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Abstract

Historical data of system prices and traded quantities of electricity over the 48 half-hour

intra-daily intervals in the Japan Electric Power Exchange are analyzed. Viewed as a panel

dataset of the 48 different commodities in 7 different markets (days of a week) or 336 different

contracts over 288 weeks, the data allow me to compute two representative measures of

illiquidity, namely, Amihud’s price-impact measure and Roll’s implied spread cost measure

from November 2006 to April 2012. These measures are based on the absolute weekly returns

of each of 336 contracts divided by the corresponding volume of traded electricity, and on

the first-order serial covariance of weekly returns, respectively. Two measures closely comove

but they contribute to the returns in different magnitudes, suggesting that each of them

captures both common and distinctive aspects of illiquidity in the JEPX market. Once the

lagged returns are controlled for in a dynamic panel framework, the influence of price-impact

measures on returns dominate that of spread measures. The price-impact measure and traded

volume contribute the return variations in opposite signs, i.e., positively and negatively. It

suggests that the assessment of illiquidity requires a careful treatment of these confounding

factors.

1 Introduction

The Japan Electric Power Exchange (JEPX) was launched in April 2005. As a part of the

process of electricity wholesale liberalization, the JEPX was established to provide a benchmark

for power producers’ investment on a variert of power sources and to help producers counterparties

to trade in case of demand-supply mismatch. An important premise for these objectives is that the

JEPX is sufficiently “liquid”. However, the amount of traded electricity through the JEPX system

is only 0.6% of the total amount of wholesale electricity in the fiscal year of 2010. The majority

of the remaining quantity is bi-laterally traded among regionally monopolistic power generators1.

Moreover, the devastating tsunami following the great earthquake centered near the northeastern

coast of Japan on March 11, 2011, caused the breakdown of the swamped Fukushima nuclear power

plant operated by the Tokyo Electric Power Company (TEPCO), a regional monopoly franchised in

Tokyo. Amid the extreme disruption in the supply and demand of electricity, TEPCO temporarily

stopped supplying electricity to the JEPX system, triggering the exit of several members from the

exchange because of shrinking benefits relative to membership costs. This anecdotal evidence raises

the question about whether the JEPX system can provide sufficient liquidity to avoid an excess

demand for electricity, which was the original motive for the creation of the system. Sometimes the

liquidity of electricity market is viewed as glossly equivalent to the amount of electricity supplied

or traded in the market. However, the well-functioning of a power exchange market should be

measured by the market liquidity associated with some peculiar units. This study primarily aims

∗e-mail: s-ikeda@grips.ac.jp. The first version: April 1, 2015.
1http://www.cao.go.jp/sasshin/kisei-seido/meeting/2011/energy/120112/item5-2_5.pdf
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at highlighting economic measures of illiquidity based onhistorical data of the prices and quantities

of traded electricity, and their implications for assessing the function of the JEPX market.

I assess the economic illiquidity in the JEPX by a version of Amihud’s (2002) price impact

measure, i.e., the absolute change of the log-price relative to the daily trading volume averaged

over a certain period of time. The first contribution of this study is to apply the Amihud’s measure

to the JEPX transaction data for the first time, and to document that the JEPX market is liquid

in the weekend but illiquid in weekdays, especially on Monday, and in the daytime covered by

the interval from 8:30 to 18:00 in each day of the week. This result might be perceived with no

surprise if we recalled the greater economic activity and a tighter demand condition for electricity

during such periods. However, such a pattern of illiquidity resembles that of the actually traded

volume of electricity. If we used the raw traded volume as a measure of liquidity, it interferes with

the pattern of illiquidity as illustrated by the Amihud’s measure.

Another dimension of the market illiquidity is the transaction cost. A natural candidate for

measuring such a cost in a quote-driven market is the bid-ask spread, i.e., the discrepancy between

the best ask quote (the lowest seller’s price) and the best bid quote (the highest buyer’s price),

because it measures a concession associated with switching one’s position between a buy-side and

a sell-side. However, it is not relevant for the analysis of JEPX because this exchange adopts

a call-auction mechanism without any ask- and bid-quotes posted by market makers. Even if

interpreted broadly as a price impact of order imbalance and modifying the definition of spread

by the second-best unexcuted limit buy- and sell-prices, no data on limit orders are available in

this study. However, Brünner (2012) justifies the decomposition of an actual transaction price into

a semi-martingale price component and another component, the latter of which is a price-impact

of an order imbalance. Because of the discrepancy of the actually observed transaction prices from

the semi-martingale counterpart, we can interpret the order-imbalance term as an implicit spread

cost. Therefore, we can estimate it by a standard technique such as Roll’s (1984) measure based

on the first order serial covariance of a series of transaction returns or its modifications according

to a set of assumptions on the order flow process. The second contribution of this study is to

give estimates of this implicit spread cost in the JEPX market, and to document that the implicit

spread cost may be quite large: about 10% of the efficient counterparts.

Given two inverse-measures of the market quality, it is important to ask how they are related

with each other, and with the (in)efficiency of the JEPX system. Regarding this question, I

establish two results. First, the price-impact measures positively and significantly correlate with

the spread measures even after controlling for the individual fixed effects of contracts over all of

half-hour intervals and the traded volume. Therefore, the lack of sufficient liquidity may lead to

a larger implicit spread cost, as is consistent with Chordia, Hirshlifer and Subramanyam (2008,

Section 4). Second, both measures are significant risk factors for participants in the JEPX after

controlling for the lagged weekly returns, traded volume, idiosyncratic volatility, contract-specific

fixed effects and the time effect. The significance of both measures indicates that they do measure

different aspects of the market quality in the JEPX system. Third, the price-impact measure

exhibits a positive and greater impact on return variations than the spread measure, while the

traded volume influences a negative impact on return variations. As we will see later, the intra-

daily and intra-weekly patterns of these illiquidity measures and traded volume are quite resemble,

yet their impacts on returns differ both in magnitudes and in directions, suggesting the importance

of controlling for these counfounding factors to assess (il-)liquidity in the JEPX market.
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2 Background and Literature Review

2.1 Institutional Aspects of the JEPX Market

The participants in the JEPX are classified into three types: (i) general electricity suppliers

as regional monopolies (henceforth, “regional monopolies”), (ii) independent power producers

(henceforth, “IPPs”) with their own power generators and selling and buying electricity to or from

the regional monopolies, and (iii) power producers and suppliers (henceforth, “PPSs”) with their

own power generators and selling electricity to large-scale customers via the electricity transmission

system owned by the regional monopolies. PPSs may need to buy electricity from the regional

monopolies to meet the required power supply for their own customers.

It is very difficult to store electricity as a commodity. Therefore, the generated electricity

should be consumed within a very short period of time. An excess demand for electricity causes

lower voltage, unstable frequency and, in the worst case, power blackouts over a broad area. To

avoid such disastrous events, the Japanese regulatory board dictates that all regional monopolies

instantaneously match the supply and demand of electricity. However, the PPSs are allowed to

match the demand and supply up to a ±3% deviation from the perfect match within each half-

hour interval. Perhaps to be consistent with this allowance and to encourage more entry of new

PPSs for a greater amount of electricity transaction, the JEPX offers trades of electricity at 48

half-hour intervals over the course of a day. Although the JEPX offers several contracts to trade

each of 48 commodities, this study focuses on the contracts in the spot market for the delivery of

electricity in the next business day because it constitutes the vast majority of the transaction of

all contracts.

The clearing mechanism in the JEPX spot market is the Itayose method, a version of the

periodic, blind, and single-price call auction with batch trading. There are no formally designated

market makers (also known as “dealers” or “specialists”) in the JEPX spot market, so that all

participants can be market-making to some extents. Participants in the spot market submit their

orders to buy (positive) and sell (negative) for the delivery of electricity over a half-hour interval

within a specific day to the JEPX system between 10:00 AM and 4:00 PM from six to two business

days before the day in question, and between 8:30 AM to 9:30 AM on the last business day prior

to the day in question. An order schedule is composed of several limit prices. On the demand

(supply) side, a limit price is the maximum (minimum) price acceptable for buying (selling) a

certain amount of electricity. The individual demand and supply schedules are not smooth curves

but an assembly of semi-open, vertical segments corresponding to several discrete amounts of

electricity as seen in Figure 1. The unit of electricity is one megawat-hour per hour (mWh/h)

or 1,000 kilowat-hour per hour (kWh/h), and the unit of currency is Japanese yen (JPY). The

half-hour interval for electricity transaction indeed implies that the essential unit for each spot

contract is 0.5 mWh/h. If the transaction of 5.5 mWh/h of electricity were agreed upon for the

price of 4 JPY/kWh, it means that the electricity of 5,500 kWh per hour would be transmitted

from one party to another through the transmission network owned by regional monopolies in

exchange for the opposite flow of money worth of 4*5,500=22,000 JPY/h. All schedules are

aggregated into the market schedules of supply and demand, and their intersection determines a

single, market-clearing price for all feasible quantities. The transaction prices and quantities of

electricity for all of the 48 half-hour intervals withinin a specific day are simultaneously determined

in a single trading day, and the delivery of electricity specified in all contracts takes place in the

next business day. Therefore, contracts for these 48 half-hour intervals should be viewed as 48

different commodities rather than an intra-daily time-series record of prices of a single commodity.

This viewpoint is important when conducting a dynamic panel analysis of extracted spreads in

Section 4.5. Because the spot contracts for the delivery of electricity on Saturday, Sunday and
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Monday are determined in the Friday session, any customers for transaction of electricity on

Monday should rely on informatoin available until the closing time on the last Friday.

2.2 Motivation for Measuring Illiquidity

The participants in the JEPX market are likely to face order imbalances (Liu et al., 2004), or

psychological bias such as over-confidence (Daniel, Hirshlifer and Subramanyam, 1998) because (a)

the participants are not professional investment bankers but more or less non-financial producers or

power generators, and (b) the underlying asset for exchange is non-storable electricity so that the

supply and demand schedules in this market crucially rely on the stable operation of participants’

power-generating processes and accurate forecasts of weather and energy conditions. The demand

or supply schedule may shift suddenly due to any unexpected breakdown of the turbin, the holt

of factory operation due to union-led strikes, historically hot or cold weather, any disconnection

of fuel logistics, or natural disaster. Therefore, there is some meaning to measure the discrepancy

between the price that would prevail in the ideal market condition and the actual price, which I

call “the implied spread cost”.

The episodes about the ill-functioning of the JEPX system in Introduction may be owed

to “illiquidity”, i.e., the lack of “liquidity”, in general. Several variants of illiquidity measure

have been confirmed as effective risk factors for returns, i.e., the return of an asset with higher

illiquidity tends to be higher as a compensation for holders to bear such risk after controlling for

other relevant characteristics and sources of risk- see, e.g., Amihud and Mendelson (2008). How

about the spot contract in the JEPX? To answer this question, we need to specify an appropriate

concept of liquidity. Kyle (1985) gives three components in the concept of economic liquidity,

such as: (a) “depth” as a measure of the size of an order flow innovation required to change

prices a given amount, (b) “tightness” as a measure of the cost of turning around a position (from

buy-side to sell-side or vice versa) over a short period of time, and (c) “resiliency” as a measure of

the speed with which prices recover from a random, uninformative shock. If we focus on a depth

component of liquidity, an illiquid market should be characterized by a larger value of reciprocal

of any measure of depth, referred to as a price-impact measure. A popular intra-daily estimate is

given by Kyle’s λ (lambda), which is the slope coefficient from regressing absolute returns (rates

of price changes) onto volume over some stretch of time. Amihud’s (2002) measure is a daily

counterpart to Kyle’s λ using the daily prices and volume, hence appropriate for our purpose

because no intra-daily continuous trading takes place in the JEPX market.

The JEPX is an example of an order-driven market. In contrast, a large part of the market

microstructure analysis in the financial sector focuses on a quote-driven market mechanism. In the

latter, mutually competing market makers publicly post ask and bid quotes, namely, the candidates

for seller’s and buyer’s prices, respectively, and typically transaction prices bounce between them.

In this sense, the bid-ask spread is a natural measure of tightness. There are at least three different

components in this spread cost for market participants with three different economic principles

behind them: (i) the order-processing cost of market makers such as the clearing fees and per trade

allocation of fixed costs for computers, telephones, and high-speed servers (Demsetz, 1968; Tinic,

1972; and Roll, 1984), as well as the mispricing caused by investor misreaction (French and Roll,

1986); (ii) the inventory cost of market makers in preparation for a random large-order imbalance

(Garman, 1976); and (iii) the cost of adverse selection (Copeland and Galai, 1983; and Glosten and

Milgrom, 1985). Because of the ease of data availability and natural interpretation, the majority of

literature using the bid-ask spread as a measure of illiquidity focuses on the quote-driven market.

A rare exception is Lee, Liu, Roll and Subramanyam (2004) on the market efficiency of the Taiwan

Stock Exchange in which no formally designated market makers exist. However, they rely on (a)

the second-best bid and ask prices from the limit order prices after the executed ones as a measure
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of the trade imbalance, and (b) the presence of successive auctions within a day, while we cannot

access to data on limit-order schedules in the JEPX and all of the contract in a specific day are

determined simultaneously at once.

Because of the absence of clear market makers nor of bid-ask spreads in the order-driven

clearing mechanism, and of the specific non-storable nature of electricity as the basis for any

contracts in the day-ahead spot market, it seems harder to apply many inventory models for

financial markets. However, Brünner (2012) justifies the decomposition of an actual transaction

price into a (semi-)martingale price component and another component, the latter of which is a

price-impact of an order imbalance. Given a model of order strategies by risk-neutral buyers and

sellers, and a potential insider, he derives their equilibrium strategies. The implied transaction

price consists of the random-walk component and an additively-separable component reflecting a

“difference in valuations” of buyers and sellers and an “asymmetric information” component (see

Brünner, 2012, Corollary 1). In addition to this direct theoretical justification, Haller and Stoll

(1989) and Amihud and Mendelson (1991) empirically document significantly negative, first-order

autocorrelations of some types of security returns in Germany and Japan under some call-auction

methods for clearing without dealers. Roll (1984, p.1129-1130) emphasizes that his constant bid-

ask half spread is measuring the average absolute value of the price change when the price does

change and yet no information has arrived. Madhavan (1992) gives a similar argument as the

previous view by Roll:

... even in an auction system with one price, an analogous measure or effective bid-ask

spread can be constructed because buy orders raise prices while sell orders lower prices.

(p. 615)

This remark basically means that the auction system adopted in several financial markets do

allow for some players to have market power. Stoll and Whaley (1990) introduce the notion of an

implied spread regarding the price reversal phenomena:

Price reversals reflect the compensation of suppliers of immediacy for taking the other

side of transactions initiated by active traders... In an auction market, similar reversals

are observed even though no bid-ask spread is quoted because suppliers of immediacy

back away from active traders. (p. 54-55.)

Hasbrouck (2007, Section 11.5) reinterprets Garman (1976) as follows:

Garman’s view of dealers as smoothers of buy/sell order imbalances continues to be

useful... the perspective also applies when temporary order imbalances arise in the

aggregate. Dealers are agents who ... accommodate these imbalances... At the same

time, the lines between dealers and customers in many markets have blurred... if

inventory control is more broadly interpreted as position management, the issues are

as pertinent as ever. (p. 116-117)

Figure 1 illustrates the following rule on how the transaction price and quantity are determined:

P ∗ = inf{P ≥ 0 : D(P ) ≥ S(P )}, Q∗ = min{D(P ∗), S(P ∗)}.

P ∗ is defined by the infimum and not the minimum. Figure 1 explains why this is the case. Note

that the line segment for demand includes the upper-end point but not the lower-end point, as it

reflects a buyer’s worst limit price, namely, the maximum acceptable price for a certain amount of

electricity delivery. In contrast, the line segment for supply shows the opposite pattern, reflecting

a seller’s limit price. In this case, there is no minimum where D = S because the lower-end point

is not included in the demand schedule. The indicated equilibrium price will induce the potential
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demand D(P ∗). On the other hand, the supply schedule does include the lower-end point so that

it induces the potential supply S(P ∗). Because S(P ∗) < D(P ∗) in this case, only Q∗ = S(P ∗)

is feasible for transaction. If the supply decreases slightly or the demand increases slightly, while

the counterpart is fixed, a deviation from the top left panel in Figure 1 occurs. It may cause a

sharp price increase, as shown by the top right panel. A change in equilibrium prices is then a

conservative measure of the length of this segment; namely, the local inelasticity of the supply

schedule at the old equilibrium quantity. This measure resembles the marketable order imbalances

in Lee et al. (2004) as a measure of illiquidity.

The above illustration shows that price discreteness is a real-world complication. The issue of a

price discreteness is raised by Crack and Ledoit (1996) who show an impressive regularity of daily

returns plotted against their first-order lagged values. The plots show the so-called “compass-

rose” pattern where many straight rays emanate from the point of origin. The cause of this

pattern is the discreteness of a price rounded to the nearest grid determined by the minimum tick.

Fang (2002) shows by simulations that some representative random-walk tests suffer from a size

inflation if the rounded grid is in dollars rather than one-eighth of a dollar or cents because the

serial covariance may be more exaggerated than the case of a finer grid. The possible effect of

discreteness appears as a part of the implicit spread around the efficient log price. Therefore, the

measurement of implied spreads is important for checking if the JEPX market is well functioning

in terms of informational and institutional efficiency and liquidity provision.

2.3 Studies on Electricity Exchange Markets

Several earlier studies on the liquidity of electricity markets may not give us a clear guidance

for studying the JEPX market. For instance, Freire, Neves, Tsunechiro, Cabral and Souza (2012)

attempt to assess the liquidity in the Brazilian electricity market by employing (a) the churn

rate, which is basically a turnover ratio but using the amount of final energy consumption rather

than the total share outstandings for the denominator as in the financial definition; and (b) the

liquidity relative rate, which is a relative volume-weighted amount of a particular traded contract.

Both measures aim at describing the number of transactions in the electricity market. Given

the one-shot, rather than continuous, nature of trading in the call auction mechanism, these

measures of transaction in the market are not so relevant for our purpose. Moreover, they do not

pay attention to the price responsiveness for a unit of trade in the market, as one of the major

issues in assessing liquidity in the market. Frestad (2012) focuses on the liquidity in the different

segments of the Nord Pool. Because the Nord Pool is a quote-driven market with many market

makers, he can adopt the bid-ask spread capturing the lack of depth as a measure of illiquidity. As

mentioned above, the order-driven mechanism and the lack of data in the JEPX do not allow us to

use any official bid and ask quote prices. Sklavos et al. (2013) attempts to give a microstructure

analysis of liquidity of energy stocks. There are two stark differences between our study and theirs.

First, participants in the JEPX trade electricity but not electricity-related shares. Second, the

JEPX is an order-driven market without market makers. Therefore, the relevance of their results

to ours is limited. Earlier works on JEPX data (Ofuji and Yamaguchi, 2008; Kawamoto and

Sakanashi, 2010) focus on forecasting the system price, with little implications for any economic

policy recommendations for the improvement of the JEPX market operation. If the transaction

price contained a martingale component, the best forcast would be the current value and no room

for a sensible forecasting. In this sense, it seems more appropriate for using returns rather than

prices as inputs to the regression framework.
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3 Methodology

As seen later, the autocorrelation functions of the 48 half-hour commodities’ returns in the

JEPX show a clear 7-day periodicity corresponding to the day-of-week effect. Given this stylized

fact, we should view the contracts at the same half-hour interval but on different days of a common

week as different contracts, rather than time-series data of the contract at that half-hour interval.

Consequently, we have 48 ∗ 7 = 336 contracts within a week as a cross-sectional dimension, and

288 weeks as a time-series dimension.

3.1 The Illiquidity Measure

Let Pidw (JPY/kWh) be the system price prevailed for the transaction of electricity at i-th half-

hour period (i = 1, . . . , 48) within the d-th day (d = 1, . . . , 7 for Sunday, Monday, ..., Saturday)

in the w-th week, and let Vidw (kWh/h) be the traded volume of electricity at the same timing.

The illiquidity ratio is given by the ratio of weekly return for the same i and the same day of two

adjacent weeks to the trading volume of that commodity now, i.e.,

PIidw = | lnPidw − lnPid,w−1|/Vidw. (1)

If necessary, I will take the average over several weeks as a measure of illiquidity of electricity trade

for the i-th commodity in the d-th day over that period of time, say T weeks from (w− T + 1)-th

to w-th week:

ILQidw =
∑

i=0,...,T−1
PIid,w−i/T. (2)

Note that the definition in (1) involves the raw trading volume of electricity. In contrast, the

original version of Amihud’s (2002) measure divides the absolute return by the trading volume

in value terms (total number of shares converted into a pecuniary value). In case of a standard

financial security market, the purpose of investment is the risk management or speculation, so the

volume in value terms seems more informative as a summary of the activity in the market. In

contrast, the raw volume of transaction matters in the electricity market.

3.2 A Model of the Log Price and the Implied Spread Cost

Here is a list of structural assumptions in this paper.

Assumption 1 (The data-generating mechanism)

1. t ∈ [0, 1] is a point in time over a unit interval corresponding to one month. The efficient

log price of the (i, d)-th electricity commodity lnP ∗id(t), i ∈ {1, . . . , 48}, d = 1, . . . , 7, follows

d lnP ∗id(t) = σiddWid(t), (3)

where Wid(t) ∼ N(0, t) is the Brownian motion representing the market risk and σid is a

contract-specific constant parameter for the instantaneous standard deviation of returns.

2. Define P ∗idw := P ∗id(tw) where tw is the time point of w-th week in the period of 288 week-long

time series dimension normalized as unity. The transaction price of the (i, d)-th commodity

Pidw is subject to a percentage deviation from the efficient counterpart:

Pidw = P ∗idw(1 + Sidw/2) (4)
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Sidw is the i.i.d. round-trip spread for the (i, d)-th commodity price in week-w, and is

independent of P ∗idw. Sidw = ±sidw with respective probabilities pidw and 1−pidw. By taking

the natural logarithm,

lnPidw = lnP ∗idw + ln(1 + Sidw/2) =: lnP ∗idw + Uidw. (5)

The actual transaction price in logarithm deviates from its efficient counterpart by Uidw in

(5). This modelling strategy tracks several models in the literature of market microstructure and

volatility estimation using noisy high frequency data (Hasbrouck, 2007; Bandi and Russell, 2008;

Corwin and Schultz, 2012). Uidw in (5) is a concave transformation of Sidw in (4). Sidw is the

implied spread cost for any participant changing from a seller to a buyer. The half spread Sidw/2

is more directly linked to the marginal cost of order executions. Note that pidw 6= 1/2 in general.

Let me assume that pidw enforces E[Uidw] = 0 rather than E[Sidw] = 0, as is consistent with Bandi

and Russell (2008). Assuming Sidw as i.i.d. with respect to w and independent of P ∗idw rejects

the possibility that the spread per se is autocorrelated or correlated with the intrinsic price, as

predicted by Copeland and Galai (1983) and Glosten and Milgrom (1985). However, the lack of

data on quotes or order directions hinders an investigation of this possibility.

A simple measure of the spread is given by Roll (1984) based on the first-order serial covariance

of transaction returns. If the efficient log price follows (3), the efficient return series ∆ lnP ∗idw :=

lnP ∗idw − lnP ∗id,w−1 has no serial correlation, owing to the independent-incremental property of

the Brownian motion process. However, (5) induces the first-order autocorrelation of ∆ lnPidw:

Cov(∆ lnPidw,∆ lnPid,w−1) = −V ar[Uidw]. (6)

Applying the approximation ln(1± sidw/2) ≈ ±sidw/2,

V ar[Uidw] = E[U2
idw] = pidw{ln(1 + sidw/2)}2 + (1− pidw){ln(1− sidw/2)}2 ≈ s2idw/4. (7)

From (6) and (7), we have sidw/2 ≈ {−Cov(∆ lnPidw,∆ lnPid,w−1)}1/2. A sample analog should

be ŝidw/2 = {−Ĉov(∆ lnPidw,∆ lnPid,w−1)}1/2. For a real-valued measure, we will always trun-

cate Ĉov > 0 at zero. A general consensus about this measure is that it underestimates the

implied spread (Harris, 1990). Shultz (2000) mitigates a finite sample bias by

s̃∗idw/2 =
{−Ĉov(∆ lnPidw,∆ lnPid,w−1)}1/2

1− 7/{8(n− 1)}
, (8)

which is the version we use.

There are two cautions about this estimator of the spread. First, Jegadeesh and Titman (1995)

recognize that Roll’s method may over-estimate the spread at a weekly frequency. I will conduct a

robustness check later by using a method recently proposed by Corwin and Schultz (2012) based

on maximums and minimums, or highs and lows, of transaction prices over two consecutive periods

of time. Suppose we have two adjacent periods of the same length, say A and B, with data of

highs and lows. Assuming that high and low prices are associated with positive and negative

spreads, respectively, Corwin and Schultz (2012, Eq. 18) derive the following formula for s:

β̂j =

{
ln

(
maxti∈A{lnPj(ti)}
minti∈A{lnPj(ti)}

)}2

+

{
ln

(
maxti∈B{lnPj(ti)}
minti∈B{lnPj(ti)}

)}2

,

γ̂j =

{
ln

(
maxti∈A∪B{lnPj(ti)}
minti∈A∪B{lnPj(ti)}

)}2

,

ŝj,CS/2 = (e2.4142(β
1/2
j −γ1/2

j ) − 1)/(e2.4142(β
1/2
j −γ1/2

j ) + 1). (9)
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For a small spread, we have a simpler approximation ŝj,CS/2 ≈ 2.4142(β
1/2
j − γ1/2j ). This enables

us to interpret ŝj,CS as a range-based measure of the spread with a jackknife-type bias correction.

By definition, it is less biased given sufficient variations in data. Otherwise, an empirical range

underestimates the population counterpart and so does this measure. Corwin and Schultz (2012)

use daily highs and lows based on intra-daily variations. If we only have daily transaction prices,

we calculate highs/lows at a lower frequency, particularly the ten-day interval for A and B or the

twenty-day period for the estimation, and let this window roll day by day to obtain approximately

ten estimates per month. The monthly spread is measured by the average of these estimates. Any

negative measure is truncated at zero.

Second, participants’ overconfidence may imply the existence of the first-order negative auto-

correlation of returns (Daniel, Hirshleifer and Subramanyam, 1998). In case of the JEPX trade,

investors may be over-confident about the potential ability of power generation by their company’s

industrial plant or the prediction on the weather forecast on temperature of the delivery time of

electricity. The investigation of this possibility is left for a future research.

4 Data and Results

4.1 Characteristics of the Data

The JEPX calculates and reveals the system price as an integrated benchmark over different

areas in Japan. Our original data consist of all system prices and traded amounts of electricity. In

an earlier stage of the JEPX, transactions were so infrequent for a very small volume; sometimes

no buys or sells were posted. The last day of zero postings in our original sample is October 16,

2006. Therefore, we use the sample period from October 17, 2006 to April 30, 2012, leaving 2,027

days or 288 weeks.

The dotted lines in Figure 2 represent the autocorrelation functions of daily returns, namely, the

difference of log prices recorded at the same half-hour itnervals in two adjacent sample days. I select

eight different intra-daily, half-hour intervals displaced by 3 hours. The two parallel horizontal

broken lines represent the boundaries of the 95% confidence intervals under the null hypothesis that

the returns follow a white noise process. For all half-hour intervals, the first-order autocorrelation

is significantly negative. These functions show a clear seven-day cycle corresponding to the day-

of-week effect. Therefore, this study treats delivery of electricity at the same half-hour period but

in different days of the same week as different commodities. Consequently, we have 48× 7 = 336

commodities within a week as the cross-sectional sample size against 288 weeks as the time series

dimension.

Figure 3 shows the autocorrelation functions of weekly returns for contracts in 4:30-5:00 and

13:00-13:30 periods. Note that the first order autocorrelation of all of 336 contracts are negative.

The most visible pattern is a large negative value of the first order autocorrelation. Moreover, its

magnitude differs in different half-hour periods within a day. The largest and smallest negative

first-order autocorrelations in all autocorrelations of weekly returns of 366 contracts are given by

-0.4684 and -0.1642 for Monday 4:30-5:00 and 13:00-13:30 periods, respectively. As indicated in

Section 2.2, the price discreteness may induce a serial correlation in returns. However, a collection

of compass-rose diagrams in Figure 4 defies this possibility. Both for 4:30-5:00 and 13:00-13:30

intervals, no clear rays from the origin are visible. The large negative first-order serial correlations

of weekly returns should be associated with some economic mechanism generating a price reversal.

Figure 5 shows the time-series plots of system prices and traded volume of electricity over 288 weeks

and weekly returns over 287 weeks. The bottom panels for returns indicate that the volatility of

returns are clustering. Figure 6 exhibits the time-series averages over 288 weeks of system prices

and traded volume for each day-of-the-week. They show a clear time-of-the-day effect, especially
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in weekdays. These patterns of prices and volume are intuitively appealing because they seem

coincident with the greater economic activity of those companies participating in the JEPX, such

as the gas companies, power generators, trains and subway companies, metal processors, etc.

4.2 Extracting Measures of the Price Impact and Spread Cost

Figure 7 shows the time-series averages over 287 weeks of Amihud’s price-impact measures

for each day of the week by the blue dotted lines. It is evident that the liquidity condition is

stable from Tuesday to Friday, substantially relaxed during the weekend, then tightened again on

Monday. The patterns of illiquidity measures as displayed in Figure 7 resemble those of the trading

volume in Figure 6. In other words, using the trading volume as a measure of liquidity conflicts

with the Amihud’s price-impact measure, which is supposed to capture some aspect of illiquidity

in the market. For instance, Monday 8:30-18:00 is the period of the most active transaction of

electricity in the market on one hand; but Amihud’s measure of illiquidity recognizes it as the

period of the least liquidity provision. If the traded volume does not meet a potentially high

demand for electricity in this period of time, such a discrepancy suggests the presence of excess

demand and therefore further room for entries of electricity suppliers. In Figure 7, I superimpose

the inverse of the raw trading volume on the price-impact measure. The displayed patterns show

that our measure of illiquidity captures something more than the reciprocal of the amount of

traded electricity in the market. Recently, Lou and Shu (2014) replace the absolute return in the

numerator of the original definition of Amihud’s measure by unity (constant) and confirm that the

variation of their new measure captures a large part of that of the original version, thereby casting

a skeptical view on a common treatment of the latter as a price impact measure. However, Figure

7 suggests that the version of Amihud measure based on the raw traded volume of electricity in

the JEPX does capture a price impact of the traded quantity beyond the variation in trading

volume.

The blue dotted lines in each panel of Figure 8 summarizes the time-series averages of the

extracted half spreads in each day of a week. The spreads are calculated based on the first-order

autocovariance of weekly returns as in (8) over the 13-week rolling window. Weekly spreads are

high during the daytime in weekdays, which is seen repeatedly for the system price, traded volume

and estimated price-impact measures so far. Indeed, reproduced patterns of price-impact measures

in this figure show that two measures of illiquidity are comoving very closely in any day of a week

and at any time of a day.

4.3 Relationship among Price-Impact Measures, Spread Measures, Re-

turns, and Volume

Figure 8 revealed a remarkable comovement of price-impact measures and spread measures.

They suggest that the liquidity condition is inversely related to the transaction cost emerging in

the form of a serial covariance of weekly return of 336 contracts. To test this formally, I run

the next dynamic panel regressions with (i, d)-specific fixed effect and w-specific time effect by

Arellano-Bond method:

(I) ILQid,13w = βlagILQid,13(w−1) + βss̃
∗
id,13w + βvVid,13w + αid + δ13w + εid,13w

(II) ln ILQid,13w = βlag ln ILQid,13(w−1) + βs ln s̃∗id,13w + βv lnVid,13w + αid + δ13w + εid,13w

for i = 1, . . . , 48, d = 1, . . . , 7, and w = 1, 2, . . . , b287/13c and see if the estimate of βs is positive

so that illiquidity and spread measures point toward the same direction, and if the estimate

of βv is negative or not so that higher transaction volume still induces a relaxed condition for
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liquidity in the JEPX market. The models with the enforcement of β0 = 0 are denoted by

(I0) and (II0), respectively. To avoid any contrived serial correlation, I compute ILQ and the

Roll spread measure over 13-week non-overlapping windows. Instruments for PIid,13(w−1) and

lnPIid,13(w−1) are given by {PIid,13(w−2), P Iid,13(w−3), . . . } and {PIid,13(w−2), P Iid,13(w−3), . . . },
respectively. I also instrumented s̃∗id,13w and Vid,13w by s̃∗id,13(w−1) and Vid,13(w−1) and similarly

for log-transformed versions, but the results are qualitatively similar, with larger magnitude of

the estimate of βs. The standard errors are robust against arbitrary cross-sectional clustering.

The estimation results in Table 1 confirm my conjectures. All estimates are significant even at

1% level. The estimate of βs is significantly positive, indicating that both of the price-impact and

spread measures capture some aspects of illiquidity in the JEPX market. The estimate of βv is

significantly negative, suggesting that the relaxation of tight liquidity condition is associated with

the increased volume of electricity transaction. Although the estimate of βlag is small, controlling

for thit factor makes the magnitude of the estimate of βv smaller. For the first specification, the

coefficient of determination is about 60%, which is almost the double of Amihud’s (2002, p.35)

from cross-sectional OLS regression of the illiquidity measure onto the intra-daily measures of

price impact and spread. The results for the log specification suggests that the traded volume still

plays a significant role of governing the overall liquidity condition in the JEPX market.

Table 1: Illiquidity Regression (Dependent: ILQidw)
βlag βs βv R2(%) SER

I0 n/a 1.724 -0.001 69.0 0.131
(0.029) (0.000)

I -0.031 1.691 -0.001 n/a 0.147
(0.001) (0.006) (0.000)

If -0.034 1.620 -0.001 n/a 0.110
(0.001) (0.006) (0.000)

II0 n/a 0.063 -0.609 56.5 0.387
(0.002) (0.039)

II 0.049 0.066 -0.262 n/a 0.508
(0.002) (0.000) (0.008)

IIf 0.038 0.061 -0.414 n/a 0.373
(0.002) (0.000) (0.007)

Note: This table presents the estimated coefficients. All estimates are significant at 1% level.

4.4 Returns and Risk Factors

Let me infer the importance of illiquidity as a risk factor by checking whether the illiquidity

measures thus obtained can predict the cross-sectional variation of returns of 336 contracts. I

will estimate the dynamic panel regression model with variables of one-week lags, individual fixed

effects and time effects:2

Ridw = θlagRid,w−1 + θPIPIid,w−1 + θss̃
∗
id,w−1 + θIV IVid,w−1 + θV Vid,w−1 + αid + δw + εidw, (10)

2Amihud (2002) adopts a Fama-MacBeth approach, i.e., estimating the cross-sectional regression at each point
in time and averaging the coefficients in the time dimension. This approach is effective in controlling the time
effect, but silent about the individual fixed effect (αid in above specification).
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and see if the signs, significance and magnitudes of the estimates of θPI and θs are as expected.3

Inspired by the bottom panels in Figure 5, I control the volatility of returns

IVid,w−1 := (

13∑
h=1

R2
id,w−h/13)1/2,

which is a realized measure of σ over the previous 13 weeks. The estimation results are summarized

in Table 2. I also estimate the same model, with the regressors except for the lagged returns are in

logarithm scales in the bottom panel (given by rows with (lnX)), so that the estimated coefficients

of variables other than the lagged returns can be comparable as semi-elasticities.

Table 2: Returns Regression (Dependent: Ridw)
Model θlag θPI θs θV θIV R2(%) SER

I0 n/a 0.015 0.075 -0.000 -0.175 28.8 0.153
(0.002) (0.011) (0.000) (0.011)

I -.0192 0.590 0.048† -0.001 -1.613 n/a 0.230
(0.008) (0.033) (0.062) (0.000) (0.118)

I0(lnX) n/a 0.018 0.001 0.001† -0.031 28.8 0.153
(0.002) (0.000) (0.002) (0.002)

I(lnX) -.191 0.256 0.002 -0.304 -0.257 n/a 0.230
(0.008) (0.016) (0.001) (0.028) (0.018)

Note: Estimates with † are NOT significant even at the 10% level.
R2 and SER take different values in lower digits.

A few important features emerge from Table 2. First, controlling for the one-week lags of

returns is important. Because the spread measure is extracted from the first-order negative serial

covariance of transaction returns, inclusion of the spread measure as a regressor naturally induces

the need for controlling persistence of the weekly return series. Regardless of the raw or logarithmic

scales, the coefficients of the price-impact measure and the spread measure become much larger

and smaller, respectively, than otherwise. The estimate of θlag is a small yet significant, and

it successfully controls the endogeneity in eliminating the individual fixed effect by differencing

both sides of the equation (10) over time given persistence of the dependent variable. Second,

the coefficient of the price-impact measure is positive and significant in the dynamic panel result,

suggesting that it is a priced risk in the JEPX market, while the spread measure accounts for a

smaller portion of the return’s variations. Therefore, the returns in the JEPX spot market are

driven by the price-impact measure more than the spread measure. Third, the volume measure

has a negative impact on returns, suggesting that it is counteracting with the risk factors such

as the price-impact measure. This is interesting, given the fact that the time-series averages of

the volume and price-impact measures show very similar patterns within each day of the week in

Figures 6 and 7, yet they influence weekly returns in opposite fashions. To obtain this result, we

need to control for all of the contract-specific fixed effects, common time effect, and persistence of

weekly returns of 336 contracts. Fourth, the volatility measure is negatively related to the return

variations. The signs and significance of the price-impact measure and the volatility measure are

consistent with Amihud (2002, Table 2).

4.5 Discussion and Connection to Market Microstructure Models

Based on the argument in Section 2.2, the estimated half spreads are potentially combinations

of (i) the transaction cost and investors’ mispricing, (ii) the inventory cost, and (iii) the adverse-

3I use the two-week lags Rid,w−2 for instrumenting Rid,w−1 in the EViews Dynamic Panel wizard. Using all
of the possible lagged dependent variables makes dimensions of the data matrix too large.
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selection cost. Note that the analysis in Section 4.1 excludes the discreteness of price ticks as a

major factor. Furthermore, as noted in the end of Section 3.2, we cannot investigate the possibility

of investors’ over-confidence given a limited scope of our dataset. Therefore, let me give potential

explanations according to (i), (ii), and (iii).

(i) may be associated with order processing, commission fees, and deposits specific to JEPX

membership, as explained in Section 2.1. PPSs have to pay some fees for using the electricity

transmission system owned by a regional monopoly. It is an additional contribution to the marginal

cost of trades in the JEPX. Moreover, because the JEPX system price is determined as the

intersection of aggregated market demand and supply schedules, there are multiple players for

a specified amount of electricity to be traded. If the breakdown of a power generator causes

the non-fulfillment of an agreed quantity for delivery, the compensation scheme involves multiple

participants and, therefore, the transaction cost can become quite large. The multiplicity of

participants also causes the so-called “hanuke yakujou” (intermittent bids, in Japanese). Suppose

a steel company wants to sell the electricity that is generated by steam power in the process of

cooling the heated iron during its operations from 9:00 AM to 5:00 PM. However, suppliers and

customers are assigned with some randomness by the system. The system may assign the steel

company to 10:30-11:00 and 15:00-15:30 where there is a long duration between intervals for selling

its electricity. This intermittent generation and available supply of electricity may not be efficient

from a seller’s viewpoint.

Regarding (ii), we can reinterpret the classical inventory model by Garman (1976) as a model

for an immediate supplier in the face of large order-imbalances, as is noted in Section 2.2. This

is more pertinent to the JEPX market because, first, the market has no dealers, and, second,

the commodity to be traded is electricity, which cannot be stored so that immediacy of trade

agreements is crucial to avoid the loss of supply and demand. A hockey stick shaped supply curve

by Kanamura and Ohashi (2007) implicitly relies on a similar argument where a higher marginal

cost is associated with a larger supply. Jegadeesh and Titman (1995) show that a price reversal

and its strength at different sampling frequencies are consistent with the inventory model.

If (iii) is a valid hypothesis as in Copeland and Galai (1983) and Glosten and Milgrom (1985),

it implies, even in a dealer market, that the ask-bid quotes are given by conditional expectations.

Because the transactions always occur either at the ask or bid quote for a particular mechanism,

the actual series of transaction prices is a sequence of conditional expectations or a martingale

sequence (Hasbrouck 2007, p. 48). In other words, actual transaction returns follow a martingale-

difference sequence allowing no serial correlation. However, the model by Brünner (2012) indicates

that the additively-separable spread cost does reflect the asymmetric information component. The

fundamental assumption by his model is that buyers and sellers have heterogeneous evaluations

about the fundamental values of the asset (electricity in our case). The wider the range of this

evaluation heterogeneity, the higher the implied spread cost. This seems consistent with the time

series pattern of transaction prices in Figure 5.

5 Robustness Analyses

5.1 Robustness of Weekly Spread Measures

Jagadeesh and Titman (1995) suggest that the Roll measure tends to under-estimate the true

spread based on the daily returns and to over-estimate based on the weekly returns. Figure 8

shows the calculated measures of the implied spread cost based on half-hour intervals for each of

the 65 months from November 2006 to March 2012 and using the daily returns as inputs to (8).

The left panel shows the time-series plot of the measures for the 48 commodities, with the bold

black and green trajectories representing their mean and median, respectively. The right panel is
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an assembly of the cross-sectional patterns of intra-daily spreads for 48 different commodities by

month, with the bold black and green lines representing the time-series mean and median values

of the extracted spreads, respectively.

To see if the magnitude of the estimated half spreads is dominated by a bias component

associated with the specific combination of the Roll measure using daily returns, we also calculate

the spread on the basis of the Roll measure using weekly returns and the Corwin-Schultz method.

Figure 9 summarizes the time-series averages of the three spread measures over the entire sample

period. The three trajectories based on half-spread estimates are largely in line with each other

during the daytime period. Our discussion in Section 3.2 indicates that the true spread for an

active day-time period should lie between the daily and weekly Roll measures, and a similar

magnitude is shared by the Corwin-Schultz measure. When there are insufficient variations in

the data, such as the nighttime period, the Corwin-Schultz measure is expected to underestimate

the spread. The overall pattern of plots in this figure is consistent with the statistical features of

several measures, and the general shapes are quite parallel with each other.

6 Conclusion

I assess the liquidity issues in the JEPX market using data of the system prices and traded

volume only. The extractedt price-impact measures and spread cost measures are positively yet

imperfectly correlated contemporaneously after controlling for the traded volume, fixed and time

effects, suggesting that they capture common and distinctive features of illiquidity in the JEPX

market. As risk factors for return variations, the price-impact measure show much larger influ-

ence on returns than the spread measure in the dynamic panel framework given controlling for the

lagged weekly returns and instrumenting appropriately, in conjunction with other covariates such

as the traded volume, idiosyncratic volatility, contract-specific fixed effects and time effect. The

intra-daily and intra-weekly patterns of the price-impact measure and traded volume are similar,

yer they exhibit opposite signs of influence on return variations, suggesting the importance of con-

trolling for several confounding factors to make any statemenets about the liquidity and efficiency

issues in the JEPX spot market.
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Appendix: More Institutional Details about the JEPX

There are two electricity networks in Japan, roughly corresponding to the east-west geograph-

ical division. The most stark difference in terms of electricity between the eastern and western

parts of Japan is the frequency: it is 50Hz in the easten part of Japan including Tokyo, while 60Hz

in the western part of Japan including Osaka. This subdivision dates back to the earliest stage

of regional monopolistic electricity companies who separately imported power generators either

from Germany (in the east) or from the U.S. (in the west).

JEPX provide 48 commodities for 9 different locations in Japan, associated with 9 different

regional monoploistic electric companies. Although it is possible to have 9 different price patterns

for these areas, prices in Hokkaido and Tohoku are the same as the one in Tokyo (the eastern part

of Japan), while the prices in Chubu, Hokuriku, Chugoku, Shikoku and Kyushu are the same as

the one in Kansai (area including Osaka). Essentially, we only have two areas: east and west.

All participants must pay the commission fee, which is the 0.03 JPY/kWh for each unit of

kWh/h transaction of electricity, and the consumption tax is also levied on. Using the above ex-

ample with the consumption tax rate at 0.05, both sides must pay the 1.05*0.03*5500=173.25JPY

per hour to the JEPX, so the revenue for the JEPX is 173.25*2=346.50 JPY per hour.

All participants must pay the deposit, too. The deposit covers the cost of non-fulfillment

of the agreed-upon demand or supply of electricity. For a buyer, it limits the total amount of

payment required when bidding for electricity within the demand schedule. For a seller, it covers

the potential compensation to a buyer if it cannot deliver the agreed amount of electricity (e.g.,

due to the breakdown of a power generator). The deposits for all trades in one month are held in

reserve until the next month when they are paid back to each participant after subtracting these

compensations. A foregone interest incurs an opportunity cost of the transaction. Moreover, the

power transmission line system is owned by regional monopolies. Whenever the PPSs wish to

deliver electricity to their customers, they must pay a fee for using the transmission line to a

regional monopoly. Finally, the multiple suppliers and customers involved in the agreed amount

of electricity make the negotiations in the case of non-fulfillment of a contract more complex than

a bilateral contract between a single participant and a regional monopoly.
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Figure 1: Demand and Supply Schedules.

The equilibrium price satisfies P ∗ = inf{P ≥ 0 : S(P ) ≥ D(P )}. Note: At P = P ∗, S(P ∗) < D(P ∗) so

that P ∗ cannot be attained by the minimum of P such that S(P ) = D(p). Although some investors quote

the demand D(P ∗) for such a price, it is not executed according to the JEPX limit order rule.
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Figure 2: Autocorrelation Functions of Daily Returns in 8 Intervals

Note: The two parallel broken lines are the boundary of the 95% confidence band under the null hypothesis

that corresponding weekly returns follow a white noise process. Blue dotted lines are autocorrelation

functions. All of the first-order autocorrelations as displayed are significantly negative. Reflecting the

day-of-week effect, every autocorrelation function shows peaks at every seventh displacement.
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Figure 3: Autocorrelation Functions of Weekly Returns

Note: The first order serial correlations are still visible. The magnitude is much greater for weekly returns

in 13:00-13:30 periods than for 4:30-5:00 periods.
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Figure 4: Time-Series Averages of System Prices, Traded Volume and Weekly Returns (4:30-5:00
for Left; 13:00-13:30 for Right).

Note: The first seven panels with red dots are the scatterplots of weekly returns in 4:30-5:00 period against

their one-week lagged counterparts, and the second seven panels with red dots show similar scatterplots

of weekly returns in 13:00-13:30 period. Overall, the price discreteness in the form of clear rays from the

origin are not crucially recognized.
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Figure 5: Time-Series Averages of System Prices, Traded Volume and Weekly Returns (4:30-5:00
for Left; 13:00-13:30 for Right).

Note: The top panels are the time series plots of system prices in 4:30-5:00 and 13:00-13:30 periods over

288 weeks; the middle panels are for traded volume of electricity over 288 weeks; and the bottom panels

are for returns over 287 weeks. The return plots show clear time periods of high and low volatility of

returns, and such effects are stronger for prices in 13:00-13:30 period.
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Figure 6: Time-Series Averages of System Prices, Traded Volume and Weekly Returns (4:30-5:00
for Left; 13:00-13:30 for Right).

Note: Time-Series Averages of System Prices (Left Scale) and Traded Volume (Right Scale) of 48 Com-

modities in Each Day-of-Week. The sharp troughs in the middle of the most of panels show the lunch-time

break from 12:00 to 13:00. The traded volume identify the daytime period from 8:00 to 22:00, and the

nighttime period from 22:30 to 7:30 in the next morning.
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Figure 7: Time-Series Averages of Weekly Price Impact Measures (Left-Scale) and of Reciprocal
Volume (Right-Scale).

Note: Time-Series Averages over 288 weeks of Amihud Price-Impact Measures (Left Scale) and of the

Reciprocals of Traded Volume (Right Scale) of 48 Commodities in Each Day-of-Week.
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Figure 8: Time-Series Averages of Weekly Spread Measures (Left-Scale) and of Price Impact
Measures (Right-Scale).

Note: Time-Series Averages over 288 weeks of Roll’s implied spread cost measuers of 48 Commodities in

Each Day-of-Week.
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Figure 9: Alternative Spread Measures. Roll’s in Blue Real/Dotted; Corwin-Schultz’s in Red.

Note: The real and broken lines in blue are the full-sample average of monthly spreads from the bias-
corrected Roll method based on daily returns and weekly returns, respectively. The red-dotted line is
the full-sample average of monthly spreads estimated by the Corwin-Schultz method as the within-month
average of estimates in the 20-day rolling-window. For the daytime period with active trades of electricity,
the Corwin-Schultz estimates are roughly in the middle of two versions of Roll measures based on daily
and weekly returns, while they are below them in the night-time period, as is consistent with the fact that
the accuracy of a range-based estimator requires large variations in data during the period for defining
it.
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