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Abstract 

Slacks-based measure (SBM) (Tone (2001), Pastor et al. (1999)) has been widely utilized as a 

representative non-radial DEA model. In Tone (2010), I developed four variants of the SBM 

model where main concerns are to search the nearest point on the efficient frontiers of the 

production possibility set. However, in the worst case, a massive enumeration of facets of 

polyhedron associated with the production possibility set is required. In this paper, I will present 

a new scheme for this purpose which requires a limited number of additional linear program 

solutions for each inefficient DMU. Although the point thus obtained is not always the nearest 

point, it is acceptable for practical purposes and from the point of computational loads. 

Keywords: DEA, SBM, reference set, nearest point 

 

1. Introduction  

There are two types of models in DEA; radial and non-radial. Radial models are represented by the 

CCR (Charnes-Cooper-Rhodes) model. Basically they deal with proportional changes of inputs or 

outputs. As such, the CCR score reflects the proportional maximum input (output) reduction 

(expansion) rate which is common to all inputs (outputs). However, in real world businesses, not all 

inputs (outputs) behave in the proportional way. For example, if we employ labor, materials and 

capital as inputs, some of them are substitutional and do not change proportionally. Another 

shortcoming of the radial models is the neglect of slacks in reporting the efficiency score. In many 

cases, we find a lot of remaining non-radial slacks. So, if these slacks have an important role in 

evaluating managerial efficiency, the radial approaches may mislead the decision when we utilize the 

efficiency score as the only index for evaluating performance of DMUs. 

  In contrast, the non-radial SBM models put aside the assumption of proportionate changes in 

inputs and outputs, and deal with slacks directly. This may discard varying proportions of original 

inputs and outputs. The SBM models are designed to meet the following two conditions. 

(1) Units invariant: The measure should be invariant with respect to the units of data 

(2) Monotone: The measure should be monotone decreasing in each slack in input and output. 

The original SBM model evaluates efficiency of DMUs referring to the furthest frontier point 

within a range. This results in the hardest score for the objective DMU and the projection may go to 

a remote point on the efficient frontier which may be inappropriate as the reference. In Tone (2010), 
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I developed four variants of the SBM model where main concerns are to search the nearest point on 

the efficient frontiers of the production possibility set. Referring these variations, several authors 

published new models. Among them, I introduce two important papers.  

Fukuyama et al. (2014) developed a least distance efficiency measure with the strong/weak 

monotonicity of the ratio form measure under several norms including 1-norm, 2-norm and ∞-norm. 

This model utilizes mixed-integer linear programming (MILP) to identify efficiency frontiers and 

hence a computational difficulty arises for large-scale problems. 

Hadi-Vencheh et al. (2015) developed a new SBM model to find the nearest point on the efficient 

frontiers. They utilize the multiplier form model to find all supporting hyperplanes. It also utilizes 

software which uses fractional coefficients (high precision arithmetic) to avoid loss data. Hence, 

computational time increases for large-scale problems. 

 In order to apply DEA models to actual real world problems, we need to try many instances 

including selection of DMUs and input/output factors before attaining the final scheme of evaluation. 

For this purpose, allowable computation time and easy accessible software are desirable. 

The motivation and purpose of this paper is to obtain nearly closest points on the efficient 

frontiers within foreseeable computation loads using only popular linear programming codes. 

As a proposer of the SBM, I think that it is my duty to make this method more practical and 

applicable.  

The rest of this paper is organized as follows. Section 2 introduces the ordinary SBM-Min model 

briefly. Section 3 presents the new SBM-Max model. Observations on this new model are described 

in Section 4. Two numerical examples are exhibited in Section 5. Section 6 concludes this paper. 

Although we present the model in non-oriented mode, we can treat input- and output-oriented model 

as well. As to returns-to-scale characteristics, we present the constant returns-to-scale (CRS) case. 

However we can deal with the variable returns-to-scale (VRS) model as well. 

  

2. The SBM Min model 

The SBM model was introduced by Tone (2001) (see also Pastor et al. (1999)). It has three 

variations, i.e. input-, output- and non-oriented. The non-oriented model indicates both input- and 

output-oriented.  

Let the set of DMUs be  1,2, ,J n , each DMU having m inputs and s outputs. We denote the 

vectors of inputs and outputs for DMUj by 1 2( , , , )T
j j j mjx x xx and 1 2( , , , )T

j j j sjy y yy , 

respectively. We define input and output matrices X and Y by 

1 2 1 2( , , , ) and ( , , , )m n s n
n nR R    X x x x Y y y y .                   (1) 

We assume that all data are positive i.e. and . X 0 Y 0  

2.1  Production Possibility Set 

The production possibility set is defined using the non-negative combination of the DMUs in the 
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set J as: 

1 1
( , ) , , .
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 1 2, , ,
T

n  λ is called the intensity vector. 

The inequalities in (2) can be transformed into equalities by introducing slacks as follows: 
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where 1 2 1 2( , , , ) and ( , , , )T m T s
m ss s s R s s s R          s s are respectively called input and output 

slacks. 

2,2 Non-oriented SBM 

Non-oriented or both-oriented SBM efficiency 
min

o is defined by  
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[Definition 1] (SBM-efficient) A DMU ( , )o o o x y
 
is called SBM-efficient if 

min 1o   

holds. 

This means 
 s 0 and

* s 0 , i.e. all input and output slacks are zero.  

[SBM-Min] can be transformed into a linear program using the Charnes-Cooper 

transformation as follows: 
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Let an optimal solution be 
* * * * *( , , , , )t  

Λ S S . Then, we have an optimal solution of 

[SBM-Min] as defined by 

min * * * * * * * * * *, / , / , / .o t t t        λ Λ s S s S           (6) 

 

3. The SBM Max Model 

In this section, we introduce the new non-oriented SBM-Max model.  

Step 1. Solve SBM-Min 

First, we solve the ordinary SBM (SBM-Min) model as represented by the program (4) for DMU 

 , ( 1, , )o o o nx y . Let an optimal solution be  * * *, , 
λ s s .  

Step 2. Define efficient DMUs 

We define the set Reff of all efficient DMUs as 

 min 1, 1, , .eff

jR j j n                                   (7) 

We denote these efficient DMUs as      1 1 2 2, , , , , ,eff eff eff eff eff eff

Neff Neffx y x y x y  , wher Neff is the 

number of efficient DMUs. 

Step 3. Local reference set 

For an inefficient DMU  ,o ox y , we define the local reference set
local

oR , i.e., efficient DMUs set 

for DMU  ,o ox y , by (8).  

 * 0, 1, ,local

o jR j j n   .                                 (8) 

Step 4. Pseudo-Max score 

For each inefficient DMU, i.e., 
min 1o   , we solve the following program. 
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Let an optimal slacks be  * *, . 
s s  We solve the following program with variables ( , , ) 

λ s s . 
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Let the optimal slacks be  ** **, 
s s . We define the Pseudo-Max score maxpseudo

o by 

* **

1
max

* **
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1
1
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Step 5. Distance and SBM-Max score 

For each inefficient DMU  ,o ox y , i.e., 
min 1o   , we calculate the distance between  ,o ox y and 

 , ( 1, , )eff eff

h h h Neffx y by 
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1 1

[Distance]     .

eff effm s
ih io ih io
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i iio io

x x y y
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 
                           (12) 

This distance is units-invariant. 

Step 5.1. Reorder the distance 

We renumber the efficient DMUs in the ascending order of dh, so that  

1 2 .Neffd d d                               (13) 

We define the set Rh by 

 1, , ( 1, , ).hR h h Neff                          (14) 

Step 5.2. Find slacks and max-score for the set Rh 

We evaluate the efficiency score of the inefficient DMU  ,o ox y referring to the set Rh by 

solving the following program.  
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(a) If this program is infeasible, we define * 0.oh   Otherwise, let an optimal slacks be 

 * *, . 
s s   

(b) If the optimal objective value is 1, i.e., * *and   s 0 s 0 , we define * 0.oh   This 

indicates that DMU  ,o ox y can be expressed as a non-negative combination of DMUs in Rh 

and hence, in view of 
min 1o  , it is inside the production possibility set.   

(c) If the optimal objective value is less than 1, we again solve the following program 

with the variables  , , 
λ s s . 
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 Let the optimal slacks be  ** **, 
s s . We define *

oh by 
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We assign *

oh  as the max-score referring to the set Rh. 

Step 5.3. SBM-Max and projection 

Finally, we define the max-score 
max

o  of inefficient DMU  ,o ox y by 

 max max * *

1[SBM-Max]      max , , ,pseudo

o o o oNeff    .                       (18) 

We also hold the slacks  ** **, 
s s corresponding to the maximum

max

o . The projection of DMU 

 ,o ox y onto efficient frontiers is given by 

* * ** * * **[Projection]        ,o o o o

        x x s s y y s s .                       (19) 

 

4. Observations 

In this section, we discuss several characteristics of the algorithm in Section 3. 

4.1. Distance and choice of the set hR   

The set hR plays a central role in choosing referent DMUs for inefficient DMUs. Because our main 

concern is the projection to the nearest point on the efficient frontiers, we evaluate the distance 

between the DMU  ,o ox y and efficient DMUs by (12), and choose the shortest distance DMU as 

the first candidate DMU. Then, we expand the referent set in the ascending order of distances. Thus, 

we can expect a close efficient point on the frontiers with high probability. If tie occurs in distances, 
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we can choose any one at random.  

4.2. The role of Programs (10) and (16) 

For example, Program (16) is necessary to project the point  * *,o o

  x s y s  on the efficient 

frontiers. Thus,  * * ** * * **,o o o o

        x x s s y y s s is the projected point on the efficient 

frontiers and it is expected to be close to the DMU  ,o ox y by the selection rule of hR . 

4.3. Computational amount 

Computations needed for this algorithm for an inefficient DMU are as follows. 

Let t1 and t2 be the CPU time for solving a LP problem, respectively, with the (m + s) rows and n 

columns, and (m + s) rows and Neff columns. Since LP solution time is proportional to the number of 

columns. We can estimate roughly t1 = ( n / Neff ) t2. 

(1) Program (4) or (5) needs n ∗ t1 CPU time. 

(2) Programs (9) and (10) need at most 2 ∗ (n –Neff ) ∗ t2 CPU time. 

(3) Programs (15) and (16) need at most 1.5 * (n – Neff ) * Neff * t2 CPU time, because the member 

of Rh in (15) varies from 1 to Neff. 

However, if Step 5.2 (c) occurs at some set hR , we can skip the computations for the succeeding 

Programs (15) and (16) for h +1,…, Neff.   

  Overall, the total time for LP computation is at most  

T= n ∗ t1 + 2 ∗ (n -Neff) ∗ t2 + 1.5 * (n- Neff) * Neff * t2  

= [n + (2 +1.5 * Neff ) * (n-Neff) * (Neff / n)] * t1.                    (20) 

Thus, the computational amount is polynomial order and we do not need other software, e.g., MILP 

and fractional arithmetic. 

4.4. Consistency with the super-efficiency SBM measure 

The SBM-Max model aims at getting to the nearest point on the efficient frontiers. This concept is in 

line with the super-efficiency SBM model (Tone (2002)) which solves the following program for an 

efficient DMU  ,o ox y to mesure the minimum ratio-scale distance from the efficient frontier 

excluding the DMU  ,o ox y . 
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We can solve the super-efficiency SBM model by applying LP code just once, because this 

problem belongs to a convex programming, i.e., minimization of a convex function over a convex 

region. However, SBM-Max problem cannot be solved in this manner, because it is a maximization 

of a convex function over a convex region. 

 

5. Numerical examples 

In this section, we show two numerical examples, the first one is illustrative and the other deals with 

real data. All computations are executed using a PC with Intel Core i7-3770 CPU at 3.40 GHz 16 GB 

(RAM) and Microsoft Excel VBA (Visual Basic for Applications). A LP soft (revised simplex 

method) is coded by the author. We checked the results of the first example using LINGO (LINDO 

Systems Inc.) and had the same figures. 

5.1. An illustrative example 

We deal with the same data as one in Tone (2010). Table 1 displays the data with two inputs (Doctor and 

Nurse) and two outputs (Outpatient and Inpatient). 

 

Table 1: Illustrative example 

DMU (I)Doctor (I)Nurse (O)Outpatient (O)Inpatient 

 A  20 151 100 90 

 B  19 131 150 50 

 C  25 160 160 55 

 D  27 168 180 72 

 E  22 158 94 66 

 F  55 255 230 90 

 G  33 235 220 88 

 H  31 206 152 80 

 I  30 244 190 100 
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 J  50 268 250 100 

 K  53 306 260 147 

 L  38 273 250 133 

 

5.1.1. Solution of SBM-Min model 

First, we solved SBM-Min model and obtained the results exhibited in Table 2. 

Table 2: Results of SBM-Min model 

DMU Score Rank Reference(Lambda)   

 A  1 1  A  1 
  

 B  1 1  B  1 
  

 C  0.8265 8  B  0.449  L  0.371 

 D  1 1  D  1 
  

 E  0.7277 11  B  0.667  L  0.246 

 F  0.6857 12  A  0.092  L  0.883 

 G  0.8765 6  B  0.16  L  0.784 

 H  0.7713 9  L  0.755 
  

 I  0.9016 5  A  0.233  L  0.667 

 J  0.7653 10  B  0.152  L  0.909 

 K  0.8619 7  B  0.15  L  1.049 

 L  1 1  L  1     

 

We find four efficient DMUs, i.e.  , , ,effR A B D L .   

5.1.2. The case of inefficient DMU I 

We explain the case of inefficient DMU I, step by step.  

(1) Steps 1, 2 and 3:    min 0.9016, , , , , ,local eff

I IR A L R A B D L    .  

(2) Step 4:
max 0.9016pseudo

I  .   

(3) Step 5.1: Distances from efficient DMUs are dA=1.28816, dB=1.54030, dD=0.74411, and dL=1.03131. 

Thus, we have        1 2 3 4, , , , , ,and , , ,R D R D L R D L A R D L A B    . 

(4) Step 5.2: We solve (16) and (17), and find: 

* * * *

1 2 3 40.859885, 0.910900, 0.921168,and 0.920198I I I I       .  

(5) Step 5.3: From (18), we find  max max * * * *

1 2 3 4max , , , , 0.921168pseudo

I I I I I I       =
*

3I  with 

the reference set  3 , ,R A D L . Its projection is  * * * *

1 2 1 230, 205.53, 190, 100I I I Ix x y y     

with the slacks 1 2 1 2( 0, 38.47, 0, 0)s s s s       . The SBM-Min model has 
min 0.9016I   

with slacks 1 2 1 2( 0, 26.767, 0, 9.667)s s s s       . This indicates that SBM-Min model requires 
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a reduction of Nurse by 26.767 and an increase of Inpatient by 9.667 to attain the efficiency status, 

whereas SBM-Max model requires a reduction of Nurse by 38.47 to attain the efficiency status. 

5.1.3. Comparisons among SBM-Max, Pseudo-Max and SBM-Min scores 

Table 3 compares results with SBM-Max, SBM-Pseudo and SBM-Min scores. Inefficient DMUs 

increased their efficiency from SBM-Min to SBM-Max. 

Table 3: Comparisons 

DMU SBM-Max Rank Pseudo Rank SBM-Min Rank 

 A  1 1 1 1 1 1 

 B  1 1 1 1 1 1 

 C  0.87507 8 0.855 8 0.8265 8 

 D  1 1 1 1 1 1 

 E  0.7682 11 0.7391 11 0.7277 11 

 F  0.72648 12 0.6868 12 0.6857 12 

 G  0.93688 5 0.9052 5 0.8765 6 

 H  0.80918 10 0.7714 10 0.7714 9 

 I  0.92117 6 0.9016 6 0.9016 5 

 J  0.81032 9 0.7898 9 0.7653 10 

 K  0.88894 7 0.8622 7 0.8619 7 

 L  1 1 1 1 1 1 

Average 0.8947 
 

0.8759 
 

0.8681 
 

Max 1 
 

1 
 

1 
 

Min 0.7265 
 

0.6868 
 

0.6857 
 

St Dev 0.0982   0.1114   0.115   

 

Table 4 exhibits 
max * *

1 4, , ,pseudo

o o o   for inefficient DMUs. Shaded portions indicate the max. The 

SBM-Max scores are found at several stage of Rh. 

Table 4 

DMU ρ0 ρ1 ρ2 ρ3 ρ4 

 C  0.85495 0.87507 0.87507 0.87507 0.87507 

 E  0.73911 0.7682 0.7682 0.7682 0.7682 

 F  0.68681 0.68681 0.72648 0.72648 0.72648 

 G  0.90516 0.93688 0.93688 0.93688 0.93688 

 H  0.77135 0.80918 0.80918 0.80918 0.80918 

 I  0.90163 0.85989 0.9109 0.92117 0.92019 

 J  0.78982 0.75731 0.81032 0.81032 0.81032 

 K  0.86221 0.86221 0.86615 0.88894 0.88894 
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5.1.4. Comparisons of average differences between SBM-Max and SBM-Min 

Figure 1 shows the average of percentage deviations,│Data - Projection│* 100 / Data. It is 

observed large differences exist in SBM-Min, while small differences in SBM-Max. 

 

Figure 1: Average deviations (%) 

 

Table 5 reports data and projections along with deviations (%) in the case of SBM-Max. 

 

Table 5: Data and projection by SBM-Max 

    

 

Doc.     Nur.     Outpatient   Inpatient   

DM Score Rank Data Proj. Diff.(%) Data Proj. Diff.(%) Data Proj. Diff.(%) Data Proj. Diff.(%) 

 A  1 1 20 20 0 151 151 0 100 100 0 90 90 0 

 B  1 1 19 19 0 131 131 0 150 150 0 50 50 0 

 C  0.8751 8 25 25 0 160 155.6 -2.78 160 166.7 4.17 55 66.7 21.21 

 D  1 1 27 27 0 168 168 0 180 180 0 72 72 0 

 E  0.7682 11 22 20.9 -4.88 158 158 0 94 104.6 11.32 66 94.2 42.69 

 F  0.7265 12 55 34.5 -37.27 255 214.7 -15.82 230 230 0 90 92 2.22 

 G  0.9369 5 33 33 0 235 205.3 -12.62 220 220 0 88 88 0 

 H  0.8092 10 31 30 -3.23 206 186.7 -9.39 152 200 31.58 80 80 0 

 I  0.9212 6 30 30 0 244 205.5 -15.77 190 190 0 100 100 0 

 J  0.8103 9 50 43.1 -13.86 268 268 0 250 287.1 14.86 100 115 14.86 

 K  0.888 7 53 46.5 -12.26 306 306 0 260 289.1 11.2 147 147 0 

 L  1 1 38 38 0 273 273 0 250 250 0 133 133 0 
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5.2. Japanese municipal hospitals  

The data were collected from the Annual Databook of Local Public Enterprise published by the 

Ministry of Internal Affairs and Communications Japanese Government, 2005. 

5.2.1. Data 

Number of DMUs: 707 hospitals (n = 707). 

Number of inputs: 5. (1) No. of beds (Bed), (2) Expenses for outsourcing (Outsource), (3) No. of 

doctors (Doctor), (4) No. of nurses (Nurse) and (5) Expenses for other medical materials 

(Material). (m = 5) 

Number of outputs: 4. (1) Revenue from operation per day (Operation), (2) Revenue from first 

consultation per day (1st time), (3) Revenue from return to clinic per day (Follow-up) and (4) 

Revenue from hospitalization per day (Hotel). (s = 4) 

 Table 6 exhibits statistics of the dataset. 

 

Table 6: Statistics of dataset (n = 707) 

  Bed Outsource Doctor Nurse Material Operation 1st time Follow-up Hotel 

Max 1063 2231247 215.562 955.464 3395791 1.7E+07 1432079 3359160 1.8E+07 

Min 25 7767 0.98 11 9197 8979 2706 13636 109650 

Average 255.924 312686 33.2783 175.709 491909 2128506 211538 415872 3263845 

SD 191.764 334184 34.1647 149.678 598474 2533050 212439 327749 3020809 

 

5.2.2. SBM scores 

The SBM-Min model found that 66 hospitals among 707 are efficient (Neff = 66). Table 7 compares 

three scores. We found large differences between Max and Min models. 

Table 7: Comparisons of three scores 

  SBM-Max Pseudo SBM-Min 

Average 0.7835 0.6997 0.4515 

Max 1 1 1 

Min 0.1889 0.0394 0.0118 

St Dev 0.1339 0.211 0.229 

 

Figures 2 (SBM-Max) and 3 (SBM-Min) exhibit respectively scores of 707 hospitals in ascending 

order where we can observe big differences.  
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Figure 2: Distribution of SBM-Max scores 

 

 

Figure 3: Distribution of SBM-Min scores 
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Figure 8 shows the average of percentage deviations,│Data - Projection│* 100 / Data. It is 

observed large differences exist in SBM-Min, while small differences in SBM-Max. 

Table 8: Average deviation (%) 

  SBM-Max SBM-Min 

Bed 13.1644 3.4014 

Outsource 20.0291 24.8771 

Doctor 12.0707 9.9367 

Nurse 9.6586 5.7022 

Material 10.7101 8.144 

Operation 12.7155 48.2925 

1st time 9.4884 407.243 

Follow-up 13.3537 192.406 

Hotel 17.4181 1.1889 

 

Figure 4 illustrates deviations graphically. Large differences found in SBM-Min, while balanced 

deviations in SBM-Max. 

 

Figure 4: Average deviations (%) of inputs and outputs (cut at 150%) 

 

5.2.3. Computational time 

The computational time increases as the number of efficient DMUs (Neff) increases, because number 

of facets increases accordingly and we need to solve additional Neff LPs. In this example we have: 

(1) CPU time for SBM-Min and SBM-Pseudo = 12 seconds. 

(2) CPU time for SBM-Max = 179 seconds. 
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SBM-Max needs about 15 times of SBM-Min and SBM-Pseudo. This number is reasonable and 

consistent with the formula (20). 

 

6. Conclusions 

In this paper, we have developed the SBM-Max model which attempts to find nearly closest 

reference point on the efficient frontiers so that slacks are minimized, while the scores are 

maximized. Sacrificing the rigorous solutions, the proposed model utilizes a standard LP code and 

finds approximate solutions in allowable (polynomial) times. 

  Many applications of the SBM-Min models have been developed over the world. According to 

Google Citation Index, 1348 articles cited Tone (2001) at now (2015/5/4). Also many DEA models 

are developed based on this model. Above all, Network SBM (NSBM) (Tone and Tsutsui (2009)), 

Dynamic SBM (DSBM) (Tone and Tsutsui (2010)), Dynamic and Network SBM (DNSBM) (Tone 

and Tsutsui (2014)), and Malmquist SBM (Cooper at al. (2007)) are representative. Revisions of 

these models based on the SBM-Max model are imperative future research subjects.   
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