
productivity gains that were available up to year 1987-88, a year of minimum
efficient scale (MES) operation after which no scale economies are found.
The RTS results in our new method, which are reported in the last four
columns in Table 2, are quite opposite as compared to those obtained in the
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Table 2: Quantitative Information on RTS in DEA

BCC Model NCOST Model
DMU Pp RTS inf pe SUP Pe AVE. pe RIS
1953/54 1.428 IRS 2.444 2.444 2.444 IRS
54/55 2.121 IRS 2.543 1E415 S5E+14 IRS
55/56 1.933 IRS 0.815 2,390 1.602 CRS
56/57 1.268 IRS 0.863 0.863 0.863 DRS
57/58 1.235 IRS 0.868 0.868 0.868 DRS
58/59 1200 IRS 0.874 0.874 0.874 DRS
59/60 1.169 IRS 0.888 0.888 0.888 DRS
60/61 1.275 IRS 0.721 0.903 0.812 DRS
61/62 1.284 IRS 0.767 0.767 0.767 DRS
62/63 1.238 IRS 0.807 0.807 0.807 DRS
63/64 1.202 IRS 0.839 0.839 0.839 DRS
64/65 1.170 IRS 0.864 0.864 0.864 DRS
65/66 1.144 IRS 0.895 0.895 0.895 DRS
66/67 1.122 IRS 0.918 0.918 0.918 DRS
67/68 1.103 IRS 0.930 0,930 0.930 DRS
68/69 1.072 IRS 0,943 0.943 0.943 DRS
69/70 1.062 IRS 0.951 0.951 0.951 DRS
70/71 1.040 IRS 0.958 0.958 0.958 - DRS
T1/72 1.035 IRS 0.963 0.963 0.963 DRS
72/73 1.019 IRS 0.968 0,968 0.968 DRS
73/74 1.017 IRS 0.972 0.972 0.972 DRS
74/75 1.015 IRS 0.976 0.976 0.976 DRS
75/76 1.013 IRS 0,979 0.979 0.979 DRS
76/77 1.012 IRS 0.981 0.981 0.981 DRS3
7T/78 1.018 IRS 0,983 0,983 0.983 DRS
18/79 1.022 IRS 0.984 0.984 0.984 DRS
79/80 1.025 IRS 0,985 0,985 0.985 DRS
80/81 1.024 IRS 0.986 0.986 0.986 DRS
81/82 1.024 IRS 0.987 0.987 0.987 DRS
82/83 1.023 IRS 0.987 0.987 0.987 DRS
83/84 1.022 IRS 0.987 0.987 0.987 DRS
84/85 1.021 IRS 0,988 0.988 0.988 DRS
85/86 1.021 IRS 0.550 0.550 0.550 DRS
86/87 1.020 IRS 0,989 0,989 0.989 DRS
87/88 1 CRS 0.989 0.989 0.989 DRS
88/89 1 CRS 0.989 0.989 0.989 DRS
89/90 1 CRS 0.989 0.989 0.989 DRS
20/91 1 CRS 0.546 0.989 0.767 DRS
91/92 1 CRS 1E-12 0.556 0.278 DRS

previous three DEA models. Here inf p, and sup p, represent respectively
the lower and upper bounds of cost elasticity, and Avg. p. represnts average
of these two lower and upper bounds. We observe here that NTT enjoys
increasing returns to scale only for the first two years, then reaches the mini-
mum efficient scale after which diminishing returns to scale completely set in
for the remaining years. A comparison between elasticity estimates of [BCC]
and [NCOST] is also exhibited in Figure 2.

17 .



2,500 *

—+—BCC
—&-[NCOST]

1.500

DSE

1.000

0.500

Year (DMU)

Figure 2: A Comparison Between [BCC] and [NCOST| RTS Estimates

4.3 RTS Results from Parametric Models

For the computation of production elasticity we have employed translog out-
put distance function as well as translog production function, each being sep-
arately estimated with and without time trend. And similarly, the translog
cost function (with and without time trend) is employed for the estimation
of cost elasticity. The results are reported in Table 3.

As is seen in this table, the consideration of time trend has a noticeable
impact on the elasticity estimates of production and cost. When no time
trend is considered, there is a significant irregularity in the NTT’s RTS be-
havior found in the production elasticity estimates that were obtained from
both translog output distance function and translog production function.
These results can not be trusted on the ground that.there is a trend visible
in the data. However, there is no such irregularity found in the cost elasticity
estimates. We observe consistency in the production as well as cost elasticity
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estimates when time trend is introduced. On the comparison between pro-
duction and cost based elasticity estimates (with trend), the difference found
in these estimates can be well attributed to the fact that the translog cost
function is not the self-dual of translog production function, otherwise both
sets of estimates will be the same as is in the case of homegeneous technology.

Table 3: Information on RTS in Parametric Models

With no trend With trend With no trend With trend With no trend With trond

DMU o5 RTS o3 RTS o5 RTS > RTS o RTS o RTS
1953/54  0.84 D 1.00 I -0.61 N -0.21 N 0.80 D 0.63 D
54/55 0.91 D 1.00 D -0.50 N -0.27 N 0.82 D 0.64 D
55/56 0.99 D 1.03 I -0.23 N -0.14 N 0.83 D 0.65 D
56/57 0.96 D 1.03 1 -0.21 N -0.04 N 0.85 D 0.67 D
57/58 0.94 D 1.03 1 -0,21 N 0.03 D 0.86 D 0.69 D
58/59 1.03 I 1.07 I 0.08 D 0.19 D 0.88 D 0.69 D
59/60 1.09 1 1.11 I 0.33 D 0.3¢ D 0.90 D 0.72 D
60/61 1.30 1 1.22 1 1.04 I 0.84 D 0.93 D 0.74 D
61/62 1.44 1 1.29 I 1.55 1 1.18 I 0.96 D 0.77 D
62/63 1.43 1 1.31 1 1.65 I 1.34 I 0.97 D 0.78 D
63/64 1.45 1 1.34 I 1.85 1 1.58 I 1.00 I 0.82 D
64/65 1.40 1 1.33 I 1.84 I 1.68 I 1.03 i 0.85 D
65/66 1.35 I 1.33 1 1.82 1 177 I 1.06 1 0.89 D
66,/67 1.29 I 1.31 I 1.74 1 1.78 I 1.10 I 0.95 D
67/68 1.19 1 1.27 I 1.54 1 L73 1 1.14 1 0.99 D
68/69 1.08 I 1.22 I 131 1 1.67 I 1.18 1 1.04 1
69/70 0.98 D 1.19 | 1.12 1 1.63 1 1.22 1 1.09 1
T70/71L 0.85 D 113 1 0.82 D 1.52 I 1.27 1 1.14 I
71/72 0.82 D 1,12 I 0.81 D 1.57 I 1.31 1 1.18 I
72/73 0.72 D 1.07 1 0.56 D 1.42 1 1.36 1 1.23 I
73/74 0.65 D 1.04 1 0.456 D 1.42 1 141 1 1.28 I
T4/75 0.61 D 1.02 I 0.38 D 1.40 1 145 1 1.20 I
75/76 0.58 D 1.01 1 0.37 D 1.44 1 1,50 1 1.35 I
76/ 0.60 D 1.03 1 0.48 D 1.556 | 1.58 1 1.48 1
T7/78 0.71 D 1.09 I 0.85 D 1.79 I 1.75 I 1.75 I
78/79 0.77 D 1.12 I 1.06 1 1.93 I 1.79 1 1.79 I
79/80 0.82 D 1.15 I 1.23 1 2.03 1 1.83 1 1.84 1
80/81 0.91 D 1.18 1 1.46 I 2,13 I 1.85 1 1.84 I
81/82 0.98 D 1.21 i 1.66 1 2,23 1 1.88 1 1.87 1
82/83 0.99 D 1.19 1 1.64 I 2.15 I 1.91 1 1.88 I
83/84 1.01 1 1.19 1 1.66 I 2,09 1 1.94 1 1.90 1
84/85 1.02 I 1.17 1 1.63 I 2.01 I 1.96 I 1.91 I
85/86 1.18 1 1.22 i 2,01 1 2.10 H 2.00 1 1.91 4
86/87 1.13 1 1.17 1 1.77 1 1.87 1 2.05 I 1.96 I
87/88 1.13 1 1.15 1 1.70 I 1.74 1 2.10 1 2.05 1
88/89 1.12 I 1.11 1 1.57 1 1.54 1 2.13 I 2.04 I
89/90 1.24 I 1.13 1 1.78 I 1.51 1 2.16 1 2.04 1
90/91 1.22 1 1.08 1 1.62 1 1.29 1 2.20 1 2.08 1
91/92 1.25 1 1.07 1 1.62 I 1.18 1 2.22 1 2.11 1

Note: I IRS, C: CRS, D: DRS, N: Negative returns

1 pp is computed from translog distance function 2; pPp is computed from translog distance function
: pp is computed from translog production function 4 pp is computed from translog production function
: pe is computed from translog cost function : pe is computed from translog cost function

A graphical illustration for the comparison of scale elasticity estimates
among parametric models is shown below in Figure 3.
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Figure 3: A Comparison of RTS Estimates Among Parametric Models

4.4 RTS Results: A Comparison

Let us now turn to compare the cost elasticity estimates obtained from the
translog cost function with those in our new method. We find here that
in the former method, NTT operates under DRS for the first 15 years of
our sample period followed by IRS for the remaining years, which in turn
implies that average cost curve is inverted U-shaped (concave from below).
This finding calls into question the widely preferred translog cost method
for the computation of cost elasticity, which goes against the principle of *S-
shape production function’ that has long been maintained in the neoclassical
microeconomic theory. However, in our new method NTT operates under
IRS for the first two years, then under CRS for one year after which DRS
completely sets in. This finding is quite natural in the sense of being free
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from above mentioned trouble. And concerning the investigation of optimal
scale of operations of NTT, our new model [NCOST] offers different policy
prescription in that it suggests the lower level of operation (output corre-
sponding to DMU 1955-56’s operation) as against the very very high level of
such operation which is yet to come in the translog cost model.

The most pertinent question now is: Does the translog cost model always
violate the principle of S-shaped neoclassical production function when the
cost-based technology set is maintained to be conex (as per theory), but
the observed set is not?. The answer to this question is generally a positive
one. We have shown this here by considering two artificial time-series data
sets (both at which cost-based technology set is maintained (assumed) to be
convex, but the observed cost-based set satisfies this requirement in Data
Set 2, and violates this requirement in Data Set 1) that in the former both
the models are in broad agrement in exhibiting information relating to RTS
whereas in the latter they are not.

4.4.1 RTS in [NCOST]: Is It Rational?

Before proceeding further, let us first intutively demonstarete the rationality
of the empirical evaluation of cost elasticity in our new method. We see in
Figure 1 that the cost-based technology frontier is piecewise-linear comprising
only five efficient DMUs (A: 1954/55, B: 1955/56, C: 1960/61, D: 1990/91
and E: 1991/92). To note here that since the first two facets (AB and BC)
of the frontier are not clearly visible, we have shown their expanded view
in the top left corner of this figure. We clearly see here that the first facet
(AB) is characterized by IRS, and DRS prevails on the remaining facets (BC,
CD and DE). The cost, output and the computational procedure for the
calculation of scale elasticity are all shown in Table 4.

Table 4: Empirical Evaluation of Cost Elasticity

DMUs Cost {C) Output (Y} AC (=C/Y) MC (= 9%5) pe = LA
1954/55 192773.7 11690 16.490 %'—” =  6.485 2.543
1955/56 201139.4 12080 15.496 %—Q =  6.485 2.390
1960/61 424806.9 24750 17.164 %"4 = 19.003 0.903
1980/91  14714650.4 625160 537 LSRR = 233 0.989

53610024 55=s
1991/92  15347520.7 639840 23.986 15347;&%2 = 43.110 0.556
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Now let us compute the scale elasticity of an inefficient DMU such as
1973/74 (also indicated in Figure 1). This DMU’s efficiency score in our
[NCOST)] model is 0.686987 (not reported anywhere), and its peer DMUs are
C (1960/61) and D (1990/91). So the projected cost and output values of
this DMU are respectively 5742599 and 248185.2. The average cost, marginal
cost and scale elasticity are computed as follows:

AC = C/Y = 5742599/248185.2 = 23.138,
C= 1
~ slope of facet CD

Cost Elasticity = AC/MC = 23.138/23.8 = 0.972.

Now turning to Table 2 we verify that the the cost elasticity values of
these DMUs are no different from those reported in Table 4. The fundamental
difference between our new [NCOST] method and translog cost method for
the estimation of cost frontier is that in the former the structure of the frontier
is assumed to be convex whereas in the latter the structure, depending upon
data, may either be convex or non-convex.

= dC/dY =238,

4.4.2 Verifying RTS in New Data Sets

We now examine this relationship in two new data sets. The scatter plots
of output wis-a-vis cost corresponding to data sets reported in Appendix B
and Appendix C are respectively exhibited in Figure 4 and Figure 5. We find
here that the observed cost frontier in Figure 5, corresponding to Data Set 2,
is convex whereas corresponding to Data Set 1 in Figure 4, it is not. How-
ever, in both the cases the maintained hypothesis of convex structure for the
technology is maintained as can be seen from both the figures where the cost
frontier is made of thick piecewise linear lines.
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We now report cost elasticity estimates (inf, sup and avg.) and the corre-
sponding RT'S status for each DMU in Table 5. The computational procedure
is just the same as the one we explained while demonstrating the rationality
of empirical evaluation of cost elasticity in Table 4. A simple glance at Fig-
ure 4 and Figure 5 reveals that the cost frontier, corresponding to Data Set 1
and Data Set 2, is made of five (1, 2, 3, 4 and 50) and nine (1, 24, 25, 30, 37,
39, 42, 47 and 50) efficient DMUs respectively. We find here that in case of
former (where like NTT case, the observed cost frontier is not convex), CRS
operates only in the first year after which DRS completely sets in whereas in
case of latter (where unlike NTT case, the observed cost frontier is actually
convex), the first 23 years of operation are under IRS and the remaining 27
years under DRS.

Now let us re-examine the scale elasticity estimates in the translog cost
model, which is estimated first without time trend and then with time trend.
The results are reported in Table 6. Since there is a clear trend visible in the
data, the parameter estimates of the translog cost function without trend
are greatly distorted, which in turn yield misleading information on RTS.
Though we have reported both sets of estimates in this table for mere purpose
of exposition, our analysis is purely restricted to DSE estimates with trend
only. We find here that in case of Data Set 1 the first six years of operation
are characterized by DRS followed by the remaining 44 years of operation
under IRS. However, in case of Data Set 2 IRS prevails for the first 25 years
followed by DRS for the remaining 25 years.

The potential problem arises in the choice of these two methods when the
observed output-cost relationship violates the requirement of convex struc-
ture of the cost-based technology set, which is very much warranted to ensure
the long-run average cost curve to be U-shaped, as has long been maintained
in the neoclassical microeconomic theory. The translog cost model has the
well reputation of being flexible in approximating arbitrary production tech-
nologies. True but certainly at a price. The price here is that in real-life
situation when it is likely the case where the observed behavior of cost-
output relationship violates the assumption of convex structure, the translog
cost model yields undesirable estimates of cost elasticity, leading to erroneous
implications concerning the recommendation of policy for restructuring any
sector in the economy. So the comparison between these two sets of RTS
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estimates leads us to further restating our claim that both methods broadly
yield same information on RTS in the case of data where the observed cost-
based technology structure is convex, and in case of data (like NTT data as
well as Data Set 1) where this convex structure is violated, the translog cost
model yields misleading information on returns to scale.

5 Concluding Remarks

Investigation of cost elasticity for obtaining optimal scale of operations has
significant bearings while recommending policy for restructuring any sector in
a competitive economy. So due care is warranted in this regard to ensure that
the cost elasticity estimates are free from error. We find in the parametric
literature that the translog cost function has been very popular to estimating
cost elasticity. We show here that the cost elasticity estimates obtained
from this are misleading, and so also are elasticity estimates obtained from
traditional nonparametric method (e.g., old cost model by Sueyoshi, 1997).
We suggest a new nonparametric method for the estimation of cost elasticty
while pursuing further elasticity studies.
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Table 5: RTS in [NCOST]: Re-examination in a New Data Set

Data Set 1 Data Set 2
DMU inf pc sSup pe Avg. pe RTS inf pc sup o Avg, pc RTS
1 0.576 1E+15 5E+14 C 2.171 1E+15  8E+14 I
2 0.626 0.757 0.691 D 1.374 1.374 1.374 I
3 0.607 0.729 0.668 D 1.219 1.219 1.219 1
4 0.555 0.688 0.621 D 1.159 1.159 1.159 I
5 0.638 0.638 0.638 D 1.125% 1,125 1,128 I
6 0.695 0.695 0.695 D 1.104 1.104 1.104 1
7 0.740 0.740 0.740 D 1.088 1.088 1,088 I
8 0.782 0.782 0.782 D 1.078 1.078 1.078 I
9 0.810 0.810 0.810 - D 1.069 1.069 1.069 I
10 0.830 0.830 0.830 D 1.061 1.061 1.061 1
11 0.850 0.850 0.850 D 1.056 1.056 1.056 1
12 0.867 0.867 0.867 D 1.052 1.062 1.0562 I
13 0.882 0.882 0.882 D 1.048 1.048 1.048 1
14 0.897 0.897 0.897 D 1.044 1.044 1.044 1
15 0.910 0.910 0910 D 1.042 1.042 1.042 I
16 0,921 0.921 0.921 D 1.038 1.038 1.038 1
17 0.927 0,927 0.927 D 1.036 1.036 1.036 I
18 0.934 0.934 0.934 D 1.034 1.034 1.034 1
19 0.940 0.940 0.940 D 1.031 1.031 1.031 1
20 0,946 0.946 0.946 D 1.030 1,030 1.030 I
21 0,948 0.948 0.548 D 1.029 1.029 1.029 I
22 0.952 0.952 0.952 D 1.028 1.028 1.028 I
23 0,954 0.954 0.954 D 1.027 1.027 1.027 1
24 0.958 0.958 0.958 D 0.661 1.026 0.843 C
25 0.959 0.959 0.959 D 0.119 0.677 0.398 D
26 0.952 0.952 0.952 D 0.142 0.142 0.142 D
27 0.957 0.957 0.957 D 0.155 0.155 0.155 D
28 0.961 0.961 0.961 D 0.158 0,158 0.158 D
29 0.964 0,964 0.964 D 0.173 0,173 0.173 D
30 0.964 0.964 0.964 D 0.177 0.178 0.177 D
31 0.964 0.964 0.964 D 0.196 0,196 0.196 D
32 0.964 0.964 0.964 D 0.200 0.200 0.200 D
a3 0.964 0.964 0.964 D 0.203 0,203 0.203 D
34 0.965 0.965 0.965 D 0.213 0.213 0.213 D
35 0.966 0.966 0.966 D 0.215 0,215 0.215 D
35 0.965 0.965 0.965 D 0.224 0.224 0.224 D
37 0.964 0.964 0.964 D 0.204 0,229 0.216 D
38 0.965 0.965 0.965 D 0.218 0.218 0.218 D
39 0.965 0.965 0.965 D 0.165 0.219 0.192 D
40 0.966 0.966 0.966 D 0.174 0.174 0.174 D
41 0.967 0.967 0.967 D 0.181 0,181 0.181 D
42 0.968 0.968 0.968 D 0.152 0.182 0.168 D
43 0.968 0.968 0.968 D 0.160 0.160 0.160 D
44 0,969 0.969 0.969 D 0.168 0,168 0.168 D
45 0.969 0.969 0.969 D 0.176 0.176 0.176 D
46 0.969 0.969 0.969 D 0.178 0.178 0.178 D
47 0.970 0.970 0.970 D 0.152 0.180 0.166 D
48 1E-12 0.970 0.485 D 0.159 0.159 0.159 D
49 18-12 0.970 0.485 D 0.161 0.161 0.161 D
50 18-12 0.870 0.485 o) 1E-12  0.163 0.081 D

Note: I: IRS, C: CRS and D: DRS
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Table 6: RTS in Translog Cost Model: Re-examination in a New Data Set

Data Set 1 Data Set 2
DMU R RTS pe RTS PR RTS o= RTS
1 0.542 D 0,543 D 2.258 1 1,274 1
2 0.692 D 0.677 D 1.741 I 1.217 1
3 0.808 D 0.771 D 1446 I 1180 I
4 0.918 D 0.858 D 1.318 I 1187 1
5 1.035 I 0.948 D 1.262 1 1.143 I
6 1.114 1 0.998 D 1,212 I 1,131 I
7 1.190 1 1.043 1 1.143 I 1.118 I
8 1.313 1 1.128 I 1,123 1 1110 1
9 1.391 I 1.170 I 1.076 I 1100 I
10 1.415 1 1.168 I 1.054 I 1094 1
11 1.491 1 1.206 1 1.051 1 1.090 I
12 1.568 I 1.244 I 1,008 1 1.081 I
13 1.606 I 1.253 I 0.981 D 1.075 I
14 1.707 I 1.305 I 0.971 D 1.071 1
15 1.814 I 1.358 1 0.979 D 1.069 I
16 1.882 1 1,383 I 0.985 D 1.067 I
17 1.863 I 1.383 1 0.967 D 1.063 1
18 1.873 I 1.343 1 1.005 1 1.065 b¢
19 1.887 I 1.336 I 1.001 1 1.062 1
20 1.904 I 1.331 I 1.031 I 1.064 I
21 1.958 I 1.349 1 1.014 I 1.060 I
22 2.082 I 1.403 I 1.049 I 1062 I
23 2,139 1 1419 I 1.074 I 1.063 1
24 2.118 1 1.395 I 1.058 1 1.059 b¢
25 2.292 I 1.468 I 1.017 1 1.054 I
26 12.030 I 3.490 1 0.355 D 0883 D
27 20.152 I 3.543 I 0.346 D 0877 D
28 -29,225 N 4.700 I 0.346 D 0877 D
29 -9.641 N 6.417 1 0.338 D 0.871 D
30 -8.759 N 6.210 I 0.338 D 0870 D
31 -7.616 N 6.872 I 0.365 D 0887 D
32 -5.903 N 9.343 I 0.365 D 0887 D
33 -5.680 N 9.636 I 0,364 D 0886 D
34 -5.023 N 11.457 I 0.358 D 0882 D
35 -4.484 N 15.369 I 0.357 D 0.882 D
36 -4.953 N 11.666 1 0,384 D 0897 D
a7 -5.050 N 10.916 1 0.383 D 0896 D
38 -4.603 N 13.624 I 0.376 D 0892 D
39 -4.576 N 12.894 I 0.376 D 0.892 D
40 -3.941 N 21.921 I 0.369 D 0.888 D
41 -3.759 N 24,733 I 0.391 D 0900 D
42 -3.545 N 32.788 I 0.391 D ¢899 D
43 -3.578 N 25.970 I 0.384 D 0.896 D
44 -3.216 N 102.787 1 0.378 D 0893 D
45 -3.311 N 49,171 I 0.373 D 0889 D
46 -3.286 N 46.836 1 0.373 D 088 D
47 -3.037 N 235.103 I 0.372 D 0888 D
48 -3.005 N 225.302 1 036Y D 088 D
49 -2.980 N 194,044 I 0.376 D 0.891 D
50 -3.000 N 84.288 1 0.376 D 0890 D

Note: I: IRS, C: CRS, D: DRS and N: Negative Returns
1: Without Time Trend, and *: With Time Trend
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Appendix A: The NTT Data Set

Output Inputs Input Prices Cost

DMU TR x] z9 r3 wy w2 w3 2?—-1 wpxyg
1953754 10220 28200 1630 176.9 06,77 02.21 19.62 197987.1
54/55 11690 31380 1600 196.6 0590 02.52 18.31 192773.7
55/56 12980 35850 1610 217.5  05.38  02.70 18.02 201139.4
56/57 14830 40060 1670 239.7 06.94 02.86 18.40 287203.1
57/58 16700 44520 1720 263.8 06.49 03.05 18.95 299179.8
58/59 18180 50840 1740 250.3 05.98 03.20 18.39 315086.4
59/60 21240 58620 1780 321.6 05.97 03.53 18.31 362168.6
60/61 24750 72870 1840 363.3 05.64 03.87 18.44 424806.9
61/62 29340 89560 1500 4153 05.85 04.44 19.17 540323.3
62/63 32130 105820 1990 478.1 06,32 04.88 19,33 687735.3
63/64 37240 126270 2090 547.7 06.58 035.30 19.90 852832.8
64/65 43580 147990 2190 633.9 06.87 05.89 20.62 1042661.4
65/66 49840 172470 2290 7303 07.97 06.56 21.51 1405317.1
66/67 59610 199640 2370 846.6 08.98 07.30 23.33 1829819.4
67/68 70050 229550 2460 988.9 09.32 08.28 24.0t 2183518.3
68/69 80940 258600 2550 1136.2 10.40  09.08  24.39 2740305.9
69/70 95680 291750 2640 1300.5 10.69 10.40 24.22 3177761.6
70/71 111080 330760 2730 1517.3 10.98 11.95  24.40 3701380.4
T1/72 125290 380050 2820 1731.3 10.98  13.56 24.50 42536085.1
72173 146250 446650 2880 2098.5 10.84 15.51 23.13 4834893.1
73/74 170500 511740 2980 2416.6 11.01 17.81  22.87 5742598.8
74/75 188200 578440 3040 2744.4 11.21 22.66 24.74 6621095.3
75/76 211030 642770 3120 30343 11.67  25.67  26.28 T660957.7
76/77 251820 701330 3190  3242.7 11,95 27.33 27.85 8558385.4
77/78 340360 772280 3230  339%4.5 11.93  30.52 29,14 9410795.7
78/79 362240 831460 3270 3549.4 12.22 33.02 29.15 10371881.6
79/80 385560 887410 3200  3704.6 12,22 34.89 28.69 11065223.3
80/81 400630 945910 3270 3849.0 12.01 38.02  20.25 11597287.8
81/82 416710 990070 3270 3933.1 12,00 40,22 30,15 12130942.4
B2/83 434430 1024880 3230 4110.4 11.97 43.15 29.57 12528732.6
83/84 455240 1052190 3180  4245.5 12.06  46.51 20,11 12960899.7
B4/85 475620 1079170 3140 44019 12,23 50.73 28.74 13484051.9
85/86 509150 1136860 3040 4486.1 12.88 57.53 24.98 14929710.8
86/87 535360 1137750 2080  4672.5 12.44  61.66 27,75 14467018.7
87/88 566200 1145590 2911  4797.7 12.09  64.50 30,95 14186431.4
88/89 584190 1155970 2833 4990.4 12.10 71.66 32.01 14348992.5
89/90 602240 1215840 2729 5199.2 11.60 76.57 33.12 14484901.0
90/91 625160 1222520 2649 5408.4 11.70 82.27 35.73 14714659.4
91/92 639840 1244490 25677  5580.0 11.99  85.68  36.79 15347520.7

Note: TR: Total revunue, z1: Total assets, wa: Employees, z3: Access lines,

wy, w2, and w3 are respectively the unit cost of x;, ¢z and =3,

The unit of output is 10 million yen, The units of inputs are respectively 10 million yen,

100 employees and 10,000 lines.
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Appendix B: Data Set

Output Inputs Input Prices Cost

DMU ¥y xy ED twy wo E?_l wixg
1 14.142 2 1 10 15 35
2 24.623 4 2 12 16 80
3 34.057 6 3 13 17 129
.4 42,871 8 4 14 18 184
5 §1.250 10 35 16 20 260
6 $59.207 12 3 17 22 336
T 67.080 14 T 18 24 420
8 74.643 16 8 20 26 528
9 82.018 18 ] 21 28 630
10 89.231 20 10 21 30 720
11 96.301 2 11 22 32 836
12 103.243 24 12 23 34 960
13 110.070 26 13 24 37 1105
14 116,793 28 14 26 40 1288
15 123.421 30 15 28 43 14835
16 129.960 32 16 30 47 1712
17 136.419 34 17 30 50 1870
18 142.802 36 18 31 54 2088
19 149.114 38 19 32 58 2318
20 155.360 40 20 33 62 2560
21 161.544 42 21 33 63 2709
22 167.669 44 22 34 64 2004
23 173.739 46 23 34 65 3059
24 179.756 48 24 35 70 3360
25 185.724 50 25 35 68 3450
26 210.506 15 10 110 130 2950
27 251.713 17 12 100 135 3320
28 292.911 18 15 95 130 3660
29 333.245 19 18 90 125 3860
30 364.113 20 20 80 120 4000
31 373.105 20 21 77 115 3955
a2 386.067 21 21 76 110 3906
33 395.153 21 22 5 110 3995
34 417.407 22 23 73 109 4113
35 430,599 23 23 73 108 4163
36 421.135 23 22 12 108 4032
37 423.894 24 21 71 108 3972
38 433.870 24 22 71 107 4058
39 446.446 25 22 69 107 4079
40 469.186 26 23 69 106 4232
41 492.108 27 24 67 106 4353
42 515.206 28 25 65 105 4445
43 528.018 29 25 63 106 4452
44 551.406 30 26 63 104 4594
45 551.406 30 26 62 104 4564
46 561.910 30 27 61 104 4638
47 598.665 32 28 59 103 4772
48 611.700 33 28 58 103 4798
49 624.618 34 28 57 103 4822
50 637.421 35 28 55 102 4781
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Appendix C: Data Set 2

Qutput Inputs Input Prices Cost

DMU y x1 T wy wy E?—t wiT
1 16.245 2 1 30 42 102
2 37.321 4 2 28 45 202
3 60.711 6 3 28 46 306
4 85.742 8 4 27 46 400
5 112.069 10 5 26 A7 495
6 138.477 12 6 25 47 582
7 167.818 14 7 25 47 679
8 196.983 16 8 24 47 760
9 226.888 18 9 24 47 855
10 257,467 20 10 24 48 960
11 288.664 22 11 23 48 1034
12 320.434 24 12 23 47 1116
13 352.739 26 13 23 47 1209
14 386.545 28 14 23 48 1316
15 418.823 30 15 22 48 1380
16 452.548 32 16 22 50 1504
17 486.698 34 17 22 50 1598
18 521.252 26 18 21 52 1692
19 556.193 38 19 21 53 1805
20 591.503 40 20 20 54 1880
21 627.168 42 21 20 54 1974
22 663.175 44 22 19 55 2046
23 699.511 46 23 18 35 2093
24 736.164 48 24 18 55 2184
25 773.124 50 25 19 56 2350
26 774.959 250 200 10 2 2800
27 788.490 255 205 11 2 3215
28 796.183 260 205 11 2 3270
29 812,535 270 206 12 2 3652
30 828.648 280 207 12 2 3774
31 832.805 282 208 13 3 4290
32 844,536 200 208 13 3 4394
33 853.228 296 208 13 3 4472
34 854,234 295 210 14 3 4760
35 864.649 298 215 14 3 4817
36 868.754 300 216 14 4 5064
37 884,339 310 217 14 4 5208
38 898.489 320 217 15 4 5668
39 901.293 322 217 15 4 5698
40 906.731 325 218 16 4 6072
41 913.680 330 218 16 5 6370
42 920.341 333 220 16 5 6428
43 922.843 333 222 17 5 6771
44 928.104 335 224 138 5 7150
45 935.005 340 224 19 5 7580
46 944.480 346 225 19 5 7699
47 949.924 350 225 19 5 7775
48 6566.685 355 225 20 5 8225
49 957.959 355 226 20 6 8343
50 962.112 360 224 20 6 8432
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