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Abstract

We propose a generalized version of the RESET test for linearity in regressions with I(1) pro-

cesses against various nonlinear alternatives and no cointegration. The proposed test statistic for

linearity is given by the Wald statistic and its limiting distribution under the null hypothesis is

shown to be a χ2 distribution with a “leads and lags” estimation technique. We show that the test

is consistent against a class of nonlinear alternatives and no cointegration. Finite–sample simula-

tions show that the empirical size is close to the nominal one and the test succeeds in detecting

both nonlinearity and no cointegration.
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1 INTRODUCTION

The objective of this paper is to study the relationships between economic variables in the context

of regression models where explanatory variables are integrated of order one, I(1). It is well known

that dynamic relationships, such as cost and production functions, are nonlinear. Many researchers

have also found empirical evidence of nonlinearity in economic relationships (for example, see Granger

and Teräsvirta, 1993, Granger, 1995 and the references contained therein). However, most of the

econometric techniques for testing linearity and nonlinearity are developed for stationary variables and

are not applicable for nonstationary variables, especially I(1) variables.

In studying linear relationships between I(1) economic variables, Granger (1983) and Engle and

Granger (1987) introduced the concept of cointegration. Cointegration has been an intensive subject

of research ever since. However, most results on cointegration provided so far have been restricted

to cointegration in a linear sense. That is, most attentions has been paid only to linear relationships

between I(1) variables. After Granger (1995) introduced the concept of nonlinear cointegration, some

researchers began to pay attention to nonlinear relationships between nonstationary variables.

Since any relationships that are not linear can be called nonlinear, the concept of nonlinear

cointegration is quite broad. Several specific types of nonlinear cointegration have been discussed by

various authors. Park and Phillips (2000) established the limiting properties of nonstationary binary

choice models where covariates are integrated of order one. Park and Phillips (2001) showed the limiting

properties of nonlinear regression models with I(1) regressors. Chang et al. (2001) extend earlier work

by Phillips and Hansen (1990) to nonlinear models with integrated time series. Hansen and Seo (2002)

developed a test for threshold cointegration. They dealt with a model where a cointegrating vector

changes according to the regime to which the error correction term belongs. Corradi et al. (2000)

studied nonlinear relationships between variables that are first order Markov processes. They considered

an error correction–like system with a nonlinear component and proposed some tests to discriminate

linear cointegration from nonlinear cointegration or no cointegration. However, these tests are directed

toward specific kinds of nonlinear cointegration and may have low power against other alternatives. It is

desirable that a test for linear cointegration be consistent with a wide variety of nonlinear relationships

because we typically lack precise information about them in practice. Thus we seek a test for linearity

in regressions with I(1) processes that is consistent with a wide variety of nonlinear alternatives as well

as no cointegration.

In this paper we propose a generalized version of the RESET test for linearity in regressions

with I(1) processes. Note that the linearity in regressions with I(1) processes we consider in this paper

is equivalent to the linear cointegration of Engle and Granger (1987)1. In this sense we are trying to

propose a test for the null hypothesis of linear cointegration. We cannot simply apply the RESET test

directly to the present context because it is well known that the limiting distribution of the least squares

estimators in regressions with (linear) I(1) processes generally involves second–order bias effects and

1For the rest of the paper we call the standard cointegration concept developed by Engle and Granger (1987) linear

cointegration to distinguish it from nonlinear cointegration.
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these make standard statistical inference invalid without modification. In fact we show that second–

order bias effects are still present when we use nonlinear transformations of integrated processes as

regressors as in the formulation of the RESET test (see de Jong, 2002 for more general treatment on

this issue). Thus we propose employing a “leads and lags” estimation technique by Saikkonen (1991)

among others to get a test statistics that is free of nuisance parameters. With this modification we can

show that the limiting distribution of the test statistic under the null hypothesis of linear cointegration

is the χ2 distribution with degrees of freedom that depend on the number of regressors. Moreover the

test that we propose is consistent against a class of nonlinear alternatives. For example, our test for

linearity can distinguish linear cointegration models from nonlinear cointegration models that involve

the logarithmic function, any distribution type functions,2 and polynomial functions of finite order.

Further the test is consistent against the alternative of no cointegration.

One important feature of the test is that it allows for an endogenous regressor. That is, the

regressor may be correlated with the regression error. This not usually allowed in nonlinear regression

models with I(1) processes as in Park and Phillips (2000, 2001), but special features of the RESET

test enable us to accomodate it. With this generality we would potentially be able to apply the test to

many empirical problems which would be excluded when we assume that a regressor is exogenous.

The approach of this article and the asymptotic distribution theory developed here are similar

to those developed independently in closely related work by Hong and Phillips (2010), although this

article is different in several key aspects. First, it considers simple regression while we consider multiple

regression. Second, it allows for an endogenous regressor as our test does, however, it assumes that the

regressor is predetermined as in Park and Phillips (2000, 2001) and Chang et al. (2001) although our

test does not. Third, it employs a technique similar to the fully–modified OLS proposed by Phillips and

Hansen (1990) to deal with second–order bias effects, while we extend the “leads and lags” estimation

technique proposed by Saikkonen (1991).

The rest of the paper is organized as follows. Some assumptions and preliminary results are

presented in section 2. Section 3 explains our test for linearity and the power property of our test is

examined in section 4. Section 5 gives some simulation evidence. We summarize some conclusions in

Section 7. All proofs are in the Appendix.

A word on notation. For a vector a = (ai) “||a||” stands for the standard Euclidean norm, i.e.,

||a||2 =
∑
i a

2
i . When applied to a matrix, ||A|| signifies the operator norm, i.e. ||A|| = supx ||Ax||/||x||.

We also use || · || to denote the supremum of a function. || · ||K stands for the supremum norm over a

subset of K of its domain, ||f ||K = supx∈K ||f(x)||. “⇒” denotes weak convergence with respect to the

Skorohod metric (as defined in Billingsley (1968)). [s] denotes the largest integer not exceeding s.

2 ASSUMPTIONS AND PRELIMINARY RESULTS

The regression model from which we derive a test statistic is driven by a sequence of innovation

variables denoted by {ut} where ut consists of a scalar time series u1t and an m × 1 vector time

2We call bounded and monotonically increasing functions distribution type functions.
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series u2t = (u21,t, u22,t, . . . , u2m,t), i.e. ut = (u1t, u
′
2t)
′. We assume throughout that the innovation

sequence {ut} satisfies the following assumption.

Assumption 2.1 For some p > β > 2, {ut} is a zero mean, strong mixing sequence with mixing

coefficients αm of size −pβ/(p − β) and supt≥1 (E|u1t|p +
∑m
i=1 E|u2i,t|p)

1/p
= C < ∞. In addition,

(1/T )E(UTU
′
T )→ Ω as n→∞ where Ui =

∑i
j=1 uj.

For example, Assumption 2.1 permits ut to be weakly dependent with possible heterogeneity. A wide

variety of data generating processes satisfies Assumption 2.1, including invertible autoregressive moving

average (ARMA) processes under general conditions. Assumption 2.1 is one of the common assumptions

for innovation processes. We sometimes maintain the following assumption in addition to Assumption

2.1.

Assumption 2.2 We assume ut is a general linear process

u1t = φ(L)e1,t =

∞∑
i=0

φie1,t−i u2t = Ψ(L)e2,t =

∞∑
i=0

Ψie2,t−i (1)

where φi is a scalar with φ0 = 1, Ψi is an (m ×m) matrix with Ψ0 = Im, {e1t} is a scalar sequence

and {e2t} is an (m× 1) vector sequence. et = (e1t, e
′
2t)
′ is iid with mean zero and covariance Σe.

(a) φ(1) nonsingular,
∑∞
i=0 k||φi|| <∞, and supt≥1 E||e2t||q <∞ for some q > 4.

(b) Ψ(1) nonsingular,
∑∞
i=0 k||Ψi|| < ∞, and E||e2t||r < ∞ for some r > 8. e2t has a distribution

that is absolutely continuous with respect to Lebesgue measure and has a characteristic function ψ(t)

that satisfies lim||t||→∞ ||t||ξψ(t) = 0 for some ξ > 0.

In the following sections, u1t serves as a regression error process and u2t generates an integrated

process. The nonsingularity and summability conditions for φ and Ψ in Assumption 2.2 are common

in stationary time series analysis. Assumption 2.2 (b) states stronger conditions on the moment and

characteristic function for e2t than for e1t. It will be needed when we deal with nonlinear transformations

of integrated processes. Assumption 2.2 (b) is commonly imposed in nonlinear regression models with

integrated regressors.3 Processes that satisfy both Assumptions 2.1 and 2.2 include invertible ARMA

models under general conditions. Note that {u1t} is allowed to have a general correlation structure

with {u2t}. This is usually not the case as in Park and Phillips (2000, 2001). We will return to this

point in section 4.

Under Assumption 2.1, the sequence {ut} satisfies a multivariate invariance principle.

Lemma 2.1 (Wooldridge and White 1988)

T−1/2
[Tr]∑
t=1

ut ⇒ B(r), 0 < r ≤ 1,

where B(r) = (B1(r), B2(r)′)′ is an (m + 1) dimensional Brownian motion with covariance matrix Ω.

B1(r) and B2(r) = (B21, . . . , B2m)′ denote Brownian motions of 1 and m dimensions respectively.

3See Akonom (1993) and Park and Phillips (1999) for more details on these conditions.
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We assume that Ω can be written as

Ω =

 ω11 ω′21

ω21 Ω22

 = lim
T→∞

T−1E(UTU
′
T ) = Σ + Λ + Λ′,

where

Σ =

 σ11 σ′21

σ21 Σ22

 = lim
T→∞

T−1
T∑
t=1

E(utu
′
t), Λ =

 λ11 λ12

λ21 Λ22

 = lim
T→∞

T−1
T∑
t=2

t−1∑
j=1

E(uju
′
t).

These notation will be used repeatedly throughout the paper. We assume that the covariance matrices

ω11 and Ω22 of B1(r) and B2(r) are positive definite. It will often be convenient to write these and

other stochastic processes on [0, 1] without the argument. Thus, we shall frequently use B, B1 and B2

in place of B(r), B1(r), and B2(r).

Let an m-vector time series {xt} satisfy xt = xt−1 + u2t where xt = (x1t, . . . , xmt)
′. Our results

do not depend on the initialization x0 as long as it is bounded in probability. For notational convenience

we assume x0 = 0. Let x
(j)
t = (xj1t, . . . , x

j
mt)
′ and B

(j)
2 = (Bj21, . . . , B

j
2m)′ where j is a positive integer.

In Lemma 2.2, we show the limiting distributions of some partial sums that will be needed to derive the

limiting distributions of test statistics. The limit distributions are expressed as functions of Brownian

motion. To simplify formulae, all integrals are understood to be taken over the interval [0, 1] unless

otherwise stated, and integrals such as
∫
B and

∫
B(κ) are understood to be taken with respect to

Lebesgue measure.

The following lemma is very useful in the derivation of our result in the next section.

Lemma 2.2 Let Assumption 2.1 hold with β = κ+ 1. Then for 2 ≤ i, j ≤ κ, as T →∞

(a) T−2
∑T
t=1 xtx

′
t ⇒

∫
B2B

′
2,

(b) T−(i+j+2)/2
∑T
t=1 x

(i)
t x

(j)′

t ⇒
∫
B

(i)
2 B

(j)′

2 ,

(c) T−1
∑T
t=1 xtu1,t+1 ⇒

∫
B2dB1 + Λ21,

(d) T−1
∑T
t=1 xtu1t ⇒

∫
B2dB1 + ∆21,

(e) T−(i+1)/2
∑T
t=1 x

(i)
t u1,t+1 ⇒

∫
B

(i)
2 dB1 + iD(B

(i−1)
2 )Λ21,

(f) T−(i+1)/2
∑T
t=1 x

(i)
t u1t ⇒

∫
B

(i)
2 dB1 + iD(B

(i−1)
2 )∆21,

where ∆21 = Σ21 + Λ21 and D(B
(i)
2 ) = diag

[∫
Bi21,

∫
Bi22, . . . ,

∫
Bi2m

]
.

Parts (a)−(d) of Lemma 2.2 are standard results that can be found in the literature (e.g., Phillips,

1987 and Park and Phillips, 1988) or can be derived easily from it. However, part (e) of Lemma 2.2

is nonstandard and part (f) is an extension of part (e). Part (e) can be considered as an extension of

the results of Park and Phillips (1999, 2001) in the sense that we extend their results to a case where

a regressor xt is endogenous and multivariate. Recently de Jong (2002) extended the results by Park

and Phillips (1999, 2001) to accommodate general correlation structure between u1t and u2t under

a different set of assumptions. However, we note that his result still deals with a scalar process u2t

rather than a multivariate process as considered in Lemma 2.2 although it includes results for general

functional forms other than polynomials.
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3 Testing for Linearity in Regressions with I(1) Processes

In this section we propose a generalized version of the RESET test for linearity in regression with I(1)

processes. Consider the following regression model:

yt = γ0 + γ′1xt + γ′2x
(2)
t + γ′3x

(3)
t + · · ·+ γ′κx

(κ)
t + u1t, t = 1, . . . , T. (2)

where γ0 is a scalar parameter, γi is an (m× 1) parameter vector for 1 ≤ i ≤ κ, xt, x
(j)
t for 2 ≤ j ≤ κ,

and u1t are defined in the previous section. Our test is a generalized version of the test for functional

misspecification proposed by Thursby and Schmidt (1977) that is a variant of the RESET test originally

proposed by Ramsey (1969). If {xt} is stationary and {u1t} is normally distributed, the present situation

reduces to that in Thursby and Schmidt (1977).

The idea of their test is that if there is functional misspecification, i.e. if the functional form is

nonlinear, “the omitted portion of the regression is definitely a function of the included regressors.” If

this function is analytic, it can be expressed in a Taylor series expansion, involving powers and cross

products of the explanatory variables. Hence they proposed to test whether coefficients of powers of

the explanatory variables were zero or not. Since this justification does not depend on the property of

the process {xt}, it would be natural to expect that this test will work even if {xt} is I(1) as in our

present situation. However, note that we are not claiming that our test is consistent against nonlinear

cointegration because of this argument. We must prove consistency against a whole class of nonlinear

alternatives and no cointegration and this is covered in the next section.

Another word on the regression model (2). We do not include cross products of the explanatory

variables. Thursby and Schmidt (1977) found that they don’t contribute to the power of their test very

much through Monte Carlo experiments. Since the present situation is different from theirs, those cross

products may contribute to the power of the test in the present circumstance. However, they are not

included in the regression (2) in order to keep our theoretical development simple.

The null hypothesis of linearity or linear cointegration between yt and xt corresponds to

H0 : γ2 = · · · = γκ = 0. (3)

If the null hypothesis is true, the specification in (2) would correspond to “deterministic cointegration”

as defined by Ogaki and Park (1997). The results that will be shown in this section can easily be

extended to “stochastic cointegration” where nonzero deterministic time trends are present in (2). The

null hypothesis (3) is to be tested against the alternative of nonlinear cointegration or no cointegration.

In this section we will present the limiting property of the test under the null hypothesis of linear

cointegration and establish the limiting property under the alternative of nonlinear cointegration and

no cointegration in the next section. The next theorem characterizes the limiting distribution of the

least squares estimator from the regression model (2) under the null hypothesis.

Theorem 3.1 Suppose Assumption 2.1 holds with β = κ+ 1. Then under the null hypothesis (3) (as
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T →∞)

ΥT



γ̂0 − γ0
γ̂1 − γ1
γ̂2
...

γ̂κ


⇒



1
∫
B′2

∫
B

(2)′

2 · · ·
∫
B

(κ)′

2∫
B2

∫
B2B

′
2

∫
B2B

(2)′

2 · · ·
∫
B2B

(κ)′

2∫
B

(2)
2

∫
B

(2)
2 B′2

∫
B

(2)
2 B

(2)′

2 · · ·
∫
B

(2)
2 B

(κ)′

2

...
...

...
. . .∫

B
(κ)
2

∫
B

(κ)
2 B′2

∫
B

(κ)
2 B

(2)′

2 · · ·
∫
B

(κ)
2 B

(κ)′

2



−1 

B1∫
B2dB1 + ∆21∫

B
(2)
2 dB1 +D(B2)∆21

...∫
B

(κ)
2 dB1 +D(B

(κ−1)
2 )∆21


where ΥT = diag

[
T 1/2, T Im, T

3/2Im, . . . , T
(κ+1)/2Im

]
Before we move on to the development of our test statistic, some remarks are in order. As

described above, our null hypothesis is that there exists a linear cointegration relationship between yt

and xt. Therefore it would not be hard to imagine that the limiting properties of the least squares

estimates of the present regression model under H0 would share some characteristics with the least

squares estimates of cointegrating vectors in standard cointegrated regression models.

First, a regressor xt is allowed to be endogenous under Assumption 2.1, i.e. xt can be correlated

with the regression error u1t as in linearly cointegrated regression models. When it is enogenous in

stationary regression models, the least squares estimator fails to satisfy the conditions for consistency

and therefore we typically employ an instrumental variable estimator to achieve consistency. However,

one notable difference between stationary regression models and linearly cointegrated regression models

is that the least squares estimator in the latter is still consistent for its population value (e.g., Stock,

1987, Park and Phillips, 1988, and Phillips and Hansen, 1990). In the present regression model, this

is true and the least squares estimator is consistent even though we have an endogenous regressor, as

shown in Theorem 3.1.

Second, we have second order bias effects such as ∆21, D(B2)∆21, . . . , D(B
(κ−1)
2 )∆21 in the

limiting distribution of Theorem 3.1 that are similar to the limiting properties of the cointegrating

vectors in linear cointegrating models. We call this the second order bias because it does not have an

effect on the consistency result but does have an effect on the limiting distribution (see Stock, 1987 and

Phillips and Hansen, 1990). It arises because of the existence of contemporaneous and serial dependence

between the regressors xt and the regression error u1t. This is directly analogous to the phenomenon

that occurs in linearly cointegrated regression.

Next we propose our test statistic. There are two obstacles in the limiting distribution of the

least squares estimator given in Theorem 3.1 in conducting a standard hypothesis testing procedure

such as a χ2 test. One is the existence of a nonzero covariance structure between B1 and B2 and another

is that the limiting distribution of the least squares estimates depends not only on the property of the

Brownian motion B1 and B2 but also on the nuisance parameter matrix ∆21. These obstacles are same

as those arising in linearly cointegrated models and the methods proposed to remove these obstacles in

linearly cointegrated regression models can be extended to our regression model. Here we consider an

estimation technique by Saikkonen (1991).4

4Fully-modified least squares developed by Phillips and Hansen (1990) is also applicable to the present problem
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Saikkonen (1991) proposed an efficient estimator that eventually removes the obstacles by adding

leads and lags of ∆xt in linearly cointegrated regressions where ∆xt = xt − xt−1. We show that this

“leads and lags” estimation technique works in our regression model (2).

Consider the following new regression model:

yt = γ0 + γ′1xt + γ′2x
(2)
t + γ′3x

(3)
t + · · ·+ γ′κx

(κ)
t +

K∑
s=−K

θ′s∆xt−s + v∗t , t = 1, . . . , T, (4)

where θi is an (m× 1) parameter vector for −K ≤ i ≤ K. This is a regression model where leads and

lags of ∆xt are added to the regression model (2). Note that the regression error here is not u1t but

v∗t . The relationship between them is characterized below. To derive the limiting distribution of the

least squares estimator of the regression model (4), we need to make the following assumption on the

error process ut in (2):

Assumption 3.1 (a) {ut} is strictly stationary with the spectral density matrix fuu(λ) bounded away

from zero so that fuu(λ) ≥ αIn, λ ∈ [0, π], where α > 0.

(b)The covariance function of ut is absolutely summable
∑∞
j=−∞ ||Γ(j)|| <∞, where Γ(j) = E(utu

′
t+j)

and || · || is the standard Euclidean norm.

It is well known that we can deduce under Assumption 3.1 that u1t =
∑∞
j=−∞Πju2,t−j + vt where∑∞

j=−∞ ||Πj || < ∞ and vt is a stationary process with the property that E(u2tvt+k) = 0, k =

0,±1,±2, . . . . Furthermore, 2πfvv(0) = ω11 − ω′21Ω−122 ω21 where fvv(λ) is the spectral density of v

at frequency λ. These are key properties that play important roles in proving the next theorem. Note

that v∗t in (4) can be represented as v∗t = vt+
∑
|j|>K Πju2,t−j . If Πj = 0 for |j| > K, then v∗t is strictly

exogenous and we get the desired limiting properties of the coefficient estimator in (4). That is, there

exist neither the second order bias effects nor the correlation between B1 and B2. However, this is not

the case in general. Thus we also need to make an assumption on the truncation parameter K:

Ks
∑
j>|K|

||Πj ||2 → 0 for some s ≥ 5. (5)

We must let K → ∞ as T → ∞. We choose the rate of K = T δ such that 1
s < δ < r

2(2+3r) , where

r is given by the moment condition for e2t in Assumption 2.2. For example, invertible ARMA models

satisfy Assumptions 2.2 and (5) for any finite r and s under general conditions. In this case δ can take

any value between 0 and 1/6. The condition (5) is analogous to Assumption 5.1 of Chang et al. (2001)

although the admissible values of δ are different. In fact, the condition (5) is more than necessary to

derive the limiting distribution in Theorem 3.2, but it will be required when we deal with the limiting

property under the alternative of nonlinear cointegration.

The regression model (4) leads to the following limiting distribution for the least squares esti-

mator: Let (γ̃0, γ̃
′
1, γ̃
′
2, . . . , γ̃

′
κ)′ be the least squares estimator of (γ0, γ

′
1, γ
′
2, . . . , γ

′
κ)′ in the regression

model (4).

although it is not presented here. See de Jong (2004) and Hong and Phillips (2010) for fully-modified least squares in

nonlinear regression models when a regressor is a scalar.
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Theorem 3.2 Suppose that {wt} satisfies Assumption 2.1 with β = κ+ 1 where wt = (vt, u
′
2t)
′. Also

suppose Assumption 3.1 and the conditions (5) on the truncation parameter K hold. Then under the

null hypothesis (3) (as T →∞)

ΥT



γ̃0 − γ0
γ̃1 − γ1
γ̃2
...

γ̃κ


⇒



1
∫
B′2

∫
B

(2)′

2 · · ·
∫
B

(κ)′

2∫
B2

∫
B2B

′
2

∫
B2B

′(2)′
2 · · ·

∫
B2B

(κ)′

2∫
B

(2)
2

∫
B

(2)
2 B′2

∫
B

(2)
2 B

(2)′

2 · · ·
∫
B

(2)
2 B

(κ)′

2

...
...

...
. . .∫

B
(κ)
2

∫
B

(κ)
2 B′2

∫
B

(κ)
2 B

(2)′

2 · · ·
∫
B

(κ)
2 B

(κ)′

2



−1 

B11·2∫
B2dB11·2∫
B

(2)
2 dB11·2

...∫
B

(κ)
2 dB11·2


where B11·2(r) = B1(r)− ω′21Ω−122 B2(r) with covariance matrix ω11 − ω′21Ω−122 ω21.

There are two notable differences between the limiting distribution given in Theorem 3.1 and

that in Theorem 3.2. First, the Brownian motions B1 and B2 in Theorem 3.1 are generally correlated,

but the Brownian motions B11·2 and B2 in Theorem 3.2 are uncorrelated, implying independence due

to the Gaussian properties of a Brownian motion. Second, the second order bias terms that are present

in Theorem 3.1 vanish in Theorem 3.2. Therefore the limiting distribution in Theorem 3.2 is free of

the obstacles mentioned above and so we can apply the standard hypothesis testing procedure. Thus

Theorem 3.2 suggests that we use the Wald statistic. Let γ̃ = (γ̃0, γ̃
′
1, γ̃
′
2, . . . , γ̃

′
κ)′, M =

∑T
t=1XtX

′
t,

Xt =
(

1, x′t, x
(2)′

t , . . . , x
(κ)′

t

)′
, ω̂11·2 be any consistent estimator of ω11 − ω′21Ω−122 ω21 (see Newey and

West, 1987, Phillips, 1987 and Andrews, 1991 for a discussion of possible estimators), and

R =



0 0 Im 0 0 · · · 0

0 0 0 Im 0 · · · 0

0 0 0 0 Im · · · 0
...

. . .
...

0 0 0 0 Im


m(κ− 1)× (mκ+ 1),

Construct the following statistic:

WT =
(
Rγ̃
)′ (

ω̂11·2RM
−1R′

)−1 (
Rγ̃
)
.

The next theorem shows the limiting distribution of this statistic under the null hypothesis.

Theorem 3.3 Suppose the conditions in Theorem 3.2 are satisfied. Then under the null hypothesis (3)

(as T →∞)

WT ⇒ χ2
m(κ−1).

Theorem 3.3 shows that we can apply the standard χ2 test procedure to our test. If Ω21 = 0, the

test statistic based on the estimator considered in Theorem 3.1 has the limiting distribution given in

Theorem 3.3. For example, this will occur when xt is strictly exogenous and the driving process u2t is

independent of the regression error u1t.

9



4 Power of The Test

In this section we show that the proposed test is consistent against a class of nonlinear alternatives

and no cointegration. First, we shall consider the types of nonlinear functions for which our test for

linear cointegration is consistent. From the construction of the test statistic discussed in the previous

section, it would be clear that the test is consistent against nonlinear cointegration involved in finite

order polynomial functions of xt. So now we are interested in for which types of nonlinear functions

other than finite order polynomial functions the test is consistent. Consider the following alternative

hypothesis:

H1 : yt = g1(x1t) + g2(x2t) + · · ·+ gm(xmt) + u1t, (6)

where gi : R→ R is a nonlinear measurable function for 1 ≤ i ≤ m. This structure is same as that

considered in Chang et al. (2001). To prove consistency, we must investigate the limiting property

of the test statistic under the alternative. This involves some nonlinear transformations of integrated

variables. However, the limiting properties of nonlinear functions of integrated time series are fairly

complicated. These remained unknown until Park and Phillips (1999) showed the limiting properties

of nonlinear transformations of “scalar” integrated time series.5 Unfortunately, analogous results for

vector–valued integrated time series has not yet been proven. Since we use their results, we confine

ourselves to alternatives that can be expressed by (6).

We consider the following two classes of functions treated in Park and Phillips (1999), the

integrable class T (I) and the homogeneous class T (H)

Definition 4.1 (Park and Phillips 1999) (a) A transformation T on R is said to be regular if

and only if (i) it is continuous in a neighborhood of infinity, and (ii) for any compact subset

K on R given, there exist for each ε > 0 continuous functions T ε, T̄ε, and δε > 0 such that

T ε(x) ≤ T (y) ≤ T̄ε(x) for all |x− y| < δε on K, and such that
∫
K

(T ε − T̄ε)(x)dx→ 0 as ε→ 0.

(b) A transformation T is said to be in Class (I), denoted by T ∈ T (I), if it is bounded and integrable.

(c) A transformation T is said to be in Class (H), denoted by T ∈ T (H), if and only if

T (λx) = ν(λ)h(x) +R(x, λ) (7)

where h is regular and R(x, λ) is of order smaller than ν(λ). ν and h are sometimes called the

asymptotic order and the limit homogeneous function of T respectively.

All homogeneous functions belong to T (H) as long as they are locally integrable. Other functions

that belong to T (H) include polynomials of finite order, the logarithmic function and the distribution

function of any random variable. Each of the two classes, T (I) and T (H) is closed under the operations

of addition, subtraction, and multiplication (see Park and Phillips, 1999 for more details). In the

following, if gi ∈ T (H), we denote its asymptotic order by νi(λ) and its limit homogeneous function by

hi(x).

5Nonstationary binary choice models by Park and Phillips (2000) allows covariates to be multivariate. However, it

essentially reduces to a scalar case by decomposing the covariates (See Park and Phillips, 2000 for more details).
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Before we develop the limiting property of the test statistic under the alternative (6), we show

some useful results that are helpful in proving consistency of the test and that give some intuition

about why the proposed test works. To do so, we assume either gi ∈ T (I) or gi ∈ T (H) for all i. If

there exists at least one i such that gi ∈ T (H), without loss of generality we let g1 be the function that

is in T (H) and dominates other gi’s belonging to T (H) asymptotically, i.e. for any j 6= 1 such that

gj ∈ T (H), ν1(T
1/2)

νj(T 1/2)
→∞ or ν1(T

1/2)
νj(T 1/2)

→constant. For part (b) in the next lemma, we must specify the

consistent estimator for ω11·2 explicitly. We employ the semiparametric consistent estimator

ω̂11·2 = T−1
T∑
t=1

v̂∗2t + 2T−1
l∑

s=1

wsl

T∑
t=s+1

v̂∗t v̂
∗
t−s

where v̂∗t is the residual obtained from the regression (4) and wsl = 1 − s/(l + 1). This is one of the

standard choices for a consistent estimator in the present context (see Phillips, 1987, Newey and West,

1987, and Andrews, 1991 for more discussions on this choice).

Lemma 4.1 Let {ut} satisfy Assumption 2.1 with β = κ+ 1, Assumptions 2.2 and 3.1 and the trun-

cation parameter K satisfies (5). Also, suppose either gi ∈ T (I) or gi ∈ T (H) for all i, and the limit

homogeneous function hi is piecewise differentiable with a locally bounded derivative for i such that

gi ∈ T (H). In addition, assume that for some q ≥ 1 there exists a grid {a1, . . . , aq}, where aj < aj+1

for all j = 1, . . . , q − 1, such that hi is continuous at any x ∈ R\{a1, . . . , aq}, and monotone on

(aj−1, aj) for j = 1, . . . , q + 1 for i such that gi ∈ T (H).

(a) Let γ̃ = (γ̃0, γ̃
′
1, γ̃
′
2, . . . , γ̃

′
κ)′ be the least squares estimator of (γ0, γ

′
1, γ
′
2, . . . , γ

′
κ)′ in the regression

model (4).

(i) If gi ∈ T (H) with T 1/2νi(T
1/2) → ∞ as T → ∞ for some i, then under the alternative,

ΥT γ̃ = Op
(
T 1/2ν1(T 1/2)

)
,

(ii) Otherwise, under the alternative (6), ΥT γ̃ = Op(1),

(b) Suppose l→∞ as T →∞ such that l = o(T ).

(i) If gi ∈ T (H) with νi(T
1/2) → ∞ as T → ∞ for some i, then under the alternative (6),

ω̂11·2 = Op
(
lν21(T 1/2)

)
,

(ii) Otherwise, under the alternative (6), ω̂11·2 = Op (l).

The intuition behind Lemma 4.1 is clear if we consider some simple functional forms of g. For

example, let’s consider g(x) = x5/2. This function belongs to T (H) with ν
(
T 1/2

)
= T 5/4. Thus Lemma

4.1 (a) implies that ΥT γ̃ = Op(T
7/4). In particular, we have T 3/2γ̃2 = Op

(
T 7/4

)
or equivalently γ̃2 =

Op
(
T 1/4

)
. That is, the coefficient estimator of x

(2)
t diverges at the rate T 1/4 and this would be a signal

of nonlinearity. Now consider g(x) = x1/2. In this case, Lemma 4.1 implies γ̃2 = Op
(
T−3/4

)
. Thus

γ̃2 converges to zero but at much slower rate than under the null hypothesis because γ̃2 = Op
(
T−3/2

)
under the null, as we can see in Theorem 3.2. If it converges to zero at a rate that is slow enough, it

would be interpreted as a signal of nonlinearity and the next theorem tells us how slow it must be for

the test to be consistent.
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The following theorem tells us for which type of functions our test is consistent.

Theorem 4.1 Let the conditions in Lemma 4.1 hold.

(a) If gi ∈ T (H) with either νi(T
1/2)→∞ or νi(T

1/2) is constant as T →∞ for some i, then under

the alternative (6), WT = Op (T/l),

(b) If gi ∈ T (H) for some i and if T 1/2ν1(T 1/2)→∞ and ν1(T 1/2)→ 0 as T →∞ , then under the

alternative (6), WT = Op
(
Tν21(T 1/2)/l

)
.

(c) Otherwise, under the alternative (6), WT = Op
(
l−1
)
.

First, Theorem 4.1 (a) shows that our test for linear cointegration is consistent against nonlinear

cointegration if either gi ∈ T (H) with ν(T 1/2) → ∞ or ν(T 1/2) is constant as T → ∞ for some

i, i.e. consistency of the test can be achieved if there exists at least one function that satisfies the

conditions of Theorem 4.1 (a). A class of functions that satisfy the conditions of Theorem 4.1 (a)

includes gi(x) = |x|k for k > 0 and k 6= 1, gi(x) = 1/(1 + e−x), the logarithmic function gi(x) = log |x|,

polynomial functions of finite order g(x) = xk + a1x
k−1 + · · ·+ ak for k > 1. All distribution functions

also satisfy the conditions of Theorem 4.1 (a).

Second, we can deduce from Theorem 4.1 (b) that if gi ∈ T (H) for some i and T 1/2ν1(T 1/2)→∞,

ν1(T 1/2)→ 0 and Tν21(T 1/2)/l→∞ as T →∞, the test is still consistent but the test statistic diverges

at a slower rate than in case (a). For example, this happens when all functions gi(x) for 1 ≤ i ≤ m

decrease to zero as x goes to infinity, but at least one of them decreases to zero at a moderate rate as

in a case where g1(x) = |x|−1/2 and we choose the lag truncation parameter l such that l = o(T 1/3). In

this case, WT = Op(T
1/2/l) and WT diverges at an approximate rate of T 1/6 that is much slower than

that for case (a). The argument above shows that a choice of the lag truncation parameter is crucial for

case (b). If we choose l such that l = O(T 1/2), the test becomes inconsistent for g1(x) = |x|1/2. Thus

we must be careful about the choice of l when we are especially interested in this type of nonlinear

alternatives. A class of functions that satisfies the conditions of Theorem 4.1 (b) includes gi(x) = |x|k

for −2/3 ≤ k ≤ 0 when we choose l = o(T 1/3).

Finally, Theorem 4.1 (c) implies that our test is inconsistent if all functions gi(x) (1 ≤ i ≤ m)

decrease rapidly as x goes to infinity such as when gi(x) = |x|k where k < −2/3 and we use the lag

truncation parameter l such that l = o(T 1/3) or especially when all functions are integrable. This is

expected from Lemma 4.1 because in this case γ̃ converges to zero at the same rate as it does under

the null hypothesis.

One important characteristic of our test for linear cointegration is that it allows for an endogenous

regressor as mentioned in the last section. Researchers who are familiar with nonlinear regression models

with integrated regressors from Park and Phillips (2000, 2001) and Chang et al. (2001) may wonder

why we can do this because all models mentioned here assume that xt is predetermined and (u1t,Ft) is

a martingale difference sequence where {Ft} is a natural filteration to which {u1t} is adapted. When

this is the case, xt is uncorrelated with u1t, i.e. E(xtu1t) = 0, which rules out an endogenous regressor

xt. In general, when we deal with the limiting properties of nonlinear models with integrated regressors
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xt, we must investigate the limiting properties of a sample mean function such as
∑T
t=1 f(xt) and a

covariance function such as
∑T
t=1 f(xt)u1t for some nonlinear function f . An exogenous xt is critical in

deriving the limiting distribution of the covariance function in Park and Phillips (2000, 2001) and Chang

et al. (2001). However, as shown in the proofs of Lemma 4.1 and Theorem 4.1, the covariance function

which we need to deal with has a specific form where f is a polynomial function. Moreover its limiting

properties is provided in Lemma 2.2 (f) without assuming exogeneity. Thus we can allow an endogenous

regressor xt in the alternative model of nonlinear cointegration. This is a very important assumption

in practice. For example, we will investigate the nonlinear relationship between the exchange rate et

and the fundamentals in section 6. We take output yt and money mt as proxies for fundamentals and

post it a nonlinear relationship et = f1(yt) + f2(mt) + u1t. In this model, it would be very unrealistic

to assume that yt and mt are predetermined because it is usually the case that et, yt and mt interact

simultaneously. Allowing a endogenous regressor will thus make it possible to apply our test of nonlinear

cointegration to many economic problems.

Finally we show that the test is also consistent against the alternative of no cointegration.

Suppose that the system of yt and xt is generated by the following:

yt = yt−1 + u1t, xt = xt−1 + u2t, t = 1, . . . , T. (8)

In this case, there is neither linear nor nonlinear cointegration in the system and the present problem

reduces to that spurious regressions as studied by Granger and Newbold (1974) and Phillips (1986). As

we have done for the case of nonlinear cointegration, we first show the limiting properties of the nor-

malized coefficient estimator and the long–run variance estimator and then show the limiting properties

of the test statistics.

Lemma 4.2 Suppose that the system of yt and xt is generated by (8). Also suppose that {ut} satisfies

Assumption 2.1 with β = κ+ 1. In addition, suppose that {wt} satisfies Assumptions 2.2 and 3.1 and

the truncation parameter K satisfies (5).

(a) Let γ̃ = (γ̃0, γ̃
′
1, γ̃
′
2, . . . , γ̃

′
κ)′ be the least squares estimator of (γ0, γ

′
1, γ
′
2, . . . , γ

′
κ)′ in the regression

model (4). Then as T →∞, ΥT γ̃ = Op (T ),

(b) Suppose l→∞ as T →∞ such that l = o(T 1/4). Then as T →∞, ω̂11·2 = Op (lT ).

Theorem 4.2 Suppose the conditions in Lemma 4.2 hold. Then as T →∞, WT = Op (T/l),

In other words the intuition in Lemma 4.1 applies to the case of nonlinear cointegration as well.

γ̃2 converges to zero, but at a rate T 1/2 that is much slower than under the null hypothesis. This slow

rate serves as a signal of no cointegration and underlies the consistency of the test.

5 Some Simulation Evidence

In this section we show some simulation evidence to investigate the properties of our test in small

samples. First we show the size properties. For the study of size properties, we use the following data
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generating process (DGP):

DGP1 : yt = 1.5xt + u1t, xt = xt−1 + u2t,

with x0 = 0. ut = (u1t, u2t)
′ is generated from a simplified version of a MA process (1) u1t

u2t

 =

 e1t

e2t

+

 φ1 0

0 0.5

 e1,t−1

e2,t−1

 ,
where et = (e1t, e2t)

′ is distributed as NID(0,Σ) with

Σ =

 1 σe,12

σe,12 1

 , σ12 = 0.8, 0.4, 0,−0.4, and − 0.8.

The test statistics are constructed as described in section 3. The sizes of the test depend on sample

size (T ), the lag truncation parameter (l) used to estimate ω̂11·2, and κ in equation (4). We consider

three types of sample size (T = 100, 200 and 400) and four types of l. First three choices of l are l0 = 0,

l4 = [4(T/100)1/4] and l12 = [12(T/100)1/4]. These choices of l are used in many simulations (e.g.

Schwert, 1989 and Kwiatkowski et al., 1992). The last choice of l, denoted lA, is a truncated version of

a data dependent choice by Andrews (1991)

lA =

[
1.1447 min

({
4T ρ̂2

(1− ρ̂)2(1 + ρ̂)2

} 1
3

,

{
4T0.92

(1− 0.9)2(1 + 0.9)2

} 1
3

)]
(9)

where ρ̂ is a coefficient estimated from the first order autoregression of v̂∗t . The truncation was made to

avoid a choice of l which would make our test inconsistent.6 We use a value of κ = 3 for all experiments.

We do not use a value of κ > 3 because for values of κ that are greater than 3 the second moment

matrix often becomes close to singular in small samples and therefore we may not be able to get accurate

results. We choose κ = 3 rather than κ = 2 is because, in terms of size–corrected power, the result

using κ = 3 dominates that obtained using κ = 2. The number of leads and lags used to estimate the

parameters in (4) is determined by Schwartz’s Bayesian criterion7 with a maximum lag length of 10.

Table 1 shows the size properties. Since we use the upper 5% critical value from a χ2 distribution,

the nominal size of the test is 0.05. For each experiment, the number of replications is 1000. The results

of the simulation are summarized as follows: (i) The size of the test becomes closer to the nominal size

as the sample size becomes larger. (ii) A nonzero correlation σe,12 between e1t and e2t causes moderate

degrees of size distortion as opposed to cases where σe,12 = 0. (iii) The size of the test for positive φ1

tends to be larger than the nominal size, while that for negative φ1 tends to be smaller. This positive

correlation between the size and the MA parameter φ1 is also commonly observed in unit root tests

(e.g. Schwert, 1989). (iv) The size of the test with l0 is overly sensitive to φ1. This is a consequence of

6For example if ρ̂ = Op(T ) as in spurious regression, it is easy to see that lA = Op(T ), violating the assumption in

Lemma4.1. See Kurozumi (2002) for a similar problem in a different application
7We also tried different lag length selections such as AIC or general–to–specific procedures such as in Ng and Perron

(1995). The results are not very different from those presented here. The lag length selection based on Schwartz’s criterion

looks only slightly better than others in terms of empirical size. Clearly this does not imply that Schwartz’s criterion is

the best method, and further investigation on the lag length selection is needed.

14



ignoring serial correlation when constructing ω̂11·2. (v) The size of the test with l12 tends to be larger

than the nominal size. This generally results from using too many lags to construct ω̂11·2. (vi) The

size of the test with l4 and lA is close to the nominal size for moderate values of the MA parameter φ1.

Hence we recommend that applied researchers use the lag truncation choice either l4 or lA rather than

l0 or l12.

Next we turn to power properties against several nonlinear alternatives. The nonlinear alterna-

tives considered are as follows:

DGP2 : yt = 5 (Ψ(xt)− 0.5) + u1t, DGP3 : yt = 1/|xt|1/3 + u1t, DGP4 : yt = yt−1 + u1t,

where Ψ(·) is the cumulative distribution function of a normal random variable with mean zero and

variance 6. Other assumptions on xt and ut are same as in DGP1. DGP2 satisfy the assumption

in Theorem 4.1 (a) and DGP3 does likewise for Theorem 4.1 (b). DGP4 represents the case of no

cointegration in Theorem 4.2.

Tables 2–4 show the size–corrected power properties at a 5% nominal level for DGP2–DGP4

respectively. We summarize the general results first and discuss some specific alternatives later. (i)

The power of the test becomes better as the sample size becomes larger for all alternatives. (ii)

As expected, a nonzero correlation σe,12 between e1t and e2t increases the power of the test for all

alternatives. (iii) The power of the test for positive φ1 tends to be less powerful than the test with

φ1 = 0, and that for negative φ1 tends to be more powerful especially when T = 100. (iv) The power

of the test against nonlinear alternatives that satisfy the assumption in Theorem 4.1 (a) increases very

quickly as the sample size grows, on the other hand when the nonlinear alternatives that satisfy the

assumption in Theorem 4.1 (b), the power increases very slowly as Theorem 4.1 (b) predicts. (v) The

power of the test with l4 is as powerful as that with lA for all nonlinear alternatives. (vi) The test with

lA lacks power against the alternative of nonlinear cointegration.

The second thing to note is that the test with lA against the alternative of no cointegration

suffers from a lack of power. This is because the truncated version of the lag length choice lA tends

to choose a longer lag length since ρ̂ in the formula of lA (9) is close to 1. As we see in Theorem 4.2,

there exists a tradeoff between lag length l and power, so the test with lA performs poorly against the

alternative.

6 Concluding Remarks

This paper has developed a testing procedure for linearity in regressions with I(1) processes. We

proposed the Wald test based on a generalization of the RESET test and we showed that the limiting

distribution of the test statistic under the null of linearity is a χ2 distribution when a “leads and lags”

estimation technique is employed to construct it. We also showed that the test is consistent against

both a class of nonlinear alternatives and no cointegration. The simulation experiment revealed that

the proposed test has nice power properties against the functions considered. Finally, we applied our

test for linearity to see whether relationships between exchange rates and fundamentals and found
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significant evidence against linearity.

APPENDIX A

Proof of Lemma 2.2: Proofs of (a) and (b) are trivial extensions of the results in Phillips (1987).

Proof of (c) can be found in Hansen (1992). Part (c) is an extension of part (d) and its proof follows

the argument of Phillips and Durlauf (1986).

Proof of (e): This is a version of Theorem 4.2 of Hansen (1992). The case for i = 2 is given by Theorem

4.2 of Hansen (1992). Thus we show the case for i = 3. Cases where i ≥ 4 can be proved by the same

argument as in the case for i = 3. Let Ft = σ(us : s ≤ t) be the smallest σ−field containing the past

of {ut} for all t. We can decompose u1t into two parts

u1t = εt + zt−1 − zt (10)

where εt =
∑∞
k=0(Etu1,t+k − Et−1u1,t+k) and zt =

∑∞
k=1 Etu1,t+k where Et(·) = E(·|Ft). Note that

{εt,Ft} is a martingale difference sequence. By the decomposition (10) we have

T−2
T∑
t=1

x
(3)
t u1,t+1 = T−2

T∑
t=1

x
(3)
t ε1,t+1 + T−2

T∑
t=1

x
(3)
t (zt − zt+1). (11)

Applying Theorem 3.1 of Hansen (1992) gives

T−2
T∑
t=1

x
(3)
t ε1,t+1 ⇒

∫
B

(3)
2 dB1. (12)

Note that no second order bias terms show up in the limit.

It remains to be shown that

T−2
T∑
t=1

x
(3)
t (zt − zt+1)⇒ 3D(B

(2)
2 )λ21. (13)

Observe that

T−2
T∑
t=1

x
(3)
t (zt − zt+1) = T−2

T∑
t=1

(x
(3)
t − x

(3)
t−1)zt − T−2x(3)T zT+1.

By the argument of Theorem 4.1 in Hansen (1992), we have T−2x
(3)
T zT+1 = op(1). Since a typical

element of x
(3)
t − x

(3)
t−1 can be written as

x3it − x3i,t−1 = (xi,t−1 + u2i,t)
3 − x3i,t−1 = 3x2i,t−1u2i,t + 3xi,t−1u

2
2i,t + u32i,t,

we have

T−2
T∑
t=1

x
(3)
t (zt − zt+1) = 3T−2

T∑
t=1

(x
(2)
t−1 � u2t)zt + 3T−2

T∑
t=1

(xt−1 � u(2)2t )zt + T−2
T∑
t=1

u
(3)
2t zt + op(1),

where “�” is the element–by–element product and u
(k)
2t = (uk21,t, . . . , u

k
2m,t)

′. Note that

(x
(2)
t−1 � u2t)zt =


x21,t−1u21,t

x22,t−1u22,t
...

x2m,t−1u2m,t

 zt = D̃(x
(2)
t−1)u2tzt,
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where D̃(x
(2)
t−1) = diag[x21,t−1, x

2
2,t−1, . . . , x

2
m,t−1]. Then we have

T−2
T∑
t=1

x
(3)
t (zt − zt+1) = 3T−2

T∑
t=1

D̃(x
(2)
t−1)u2tzt + 3T−2

T∑
t=1

(xt−1 � u(2)2t )zt

+T−2
T∑
t=1

u
(3)
2t zt + op(1) (14)

First, the second and third terms on the right-hand side of (16) vanish in probability because

we have by the Hölder’s inequality that

E|T−2
T∑
t=1

(xt−1 � u(2)2t )zt| ≤ T−3/2
T∑
t=1

∣∣∣∣∣∣∣∣xt−1√T � u(2)2t

∣∣∣∣∣∣∣∣
4/3

||zt||4

≤ T−3/2
∑
t=1

T

∣∣∣∣∣∣∣∣xt−1√T
∣∣∣∣∣∣∣∣
4

||u2t||24||zt||4 → 0 (15)

and

E|T−2
T∑
t=1

u
(3)
2t zt| ≤ T−2

T∑
t=1

||u(3)2t ||4/3||zt||4 = T−2
T∑
t=1

||u2t||34||zt||4 → 0 (16)

since
∣∣∣∣∣∣xt−1/√T ∣∣∣∣∣∣

4
is bounded as in the proof of Lemma 3.1 (f) of Chang et al. (2001), ||u2t||34 < C by

Assumption 1 and ||zt||4 is uniformly bounded by the proof of Theorem 3.1 in Hansen (1992) where

||a||r denotes the Lr-norm with subscript, defined by ||a||r = (
∑
i E|ai|r)1/r.

Second, note that the first term on the right-hand side of (16) can be written as

T−2
T∑
t=1

D̃(x
(2)
t−1)u2tzt = T−2

T∑
t=1

D̃(x
(2)
t−1)λ21 + T−2

T∑
t=1

D̃(x
(2)
t−1)(u2tzt − λ21).

By Theorem 3.2 of Hansen (1992), the sequence {u2tzt−λ21}is an Lβ/2-mixingale and D̃(x
(2)
t−1) = Op(T ).

Then, applying Theorem 3.3 of Hansen (1992), |T−2
∑T
t=1 D̃(x

(2)
t−1)(u2tzt−Λ21)| p→ 0. By the continuous

mapping theorem we obtain

T−2
T∑
t=1

D̃(xt−1)Λ21 ⇒ D(B2)Λ21 (17)

Thus combining (16)–(17) gives (13).

(11), (12), and (13) together establishes the result of Lemma 2.2 (e) when i = 3. The proof

for the case where i ≥ 4 follows along the same line with appropriate moment conditions specified in

Lemma 2.2. The proof for part (f) can be shown by combining that of part (e) and the argument used

in Phillips (1988). 2

Proof of Theorem 3.1: Observe that

ΥT



γ̂0 − γ0
γ̂1 − γ1
γ̂2
...

γ̂κ


⇒ ΥT



T
∑T
t=1 x

′
t

∑T
t=1 x

(2)′

t · · ·
∑T
t=1 x

(κ)′

t∑T
t=1 xt

∑T
t=1 xtx

′
t

∑T
t=1 xtx

(2)′

t · · ·
∑T
t=1 xtx

(κ)′

t∑T
t=1 x

(2)
t

∑T
t=1 x

(2)
t x′t

∑T
t=1 x

(2)
t x

(2)′

t · · ·
∑T
t=1 x

(2)
t x

(κ)′

t

...
...

...
. . .∑T

t=1 x
(κ)
t

∑T
t=1 x

(κ)
t x′t

∑T
t=1 x

(κ)
t x

(2)′

t · · ·
∑T
t=1 x

(κ)
t x

(κ)′

t



−1

ΥT

17



×Υ−1T



∑T
t=1 u1t∑T
t=1 xtu1t∑T
t=1 x

(2)
t u1t

...∑T
t=1 x

(κ)
t u1t


.

Applying Lemma 2.2 to each element on the right hand side of the equation gives the required result.

2

Proof of Theorem 3.2: Although we now have stationary regressors in (4), we may concentrate

on γ̃ without loss of generality because they are asymptotically orthogonal to the integrated parts of

the model, 1
T (i+2)/2

∑T
t=1 x

i
jt∆xk,t−s

p→ 0, for 1 ≤ i ≤ κ, 1 ≤ j, k ≤ m, and any s by Lemma 3.1 of

Chang et al. (2001). This asymptotic orthogonality of nonlinear transformations of integrated regressors

to stationary regressors are analogous to that of (untransformed) integrated regressors to stationary

regressors in linear cointegration models as noted in Chang et al. (2001).

Note that

1

T 1/2

[Tr]∑
j

wj ⇒

 B11·2(r)

B2(r)


with covariance matrix  ω11 − ω′21Ω−122 ω21 0

0 Ω22


Then by Lemma 2.2 (e) we have T−(i+1)/2

∑T
t=1 x

(i)
t vt ⇒

∫
B

(i)
2 dB11·2 for 2 ≤ i ≤ κ. Since similar

arguments are used as in the proof of Theorem 4.1 in Saikkonen (1991), it suffices to show that for

2 ≤ i ≤ κ and 1 ≤ j ≤ m

1

T (i+1)/2

T∑
t=1

xijtv
∗
t =

1

T (i+1)/2

T∑
t=1

xijtvt + op(1). (18)

Note that the number of observations now is T − 2K, but we may use T instead of T − 2K without

loss of generality. Note that∣∣∣∣∣
∣∣∣∣∣ 1

T i/2

T∑
t=1

xijt(v
∗
t − vt)

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣( xjt
T 1/2

)i∣∣∣∣∣∣∣∣
Ej

T∑
t=1

||v∗t − vt||

where

Ej =

[
min

0≤r≤1
B2j(r)− 1, max

0≤r≤1
B2j(r) + 1

]
. (19)

It can be shown by the argument in Lemma A1 of Chang et al. (2001) that

E (||v∗t − vt||r) = O
(
K−rs/2

)
. (20)

Then by (20) and the fact that
∣∣∣∣(xjt/T 1/2)i

∣∣∣∣
Ei

= Op(1) we can deduce 1
T i/2

∑T
t=1 x

i
jt(v

∗
t − vt) =

Op
(
TK−s/2

)
as shown in Lemma A4 (b) of Chang et al. (2001), leading to 1

T (i+1)/2

∑T
t=1 x

i
jtv
∗
t =

1
T (i+1)/2

∑T
t=1 x

i
jtvt +Op

(
T 1/2K−s/2

)
. Thus (18) follows if δ > 1/s since K = T δ. 2

Proof of Theorem 3.3: Given the result of Theorem 3.2, applying Lemma 5.1 in Park and Phillips

(1988) gives the required result. 2
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Proof of Lemma 4.1: In this proof and the subsequent proof, we frequently use results from Park

and Phillips (2001) and Chang et al. (2001). In those citations, the space D[0, 1] is endowed with

the uniform metric. However, we use “⇒” to imply weak convergence using the Skorohod metric in

our proofs. This is possible because convergence in the uniform metric implies the convergence in the

Skorohod metric.

Proof of (a): Note that we have stationary regressors in (4). Again we may concentrate on γ̃ without

loss of generality by the same reasoning as described in the proof of Theorem 3.2. Observe that

ΥT γ̃ = ΥTM
−1ΥT ×Υ−1T

T∑
t=1

Xtyt. (21)

First, as we have seen in the proof of Theorem 3.1

ΥTM
−1ΥT = Op(1). (22)

Next we consider the second component of the right hand side of (21). Observe that under the

alternative (6) we have

Υ−1T

T∑
t=1

Xtyt = Υ−1T

T∑
t=1

g(xt)Xt + Υ−1T

T∑
t=1

Xtu1t (23)

where g(xt) ≡
∑m
i=1 gi(xit). The second term on the right hand side of (23) is Op(1) as we saw in the

proof of Theorem 3.1. To analyze the first term on the right hand side of (23), we consider the asymptotic

properties of gi ∈ T (I) and gi ∈ T (H) separately. For a function gi ∈ T (I), it follows from Part (k) of

Lemma 3.1 of Chang et al. (2001), for 0 ≤ s ≤ κ and 1 ≤ j, k ≤ m, 1
T (s+1)/2

∑T
t=1 gi(xjt)x

s
kt = Op(1).

Hence we have for a function gi ∈ T (I)

Υ−1T

T∑
t=1

gi(xit)Xt = Op(1). (24)

It follows that if gi ∈ T (I) for all i

Υ−1T

T∑
t=1

Xtyt = Op(1). (25)

Thus if gi ∈ T (I) for all i, we can deduce by (21), (22) and (25) that Υ−1T γ̃ = Op(1), giving one case

of the result required for Part (ii) of Lemma 4.1 (a).

For a function gi ∈ T (H) with asymptotic order νi and limit homogeneous function hi, we have,

from Part (l) of Lemma 3.1 in Chang et al. (2001) and Theorem 1 of de Jong (2004), for 0 ≤ s ≤ κ and

1 ≤ j, k ≤ m, 1
T (s/2+1)νi(T 1/2)

∑T
t=1 gi(xjt)x

s
kt = Op(1). Thus we have for a function gi ∈ T (H)

Υ−1T

T∑
t=1

gi(xit)Xt = Op

(
T 1/2νi(T

1/2)
)
. (26)

Note that (26) holds for any νi(·) that satisfies the assumptions of Lemma 4.1.

Now we consider a case where gi ∈ T (H) for some i under the alternative (6). Remember that

g1 is the dominating function among functions belonging to T (H). Then it is clear from the argument

above that the order of the dominating component in the first term of (23) is given by

Υ−1T

T∑
t=1

g1(x1t)Xt =

 Op
(
T 1/2ν1(T 1/2)

)
if T 1/2ν1(T 1/2)→∞ as T →∞,

Op(1) otherwise.
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Thus we get

Υ−1T

T∑
t=1

g(xt)Xt =

 Op
(
T 1/2ν1(T 1/2)

)
if T 1/2ν1(T 1/2)→∞ as T →∞,

Op(1) otherwise,

leading to

Υ−1T

T∑
t=1

Xtyt =

 Op
(
T 1/2ν1(T 1/2)

)
if T 1/2ν1(T 1/2)→∞ as T →∞,

Op(1) otherwise.
(27)

Hence combining (21), (22) and (27) shows that

ΥT γ̃ =

 Op
(
T 1/2ν1(T 1/2)

)
if T 1/2ν1(T 1/2)→∞ as T →∞,

Op(1) otherwise,

giving the result required for Part (i) and the other case of Part (ii) in Lemma 4.1 (a).

Proof of (b): Recall that

ω̂11·2 = T−1
T∑
t=1

v̂∗t
2

+ 2T−1
l∑

s=1

wsl

T∑
t=s+1

v̂∗t ˆv∗t−s (28)

where v̂∗t is the residual obtained from the regression (4) and wsl = 1 − s/(l + 1). First, consider the

first term in (28). Let θ = (θ′K , θ
′
K−1, θ

′
K−2, . . . , θ

′
−K+2, θ

′
−K+1, θ−K)′ and

Zt = (∆x′t+K ,∆x
′
t+K−1,∆x

′
t+K−2, . . . ,∆x

′
t−K+2,∆x

′
t−K+1,∆x

′
t−K)′.

Also let θ̃ be the OLS estimator of θ from (4). Observe that

T−1
T∑
t=1

v̂∗t
2

= T−1
T∑
t=1

(
yt −X ′tγ̃ − Z ′tθ̃

)2
= T−1

T∑
t=1

(
g(xt) + u1t −X ′tγ̃ − Z ′tθ̃

)2
= T−1

T∑
t=1

g2(xt) + T−1
T∑
t=1

u21t + T−1γ̃′

(
T∑
t=1

XtX
′
t

)
γ̃ + T−1θ̃

′
(

T∑
t=1

ZtZ
′
t

)
θ̃

+2

{
T−1

T∑
t=1

g(xt)u1t − T−1γ̃′
T∑
t=1

g(xt)Xt − T−1θ̃
′
T∑
t=1

g(xt)Zt

−T−1γ̃′
T∑
t=1

Xtu1t − T−1θ̃
′
T∑
t=1

Ztu1t + T−1γ̃′

(
T∑
t=1

XtZ
′
t

)
θ̃

}
(29)

First, we deal with the case where gi ∈ T (H) with νi(T
1/2) → ∞ as T → ∞ for some i. Again

remember that g1 is the dominating function among functions that belong to T (H) We check the order

of convergence of each term in (29). T−1
∑T
t=1 g

2(xt) = Op
(
ν21(T 1/2)

)
by the argument in Part (a) of

Lemma 4.1, T−1
∑T
t=1 u

2
1t = Op(1) by the law of large numbers and T−1

∑T
t=1 g(xt)u1t = op

(
ν(T 1/2)

)
by Lemma 3.1 (f) of Chang et al. (2001) and Theorem 1 of de Jong (2004). It follows by the proof of

Theorem 3.1 and Part (a) of Lemma 4.1 that

T−1γ̃′

(
T∑
t=1

XtX
′
t

)
γ̃ =

(
T−1/2ΥT γ̃

)′(
Υ−1T

T∑
t=1

XtX
′
tΥ
−1
T

)(
T−1/2ΥT γ̃

)
= Op

(
ν1(T 1/2)

)
Op(1)Op

(
ν1(T 1/2)

)
= Op

(
ν21(T 1/2)

)
,
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T−1γ̃′
T∑
t=1

g(xt)Xt =
(
T−1/2ΥT γ̃

)′
T−1/2

T∑
t=1

g(xt)Υ
−1
T Xt

= Op

(
ν1(T 1/2)

)
Op

(
ν1(T 1/2)

)
= Op

(
ν21(T 1/2)

)
and

T−1γ̃′
T∑
t=1

Xtu1t =
(
T−1/2ΥT γ̃

)′
T−1/2

T∑
t=1

Υ−1T Xtu1t

= Op

(
ν1(T 1/2)

)
Op(T

−1/2) = Op

(
T−1/2ν1(T 1/2)

)
Observe that

T−1θ̃
′
(

T∑
t=1

ZtZ
′
t

)
θ̃ =


(

T∑
t=1

ZtZ
′
t

)−1 T∑
t=1

Ztyt


′(

T∑
t=1

ZtZ
′
t

)
(

T∑
t=1

ZtZ
′
t

)−1 T∑
t=1

Ztyt


= T−2

(
T∑
t=1

g(xt)Zt

)′(
T−1

T∑
t=1

ZtZ
′
t

)−1( T∑
t=1

g(xt)Zt

)

+2T−3/2

(
T∑
t=1

g(xt)Zt

)′(
T−1

T∑
t=1

ZtZ
′
t

)−1(
T−1/2

T∑
t=1

Ztu1t

)

+T−1

(
T−1/2

T∑
t=1

Ztu1t

)′(
T−1

T∑
t=1

ZtZ
′
t

)−1(
T−1/2

T∑
t=1

Ztu1t

)
(30)

since yt = g(xt)+u1t. Note that

∣∣∣∣∣∣∣∣(T−1∑T
t=1 ZtZ

′
t

)−1∣∣∣∣∣∣∣∣ = Op(1) and
∣∣∣∣∣∣T−1/2∑T

t=1 Ztu1t

∣∣∣∣∣∣ = Op(K
1/2)

by the proof of Lemma 3 in Berk (1974). Also note that

T∑
t=1

g(xt)∆xt−k = Op

(
ν1(T 1/2)T

4+3r
4(1+r)K

r
2(1+r)

)
,

uniformly for k = 1, . . . ,K by Lemma A4 (b) of Chang et al. (2001). Then it follows by (30) that

T−1θ̃
′
(

T∑
t=1

ZtZ
′
t

)
θ̃ = Op(T

−2)Op

(
ν1(T 1/2)T

4+3r
4(1+r)K

r
2(1+r)K

)
Op(1)Op

(
ν1(T 1/2)T

4+3r
4(1+r)K

r
2(1+r)K

)
+Op(T

−3/2)Op

(
ν1(T 1/2)T

4+3r
4(1+r)K

r
2(1+r)K

)
Op(1)Op(K

1/2)

+Op(T
−1)Op(K

1/2)Op(1)Op(K
1/2)

= O
(
ν21(T 1/2)T

2δ(2+3r)−1
2(1+r)

)
+O

(
ν1(T 1/2)T

2δ(3+4r)−2−3r
4(1+r)

)
+O

(
T δ−1

)
, (31)

letting K = T δ. Thus we get T−1θ̃
′ (∑T

t=1 ZtZ
′
t

)
θ̃ = op(ν

2
1(T 1/2)), for δ < r/ (2(2 + 3r)). Similarly, we

get T−1θ̃
′∑T

t=1 g(xt)Zt = op
(
ν21(T 1/2)

)
, T−1θ̃

′∑T
t=1 Ztu1t = op

(
ν1(T 1/2)

)
, and T−1γ̃′

(∑T
t=1XtZ

′
t

)
θ̃ =

op
(
ν21(T 1/2)

)
for δ < r/ (2(2 + 3r)). Thus by the discussion above we can deduce that

T−1
T∑
t=1

v̂∗t
2

=

 Op
(
ν21(T 1/2)

)
if ν1(T 1/2)→∞ as T →∞,

Op(1) otherwise,
(32)

When gi ∈ T (I) for all i, the similar arguments show that T−1
∑T
t=1 g

2(xt) = op(1) by Theorem

5.1 of Park and Phillips (1999), T−1
∑T
t=1 g(xt)u1t = op(1) by Theorem 3.2 of Park and Phillips (2001),

T−1γ̃′(T−1
∑T
t=1XtX

′
t)γ̃ = op(1), T−1γ̃′

∑T
t=1 g(xt)Xt = op(1) by the proof of Theorem 3.1, Part (a)

of Lemma 4.1 and Part (k) of Lemma 3.1 in Chang et al. (2001), T−1θ̃
′
(T−1

∑T
t=1 ZtZ

′
t)θ̃ = op(1) by
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Lemma A3 (b) of Chang et al. (2001). Thus we can deduce that a dominating term in (29) for this

case is T−1
∑T
t=1 u

2
1t and its order Op(1), leading to

T−1
T∑
t=1

v̂∗t
2

= Op(1) if gi ∈ T (I) for all i. (33)

Next we consider the cross product terms in (28). Observe that

T−1
T∑
t=1

v̂∗t
2

= T−1
T∑
t=1

(
yt −X ′tγ̃ − Z ′tθ̃

)(
yt−s −X ′t−sγ̃ − Z ′t−sθ̃

)
= T−1

T∑
t=1

{
g(xt) + u1t −X ′tγ̃ − Z ′tθ̃

}{
g(xt−s) + u1,t−s −X ′t−sγ̃ − Z ′t−sθ̃

}
= T−1

T∑
t=1

g(xt)g(xt−s) + T−1
T∑
t=1

u1tu1,t−s

+T−1γ̃′

(
T∑
t=1

XtX
′
t−s

)
γ̃ + T−1θ̃

′
(

T∑
t=1

ZtZ
′
t−s

)
θ̃

+T−1
T∑
t=1

g(xt)u1,t−s + T−1
T∑
t=1

g(xt−s)u1t − T−1γ̃′
{

T∑
t=1

g(xt)Xt−s +

T∑
t=1

g(xt−s)Xt

}

−T−1θ̃
′
{

T∑
t=1

g(xt)Zt−s +

T∑
t=1

g(xt−s)Zt

}
− T−1γ̃′

{
T∑
t=1

Xtu1,t−s +

T∑
t=1

Xt−su1t

}

−T−1θ̃
′
{

T∑
t=1

Ztu1,t−s +

T∑
t=1

Zt−su1t

}
+ T−1γ̃′

{
T∑
t=1

XtZ
′
t−sθ +

T∑
t=1

Xt−sZ
′
t

}
θ̃.

A similar argument to the one used deriving (32) and (33) can be applied to each term to get

T−1
T∑

t=s+1

v̂∗t ˆv∗t−s =

 Op
(
ν21(T 1/2)

)
if gi ∈ T (H) with νi(T

1/2)→∞ as T →∞ for some i

Op(1) otherwise.
(34)

except for the two terms, T−1
∑T
t=1 g(xt)g(xt−x) and γ̃′

(
T−1

∑T
t=1XtXt−s

)
γ̃. For the former, observe

that when gi ∈ T (H) for some i,

1

Tν21(T 1/2)

T∑
t=1

g(xt)g(xt−s) = T−1
T∑
t=1

h1(x1t)h1(x1,t−s) + op(1) (35)

by Theorem 3.3 of Park and Phillips (2001). We can also show that for large T

T−1
T∑
t=1

||h1(x1t)h1(x1,t−s)|| ≤

(
T−1

T∑
t=1

|h(x1t)|2
)1/2(

T−1
T∑
t=1

|h(x1,t−s)|2
)1/2

≤ ||h1||2E (36)

where the first inequality follows from Cauchy-Schwartz inequality and Ei is defined in (19). Then it

follows from (35) and (36) that

T−1
T∑
t=1

g(xt)g(xt−s) =

 Op
(
ν21(T 1/2)

)
if ν1(T 1/2)→∞ as T →∞,

Op(1) otherwise,

When gi ∈ T (I) for all i, we get from (36) that T−1
∑T
t=1 g(xt)g(xt−s) = Op(1). Applying the same

argument to
(
T−1

∑T
t=1XtXt−s

)
gives γ̃′

(
T−1

∑T
t=1XtXt−s

)
γ̃ = Op(1) leading to (34).
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Given (32), (33) and (34), the argument used in the proof of Theorem 3.1 of Phillips (1991)

shows that

ω̂11·2 =

 Op
(
lν21(T 1/2)

)
if gi ∈ T (H) with νi(T

1/2)→∞ as T →∞ for some i

Op(l) otherwise.

2

Proof of Theorem 4.1: Observe that

WT =
(
Rγ̃
)′ (

ω̂11·2RM
−1R′

)−1 (
Rγ̃
)

=
(
RΥ−1T ΥT γ̃

)′ (
ω̂11·2RΥ−1T ΥTM

−1ΥTΥ−1T R′
)−1 (

RΥ−1T ΥT γ̃
)

=
(
ΥT γ̃

)′ (
RΥ−1T

)′ {
ω̂11·2

(
RΥ−1T

) (
ΥTM

−1ΥT

) (
Υ−1T R′

)}−1 (
RΥ−1T

) (
ΥT γ̃

)
=

(
ΥT γ̃

)′ (
R′Υ̃−1T

){
ω̂11·2

(
Υ̃−1T R

) (
ΥTM

−1ΥT

) (
R′Υ̃−1T

)}−1 (
Υ̃−1T R

) (
ΥT γ̃

)
=

(
RΥT γ̃

)′ {
ω̂11·2R

(
ΥTM

−1ΥT

)
R′
}−1 (

RΥT γ̃
)

(37)

where Υ̃T is a lower-right (κ − 1) × (κ − 1) submatrix of ΥT . If gi ∈ T (H) with νi(T
1/2) → ∞ as

T →∞ for some i,

WT =
(
RΥT γ̃

)′ {
ω̂11·2R

(
ΥTM

−1ΥT

)
R′
}−1 (

RΥT γ̃
)

= Op

(
T 1/2ν1(T 1/2)

)
Op(l

−1ν−21 (T 1/2))Op(1)Op

(
T 1/2ν1(T 1/2)

)
= Op(T/l),

by Lemma 4.1 and the proof of Theorem 3.1. If gi ∈ T (H) with ν1(T 1/2) is constant as T →∞ for some

i, using the same argument we get WT = Op
(
T 1/2

)
Op(l

−1)Op(1)Op
(
T 1/2

)
= Op(T/l). If gi ∈ T (H)

with T 1/2ν1(T 1/2)→∞ and ν1(T 1/2)→ 0 as T →∞, we also obtain by the same argument

WT = Op

(
T 1/2ν1(T 1/2)

)
Op(l

−1)Op(1)Op

(
T 1/2ν1(T 1/2)

)
= Op(Tν

2
1(T 1/2)/l).

Otherwise WT = Op (1)Op(l
−1)Op(1)Op(1) = Op(l

−1), giving the required result. 2

Proof of Lemma 4.2: (a) Given the result of the proof of Lemma 4.1, it is sufficient to show that

ΥT

T∑
t=1

Xtyt = Op(T ) (38)

since the arguments in Lemma 4.1 can be applied to other parts of the proof. (38) can be easily proved

by the application of the continuous mapping theorem T−(i+3)/2
∑T
t=1 x

(i)
t yt ⇒

∫
B

(i)
2 B1.

(b) Given (a), the proof of (b) is completely analogous to that of Lemma 4.1 (b) and so it is omitted.

2

Proof of Theorem 4.2: By (37), we have

WT =
(
RΥT γ̃

)′ {
ω̂11·2R

(
ΥTM

−1ΥT

)
R′
}−1 (

RΥT γ̃
)

= Op (T )Op(l
−1T−1)Op(1)Op (T )) = Op(T/l),

where the last equality is from Lemma 4.1. 2
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Table 1: Size of the test

φ1 σe,12 T = 100 T = 200 T=400

l0 l4 l12 lA l0 l4 l12 lA l0 l4 l12 lA

0.8 0.8 0.258 0.159 0.223 0.157 0.223 0.102 0.131 0.105 0.244 0.086 0.107 0.091

0.4 0.269 0.138 0.189 0.142 0.249 0.098 0.132 0.105 0.230 0.086 0.101 0.088

0 0.225 0.115 0.159 0.120 0.242 0.108 0.132 0.108 0.206 0.082 0.099 0.089

-0.4 0.220 0.112 0.170 0.112 0.220 0.101 0.129 0.109 0.238 0.081 0.100 0.091

-0.8 0.264 0.144 0.199 0.144 0.238 0.113 0.141 0.111 0.242 0.076 0.088 0.077

0.4 0.8 0.196 0.134 0.191 0.129 0.179 0.094 0.115 0.095 0.180 0.091 0.106 0.092

0.4 0.198 0.131 0.186 0.130 0.196 0.089 0.126 0.090 0.165 0.079 0.097 0.077

0 0.175 0.114 0.161 0.106 0.188 0.102 0.126 0.103 0.161 0.083 0.093 0.088

-0.4 0.170 0.105 0.169 0.102 0.181 0.099 0.122 0.097 0.178 0.077 0.096 0.078

-0.8 0.194 0.117 0.180 0.115 0.192 0.103 0.119 0.100 0.183 0.077 0.087 0.069

0 0.8 0.096 0.151 0.238 0.125 0.074 0.085 0.142 0.079 0.070 0.085 0.104 0.079

0.4 0.083 0.126 0.184 0.106 0.079 0.092 0.138 0.083 0.063 0.072 0.094 0.068

0 0.075 0.104 0.165 0.089 0.070 0.087 0.122 0.071 0.062 0.072 0.092 0.066

-0.4 0.059 0.101 0.170 0.079 0.069 0.089 0.128 0.083 0.056 0.070 0.104 0.062

-0.8 0.091 0.143 0.200 0.115 0.074 0.093 0.137 0.084 0.059 0.074 0.100 0.066

-0.4 0.8 0.007 0.118 0.247 0.121 0.001 0.054 0.141 0.067 0.001 0.049 0.092 0.056

0.4 0.004 0.095 0.191 0.103 0.004 0.056 0.139 0.070 0.001 0.036 0.079 0.040

0 0.002 0.065 0.156 0.070 0.000 0.040 0.112 0.052 0.000 0.037 0.079 0.048

-0.4 0.002 0.086 0.207 0.086 0.000 0.042 0.116 0.063 0.000 0.030 0.087 0.045

-0.8 0.009 0.101 0.227 0.102 0.000 0.051 0.122 0.067 0.001 0.040 0.084 0.051

-0.8 0.8 0.001 0.056 0.174 0.088 0.000 0.011 0.085 0.035 0.000 0.004 0.043 0.017

0.4 0.001 0.049 0.147 0.069 0.000 0.010 0.089 0.036 0.000 0.002 0.038 0.012

0 0.000 0.036 0.138 0.057 0.000 0.004 0.063 0.020 0.000 0.004 0.030 0.012

-0.4 0.001 0.050 0.170 0.078 0.000 0.006 0.081 0.028 0.000 0.002 0.041 0.009

-0.8 0.000 0.064 0.194 0.104 0.000 0.011 0.081 0.037 0.000 0.005 0.047 0.022
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Table 2: Size–adjusted power of the test, g(x) = 5 (Ψ(x)− 0.5)

φ1 σe,12 T = 100 T = 200 T=400

l0 l4 l12 lA l0 l4 l12 lA l0 l4 l12 lA

0.8 0.8 0.644 0.625 0.575 0.628 0.927 0.922 0.912 0.915 0.998 0.998 0.999 0.998

0.4 0.409 0.403 0.405 0.415 0.842 0.844 0.821 0.845 0.990 0.988 0.989 0.991

0 0.384 0.383 0.373 0.389 0.812 0.798 0.791 0.795 0.971 0.970 0.968 0.970

-0.4 0.459 0.437 0.412 0.429 0.821 0.830 0.793 0.808 0.990 0.989 0.988 0.989

-0.8 0.656 0.622 0.580 0.628 0.926 0.921 0.916 0.922 1.000 1.000 0.999 1.000

0.4 0.8 0.769 0.752 0.713 0.752 0.964 0.961 0.951 0.958 1.000 1.000 1.000 1.000

0.4 0.539 0.521 0.517 0.532 0.898 0.893 0.892 0.894 0.995 0.996 0.997 0.996

0 0.530 0.516 0.482 0.510 0.884 0.874 0.853 0.870 0.989 0.988 0.989 0.988

-0.4 0.577 0.561 0.530 0.556 0.892 0.884 0.874 0.877 0.997 0.996 0.996 0.996

-0.8 0.743 0.715 0.663 0.720 0.954 0.953 0.951 0.953 1.000 1.000 1.000 1.000

0 0.8 0.819 0.813 0.785 0.815 0.984 0.981 0.980 0.983 1.000 1.000 1.000 1.000

0.4 0.695 0.696 0.661 0.694 0.942 0.943 0.942 0.941 0.998 0.998 0.998 0.998

0 0.657 0.653 0.622 0.673 0.933 0.931 0.923 0.933 0.996 0.996 0.995 0.996

-0.4 0.713 0.692 0.664 0.703 0.939 0.934 0.928 0.935 0.999 0.999 0.999 0.999

-0.8 0.819 0.812 0.780 0.817 0.979 0.976 0.974 0.979 1.000 1.000 1.000 1.000

-0.4 0.8 0.891 0.880 0.870 0.881 0.994 0.995 0.992 0.994 1.000 1.000 1.000 1.000

0.4 0.809 0.802 0.789 0.800 0.975 0.974 0.971 0.974 0.999 0.999 0.999 0.999

0 0.792 0.796 0.791 0.796 0.967 0.966 0.962 0.965 1.000 1.000 1.000 1.000

-0.4 0.789 0.788 0.762 0.784 0.976 0.975 0.971 0.973 1.000 1.000 1.000 1.000

-0.8 0.886 0.879 0.867 0.872 0.995 0.995 0.993 0.995 1.000 1.000 1.000 1.000

-0.8 0.8 0.917 0.923 0.919 0.923 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.4 0.857 0.863 0.880 0.879 0.991 0.991 0.991 0.991 1.000 1.000 1.000 1.000

0 0.853 0.859 0.864 0.863 0.989 0.990 0.992 0.993 1.000 1.000 1.000 1.000

-0.4 0.836 0.839 0.847 0.838 0.989 0.990 0.989 0.990 1.000 1.000 1.000 1.000

-0.8 0.916 0.916 0.918 0.916 0.998 0.998 0.998 0.998 1.000 1.000 1.000 1.000
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Table 3: Size–adjusted power of the test, g(x) = 1/|x|1/3

φ1 σe,12 T = 100 T = 200 T=400

l0 l4 l12 lA l0 l4 l12 lA l0 l4 l12 lA

0.8 0.8 0.415 0.258 0.147 0.240 0.606 0.467 0.262 0.358 0.783 0.681 0.481 0.574

0.4 0.216 0.150 0.130 0.154 0.377 0.323 0.199 0.289 0.566 0.486 0.365 0.434

0 0.230 0.179 0.135 0.169 0.351 0.299 0.204 0.247 0.514 0.430 0.321 0.379

-0.4 0.270 0.195 0.135 0.181 0.380 0.320 0.190 0.247 0.601 0.511 0.385 0.444

-0.8 0.454 0.290 0.156 0.272 0.637 0.515 0.299 0.415 0.819 0.718 0.494 0.610

0.4 0.8 0.596 0.389 0.210 0.370 0.756 0.613 0.327 0.503 0.891 0.776 0.556 0.698

0.4 0.331 0.219 0.150 0.219 0.533 0.440 0.274 0.392 0.741 0.641 0.485 0.585

0 0.330 0.249 0.156 0.243 0.513 0.391 0.238 0.357 0.670 0.578 0.405 0.521

-0.4 0.417 0.264 0.170 0.270 0.528 0.425 0.252 0.354 0.769 0.634 0.447 0.572

-0.8 0.614 0.381 0.181 0.371 0.791 0.666 0.408 0.560 0.918 0.814 0.572 0.730

0 0.8 0.738 0.443 0.249 0.528 0.889 0.691 0.375 0.715 0.963 0.841 0.620 0.855

0.4 0.549 0.331 0.166 0.410 0.744 0.582 0.351 0.625 0.900 0.801 0.573 0.838

0 0.542 0.357 0.191 0.460 0.720 0.568 0.312 0.634 0.855 0.741 0.508 0.796

-0.4 0.621 0.377 0.222 0.482 0.775 0.574 0.321 0.648 0.902 0.783 0.591 0.836

-0.8 0.743 0.457 0.240 0.521 0.902 0.740 0.467 0.753 0.976 0.880 0.637 0.888

-0.4 0.8 0.900 0.564 0.311 0.620 0.977 0.815 0.463 0.862 0.997 0.936 0.691 0.965

0.4 0.787 0.475 0.264 0.517 0.932 0.768 0.451 0.779 0.988 0.928 0.710 0.933

0 0.811 0.552 0.305 0.594 0.925 0.779 0.451 0.788 0.979 0.904 0.647 0.907

-0.4 0.828 0.512 0.252 0.573 0.949 0.800 0.437 0.799 0.986 0.925 0.715 0.934

-0.8 0.888 0.549 0.299 0.625 0.977 0.835 0.532 0.886 0.998 0.947 0.695 0.975

-0.8 0.8 0.945 0.694 0.374 0.694 0.996 0.936 0.555 0.901 1.000 0.995 0.811 0.987

0.4 0.898 0.636 0.336 0.608 0.992 0.926 0.549 0.839 1.000 0.991 0.807 0.971

0 0.922 0.692 0.342 0.634 0.994 0.928 0.615 0.859 0.999 0.996 0.824 0.977

-0.4 0.918 0.650 0.346 0.586 0.995 0.929 0.566 0.854 1.000 0.994 0.798 0.972

-0.8 0.953 0.655 0.351 0.689 0.998 0.946 0.597 0.918 1.000 0.993 0.785 0.989
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Table 4: Size–adjusted power of the test, No cointegration

φ1 σe,12 T = 100 T = 200 T=400

l0 l4 l12 lA l0 l4 l12 lA l0 l4 l12 lA

0.8 0.8 0.795 0.502 0.250 0.302 0.882 0.669 0.377 0.314 0.940 0.801 0.545 0.402

0.4 0.766 0.513 0.289 0.313 0.846 0.690 0.422 0.362 0.925 0.792 0.557 0.395

0 0.769 0.547 0.317 0.343 0.862 0.684 0.406 0.319 0.923 0.796 0.558 0.403

-0.4 0.802 0.554 0.318 0.347 0.856 0.675 0.383 0.312 0.927 0.800 0.580 0.432

-0.8 0.789 0.530 0.263 0.313 0.866 0.692 0.415 0.336 0.926 0.799 0.568 0.419

0.4 0.8 0.819 0.540 0.267 0.328 0.903 0.688 0.379 0.340 0.948 0.802 0.547 0.410

0.4 0.787 0.516 0.287 0.326 0.859 0.690 0.436 0.365 0.936 0.802 0.576 0.409

0 0.794 0.551 0.314 0.346 0.886 0.697 0.405 0.341 0.932 0.796 0.558 0.414

-0.4 0.826 0.554 0.316 0.358 0.871 0.677 0.384 0.324 0.940 0.801 0.571 0.421

-0.8 0.828 0.538 0.262 0.329 0.892 0.721 0.446 0.367 0.937 0.802 0.568 0.436

0 0.8 0.860 0.506 0.246 0.338 0.930 0.679 0.364 0.366 0.962 0.808 0.538 0.439

0.4 0.863 0.532 0.283 0.365 0.913 0.698 0.436 0.376 0.961 0.811 0.567 0.452

0 0.868 0.567 0.312 0.403 0.926 0.717 0.410 0.376 0.958 0.807 0.558 0.456

-0.4 0.886 0.558 0.316 0.382 0.924 0.693 0.404 0.377 0.962 0.806 0.577 0.465

-0.8 0.871 0.534 0.259 0.343 0.929 0.719 0.438 0.395 0.958 0.804 0.571 0.461

-0.4 0.8 0.924 0.552 0.252 0.367 0.975 0.755 0.412 0.423 0.990 0.857 0.571 0.486

0.4 0.921 0.556 0.301 0.385 0.971 0.734 0.441 0.422 0.990 0.845 0.605 0.492

0 0.944 0.611 0.327 0.422 0.981 0.750 0.432 0.435 0.989 0.840 0.580 0.495

-0.4 0.930 0.568 0.281 0.394 0.964 0.751 0.421 0.431 0.987 0.848 0.599 0.508

-0.8 0.923 0.563 0.245 0.360 0.981 0.758 0.449 0.447 0.989 0.829 0.584 0.481

-0.8 0.8 0.903 0.572 0.266 0.519 0.984 0.823 0.458 0.683 0.995 0.925 0.668 0.785

0.4 0.913 0.563 0.311 0.510 0.974 0.801 0.472 0.679 0.996 0.907 0.665 0.767

0 0.930 0.590 0.284 0.542 0.986 0.818 0.487 0.681 0.997 0.919 0.693 0.766

-0.4 0.910 0.559 0.273 0.488 0.970 0.821 0.455 0.652 0.995 0.917 0.647 0.762

-0.8 0.904 0.562 0.270 0.526 0.981 0.824 0.471 0.675 0.993 0.892 0.662 0.744
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