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Abstract
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1 INTRODUCTION

The objective of this paper is to study the relationships between economic variables in the context
of regression models where explanatory variables are integrated of order one, I(1). It is well known
that dynamic relationships, such as cost and production functions, are nonlinear. Many researchers
have also found empirical evidence of nonlinearity in economic relationships (for example, see Granger
and Terdsvirta, 1993, Granger, 1995 and the references contained therein). However, most of the
econometric techniques for testing linearity and nonlinearity are developed for stationary variables and
are not applicable for nonstationary variables, especially I(1) variables.

In studying linear relationships between I(1) economic variables, Granger (1983) and Engle and
Granger (1987) introduced the concept of cointegration. Cointegration has been an intensive subject
of research ever since. However, most results on cointegration provided so far have been restricted
to cointegration in a linear sense. That is, most attentions has been paid only to linear relationships
between I(1) variables. After Granger (1995) introduced the concept of nonlinear cointegration, some
researchers began to pay attention to nonlinear relationships between nonstationary variables.

Since any relationships that are not linear can be called nonlinear, the concept of nonlinear
cointegration is quite broad. Several specific types of nonlinear cointegration have been discussed by
various authors. Park and Phillips (2000) established the limiting properties of nonstationary binary
choice models where covariates are integrated of order one. Park and Phillips (2001) showed the limiting
properties of nonlinear regression models with I(1) regressors. Chang et al. (2001) extend earlier work
by Phillips and Hansen (1990) to nonlinear models with integrated time series. Hansen and Seo (2002)
developed a test for threshold cointegration. They dealt with a model where a cointegrating vector
changes according to the regime to which the error correction term belongs. Corradi et al. (2000)
studied nonlinear relationships between variables that are first order Markov processes. They considered
an error correction—like system with a nonlinear component and proposed some tests to discriminate
linear cointegration from nonlinear cointegration or no cointegration. However, these tests are directed
toward specific kinds of nonlinear cointegration and may have low power against other alternatives. It is
desirable that a test for linear cointegration be consistent with a wide variety of nonlinear relationships
because we typically lack precise information about them in practice. Thus we seek a test for linearity
in regressions with I(1) processes that is consistent with a wide variety of nonlinear alternatives as well
as no cointegration.

In this paper we propose a generalized version of the RESET test for linearity in regressions
with I(1) processes. Note that the linearity in regressions with I(1) processes we consider in this paper
is equivalent to the linear cointegration of Engle and Granger (1987)!. In this sense we are trying to
propose a test for the null hypothesis of linear cointegration. We cannot simply apply the RESET test
directly to the present context because it is well known that the limiting distribution of the least squares

estimators in regressions with (linear) I(1) processes generally involves second—order bias effects and

IFor the rest of the paper we call the standard cointegration concept developed by Engle and Granger (1987) linear

cointegration to distinguish it from nonlinear cointegration.



these make standard statistical inference invalid without modification. In fact we show that second—
order bias effects are still present when we use nonlinear transformations of integrated processes as
regressors as in the formulation of the RESET test (see de Jong, 2002 for more general treatment on
this issue). Thus we propose employing a “leads and lags” estimation technique by Saikkonen (1991)
among others to get a test statistics that is free of nuisance parameters. With this modification we can
show that the limiting distribution of the test statistic under the null hypothesis of linear cointegration
is the x? distribution with degrees of freedom that depend on the number of regressors. Moreover the
test that we propose is consistent against a class of nonlinear alternatives. For example, our test for
linearity can distinguish linear cointegration models from nonlinear cointegration models that involve
the logarithmic function, any distribution type functions,? and polynomial functions of finite order.
Further the test is consistent against the alternative of no cointegration.

One important feature of the test is that it allows for an endogenous regressor. That is, the
regressor may be correlated with the regression error. This not usually allowed in nonlinear regression
models with I(1) processes as in Park and Phillips (2000, 2001), but special features of the RESET
test enable us to accomodate it. With this generality we would potentially be able to apply the test to
many empirical problems which would be excluded when we assume that a regressor is exogenous.

The approach of this article and the asymptotic distribution theory developed here are similar
to those developed independently in closely related work by Hong and Phillips (2010), although this
article is different in several key aspects. First, it considers simple regression while we consider multiple
regression. Second, it allows for an endogenous regressor as our test does, however, it assumes that the
regressor is predetermined as in Park and Phillips (2000, 2001) and Chang et al. (2001) although our
test does not. Third, it employs a technique similar to the fully-modified OLS proposed by Phillips and
Hansen (1990) to deal with second—order bias effects, while we extend the “leads and lags” estimation
technique proposed by Saikkonen (1991).

The rest of the paper is organized as follows. Some assumptions and preliminary results are
presented in section 2. Section 3 explains our test for linearity and the power property of our test is
examined in section 4. Section 5 gives some simulation evidence. We summarize some conclusions in
Section 7. All proofs are in the Appendix.

A word on notation. For a vector a = (a;) “||a||” stands for the standard Euclidean norm, i.e.,
lla|[* = >, a?. When applied to a matrix, ||A|| signifies the operator norm, i.e. ||A|| = sup, ||Az]|/||z||.
We also use || - || to denote the supremum of a function. || - ||k stands for the supremum norm over a
subset of K of its domain, ||f||x = sup,cx ||f(2)]|. “=" denotes weak convergence with respect to the

Skorohod metric (as defined in Billingsley (1968)). [s] denotes the largest integer not exceeding s.

2 ASSUMPTIONS AND PRELIMINARY RESULTS

The regression model from which we derive a test statistic is driven by a sequence of innovation

variables denoted by {u;} where u; consists of a scalar time series uj; and an m x 1 vector time

2We call bounded and monotonically increasing functions distribution type functions.



series ugr = (ua1,t, U224y - -, U2mt), 1.6 ur = (u1g, ub,)’. We assume throughout that the innovation

sequence {u;} satisfies the following assumption.

Assumption 2.1 For some p > > 2, {u:} is a zero mean, strong mizing sequence with mizing
coefficients am, of size —pB/(p — B) and sup,s; (Eluy [P + 377", E|ugi7t|p)1/p = C < o0. In addition,
(1/TYE(UrU}L) — Q as n — oo where U; = Z;zl Uj.

For example, Assumption 2.1 permits u; to be weakly dependent with possible heterogeneity. A wide
variety of data generating processes satisfies Assumption 2.1, including invertible autoregressive moving
average (ARMA) processes under general conditions. Assumption 2.1 is one of the common assumptions
for innovation processes. We sometimes maintain the following assumption in addition to Assumption

2.1.

Assumption 2.2 We assume u; is a general linear process
o0 o0
uy = ¢(L)er; = Z¢i€1,t—i ug = ¥(L)ea, = Z Wiea (1)
i=0 i=0

where ¢; is a scalar with ¢g = 1, U; is an (m x m) matriz with Vo = I,,, {e1:} is a scalar sequence
and {ea:} is an (m x 1) vector sequence. e; = (e1y, €)' is 4id with mean zero and covariance X..

(a) ¢(1) nonsingular, Y2 kl|¢|| < 0o, and sup,s; Elley||? < oo for some q > 4.

(b) U(1) nonsingular, Y .o, k||¥;|| < co, and El|ley||” < 0o for some r > 8. es has a distribution
that is absolutely continuous with respect to Lebesgue measure and has a characteristic function ¥ (t)

that satisfies im0 ||t]|50(t) = 0 for some £ > 0.

In the following sections, uy; serves as a regression error process and uo; generates an integrated
process. The nonsingularity and summability conditions for ¢ and ¥ in Assumption 2.2 are common
in stationary time series analysis. Assumption 2.2 (b) states stronger conditions on the moment and
characteristic function for es; than for ej¢. It will be needed when we deal with nonlinear transformations
of integrated processes. Assumption 2.2 (b) is commonly imposed in nonlinear regression models with
integrated regressors.? Processes that satisfy both Assumptions 2.1 and 2.2 include invertible ARMA
models under general conditions. Note that {ui;} is allowed to have a general correlation structure
with {us:}. This is usually not the case as in Park and Phillips (2000, 2001). We will return to this
point in section 4.

Under Assumption 2.1, the sequence {u;} satisfies a multivariate invariance principle.

Lemma 2.1 (Wooldridge and White 1988)

(T7]
Tfl/QZut = B(r), 0<r<l1,
t=1

where B(r) = (Bi(r), B2(r)") is an (m + 1) dimensional Brownian motion with covariance matriz ).

Bi(r) and Ba(r) = (Bay, ..., Bay)' denote Brownian motions of 1 and m dimensions respectively.

3See Akonom (1993) and Park and Phillips (1999) for more details on these conditions.



We assume that 2 can be written as

w11 Wy ,
Q0 = — lim T 'E(UsUL) = S + A + A,
war (oo Tmreo
where
o1l Oy a A1 A2 N
Y = = lim 77" B(uwu}), A= = lim 77 ) B(uup).
o21 Yoo Tmroe =1 Ao1 Ago T=roe t=2 j=1

These notation will be used repeatedly throughout the paper. We assume that the covariance matrices
w11 and Qoo of Bi(r) and By(r) are positive definite. It will often be convenient to write these and
other stochastic processes on [0, 1] without the argument. Thus, we shall frequently use B, By and Bs
in place of B(r), Byi(r), and Ba(r).

Let an m-vector time series {z;} satisfy x; = z4_1 + ug; where x; = (x14,...,Tme) . Our results
do not depend on the initialization z as long as it is bounded in probability. For notational convenience

we assume xg = 0. Let .TJ(J)

(2,,...,20 ) and BY) = (BJ,,...,BJ ) where j is a positive integer.
In Lemma 2.2, we show the limiting distributions of some partial sums that will be needed to derive the
limiting distributions of test statistics. The limit distributions are expressed as functions of Brownian
motion. To simplify formulae, all integrals are understood to be taken over the interval [0, 1] unless
otherwise stated, and integrals such as [ B and [ B are understood to be taken with respect to

Lebesgue measure.

The following lemma is very useful in the derivation of our result in the next section.

Lemma 2.2 Let Assumption 2.1 hold with B =k + 1. Then for2<i,j <k, asT — oo
(a) T2, @y = [ BaBy,

(b) T-G+i+2/2 T 0,00 1 g pG)

() TV, weurpi1 = [ BadBy + Aoy,

(d) TP 1 zeury = [ BadBy + Aoy,

() T-@t0/25°T 0Dy = [ BYdBy +iD(BS V) Ay,

(6) T2 5T ey, = [ BYAB, +iD(BY V) Ag,

where Agy = Y91 + Aoy and D(Béi)) = diag [[ Biy, [ Biy, ... , [ Bi,].

Parts (a)—(d) of Lemma 2.2 are standard results that can be found in the literature (e.g., Phillips,
1987 and Park and Phillips, 1988) or can be derived easily from it. However, part (e) of Lemma 2.2
is nonstandard and part (f) is an extension of part (e). Part (e) can be considered as an extension of
the results of Park and Phillips (1999, 2001) in the sense that we extend their results to a case where
a regressor z; is endogenous and multivariate. Recently de Jong (2002) extended the results by Park
and Phillips (1999, 2001) to accommodate general correlation structure between wi; and wug; under
a different set of assumptions. However, we note that his result still deals with a scalar process ug;
rather than a multivariate process as considered in Lemma 2.2 although it includes results for general

functional forms other than polynomials.



3 Testing for Linearity in Regressions with I(1) Processes

In this section we propose a generalized version of the RESET test for linearity in regression with I(1)

processes. Consider the following regression model:

Yo =0+ Vize + %zt + e 4o by duy, t=1,...,T (2)

where vq is a scalar parameter, 7; is an (m x 1) parameter vector for 1 <i < k, x4, :C,Ej) for 2 < j <k,
and w4 are defined in the previous section. Our test is a generalized version of the test for functional
misspecification proposed by Thursby and Schmidt (1977) that is a variant of the RESET test originally
proposed by Ramsey (1969). If {x;} is stationary and {u1:} is normally distributed, the present situation
reduces to that in Thursby and Schmidt (1977).

The idea of their test is that if there is functional misspecification, i.e. if the functional form is
nonlinear, “the omitted portion of the regression is definitely a function of the included regressors.” If
this function is analytic, it can be expressed in a Taylor series expansion, involving powers and cross
products of the explanatory variables. Hence they proposed to test whether coefficients of powers of
the explanatory variables were zero or not. Since this justification does not depend on the property of
the process {x:}, it would be natural to expect that this test will work even if {x;} is I(1) as in our
present situation. However, note that we are not claiming that our test is consistent against nonlinear
cointegration because of this argument. We must prove consistency against a whole class of nonlinear
alternatives and no cointegration and this is covered in the next section.

Another word on the regression model (2). We do not include cross products of the explanatory
variables. Thursby and Schmidt (1977) found that they don’t contribute to the power of their test very
much through Monte Carlo experiments. Since the present situation is different from theirs, those cross
products may contribute to the power of the test in the present circumstance. However, they are not
included in the regression (2) in order to keep our theoretical development simple.

The null hypothesis of linearity or linear cointegration between y; and x; corresponds to
Hy: mo=-=n,=0. (3)

If the null hypothesis is true, the specification in (2) would correspond to “deterministic cointegration”
as defined by Ogaki and Park (1997). The results that will be shown in this section can easily be
extended to “stochastic cointegration” where nonzero deterministic time trends are present in (2). The
null hypothesis (3) is to be tested against the alternative of nonlinear cointegration or no cointegration.
In this section we will present the limiting property of the test under the null hypothesis of linear
cointegration and establish the limiting property under the alternative of nonlinear cointegration and
no cointegration in the next section. The next theorem characterizes the limiting distribution of the

least squares estimator from the regression model (2) under the null hypothesis.

Theorem 3.1 Suppose Assumption 2.1 holds with § = k + 1. Then under the null hypothesis (3) (as



A — o 1 [ B, [ B® .o B B,
'A)/l - M fBQ fBQBé fBgBéQ) cee fBgBél{) fBQdBl + Agl
T A = | [B® BPB, BPBY ... [BPBY [ B$dB, + D(By) Ay
A | LBy BBy BYBE o [BYBYY || [BYdB + D(BETY)Ay
where Yo = diag [TY/?,T1,,, T3/%1,,,, ... ,T"+V/2L, ]

Before we move on to the development of our test statistic, some remarks are in order. As
described above, our null hypothesis is that there exists a linear cointegration relationship between y;
and ;. Therefore it would not be hard to imagine that the limiting properties of the least squares
estimates of the present regression model under Hy would share some characteristics with the least
squares estimates of cointegrating vectors in standard cointegrated regression models.

First, a regressor x; is allowed to be endogenous under Assumption 2.1, i.e. x; can be correlated
with the regression error wi; as in linearly cointegrated regression models. When it is enogenous in
stationary regression models, the least squares estimator fails to satisfy the conditions for consistency
and therefore we typically employ an instrumental variable estimator to achieve consistency. However,
one notable difference between stationary regression models and linearly cointegrated regression models
is that the least squares estimator in the latter is still consistent for its population value (e.g., Stock,
1987, Park and Phillips, 1988, and Phillips and Hansen, 1990). In the present regression model, this
is true and the least squares estimator is consistent even though we have an endogenous regressor, as
shown in Theorem 3.1.

Second, we have second order bias effects such as Agq, D(B2)Aa, ..., D(Bé“fl))Agl in the
limiting distribution of Theorem 3.1 that are similar to the limiting properties of the cointegrating
vectors in linear cointegrating models. We call this the second order bias because it does not have an
effect on the consistency result but does have an effect on the limiting distribution (see Stock, 1987 and
Phillips and Hansen, 1990). It arises because of the existence of contemporaneous and serial dependence
between the regressors z; and the regression error ui;. This is directly analogous to the phenomenon
that occurs in linearly cointegrated regression.

Next we propose our test statistic. There are two obstacles in the limiting distribution of the
least squares estimator given in Theorem 3.1 in conducting a standard hypothesis testing procedure
such as a x? test. One is the existence of a nonzero covariance structure between B; and B, and another
is that the limiting distribution of the least squares estimates depends not only on the property of the
Brownian motion By and Bs but also on the nuisance parameter matrix As;. These obstacles are same
as those arising in linearly cointegrated models and the methods proposed to remove these obstacles in
linearly cointegrated regression models can be extended to our regression model. Here we consider an

estimation technique by Saikkonen (1991).%

4Fully-modified least squares developed by Phillips and Hansen (1990) is also applicable to the present problem




Saikkonen (1991) proposed an efficient estimator that eventually removes the obstacles by adding
leads and lags of Ax; in linearly cointegrated regressions where Axz; = x; — x;—1. We show that this
“leads and lags” estimation technique works in our regression model (2).

Consider the following new regression model:

K
U =0 + Ve + vl + a4yl 4 Z O Axy o +vf, t=1,...,T, (4)

s=—K

where 6; is an (m x 1) parameter vector for —K < i < K. This is a regression model where leads and

lags of Ax; are added to the regression model (2). Note that the regression error here is not uy; but

v{. The relationship between them is characterized below. To derive the limiting distribution of the

least squares estimator of the regression model (4), we need to make the following assumption on the

error process u; in (2):

Assumption 3.1 (a) {u:} is strictly stationary with the spectral density matric fu.,(\) bounded away

from zero so that fu,(A\) > al,, M€ [0,7], where a > 0.

oo

(b) The covariance function of u; is absolutely summable Y IIT()]] < oo, where T'(5) = E(uguy, ;)

j=—o0

and || - || is the standard Euclidean norm.

It is well known that we can deduce under Assumption 3.1 that uy; = ZOO IT;up¢—; + vy where

j=—00
Z?’;foo [IIL;|| < oo and v, is a stationary process with the property that E(ugviyy) = 0, k =
0,+1,42,.... Furthermore, 27 f,,(0) = w11 — w’2192_21(,u21 where f,,(\) is the spectral density of v

at frequency A. These are key properties that play important roles in proving the next theorem. Note
that v in (4) can be represented as vy = v+~ g Ijuz—;. If II; = 0 for |j| > K, then vf is strictly
exogenous and we get the desired limiting properties of the coefficient estimator in (4). That is, there
exist neither the second order bias effects nor the correlation between B; and By. However, this is not

the case in general. Thus we also need to make an assumption on the truncation parameter K:

K? Z |ITL,||* = 0 for some s > 5. (5)
J>|K|

We must let K — oo as T — co. We choose the rate of K = T9 such that % <d < where

r is given by the moment condition for es; in Assumption 2.2. For example, invertible ARMA models
satisfy Assumptions 2.2 and (5) for any finite 7 and s under general conditions. In this case d can take
any value between 0 and 1/6. The condition (5) is analogous to Assumption 5.1 of Chang et al. (2001)
although the admissible values of § are different. In fact, the condition (5) is more than necessary to
derive the limiting distribution in Theorem 3.2, but it will be required when we deal with the limiting
property under the alternative of nonlinear cointegration.

The regression model (4) leads to the following limiting distribution for the least squares esti-

mator: Let (%9,%1,%4,---,7.) be the least squares estimator of (v9,71,74,...,7.) in the regression

model (4).

although it is not presented here. See de Jong (2004) and Hong and Phillips (2010) for fully-modified least squares in

nonlinear regression models when a regressor is a scalar.



Theorem 3.2 Suppose that {w;} satisfies Assumption 2.1 with § = k + 1 where wy = (v, ub,)". Also
suppose Assumption 3.1 and the conditions (5) on the truncation parameter K hold. Then under the

null hypothesis (3) (as T — o)

Fo — 0 1 I By JBY .. [BY Biig
’71 - M fBQ fBQBé fBQBé(Z)/ e fBQBéH) fBQdBll.Q
vl n || B0 B0 PR [oPn || e,
I B b e R L B W ey

where By1.o(r) = By(r) — why Qs Ba(r) with covariance matriz wy — wh; oy wor .

There are two notable differences between the limiting distribution given in Theorem 3.1 and
that in Theorem 3.2. First, the Brownian motions By and Bs in Theorem 3.1 are generally correlated,
but the Brownian motions Bji.2 and Bs in Theorem 3.2 are uncorrelated, implying independence due
to the Gaussian properties of a Brownian motion. Second, the second order bias terms that are present
in Theorem 3.1 vanish in Theorem 3.2. Therefore the limiting distribution in Theorem 3.2 is free of
the obstacles mentioned above and so we can apply the standard hypothesis testing procedure. Thus
Theorem 3.2 suggests that we use the Wald statistic. Let ¥ = (J0,%1,%5,---,7%)s M = Zthl X X/,
X = (1,1’271',(52),7 - ,xg'{)/)/, w11.2 be any consistent estimator of wy; — w’zlﬂgglwm (see Newey and

West, 1987, Phillips, 1987 and Andrews, 1991 for a discussion of possible estimators), and

001, 0 0 -~ 0|
00 0 I, 0 - 0

R=|00 O O L, --- 0 m(k —1) x (mk + 1),
00 0 0 I |

Construct the following statistic:
N _ -1,
Wr = (R)' (@u2RM™'R') ™ (R7).
The next theorem shows the limiting distribution of this statistic under the null hypothesis.

Theorem 3.3 Suppose the conditions in Theorem 3.2 are satisfied. Then under the null hypothesis (3)
(as T — o)

Wr = X (c1)-

Theorem 3.3 shows that we can apply the standard x? test procedure to our test. If Qo = 0, the
test statistic based on the estimator considered in Theorem 3.1 has the limiting distribution given in
Theorem 3.3. For example, this will occur when z; is strictly exogenous and the driving process us; is

independent of the regression error uy;.



4 Power of The Test

In this section we show that the proposed test is consistent against a class of nonlinear alternatives
and no cointegration. First, we shall consider the types of nonlinear functions for which our test for
linear cointegration is consistent. From the construction of the test statistic discussed in the previous
section, it would be clear that the test is consistent against nonlinear cointegration involved in finite
order polynomial functions of x;. So now we are interested in for which types of nonlinear functions
other than finite order polynomial functions the test is consistent. Consider the following alternative
hypothesis:

Hi: oy =gi(xi) + g2(w20) + - 4 g (Tme) + i, (6)

where g; : R — R is a nonlinear measurable function for 1 < i < m. This structure is same as that
considered in Chang et al. (2001). To prove consistency, we must investigate the limiting property
of the test statistic under the alternative. This involves some nonlinear transformations of integrated
variables. However, the limiting properties of nonlinear functions of integrated time series are fairly
complicated. These remained unknown until Park and Phillips (1999) showed the limiting properties
of nonlinear transformations of “scalar” integrated time series.® Unfortunately, analogous results for
vector—valued integrated time series has not yet been proven. Since we use their results, we confine
ourselves to alternatives that can be expressed by (6).

We consider the following two classes of functions treated in Park and Phillips (1999), the
integrable class 7 (I) and the homogeneous class T (H)

Definition 4.1 (Park and Phillips 1999) (a) A transformation T on R is said to be regular if
and only if (i) it is continuous in a neighborhood of infinity, and (ii) for any compact subset
K on R given, there exist for each ¢ > 0 continuous functions T_, T., and d. > 0 such that

T.(x) <T(y) < Te(x) for all |z —y| < 6 on K, and such that [, (L. —T.)(x)dx — 0 as e — 0.

e

(b) A transformation T is said to be in Class (I), denoted by T € T (I), if it is bounded and integrable.
(¢) A transformation T is said to be in Class (H), denoted by T € T (H), if and only if
T(A\x) = v(AN)h(z) + R(z, \) (7)

where h is reqular and R(xz,\) is of order smaller than v(X). v and h are sometimes called the

asymptotic order and the limit homogeneous function of T respectively.

All homogeneous functions belong to T(H) as long as they are locally integrable. Other functions
that belong to 7(H) include polynomials of finite order, the logarithmic function and the distribution
function of any random variable. Each of the two classes, 7 (I) and T (H) is closed under the operations
of addition, subtraction, and multiplication (see Park and Phillips, 1999 for more details). In the
following, if g; € T (H), we denote its asymptotic order by v;(A) and its limit homogeneous function by

5Nonstationary binary choice models by Park and Phillips (2000) allows covariates to be multivariate. However, it

essentially reduces to a scalar case by decomposing the covariates (See Park and Phillips, 2000 for more details).
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Before we develop the limiting property of the test statistic under the alternative (6), we show
some useful results that are helpful in proving consistency of the test and that give some intuition
about why the proposed test works. To do so, we assume either g; € T(I) or g; € T(H) for all 7. If
there exists at least one i such that g; € 7(H), without loss of generality we let g1 be the function that

is in 7(H) and dominates other g;’s belonging to 7 (H) asymptotically, i.e. for any j # 1 such that

Vl(T1/2) Vl(T1/2) . .
g; € T(H), Sr(T7E) 00 Or Jharsy —rconstant. For part (b) in the next lemma, we must specify the
J J

consistent estimator for wy1.o explicitly. We employ the semiparametric consistent estimator
T l T
G =T 677 +2T7" ) “wa Y 076;,
t=1 s=1 t=s+1
where 0f is the residual obtained from the regression (4) and wg = 1 — s/(I + 1). This is one of the

standard choices for a consistent estimator in the present context (see Phillips, 1987, Newey and West,

1987, and Andrews, 1991 for more discussions on this choice).

Lemma 4.1 Let {u:} satisfy Assumption 2.1 with 8 = k + 1, Assumptions 2.2 and 3.1 and the trun-
cation parameter K satisfies (5). Also, suppose either g; € T(I) or g; € T(H) for all i, and the limit
homogeneous function h; is piecewise differentiable with a locally bounded derivative for i such that
g; € T(H). In addition, assume that for some q > 1 there exists a grid {a1,...,aq}, where a; < a;j41
for all j = 1,...,q — 1, such that h; is continuous at any x € R\{a1,...,aq}, and monotone on

(aj_1,a;) forj=1,...,q+1 fori such that g; € T(H).

(a) Lety = (J0,%1:Vas-- 7)) be the least squares estimator of (yo,71,73,---,7Vr) in the regression

model (4).

() If g; € T(H) with TY?v(TY?) — o0 as T — oo for some i, then under the alternative,
Y17 = O, (TY 211 (T?)),

(i) Otherwise, under the alternative (6), Y77 = O,(1),
(b) Suppose l — 00 as T — oo such that I = o(T).

() If g; € T(H) with v;(T'/?) = o0 as T — oo for some i, then under the alternative (6),
Gr1a = O, (WH(TY?)),

(ii) Otherwise, under the alternative (6), w11.2 = Oy (1).

The intuition behind Lemma 4.1 is clear if we consider some simple functional forms of g. For
example, let’s consider g(z) = /2. This function belongs to 7 (H) with v (T'%/?) = T%/4. Thus Lemma
4.1 (a) implies that Y77 = O,(T™/*). In particular, we have T%/25, = O, (T7/4) or equivalently 72 =
O, (T1/4). That is, the coefficient estimator of x?) diverges at the rate T'/4 and this would be a signal
of nonlinearity. Now consider g(z) = z!/2. In this case, Lemma 4.1 implies 7o = O, (T~%/*). Thus
72 converges to zero but at much slower rate than under the null hypothesis because ¥, = O,, (T =3/ 2)
under the null, as we can see in Theorem 3.2. If it converges to zero at a rate that is slow enough, it
would be interpreted as a signal of nonlinearity and the next theorem tells us how slow it must be for

the test to be consistent.
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The following theorem tells us for which type of functions our test is consistent.

Theorem 4.1 Let the conditions in Lemma 4.1 hold.

(a) If g; € T(H) with either v;(T"/?) = oo or v;(T'/?) is constant as T — oo for some i, then under

the alternative (6), Wr = O, (T'/1),

(b) If g; € T(H) for some i and if T*/?v(T?) — oo and v, (T"?) = 0 as T — oo , then under the
alternative (6), Wr = O, (Tvi(TY?)/1).

(c) Otherwise, under the alternative (6), Wy = O, (I™1).

First, Theorem 4.1 (a) shows that our test for linear cointegration is consistent against nonlinear
cointegration if either g; € T(H) with v(T'/?) — oo or v(T'/?) is constant as T — oo for some
i, i.e. consistency of the test can be achieved if there exists at least one function that satisfies the
conditions of Theorem 4.1 (a). A class of functions that satisfy the conditions of Theorem 4.1 (a)
includes g;(x) = |z|* for k > 0 and k # 1, g;(z) = 1/(1 4+ e~%), the logarithmic function g;(z) = log |z|,
polynomial functions of finite order g(z) = 2* +a; 21 +--- 4+ a* for k > 1. All distribution functions
also satisfy the conditions of Theorem 4.1 (a).

Second, we can deduce from Theorem 4.1 (b) that if g; € T (H) for some i and T2 (TV/?) — oo,
vi(TY?) = 0 and Tv}(T/?)/l — oo as T — oo, the test is still consistent but the test statistic diverges
at a slower rate than in case (a). For example, this happens when all functions g;(z) for 1 < i < m
decrease to zero as x goes to infinity, but at least one of them decreases to zero at a moderate rate as
in a case where g;(x) = |z|~/? and we choose the lag truncation parameter [ such that [ = o(T/?3). In
this case, Wp = Op(Tl/Q/l) and Wy diverges at an approximate rate of T'/6 that is much slower than
that for case (a). The argument above shows that a choice of the lag truncation parameter is crucial for
case (b). If we choose I such that [ = O(T''/?), the test becomes inconsistent for g;(z) = |z|*/2. Thus
we must be careful about the choice of [ when we are especially interested in this type of nonlinear
alternatives. A class of functions that satisfies the conditions of Theorem 4.1 (b) includes g;(z) = |z|*
for —2/3 < k < 0 when we choose | = 0(T1/3).

Finally, Theorem 4.1 (c) implies that our test is inconsistent if all functions g;(z) (1 < i < m)
decrease rapidly as z goes to infinity such as when g;(z) = |2|¥ where k < —2/3 and we use the lag
truncation parameter [ such that I = o(T'/3) or especially when all functions are integrable. This is
expected from Lemma 4.1 because in this case 7 converges to zero at the same rate as it does under
the null hypothesis.

One important characteristic of our test for linear cointegration is that it allows for an endogenous
regressor as mentioned in the last section. Researchers who are familiar with nonlinear regression models
with integrated regressors from Park and Phillips (2000, 2001) and Chang et al. (2001) may wonder
why we can do this because all models mentioned here assume that z; is predetermined and (uy¢, F3) is
a martingale difference sequence where {F;} is a natural filteration to which {u;:} is adapted. When
this is the case, z; is uncorrelated with wuy¢, i.e. E(zyui¢) = 0, which rules out an endogenous regressor

. In general, when we deal with the limiting properties of nonlinear models with integrated regressors
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¢, we must investigate the limiting properties of a sample mean function such as Zthl f(z) and a
covariance function such as Zil f(z¢)uqs for some nonlinear function f. An exogenous a; is critical in
deriving the limiting distribution of the covariance function in Park and Phillips (2000, 2001) and Chang
et al. (2001). However, as shown in the proofs of Lemma 4.1 and Theorem 4.1, the covariance function
which we need to deal with has a specific form where f is a polynomial function. Moreover its limiting
properties is provided in Lemma 2.2 (f) without assuming exogeneity. Thus we can allow an endogenous
regressor x; in the alternative model of nonlinear cointegration. This is a very important assumption
in practice. For example, we will investigate the nonlinear relationship between the exchange rate e;
and the fundamentals in section 6. We take output y; and money m; as proxies for fundamentals and
post it a nonlinear relationship e; = fi(y;) + fo(m¢) + u1¢. In this model, it would be very unrealistic
to assume that y; and m; are predetermined because it is usually the case that e;, y; and m; interact
simultaneously. Allowing a endogenous regressor will thus make it possible to apply our test of nonlinear
cointegration to many economic problems.

Finally we show that the test is also consistent against the alternative of no cointegration.

Suppose that the system of y; and x; is generated by the following:
Yt = Y1t Ui, Tp=T¢-1+uy, t=1,....T. (8)

In this case, there is neither linear nor nonlinear cointegration in the system and the present problem
reduces to that spurious regressions as studied by Granger and Newbold (1974) and Phillips (1986). As
we have done for the case of nonlinear cointegration, we first show the limiting properties of the nor-
malized coefficient estimator and the long—run variance estimator and then show the limiting properties

of the test statistics.

Lemma 4.2 Suppose that the system of y; and x; is generated by (8). Also suppose that {u;} satisfies
Assumption 2.1 with 8 = k+ 1. In addition, suppose that {w;} satisfies Assumptions 2.2 and 3.1 and

the truncation parameter K satisfies (5).

(a) Lety = (J0,%1:Vas---»7r) be the least squares estimator of (yo,71,73,---,7Vr) in the regression

model (4). Then as T — oo, Try = O, (T),
(b)  Suppose | — oo as T — oo such that | = o(T*/*). Then as T — 0o, &11.2 = O, (IT).
Theorem 4.2 Suppose the conditions in Lemma 4.2 hold. Then as T — oo, Wr = O, (T'/1),

In other words the intuition in Lemma 4.1 applies to the case of nonlinear cointegration as well.
39 converges to zero, but at a rate 7/2 that is much slower than under the null hypothesis. This slow

rate serves as a signal of no cointegration and underlies the consistency of the test.

5 Some Simulation Evidence

In this section we show some simulation evidence to investigate the properties of our test in small

samples. First we show the size properties. For the study of size properties, we use the following data
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generating process (DGP):
DGP: yr = 15w +wui, o =x-1+ uae,
with g = 0. u; = (u1s, ugt)’ is generated from a simplified version of a MA process (1)

Uit et $1 O e1,i—1
Ugt €eat 0 05 €2,t-1

where e; = (e14, ;) is distributed as N1D(0,3) with

1 oea2

Y= . 012 =0.8,0.4,0,—-0.4, and — 0.8.

Oe,12 1

The test statistics are constructed as described in section 3. The sizes of the test depend on sample
size (T), the lag truncation parameter (1) used to estimate @11.2, and s in equation (4). We consider
three types of sample size (T = 100, 200 and 400) and four types of I. First three choices of [ are 10 = 0,
14 = [4(T/100)'/4] and 112 = [12(T/100)*/4]. These choices of | are used in many simulations (e.g.
Schwert, 1989 and Kwiatkowski et al., 1992). The last choice of I, denoted l4, is a truncated version of
a data dependent choice by Andrews (1991)

la= [1.1447m1n ({(1—/’)2(1+P)2} ’ {(1 —0.9)2(1 + 0.9)2} >] 9)

where p is a coefficient estimated from the first order autoregression of ¢;. The truncation was made to

avoid a choice of | which would make our test inconsistent.® We use a value of k = 3 for all experiments.
We do not use a value of kK > 3 because for values of k that are greater than 3 the second moment
matrix often becomes close to singular in small samples and therefore we may not be able to get accurate
results. We choose k = 3 rather than x = 2 is because, in terms of size—corrected power, the result
using k = 3 dominates that obtained using x = 2. The number of leads and lags used to estimate the
parameters in (4) is determined by Schwartz’s Bayesian criterion” with a maximum lag length of 10.
Table 1 shows the size properties. Since we use the upper 5% critical value from a y? distribution,
the nominal size of the test is 0.05. For each experiment, the number of replications is 1000. The results
of the simulation are summarized as follows: (i) The size of the test becomes closer to the nominal size
as the sample size becomes larger. (ii) A nonzero correlation o 12 between e;; and eg; causes moderate
degrees of size distortion as opposed to cases where o, 12 = 0. (iii) The size of the test for positive ¢;
tends to be larger than the nominal size, while that for negative ¢; tends to be smaller. This positive
correlation between the size and the MA parameter ¢; is also commonly observed in unit root tests

(e.g. Schwert, 1989). (iv) The size of the test with [0 is overly sensitive to ¢;. This is a consequence of

6For example if p = O,(T) as in spurious regression, it is easy to see that 14 = Op(T), violating the assumption in

Lemmad4.1. See Kurozumi (2002) for a similar problem in a different application
TWe also tried different lag length selections such as AIC or general-to-specific procedures such as in Ng and Perron

(1995). The results are not very different from those presented here. The lag length selection based on Schwartz’s criterion
looks only slightly better than others in terms of empirical size. Clearly this does not imply that Schwartz’s criterion is

the best method, and further investigation on the lag length selection is needed.
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ignoring serial correlation when constructing wi1.2. (v) The size of the test with /12 tends to be larger
than the nominal size. This generally results from using too many lags to construct wyq.2. (vi) The
size of the test with [4 and [ 4 is close to the nominal size for moderate values of the MA parameter ¢;.
Hence we recommend that applied researchers use the lag truncation choice either l4 or [4 rather than
10 or [12.

Next we turn to power properties against several nonlinear alternatives. The nonlinear alterna-

tives considered are as follows:
DGP; : yy =5((x;) — 0.5) + ure, DGPs: yp = 1/|2y|"® + ure, DGPy: yy = yo1 + s,

where ¥(-) is the cumulative distribution function of a normal random variable with mean zero and
variance 6. Other assumptions on z; and u; are same as in DGP;. DGP; satisfy the assumption
in Theorem 4.1 (a) and DGPs does likewise for Theorem 4.1 (b). DGP, represents the case of no
cointegration in Theorem 4.2.

Tables 2-4 show the size—corrected power properties at a 5% nominal level for DGP,~DGPy
respectively. We summarize the general results first and discuss some specific alternatives later. (i)
The power of the test becomes better as the sample size becomes larger for all alternatives. (ii)
As expected, a nonzero correlation o, 12 between ej; and ey increases the power of the test for all
alternatives. (iii) The power of the test for positive ¢; tends to be less powerful than the test with
¢1 = 0, and that for negative ¢; tends to be more powerful especially when 7' = 100. (iv) The power
of the test against nonlinear alternatives that satisfy the assumption in Theorem 4.1 (a) increases very
quickly as the sample size grows, on the other hand when the nonlinear alternatives that satisfy the
assumption in Theorem 4.1 (b), the power increases very slowly as Theorem 4.1 (b) predicts. (v) The
power of the test with [4 is as powerful as that with [4 for all nonlinear alternatives. (vi) The test with
14 lacks power against the alternative of nonlinear cointegration.

The second thing to note is that the test with {4 against the alternative of no cointegration
suffers from a lack of power. This is because the truncated version of the lag length choice [4 tends
to choose a longer lag length since p in the formula of 4 (9) is close to 1. As we see in Theorem 4.2,
there exists a tradeoff between lag length [ and power, so the test with [4 performs poorly against the

alternative.

6 Concluding Remarks

This paper has developed a testing procedure for linearity in regressions with I(1) processes. We
proposed the Wald test based on a generalization of the RESET test and we showed that the limiting
distribution of the test statistic under the null of linearity is a x? distribution when a “leads and lags”
estimation technique is employed to construct it. We also showed that the test is consistent against
both a class of nonlinear alternatives and no cointegration. The simulation experiment revealed that
the proposed test has nice power properties against the functions considered. Finally, we applied our

test for linearity to see whether relationships between exchange rates and fundamentals and found
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significant evidence against linearity.

APPENDIX A

Proof of Lemma 2.2: Proofs of (a) and (b) are trivial extensions of the results in Phillips (1987).
Proof of (c) can be found in Hansen (1992). Part (c) is an extension of part (d) and its proof follows
the argument of Phillips and Durlauf (1986).

Proof of (e): This is a version of Theorem 4.2 of Hansen (1992). The case for ¢ = 2 is given by Theorem
4.2 of Hansen (1992). Thus we show the case for ¢ = 3. Cases where ¢ > 4 can be proved by the same
argument as in the case for i = 3. Let F; = o(us : s < t) be the smallest o—field containing the past

of {u;} for all . We can decompose u1; into two parts
Uy =€+ 2t-1 — 2 (10)

where e, = >0 (Bt iy — By_qui4x) and 2, = Y po Eyuq i where Ei(-) = E(:|F;). Note that

{et, Fi} is a martingale difference sequence. By the decomposition (10) we have
T T T
T72 Z JUEB)ul,t_;'_l = T72 Z 1'153)51,#1—1 + T72 Z $§3) (Zt - Zt+1)~ (11)
t=1 t=1 t=1
Applying Theorem 3.1 of Hansen (1992) gives

T
Tﬁzz$§3)€1’t+1 = /Bés)dBl (12)
t=1

Note that no second order bias terms show up in the limit.

It remains to be shown that

T
7723 o (2 — ze11) = 3D(BY ) har. (13)
t=1
Observe that
T T
T2 ng (zt — 2t41) Z () _ xig) — T2 )ZT+1.

By the argument of Theorem 4.1 in Hansen (1992), we have T2 2P )ZT+1 = 0p(1). Since a typical

element of x,@ (3)1 can be written as

3 3 _ \3 3 9.2 ) ) 2 3
Tig = Xyj—1 = (Tit—1 +u2it)” — Ty g = 3Ty Uit + BTy —1U;y + Uy,

we have
T
2Zz()zt—zt+1 = Z“Tt 1 Oug)ze + 3T~ th 1®uét))zt+T QZugt zi + op(1),
t=1 t=1 t=1
where “©®” is the element—by—element product and uét) = (ub, de ub +)'- Note that
zit_1u21,t
2
x u
2 2,t—1122,¢ ~ (2
(2, © ug)z = _ 2 = D@ Yugz,

2
xm7t—1u2m»t
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where D(xg )1) = diag[z?, 1,23, 1,...,2%,, ;]. Then we have

rm,t—1
T
T72Za:£3)(zt—zt+1) = 37~ 2E:D a:t 1)thZt—|—3T 22 T 1®u§t))
t=1 t=1
+17? Z uly) 2 + 0,(1) (14)
=1

First, the second and third terms on the right-hand side of (16) vanish in probability because
we have by the Holder’s inequality that

T
_ X
E[T72Y (w1 0ui)z| < T° 3/22 “e uS || Nzl
t=1 4/3
< 7323 T |22 [luzeli3llzelle — 0 (15)
t=1 4
and
T T T
_ 3 — 3 —
EIT 23 ul) 2| <7237 [JuS)||aysllzella = T72 " lluzel 3|24 — 0 (16)
. .

since th_l/\/ﬂ ‘4 is bounded as in the proof of Lemma 3.1 (f) of Chang et al. (2001), |lux||3 < C by
Assumption 1 and ||z||4 is uniformly bounded by the proof of Theorem 3.1 in Hansen (1992) where
||a]|- denotes the L"™-norm with subscript, defined by ||a||, = (3, E|a;|")*/".

Second, note that the first term on the right-hand side of (16) can be written as

T T
ZD zt 1 Yugyzy = T2 Z la(x?_)l)/\m +T xt 1 (ugezy — Aa1).

t=1

HMH

By Theorem 3.2 of Hansen (1992), the sequence {uz;2;—A21 }is an L g o-mixingale and D(”EQ)l) = O,(T).
Then, applying Theorem 3.3 of Hansen (1992), |72 Zt 1 (xi )1)(thzt—A21)| = 0. By the continuous

mapping theorem we obtain

T
Z[) xt—1)A21 = D(B2)Ag (17)

Thus combining (16)—(17) gives (13).

(11), (12), and (13) together establishes the result of Lemma 2.2 (e) when ¢ = 3. The proof
for the case where ¢ > 4 follows along the same line with appropriate moment conditions specified in
Lemma 2.2. The proof for part (f) can be shown by combining that of part (e) and the argument used
in Phillips (1988). O
Proof of Theorem 3.1: Observe that

- - - 4 -1

~ T T 2)’

S — 70 T VHNE NS DHRES ST D

. T T 2

71N D1 Tt Di—1 T4y Zt 1 l’tu’cg S Zt 1 xtffgn)
« T 2 T 2 (2) _(2) 2) (k)

Tr Y2 = Tr| > xi ) D1 xi )332 Zt:l Ly )x,g A Zt:l xi Ty ) Tr
~ T K T K T K 2)’ T K K)
L Vs i PO xl(f ) PO xl(f )xi P a:,g )xg U PO xl(f )JSE ) ]
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ZtT:1 Uit
23:1 LUt

-1 T (2)
XY Dol Ty U

Y
L =1Lt U1t

Applying Lemma 2.2 to each element on the right hand side of the equation gives the required result.

O

Proof of Theorem 3.2: Although we now have stationary regressors in (4), we may concentrate
on ¥ without loss of generality because they are asymptotically orthogonal to the integrated parts of
the model, W Zle xétAxk,t,s B0, forl<i<k 1< j,k < m, and any s by Lemma 3.1 of
Chang et al. (2001). This asymptotic orthogonality of nonlinear transformations of integrated regressors
to stationary regressors are analogous to that of (untransformed) integrated regressors to stationary
regressors in linear cointegration models as noted in Chang et al. (2001).

Note that

(Tr]
1 Bi1.2(r)
— E w; =
e 5 By (r)

with covariance matrix
w11 — wélQ;;wgl 0
0 Qa9
Then by Lemma 2.2 (e) we have 7—(+1)/2 23:1 zgi)vt = fBéi)dBn.g for 2 < § < k. Since similar
arguments are used as in the proof of Theorem 4.1 in Saikkonen (1991), it suffices to show that for

2<i<kand1<j<m

T T
T 2 T = T 2 Tt + op(1): (18)
t=1 t=1

Note that the number of observations now is T — 2K, but we may use T instead of T'— 2K without

loss of generality. Note that

T
D llor =l

Ej t=1

SCjt i
<[]

1 I
T2 Z ff;'t(ﬂf — )
t=1

where

Ej = |: min BQj(T) - ].,Orélraé(l BQj(T‘) + ].:| . (].9)

0<r<1

It can be shown by the argument in Lemma A1 of Chang et al. (2001) that
E (|jv; —uill") = 0 (K~*/2). (20)

Then by (20) and the fact that H(‘Tﬁ/Tl/Q)iHEi = 0,(1) we can deduce ﬁzzﬂzl ahy(vp — ) =
O, (TK=*/?) as shown in Lemma A4 (b) of Chang et al. (2001), leading to WZthl ghor =
—tr S zhve + Oy (TY2K~%/2). Thus (18) follows if § > 1/s since K = T°.

Proof of Theorem 3.3: Given the result of Theorem 3.2, applying Lemma 5.1 in Park and Phillips
(1988) gives the required result. O
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Proof of Lemma 4.1: In this proof and the subsequent proof, we frequently use results from Park
and Phillips (2001) and Chang et al. (2001). In those citations, the space DI0,1] is endowed with
the uniform metric. However, we use “=" to imply weak convergence using the Skorohod metric in
our proofs. This is possible because convergence in the uniform metric implies the convergence in the
Skorohod metric.
Proof of (a): Note that we have stationary regressors in (4). Again we may concentrate on 7 without
loss of generality by the same reasoning as described in the proof of Theorem 3.2. Observe that

T

Yry="YrM '"Trx T3> Xy, (21)
t=1

First, as we have seen in the proof of Theorem 3.1
YoM Ty = 0,(1). (22)

Next we consider the second component of the right hand side of (21). Observe that under the

alternative (6) we have

1 Z Xtyt T Zg xt Xt + T ZXtUM (23)

t=1 t=1
where g(z;) = Y i~ gi(x;). The second term on the right hand side of (23) is Op(1) as we saw in the
proof of Theorem 3.1. To analyze the first term on the right hand side of (23), we consider the asymptotic
properties of g; € T(I) and g; € T (H) separately. For a function g; € T(I), it follows from Part (k) of
Lemma 3.1 of Chang et al. (2001), for 0 < s < x and 1 < j, k <m, w75 Zle gi(zje)xy, = Op(1).

Hence we have for a function g; € T (1)

T

Z (zit) Xi = Op(1). (24)

It follows that if g; € T(I) for all 4
T
T Z Xy = Op(1). (25)
t=1

Thus if g; € T(I) for all 4, we can deduce by (21), (22) and (25) that T7'5 = O,(1), giving one case
of the result required for Part (ii) of Lemma 4.1 (a).

For a function g; € T(H) with asymptotic order v; and limit homogeneous function h;, we have,
from Part (1) of Lemma 3.1 in Chang et al. (2001) and Theorem 1 of de Jong (2004), for 0 < s < k and
1<, k<m, Wy(ﬂﬂ) 2:{:1 gi(zj1)z3, = Op(1). Thus we have for a function g; € T(H)

T
T2 giwa) Xo = 0, (TH20(T'2)). (26)
t=1

Note that (26) holds for any v;(-) that satisfies the assumptions of Lemma 4.1.
Now we consider a case where g; € T(H) for some ¢ under the alternative (6). Remember that
g1 is the dominating function among functions belonging to 7 (H). Then it is clear from the argument

above that the order of the dominating component in the first term of (23) is given by

T
T gi(an) X =
t=1

O, (TYV2u(TV?)) i T2, (TV/?) = 0o as T — oo,
0,(1) otherwise.
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Thus we get

e O, (TY?u(TV?)) it TY?0(TY?) — 00 as T — o0,
T ) gla) X, = |
=1 0,(1) otherwise,
leading to
T 1/2 1/2 : 1/2 1/2
O, (T (T it T2 (T — o0 as T — oo,

Y K- ) ) o

=1 0O,(1) otherwise.

Hence combining (21), (22) and (27) shows that

O, (TYV2v1(TV?)) i T2, (TV?) = 0o as T — oo,
0,(1) otherwise,

Try=
giving the result required for Part (i) and the other case of Part (ii) in Lemma 4.1 (a).

Proof of (b): Recall that

T
W10 = 71 Z + 2T~ 1 ZwSl Z ’Ut ’Ut s (28)
t=1 t=s+1
where v} is the residual obtained from the regression (4) and wy = 1 — s/( + 1). First, consider the
first term in (28). Let 0 = (0%, 0% 1, 0% _o, -+, 0" g 40,0 o\ 1,0_K)" and
Zy = (A% g, ATy o 1, AT g9y AT g9, ATh ey, Az )
Also let 8 be the OLS estimator of f from (4). Observe that

T T
B ~ 92 B _ A 2 B N 2
D TR (t—Xt’l—Zt’Q> —71Y (gxt +u1t—Xt’l—Zt’Q)

t=1 t=1 t=1

T T T
= T Z (z4) + T~ 1Zu1t—|—T_1 ’(ZXtX>7+T 14 (Zzg)é

S

t=1

= t=1
T T
715N x —T—lé’ Z 15/ X,7' | 6 29
jz tU1 [} ture + 175 Z +Z, | 8 (29)
t=1 =

t=1

First, we deal with the case where g; € T(H) with v;(T*/?) — oo as T — oo for some i. Again
remember that g; is the dominating function among functions that belong to 7 (H) We check the order
of convergence of each term in (29). T—1 Zthl 9*(z¢) = O, (VZ(T"/?)) by the argument in Part (a) of
Lemma 4.1, T~ Y°7_ u}, = O,(1) by the law of large numbers and 7= 327 g(a,)ur, = o, (v(T"/?))
by Lemma 3.1 (f) of Chang et al. (2001) and Theorem 1 of de Jong (2004). It follows by the proof of
Theorem 3.1 and Part (a) of Lemma 4.1 that

T—l ' (Z X, X ) 5 (T_1/2TT1)/ (TTl zT:XtXéTT1> (T_1/2TT1)

t=1

= 0, (V1(T1/2)) 0,(1)0, <V1(T1/2)) _0, (1/12(T1/2)) |
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T , T
TN g@)Xe = (T7V2Tr3) T2 gle) T X
t=1 t=1

= 0, (n(1"%) 0, (n(T"/?)) = 0, (v}(1"/?))

and

T , T
Tﬁlj'ZXtuu = (TﬁlﬂTTj) Tﬁl/QZT%lXﬂHt

t=1 t=1

= 0, (m(T'?) 0,711 = 0, (T2, (1'))

Observe that
T T -1 " T -1
T4 (Z th;> 0 = (Z th;> > Ziw (Z th;> (Z th;> > Ziy
t=1 t=1 t=1 t=1
T ! T -1/
= 772 <Z g(xt)Zt> <T—1 > th;> (Z g(xt)Zt>
t=1 t=1

t=1

+2773/2 (Z g(xt)Zt> (Tl > th;>
t=1

t=1
T ! T
+T_1 (T_1/2 Z Ztu1t> <T_1 Z ZtZ£>
t=1 t=1

-15T A —1/2 5T
(T sT tht) = 0,(1) and HT ST | Zouys
by the proof of Lemma 3 in Berk (1974). Also note that

—1

T
(T—1/2 > Ztu1t> (30)

since y; = g(x¢)4u1¢. Note that

= OP(KI/Q)

T
S ateris = 0, (@ T KA ).
t=1
uniformly for £k =1,..., K by Lemma A4 (b) of Chang et al. (2001). Then it follows by (30) that
s ) o o
T (> 72| 6 = 0,(T )0, (V1(T1/2)T4<1+r> K20 K) 0,(1)0, (Vl(T1/2)T4<1+7-> K K)
t=1

+0,(T7/2)0, (1 (T2 K757 K ) 0,(1)0,(K'%)
+O0,(T 1) Op(K?)0,(1)0p(K1/?)
= O(BTATTEET) 10 (VAT ) o (), @)
letting K = T°. Thus we get 714 (Z?Zl ZtZé) 0 = 0,(W3(T"/?)), for 6 < r/(2(2 + 3r)). Similarly, we
~/ ~/ ~ N
get 7719 Zthl 9(x4)Zs = 0p (V%(Tl/Q))v 710 Z?:l Zyure = 0p (1 (Tl/Q))a and 7715/ (Z;le XtZé) 0=
op (v3(TY/?)) for 6 < r/(2(2+ 3r)). Thus by the discussion above we can deduce that
T 2(m1/2 : 1/2
. O, (vi(T if (T — o0 as T — oo,
T_]'Z’Uzkz _ p ( 1( )) 1( ) (32)
t=1 0,(1) otherwise,
When g; € T(I) for all i, the similar arguments show that 7! Zthl g*(x+) = 0p(1) by Theorem
5.1 of Park and Phillips (1999), T—* Zle g(xt)u1r = 0,(1) by Theorem 3.2 of Park and Phillips (2001),
T'3(T~ S, XeX))7 = 0,(1), T~'5' /-, g(a4) Xy = 0,(1) by the proof of Theorem 3.1, Part (a)
of Lemma 4.1 and Part (k) of Lemma 3.1 in Chang et al. (2001), T-1§ (71 v Z:Z0)8 = 0,(1) by
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Lemma A3 (b) of Chang et al. (2001). Thus we can deduce that a dominating term in (29) for this

case is T~* Zle u?, and its order O,(1), leading to

T
T30 = 0,(1) if g, € T(I) for all i. (33)

T
= 7'y {g(xt) + uy — X{7 — Z{é} {g(xt,s) Furgs — X|_ A — Zt/fsé}

T

T
= 7! Zg(xt)g(mtfs) +771 Zultul,tfs

t=1 t=1

T T
+T71 (Z XtX;_5> J+774 <Z thg_s> ]

t=1 t=1

T T T T
+7! Z g(@urg—s + T Zg(xt—s)ult - Tﬁlil {Zg(xt)Xt—s + Z g(l’t—s)Xt}

t=1 t=1 t=1 t=1

T T T T
~! -
—T71Q {Zg(xt)Zt_s + Zg(xt_s)Zt} — T711/ {Z XtULt—s + Z Xt—sult}
t=1 t=1 t=1 t=1
o T T T T B
-T7'4 {Z AT Zt_suu} +T7'Y {Z XiZi_ 0+ Xt-sZt’} 0.
t=1 t=1 t=1 t=1

A similar argument to the one used deriving (32) and (33) can be applied to each term to get

— i Drf = O, (V3(TY?)) if g; € T(H) with 1;(T"/?) = 00 as T — oo for some i (34)
t Vs =
t=st1 ’ 0,(1) otherwise.
except for the two terms, 7! ZtT:1 g(x)g(xs—y) and j’ (T‘l Ethl XtXt_S) 7. For the former, observe
that when g; € T(H) for some i,

T

> g@)g(ri-) =T ha(zu)ha (1) + 0p(1) (35)

t=1

1
Tvi(TV/?)

by Theorem 3.3 of Park and Phillips (2001). We can also show that for large T

T 1/2 T
<T_1 > |h($1t)|2> <T_1 > |h($1,ts)|2>

171 % (36)

T 1/2

T Z [h1(z1e) Py (21,6—5) ]|

t=1

IN

IN

where the first inequality follows from Cauchy-Schwartz inequality and E; is defined in (19). Then it
follows from (35) and (36) that

) 0, (v}(TV?) if 11(TV?) = 0o as T — oo,

t=1 0,(1) otherwise,

When g; € T(I) for all i, we get from (36) that 7! Z?:l g(x)g(zi—s) = Op(1). Applying the same
argument to (T’l 23:1 XtXt,s) gives 7' (T’l 23:1 XtXt,s) 7 = 0p(1) leading to (34).
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Given (32), (33) and (34), the argument used in the proof of Theorem 3.1 of Phillips (1991)
shows that

O, (W3 (T"?)) if g; € T(H) with v;(T"/?) — 00 as T — oo for some i

Wi1.2 =

O, (1) otherwise.
Proof of Theorem 4.1: Observe that
Wr = (B2) (@uaRM'R) (B)
= (RYF'Y77) (@112 RYZ T M T Y7 R (RS T 19)
= (0r3) (RTF) {@na (RTFY) (YrM~'Tr) (7' R)} ' (RYF) (Xr3)
= (rr3) (RT7") {ons (T7'R) (TrM'T7) (RTF! )}7 (T7'R) (T24)
—  (RYr7) {@119R (CrM 7)) R} (RY17) (37)

where Y7 is a lower-right (k — 1) X (k — 1) submatrix of Tp. If g; € T(H) with v;(T"/?) = oo as

T — oo for some 1,

Wr (RY77) {@11.2R (YoM 'T7) R}~ (RY17)

O, (T2 (T'2)) 0,17V (T2)0,(1)0, (T2 (TV2)) = O,(T/1),

by Lemma 4.1 and the proof of Theorem 3.1. If g; € T (H) with v1(T"/?) is constant as T — oo for some
i, using the same argument we get Wy = O, (T/?) 0,(171)0,(1)0, (TV/?) = 0,(T/1). 1f g; € T(H)

with T2u; (T/?) — 0o and v1(T*/?) — 0 as T — oo, we also obtain by the same argument
Wr = 0, (T2 (T71%)) 0,(171)0,(1)0, (T2 (T'/2)) = Op(Tw(TV/2) 1),

Otherwise Wr = O, (1) O,(171)0,(1)O,(1) = O, (17 1), giving the required result. m
Proof of Lemma 4.2: (a) Given the result of the proof of Lemma 4.1, it is sufficient to show that

T
Tr Z Xeyr = Op(T) (38)

since the arguments in Lemma 4.1 can be applied to other parts of the proof. (38) can be easily proved
by the application of the continuous mapping theorem 7'~ (+3)/2 Zle xgi)yt = [ Bgi)Bl.

(b) Given (a), the proof of (b) is completely analogous to that of Lemma 4.1 (b) and so it is omitted.
O

Proof of Theorem 4.2: By (37), we have
Wr = (RT77) {@11oR (YrM ' Tr) B} (RY14) = 0, (1) Op(17'T~1)0,(1)0, (1)) = O,(T/1),

where the last equality is from Lemma 4.1. |
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Table 1: Size of the test

01 Oe12  1T'=100 T =200 T=400
10 4 112 la 10 4 12 la 10 4 112 la
0.8 0.8 0.258 0.159 0.223 0.157 0.223 0.102 0.131 0.105 0.244 0.086 0.107 0.091
0.4 0.269 0.138 0.189 0.142 0.249 0.098 0.132 0.105 0.230 0.086 0.101 0.088
0 0.225 0.115 0.159 0.120 0.242 0.108 0.132 0.108 0.206 0.082 0.099 0.089
-0.4 0.220 0.112 0.170 0.112 0.220 0.101 0.129 0.109 0.238 0.081 0.100 0.091
-0.8 0.264 0.144 0.199 0.144 0.238 0.113 0.141 0.111 0.242 0.076 0.088 0.077
04 038 0.196 0.134 0.191 0.129 0.179 0.094 0.115 0.095 0.180 0.091 0.106 0.092
0.4 0.198 0.131 0.186 0.130 0.196 0.089 0.126 0.090 0.165 0.079 0.097 0.077
0 0.175 0.114 0.161 0.106 0.188 0.102 0.126 0.103 0.161  0.083 0.093 0.088
-0.4 0.170 0.105 0.169 0.102 0.181 0.099 0.122 0.097 0.178 0.077 0.096 0.078
-0.8 0.194 0.117 0.180 0.115 0.192 0.103 0.119 0.100 0.183 0.077 0.087 0.069
0 0.8 0.096 0.151 0.238 0.125 0.074 0.085 0.142 0.079 0.070 0.085 0.104 0.079
0.4 0.083 0.126  0.184 0.106 0.079 0.092 0.138 0.083 0.063 0.072 0.094 0.068
0 0.075 0.104 0.165 0.089 0.070 0.087 0.122 0.071  0.062 0.072 0.092 0.066
-0.4 0.059 0.101 0.170 0.079 0.069 0.089 0.128 0.083 0.056 0.070 0.104 0.062
-0.8 0.091 0.143 0.200 0.115 0.074 0.093 0.137 0.084 0.059 0.074 0.100 0.066
-04 0.8 0.007 0.118 0.247 0.121 0.001 0.054 0.141 0.067 0.001 0.049 0.092 0.056
0.4 0.004 0.095 0.191 0.103 0.004 0.056 0.139 0.070 0.001 0.036 0.079 0.040
0 0.002 0.065 0.156 0.070 0.000 0.040 0.112 0.0562 0.000 0.037 0.079 0.048
-0.4 0.002 0.086 0.207 0.086 0.000 0.042 0.116 0.063 0.000 0.030 0.087 0.045
-0.8 0.009 0.101 0.227 0.102 0.000 0.051 0.122 0.067 0.001 0.040 0.084 0.051
-0.8 0.8 0.001 0.056 0.174 0.088 0.000 0.011 0.085 0.035 0.000 0.004 0.043 0.017
0.4 0.001 0.049 0.147 0.069 0.000 0.010 0.089 0.036 0.000 0.002 0.038 0.012
0 0.000 0.036 0.138 0.057 0.000 0.004 0.063 0.020 0.000 0.004 0.030 0.012
-0.4 0.001 0.050 0.170 0.078 0.000 0.006 0.081 0.028 0.000 0.002 0.041 0.009
-0.8 0.000 0.064 0.194 0.104 0.000 0.011 0.081 0.037 0.000 0.005 0.047 0.022
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Table 2: Size-adjusted power of the test, g(z) =5 (¥(z) — 0.5)

01 Oe12  1T'=100 T =200 T=400
10 14 112 la 0 14 112 la 0 14 112 la
0.8 0.8 0.644 0.625 0.575 0.628 0.927 0.922 0912 0915 0998 0998 0.999 0.998
0.4 0.409 0.403 0.405 0.415 0.842 0.844 0.821 0.845 0.990 0.988 0.989 0.991
0 0.384 0.383 0.373 0.389 0.812 0.798 0.791 0.795 0971 0970 0.968 0.970
-0.4 0.459 0.437 0.412 0.429 0.821 0.830 0.793 0.808 0.990 0.989 0.988 0.989
-0.8 0.656 0.622 0.580 0.628 0.926 0.921 0916 0922 1.000 1.000 0.999 1.000
04 038 0.769 0.752  0.713 0.752 0.964 0.961 0.951 0.958 1.000 1.000 1.000 1.000
0.4 0.539 0.521 0.517 0.532 0.898 0.893 0.892 0.894 0995 0.996 0.997 0.996
0 0.530 0.516 0.482 0.510 0.884 0.874 0.853 0.870 0.989 0.988 0.989 0.988
-0.4 0.577 0.561 0.530 0.556 0.892 0.884 0.874 0.877 0.997 0.996 0.996 0.996
-0.8 0.743 0.715 0.663 0.720 0.954 0.953 0.951 0.953 1.000 1.000 1.000 1.000
0 0.8 0.819 0.813 0.785 0.815 0.984 0.981 0.980 0.983 1.000 1.000 1.000 1.000
0.4 0.695 0.696 0.661 0.694 0.942 0.943 0.942 0941 0.998 0.998 0.998 0.998
0 0.657 0.653 0.622 0.673 0.933 0.931 0.923 0933 0996 0996 0.995 0.996
-0.4 0.713 0.692 0.664 0.703 0.939 0.934 0.928 0935 0999 0999 0.999 0.999
-0.8 0.819 0.812 0.780 0.817 0.979 0976 0.974 0979 1.000 1.000 1.000 1.000
-04 0.8 0.891 0.880 0.870 0.881 0.994 0.995 0.992 0994 1.000 1.000 1.000 1.000
0.4 0.809 0.802 0.789 0.800 0.975 0974 0.971 0974 0999 0.999 0.999 0.999
0 0.792 0.796 0.791 0.796 0.967 0.966 0.962 0.965 1.000 1.000 1.000 1.000
-0.4 0.789 0.788 0.762 0.784 0.976 0.975 0.971 0973 1.000 1.000 1.000 1.000
-0.8 0.886 0.879 0.867 0.872 0.995 0.995 0.993 0995 1.000 1.000 1.000 1.000
-0.8 0.8 0.917 0.923 0919 0.923 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.4 0.857 0.863 0.880 0.879 0.991 0.991 0.991 0991 1.000 1.000 1.000 1.000
0 0.853 0.859 0.864 0.863 0.989 0.990 0.992 0.993 1.000 1.000 1.000 1.000
-0.4 0.836 0.839 0.847 0.838 0.989 0.990 0.989 0.990 1.000 1.000 1.000 1.000
-0.8 0.916 0.916 0.918 0.916 0.998 0.998 0.998 0.998 1.000 1.000 1.000 1.000
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Table 3: Size-adjusted power of the test, g(x) = 1/|z|'/3
o1 Oe,12  1T'=100 T =200 T=400
10 14 112 la 0 4 112 la 10 4 112 la
0.8 0.8 0.415 0.258 0.147 0.240 0.606 0.467 0.262 0.358 0.783 0.681 0.481 0.574
0.4 0.216 0.150 0.130 0.154 0.377 0.323 0.199 0.289 0.566 0.486 0.365 0.434
0 0.230 0.179 0.135 0.169 0.351 0.299 0.204 0.247 0.514 0.430 0.321 0.379
-0.4 0.270 0.195 0.135 0.181 0.380 0.320 0.190 0.247 0.601 0.511 0.385 0.444
-0.8 0.454 0.290 0.156 0.272 0.637 0.515 0.299 0.415 0.819 0.718 0.494 0.610
04 0.8 0.596 0.389 0.210 0.370 0.756 0.613 0.327 0.503 0.891 0.776 0.556 0.698
0.4 0.331 0.219 0.150 0.219 0.533 0.440 0.274 0.392 0.741 0.641 0.485 0.585
0 0.330 0.249 0.156 0.243 0.513 0.391 0.238 0.357 0.670 0.578 0.405 0.521
-0.4 0.417 0.264 0.170 0.270 0.528 0.425 0.252 0.354 0.769 0.634 0.447 0.572
-0.8 0.614 0.381 0.181 0.371 0.791 0.666 0.408 0.560 0.918 0.814 0.572 0.730
0 0.8 0.738 0.443 0.249 0.528 0.889 0.691 0.375 0.715 0.963 0.841 0.620 0.855
0.4 0.549 0.331 0.166 0.410 0.744 0.582 0.351 0.625 0.900 0.801 0.573 0.838
0 0.542 0.357 0.191  0.460 0.720 0.568 0.312 0.634 0.855 0.741 0.508 0.796
-0.4 0.621 0.377 0.222 0.482 0.775 0.574 0.321 0.648 0.902 0.783 0.591 0.836
-0.8 0.743 0.457 0.240 0.521 0.902 0.740 0.467 0.753 0.976  0.880 0.637 0.888
-0.4 08 0.900 0.564 0.311 0.620 0.977 0.815 0.463 0.862 0.997 0.936 0.691 0.965
0.4 0.787 0.475 0.264 0.517 0.932 0.768 0.451 0.779 0.988 0.928 0.710 0.933
0 0.811 0.552  0.305 0.594 0.925 0.779 0.451 0.788 0.979 0.904 0.647 0.907
-0.4 0.828 0.512  0.252 0.573 0.949 0.800 0.437 0.799 0.986 0.925 0.715 0.934
-0.8 0.888 0.549 0.299 0.625 0.977 0.835 0.532 0.886 0.998 0.947 0.695 0.975
-0.8 0.8 0.945 0.694 0.374 0.694 0.996 0.936 0.555 0.901 1.000 0.995 0.811 0.987
0.4 0.898 0.636 0.336 0.608 0.992 0.926 0.549 0.839 1.000 0.991 0.807 0.971
0 0.922 0.692 0.342 0.634 0.994 0.928 0.615 0.859 0.999 0.996 0.824 0.977
-0.4 0.918 0.650 0.346 0.586 0.995 0.929 0.566 0.854 1.000 0.994 0.798 0.972
-0.8 0.953 0.655 0.351 0.689 0.998 0.946 0.597 0.918 1.000 0.993 0.785 0.989
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Table 4:

Size—adjusted power of the test, No cointegration

01 Oe12  1T'=100 T =200 T=400
10 4 112 la 10 4 12 la 10 4 112 la
0.8 0.8 0.795 0.502  0.250 0.302 0.882 0.669 0.377 0.314 0940 0.801 0.545 0.402
0.4 0.766 0.513 0.289 0.313 0.846 0.690 0.422 0.362 0925 0.792 0.557 0.395
0 0.769 0.547 0.317 0.343 0.862 0.684 0.406 0.319 0923 0.796 0.558 0.403
-0.4 0.802 0.554 0.318 0.347 0.856 0.675 0.383 0.312 0.927 0.800 0.580 0.432
-0.8 0.789 0.530 0.263 0.313 0.866 0.692 0.415 0336 0926 0.799 0.568 0.419
04 038 0.819 0.540 0.267 0.328 0.903 0.688 0.379 0.340 0.948 0.802 0.547 0.410
0.4 0.787 0.516  0.287 0.326 0.859 0.690 0.436 0.365 0936 0.802 0.576 0.409
0 0.794 0.551 0.314 0.346 0.886 0.697 0.405 0.341 0932 0.796 0.558 0.414
-0.4 0.826 0.554 0.316 0.358 0.871 0.677 0.384 0.324 0940 0.801 0.571 0.421
-0.8 0.828 0.538 0.262 0.329 0.892 0.721 0.446 0.367 0.937 0.802 0.568 0.436
0 0.8 0.860 0.506 0.246 0.338 0.930 0.679 0.364 0.366 0962 0.808 0.538 0.439
0.4 0.863 0.532  0.283 0.365 0.913 0.698 0.436 0.376 0.961 0.811 0.567 0.452
0 0.868 0.567 0.312  0.403 0.926 0.717 0.410 0376 0.958 0.807 0.558 0.456
-0.4 0.886 0.558 0.316 0.382 0.924 0.693 0.404 0377 0962 0.806 0.577 0.465
-0.8 0.871 0.534 0.259 0.343 0.929 0.719 0.438 0.395 0958 0.804 0.571 0.461
-04 0.8 0.924 0.552  0.252 0.367 0.975 0.755 0.412 0423 0990 0.857 0.571 0.486
0.4 0.921 0.556  0.301 0.385 0.971 0.734 0.441 0422 0990 0.845 0.605 0.492
0 0.944 0.611 0.327 0.422 0.981 0.750 0.432 0.435 0989 0.840 0.580 0.495
-0.4 0.930 0.568 0.281 0.394 0.964 0.751 0.421 0431 0987 0.848 0.599 0.508
-0.8 0.923 0.563 0.245 0.360 0.981 0.758 0.449 0.447 0989 0.829 0.584 0.481
-0.8 0.8 0.903 0.572  0.266 0.519 0.984 0.823 0.458 0.683 0.995 0925 0.668 0.785
0.4 0.913 0.563 0.311 0.510 0.974 0.801 0.472 0.679 0996 0.907 0.665 0.767
0 0.930 0.590 0.284 0.542 0.986 0.818 0.487 0.681 0997 0919 0.693 0.766
-0.4 0.910 0.559 0.273  0.488 0.970 0.821 0.455 0.652 0.995 0917 0.647 0.762
-0.8 0.904 0.562 0.270 0.526 0.981 0.824 0.471 0.675 0993 0.892 0.662 0.744
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