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Abstract 

 

Hydrological functions summarize the hydrological cycle as collection, storage, and 

discharge. These functions describe the action of a basin on the water entering its control 

volume (Black, 1997; Wagener, Sivapalan, Troch, & Woods, 2007) as the collection of 

water from precipitation through different flowpaths onto different storage components 

(soil moisture, snow, lakes, etc.), and the final release or discharge as evaporation or 

runoff. The release function, especially the amount released as runoff, is of utmost 

importance for water managers, as it indicates the water availability. The storage function 

can have a pivotal role in mediating the partition of collected water into the different 

releases; however, this link is rather unclear. The objective of this thesis is twofold: First, 

it will try to determine the current state of hydrological functions; second, it will try to 

evaluate the effect of climatic changes on these functions. The function of basins is 

dependent on many factors, including topography, climate, and geology among many 

others, which is why this study is based in a comparative approach. A global data set of 

modeled outputs from the EUWATCH project is used, focusing on the 35 largest river 

basins in the world. The first objective is pursued following the hypothesis that the 

temporal patterns of each variable can be indicators of how the hydrologic functions work 

in a basin. This refers to how water is transferred from precipitation (collection function) 

into storage (storage function) to evaporation and discharge (release function). To study 

the temporal pattern of hydrological variables, a measure to quantify the degree of 

similarity in intra-annual variations is introduced under the term of recurrence is defined 

as the degree to which a monthly hydrological variable returns to the same state in 

subsequent years. The degree of recurrence in runoff is important not only for the 

management of water resources but also for the understanding of hydrologic processes, 

especially in terms of how the variables of precipitation, evaporation, and storage 
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determine the recurrence in runoff. By analyzing these temporal characteristics, a simple 

hydrologic classification framework applicable to large basins at global scale is proposed. 

The overview of recurrence patterns at global grid scale suggested that precipitation is 

recurrent mainly in the humid tropics, Asian monsoon area, and part of higher latitudes 

with a moisture source from the tropics due to oceanic currents. Recurrence in 

evaporation was mainly dependent on the seasonality of energy availability, typically 

high in the tropics, temperate, and subarctic regions. Recurrence in storage at higher 

latitudes depends on energy/water balances and snow, while that in runoff is mostly 

affected by the different combinations of these precipitation, evaporation and runoff. 

Regarding the basin scale classification, in the humid tropic region, the basins belong to a 

class with high recurrence in all the variables, while in the subtropical region; many of the 

river basins have low recurrence. In the temperate region, the energy limited or water 

limited in summer characterizes the recurrence in storage, but runoff exhibits generally 

low recurrence due to the low recurrence in precipitation. In the subarctic and arctic 

regions, the amount of snow also influences the classes; more snow yields higher 

recurrence in storage and runoff. The proposed framework follows a simple methodology 

that can aid in grouping river basins with similar characteristics of water, energy, and 

storage cycles. The framework is applicable at different scales with different data sets to 

provide useful insights into the understanding of hydrologic regimes based on the 

classification.  

To analyze how the hydrologic functions of river basins are affected by climate change, 

future runoff projections using a Budyko- type equation with respect to projections by a 

global hydrological model (GHM) were compared. The comparison is made for the 

annual mean runoff projections for a future period (2060–-2100) after the Budyko 

parameter is set based on hydrologic model outputs at a present period (1960–-2000). By 

carrying out this comparison, it was possible to investigate the performance from the 
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Budyko equation with respect to the hydrologic model at different climate regions and 

explore the effects of including a hydrologic-function perspective. According to the 

comparison, the projections by the two approaches agreed well (R
2 

= 0.983), in particular 

in humid tropic region (R
2 

= 0.986) but with consistent underestimation of future runoff 

(ME = -0.042) by the Budyko equation. In subarctic region the performance of the 

Budyko equation was low (R
2 

= 0.599) due to the overestimation of future runoff (ME = 

0.110). The results in the dry and temperate regions also showed some discrepancy (R
2
 = 

0.931 and 0.724) without apparent patterns in the errors. The paper discusses possible 

reasons for the errors with respect to water and energy seasonality and changes in storage 

component contributions. 
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1. Introduction 

 

1.1. Background 

 

1.1.1. Water and the hydrological cycle 

Water is the most important substance on the planet for maintaining all sorts of 

life. It is essential for human beings not only for drinking purposes but for other activities 

ranging from food production, industry and energy generation. With population growth, 

water demand increases largely and requires adequate quantification of its availability 

and understanding of its behavior on the planet. 

Water covers 70% of the earth’s surface and is present in several states across the 

planet. The hydrological cycle is the conceptualization of different fluxes that move water 

through different stores throughout the globe. These fluxes are mainly evapotranspiration, 

condensation, precipitation, and runoff. The different stores of water include the ocean, 

the earth’s subsurface, glaciers and the atmosphere where water is not in usable form for 

human societies as it is not necessarily fresh drinking water. Freshwater only represents 

about 0.3% of all the water in the earth, and only a portion of is available in rivers and 

lakes. As water moves through the hydrological cycle it has large impact on climate 

through energy exchanges due to its phase changes, and also has impacts on landforms 

through erosion and sedimentation processes. 

 

1.1.2.  Climate change 

With the growth of industrial activity during the 20
th

 century an increase in 

greenhouse gas emissions took place which caused increases in temperatures across the 

globe. Population and agricultural expansion also generated environmental degradation 

and deforestation further affecting the atmosphere. Aside from natural causes such as 
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oceanic variability, volcanic activity and solar activity among others, anthropogenic 

activity has exacerbated climatic change as evidence from IPCC states that since the 

1950s there has been unprecedented warming over decades to millennia (Pachauri et al., 

2014). Climate change further cause changes in atmospheric energy and water 

components which affect the hydrologic cycle in a direct way. 

 

1.1.3. Implications of climate change to the hydrological cycle 

The effects of climate changes in the hydrological cycle are wide, varying at all 

scales, and include changes in atmospheric moisture content (Seinfeld & Pandis, 2012), 

precipitation pattern changes (Trenberth, 2011), heavy precipitation over land 

(Scoccimarro, Gualdi, Zampieri, Bellucci, & Navarra, 2013), and groundwater depletion  

(Taylor et al., 2013) just to name a few. At the global level, climate change has been 

affecting processes in tropical cyclone generation (Mendelsohn, Emanuel, Chonabayashi, 

& Bakkensen, 2012), modification to the El Niño southern oscillation (B. Wang et al., 

2013) and changes in monsoonal areas (Turner & Annamalai, 2012). 

To water management, the most important indicator of water availability is the 

water flowing in rivers measured by the discharge and being the result of runoff processes 

(Schewe et al., 2014). Therefore, the changes in the hydrological cycle that affect runoff 

are of utmost importance. General changes in runoff include timing and magnitude of 

spring runoff due to changes in snowfall (Sorg, Bolch, Stoffel, Solomina, & Beniston, 

2012), decrease or increase in runoff due to depletion or increase of subsurface water 

(Taylor et al., 2013; Velicogna, Tong, Zhang, & Kimball, 2012), earlier response of runoff 

due to urbanization and high intensity rainfall events (Kaspersen, Høegh Ravn, 

Arnbjerg-Nielsen, Madsen, & Drews, 2015; Kendon et al., 2014), or reduction of runoff 

due to increased evaporation (Dai, 2013). 

In addition to being our indication of water availability, runoff and discharge are 
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also our most direct measurement when it comes to disasters from floods and droughts 

(Jongman et al., 2014; Mouri et al., 2013). Urban expansion together with changes in heat 

and precipitation increases the risk of flooding events, landslides, air pollution, water 

scarcity and drought (Smith, 2013). Rural areas will also experience impacts on water 

availability and supply, food security and uncertainty in agricultural areas (Pachauri et al., 

2014; Qureshi, Hanjra, & Ward, 2013; Wheeler & von Braun, 2013). Some direct 

implications for water management include the reduction of renewable water availability 

and growing competition among sectors (Pachauri et al., 2014). Extensive literature has 

focused on the issue of climate change assessments in water resources seeking to improve 

our understanding of climate changes on water resources. 

 

1.1.4. Climate change impact assessments 

Since the identification of changes in runoff at the end of the 20
th

 century, more 

and more research has been dedicated to evaluate and project its future conditions 

(Houghton, 1996; Houghton et al., 2001). Several methodologies have been developed to 

analyze climate change, all of them under strong scientific background and adding great 

amount of knowledge; however, they also contain large uncertainties (Bae, Jung, & 

Lettenmaier, 2011; Deser, Phillips, Bourdette, & Teng, 2012; Heal & Kriström, 2002; 

Weaver & Zwiers, 2000). One of these methodologies, which was first used as a detection 

tool, is the statistical analysis of time series (Groisman, Knight, & Karl, 2001; Groisman 

et al., 2004; Lins & Slack, 1999). With the time series analysis it was possible to detect 

trends and changes in the statistical stationarity of hydrological variables (Hurrell, 1995; 

Trenberth, 2011). The time series analysis later was used to project the future conditions 

of different variables under the assumption that these trends would continue into the 

future (Boulanger, Martinez, & Segura, 2007). In addition to the simple time series 

analysis, many studies also involve some stochastic model to implicitly include random 
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processes of hydrology into the projections (Wilks, 1992).  

Another concept that has been widely used to identify changes in hydrological 

variables is the concept of hydrologic sensitivity or elasticity. The concept was introduced 

by Schaake and Waggoner (1990) as a simple relation between the changes in runoff and 

the changes in precipitation in the form of the equation: 

 

Q

P

dP

dQ

PdP

QdQ
P         (1-1) 

 

where εP is the elasticity of runoff (Q) with respect to precipitation (P). This relationship 

can be applied to other variables also. It can be used in different ways in order to evaluate 

climate changes. The first way is to evaluate the change in runoff with respect to the 

change in precipitation with observed or modeled data from historic period 

(Sankarasubramanian, Vogel, & Limbrunner, 2001). Later, the calculated sensitivity is 

used to calculate future runoff for any given change in precipitation (Dooge, Bruen, & 

Parmentier, 1999). The approach may differ if the interannual sensitivity of runoff is 

calculated in two different periods, analyzing how the runoff response of a basin changes 

under changed climatic conditions (Liu & McVicar, 2012; Tang & Lettenmaier, 2012).  

Other variations were later developed as non-parametric estimations 

(Sankarasubramanian et al., 2001): 

 




















P

Q

PP

QQ
median

t

t

P        (1-2) 

 

where Qt and Pt are correspondent runoff and precipitation values in a time series and Q  

and P  are the mean runoff and precipitation values. Recently, more physically based 
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frameworks were developed in an analytical manner (Roderick & Farquhar, 2011), 

mostly using the water energy framework from Budyko (1974). This framework includes 

the sensitivity of evaporation and runoff with respect to changes in precipitation, potential 

evapotranspiration and river basin characteristics. 

The third and perhaps most widely used methodology for conducting climate 

change assessments is through the use of hydrological models (Ghosh & Misra, 2010; He 

& Hogue, 2012). Hydrological models  (HMs) are powerful tools that have been 

developed in an attempt to represent land surface physical processes (Beven, 2011). Most 

of the physically based models use widely accepted equations to calculate evaporation 

and runoff, and use parametrizations to handle water balance in subsurface, surface and 

snow storage. General circulation models (GCMs) are used to generate global climatic 

projections which provide the variables that are later used by the HMs to generate future 

hydrological conditions. Both, GCMs and HMs are improving constantly, providing 

better representations of climate variables to drive the hydrologic models (Satoh, 2013). 

Still, there are many parameterizations and equations developed to represent water and 

energy fluxes and store in the atmosphere and land, creating large uncertainties in future 

projections (Haddeland et al., 2011; Woldemeskel, Sharma, Sivakumar, & Mehrotra, 

2014). 

 

1.2. A knowledge gap 

 

Despite all the information and knowledge gathered from the climate change 

impact assessments, there is still a long road to travel to determine with absolute 

confidence the future conditions of the hydrological cycle. The usual way to analyze 

climate change impact has mainly focused on studying runoff changes as a direct result of 

precipitation changes; however, there is a large amount of information from observations 
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and models that can deepen our understanding. It is important to take holistic approaches 

that take into account factors such as the storage behavior of basins and how it affects the 

partition of precipitation into runoff and evaporation. Usually assumptions such as the 

stationarity of storage are used to simplify our data driven studies hindering our final 

quantification of water availability. Of course, when using long term projections with 

hydrological models, the storage within the models readjusts to climate conditions but 

more attention to this characteristic is necessary. 

 

1.2.1. Equilibrium of storage in a changing world 

Water balance refers to the mass balance of water in a system, described as a 

series of inflows, outflows and a mass of water stored that reacts accordingly to these 

flows. Water balance in a river basin is then described by the following equation. 

 

P=E+Q+ΔS        (1-3) 

 

where P is the inflow through precipitation, E and Q are the outflows from evaporation 

and runoff respectively, and ΔS is the change in storage. 

The partition of precipitation into evaporation and runoff is related to the input of 

energy from radiation that is available to evaporate water. Depending on other factors 

such as wind and air moisture some of the water will be evaporated and the remnant will 

become runoff (Penman, 1948; Thornthwaite, 1948). It is usually assumed that the 

change in storage (ΔS) is equal to zero because P, E and Q balance each other. Because 

the inputs and outputs of precipitation, evaporation and runoff are balanced in the long 

term, the internal storage of any hydrological system remains in equilibrium, and is 

assumed constant at large temporal scales. However, it has been identified that at 

interannual to multiyear scales storage can fluctuate largely in relation to wet or dry years 
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and the storage response further affects runoff (Jothityangkoon & Sivapalan, 2009). 

With the alterations of precipitation and the other climatic variables due to global 

warming, the equilibrium of river basins might be affected. If the change in precipitation 

and energy compensate each other the basin will remain in equilibrium. However, if only 

precipitation increases, the equilibrium of the basin could be lost as the storage level 

would increase further affecting the partition of precipitation. Figure 1-1 shows the 

possible hypothetical cases that can result from different changes in precipitation and 

energy and how storage would accommodate to the new conditions in a schematic manner. 

These are mere conceptual and schematic representations of hypothetical changes 

oversimplified used in this document to represent a simplified response in storage. 

However, the changes in all variables are much more complex. Point a in Figure 1-1 

shows neutral conditions where neither precipitation nor potential evaporation increases 

leaving all conditions same throughout all periods. Point b in Figure 1-1. shows the case 

of increasing precipitation while maintaining potential evaporation constant. The increase 

of the input without an equivalent compensation of outflows would gradually increase 

storage to higher levels making the basin more saturated. This increase in storage would 

ultimately result in higher generated runoff. Point c in Figure 1-1 shows the case of 

increasing potential evaporation while precipitation is kept constant. The increase in 

water demand in the form of potential evaporation without compensation by precipitation 

would create larger output through evaporation decreasing the storage level. These 

conditions would ultimately result in less generated runoff. Additionally, different 

changes in different seasons can have different impacts in storage and amplify the 

partition of precipitation towards evaporation or runoff depending on the case. 

At small scale (hillslope to watershed scale), there have been extensive studies 

linking the behavior of storage to runoff generation through different concepts and 

methodologies (Ali et al., 2013; Bracken et al., 2013; Graham, Woods, & McDonnell, 
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2010; Sayama, McDonnell, Dhakal, & Sullivan, 2011; Sidle et al., 2000; Tromp‐van 

Meerveld & McDonnell, 2006) determining the importance that it has regarding 

residence times (Sayama & McDonnell, 2009) which ultimately influences the sensitivity 

to climate change (Tague & Peng, 2013). At larger scale several studies have used 

different approaches to assess the interaction of storage variables and climate using 

different methodologies. Delworth and Manabe (1988) explored the relations between 

soil moisture and potential evaporation and how these two interacted and affected climate. 

Further they explored the relation of the persistence of soil wetness with the persistence 

of relative humidity by comparing their lagged autocorrelations (Delworth & Manabe, 

1989). Also at global scale, the interactions between runoff processes, their feedback with 

the atmosphere and their effects on simulated water cycle have been thoroughly studied 

by (Emori, Abe, Numaguti, & Mitsumoto, 1996). Particular to storage components, the 

effects that precipitation and evaporation have on soil moisture have also been assessed 

(Huang, van den Dool, & Georgarakos, 1996). Also, the links between trends in 

precipitation and evaporation with the trends of soil moisture have been analyzed 

(Hamlet, Mote, Clark, & Lettenmaier, 2007). Macroscale effects of water and energy 

supplies (Milly & Dunne, 2002) and their influence on river discharge have been also 

analyzed using observed data and GCMs (Milly & Wetherald, 2002). For river basin 

characterization with storage information, Masuda et al. (2001) used basin and 

atmosphere budgets to evaluate water storage and described similarities among storage 

patterns for major basins in the world. More recently (Kim, Yeh, Oki, & Kanae, 2009) 

used two indices to quantify the significance of different storage components in terrestrial 

water storage, namely subsurface storage, snow and river storage, and describe their 

behavior in 29 basins. Further studies have analyzed macroscale water balance through 

model simulations assuming that by guaranteeing an accurate streamflow simulation with 

respect to observations, the simulated evaporation and soil moisture are also accurate 
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(Maurer, Wood, Adam, Lettenmaier, & Nijssen, 2002). More recently, the climatic 

responses that drive patterns in soil moisture have been assessed (Georgakakos & Smith, 

2001). All these examples have identified that there are important feedbacks between the 

land surface; however, the link of precipitation to runoff through storage is not yet fully 

understood in a holistic approach, and how this interactions vary in a variety of climates. 

This study attempts to gain understanding of precipitation-storage-evaporation- 

runoff interaction through a comparative approach that includes basins from all possible 

regions in the globe. Since the water cycle is highly complex, including many types of 

processes, an approach which carries large detail is not feasible because each of these 

processes in itself represents a large diversity of research topics. Instead, the conceptual 

approach of hydrologic functions (Black, 1997; Wagener et al., 2007) is considered and 

introduced in the following section. 

 

1.2.2.  Hydrological functions in river basins 

The hydrologic functions are a conceptualization of the movement of water as it 

flows through a control volume (Wagener et al., 2007). This a perceptual concept based 

on the subjective understanding of hydrologic processes, not constrained to the ability to 

represent the processes in mathematical form (Beven, 2011). At a river basin scale (the 

whole basin as a control volume) three main functions can be identified (Black, 1997; 

Wagener et al., 2007):   

 Partition or collection: The first hydrologic function deals with the input of water 

to the system. This first function is the collection and partition of precipitation into 

different flow paths (Wagener et al., 2007) such as infiltration, percolation and 

throughfall. 

 Storage: The water from the different flow paths from the partition function 

eventually reaches different storages like soil moisture, snow, or lake, among 
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others (Black, 1997; Wagener et al., 2007). The storage function works as a 

connection between the collection and the release functions.  

 Release: The last function deals with the output of water from the system. 

Originally, Black (1997) described it only as discharge, but Wagener et al. (2007) 

also included evaporation, as it is also a release of water from the system. 

Depending on the partition function and characteristics of storage, there is the 

possibility that some portion of water will be partitioned directly into release via 

direct runoff for example. 

These hydrological functions are also dependent and feedback each other. The 

hydrologic functions are also essential in the conceptualizations of hydrologic models, as 

the releases from the model are usually functions of the storage volumes. 

 

1.2.3. Why a large-scale comparative study? 

The effects of climate change have an impact in the hydrological cycle at all scales 

(Pachauri et al., 2014). Large scale processes like cyclone formation, and El Nino 

Southern oscillation, eventually end up having effects at local scales (Stenseth et al., 

2002; X. Sun, Thyer, Renard, & Lang, 2014). However, to understand different 

hydrologic functions it is necessary to compare basins with different characteristics 

(Berghuijs, Sivapalan, Woods, & Savenije, 2014; Coopersmith, Yaeger, Ye, Cheng, & 

Sivapalan, 2012). Several countries and regions, such as the United States, Australia, 

China and Europe have different datasets that allow for basin intercomparisons. 

Unfortunately, these datasets are only limited to temperate and cold regions, where 

energy is limited to summer periods and moisture is less prevalent than in tropical regions. 

Satellite information is readily available with data sets for precipitation, evaporation 

estimates, and storage change. Additionally, there are several datasets that provide 

measured data like the Global Precipitation Climatology Centre (GPCC) (Adler et al., 
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2003) and the Global Runoff Data Centre (GRDC). EU-WATCH has developed several 

datasets from reanalysis (Weedon et al., 2010; Weedon et al., 2011) and GCMs (Piani et 

al., 2010).  Within the EU-WATCH project, several modeling groups used the reanalysis 

and GCM outputs to force hydrological or land surface models to generate a complete 

data set of water balance (Haddeland et al., 2011; Hagemann et al., 2013). A modeled 

dataset also has great uncertainties, but EU-WATCH provides results from eight different 

models which can be used for intercomparison and aid in uncertainty assessment. 

The resolution of the data set is at 0.5
o 

× 0.5
o
 or about 50 × 50 kms. This resolution 

prevents a detailed local study, but it allows working with large scale basins. This study 

included the 35 largest basins in the world, assuring that water balance is closed in each 

basin. The selection of these basins, assured that all continents (except Antarctica) were 

considered, both hemispheres were included, different latitudinal regions were taken into 

account and a wide variety of physical characteristics exist among all the basins. These 

basins are shown in Figure 1-2. 

 

1.2.4. The Top-Down Darwinian approach 

This work uses a now emerging approach in hydrology and other earth sciences 

referred to as the Darwinian approach (Harman & Troch, 2014) because this study 

emphasizes a comparative approach and is bound to a large scale study by the resolution 

of the data. The approach refers to focusing attention on patterns of variations in 

populations and seeking hypotheses that explain these patterns in terms of the 

mechanisms and conditions that determine the processes. We undertake this approach by 

comparing the behaviors of the 35 largest basins to hypothesize about the dominant 

mechanisms that generate these patterns and their responses to climatic change. 
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1.3. Objectives of this thesis 

 

This thesis attempts to undertake a holistic assessment of water balance to 

understand the effects of climate change. The main objective is to analyze how the 

changes in climatic variables will affect the changes in runoff in terms of not only the 

direct effect but also the mechanistic change that would result from the functional 

changes due to the storage function readjustment. The study is twofold focusing first on 

characterizing basins according to similar functions, and later analyzing the change in 

these functions due to climate change.  

To reach the objective of identifying the present hydrologic functionality of 

basins, the study explores the temporal variations of the four main hydrological variables 

(precipitation, evaporation, runoff, and storage) under the hypothesis that they can be an 

indicator of basin functioning. This study assumes that precipitation has a certain 

temporal pattern; this pattern should transmit to storage as it fills, and then the release in 

the form of discharge and evaporation should also maintain the same pattern as 

precipitation. However, different patterns can also exist; some are obvious, like the lags 

caused by snow, but others involve other factors such as energy/water balances and their 

timings. 

To fulfill the objective of analyzing the effects of climate change on the hydrologic 

functions, the study conducted a comparison between two methodologies commonly used 

to project into the future. One methodology is known as the Budyko framework (Budyko, 

1974), which is used for relating water and energy balances to describe the partition of 

precipitation between evaporation and runoff. This framework is supported by extended 

literature having strong scientific background and mathematical conceptualizations, 

albeit being a physical simplification that ignores hydrologic functioning. The other 

framework is the common hydrological model projection, but the analysis pays particular 
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attention to the process changes that come from the storage response to climate change.  

To analyze these objectives a global data set is used. This data set was developed by 

a European Union project called the Water and Change project (EU-WATCH). The 

EU-WATCH dataset includes climatic forcing data as precipitation and energy variables 

and hydrological model outputs which allow for a complete water balance assessment. 

The dataset includes model outputs from the 20
th

 and 21
st
 centuries and permits 

comparisons from several regions, allowing several responses to be analyzed. 

1.4. Structure of the thesis 

This thesis consists of five chapters as described in the following paragraphs: 

Chapter 1 describes the general background of the issues that this study attempts to 

discuss, and the objectives. 

Chapter 2 provides a description of the datasets that are used for this study and 

gives a description of variables. 

Chapter 3 introduces the study to achieve the first objective of analyzing the present 

hydrological conditions of large river basins by analyzing the temporal characteristics of 

hydrological variables. 

Chapter 4 introduces the study to assess the effect of climate change in the 

hydrological functions by comparing two approaches to project into the future. 

Finally, Chapter 5 concludes by synthesizing the findings of chapters 3 and 4 

emphasizing the mechanisms of storage change. The conclusions also provide insight of 

the policy implications and future directions that can be followed. 
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.  

Figure 1-1. Conceptual representation of the effects of changes in precipitation or 

potential evapotranspiration in storage and the further effect it can have in evaporation 

and runoff: a) no changes, b) increase in precipitation and constant potential 

evapotranspiration, c) increase in potential evapotranspiration and constant precipitation. 

P = precipitation, EP = potential evaporation, E = evaporation, Qs = surface runoff, and 

Qsb = subsurface runoff. 
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Figure 1-2. Basins included in this study. 
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2. Data description 

 

2.1. EU-WATCH Overview 

 

The Water and Change project (WATCH) was a project funded by the European 

Union with the aim of bringing together hydrological, water management and climate 

communities to analyze, quantify and predict water balance and water resources states. 

One of the initiatives of the project is the Water Model Intercomparison Project 

(WaterMIP) (Haddeland et al., 2011). The WaterMIP includes six land surface (LSM) and 

five global hydrological models (GHMs) which use 20
th

 and 21
st
 century climatological 

forcing data. The difference between LSMs and GHMs is whether they close energy 

balance or not. The complete datasets are described and identified in the following 

sections. 

 

2.1.1. 20
th

 century Watch Forcing Dataset (WFD) 

The 20
th

 century Watch Forcing Dataset (WFD) (Weedon et al., 2010) is a 

meteorological forcing based on a reanalysis dataset from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) ERA-40 (Uppala et al., 2005). The dataset 

includes variables of snowfall, rainfall, long and short wave radiation, surface air pressure, 

near surface wind and air humidity. In this thesis, the variables of snowfall and rainfall are 

aggregated to form total precipitation and the rest of the variables are implicitly taken into 

account by the hydrological models to calculate potential evapotranspiration and by the 

land surface models to calculate energy balance. In the rest of the paper we refer to this 

dataset as the WFD. 
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2.1.2. Watch Driving Data for the 21st century 

The 21
st
 century driving data is also a meteorological dataset developed from 

GCMs (Piani et al., 2010). The data sets include one control period (1960-2000) and two 

emission scenarios (A2 and B1) for the 21
st
 century (2001-2100). These scenarios are 

used by three GCMs to generate the same variables as the WFD dataset to be run in the 

LSM and GHMs. In the remainder of this paper we refer to this dataset as the WDD. The 

description of the scenarios and the GCMs is summarized in Table 2-1. 

 

2.1.3. Model Output 

The WFD and the WDD are run through six LSM and five GHMs in order to create 

the land surface components of the hydrological cycle (Haddeland et al., 2011). Each 

model has different schemes to calculate runoff and evapotranspiration. The different 

models also contain different storage components which also affect the evaporation and 

runoff magnitudes. The different parameterizations of storage components, the 

components themselves and the different equations give quite different results at short 

scales and different regional representations (e.g. better performance in humid areas than 

dry areas). For these reasons, general conclusions from global water balance assessments 

and climate change assessments should not be based on a single model but from a wide 

range that provide a sense of uncertainty (Haddeland et al., 2011) and therefore this study 

considers a multimodel database. Due to the availability of the datasets at the time that the 

data were retrieved, only four LSMs and four GHMs were included in this study. The 

models are described in Table 2-2. In the remainder of the thesis we will refer to the 20
th

 

and 21
st
 Century’s Model Output as 20CMO, and 21CMO respectively (Haddeland et al., 

2011). 
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2.2. Variable description 

 

To be able to compare the different variables across climates and across models 

there had to be some treatment to compare the same component within water balance. The 

definition of each variable is presented as follows: 

 Precipitation (P): Precipitation is provided as part of the WFD and WDD datasets. 

LSMs require input rainfall and snowfall independently provided by the datasets; 

whereas GHMs use their own algorithms to separate rainfall and snowfall, using total 

precipitation as input. Since the partitions within the GHMs are not available in the 

provided EU-WATCH dataset, this study used total precipitation as the aggregated 

variables of rainfall and snowfall. 

 Potential Evapotranspiration (EP): The GHMs calculate potential evapotranspiration 

with different schemes. Depending on the scheme they selected, they use different 

climatic variables from the WFD and WDD datasets. The components that each 

model uses to calculate EP are presented in Table 2-2. 

 Evapotranspiration (E): Each of the models uses different conceptualizations of the 

land surface as has been mentioned several times. Vegetation, bare soil, surface water, 

and snow all are treated differently or not included. However, all of the models 

maintain water balance similarly at long time-scales; hence, total evapotranspiration 

is the variable provided. 

 Runoff (Q): Simulated surface and subsurface runoff for each model are provided 

independently. However, since the partitions between surface and subsurface differ 

significantly among models, total runoff is used in this study. River discharge is also 

provided for some models, but for comparative purposes, total runoff from land 

surface is selected. 

 Total Storage (S): Storage is defined in this study as the total amount of water held in 
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a basin regardless its physical state or location. Table 2-2 summarizes different 

storage components aggregated to estimate the total storage in each model. In the 

discussion of each chapter, further analysis is conducted by using individual 

components to understand their influence, mostly in contribution to runoff. 

 Ground Moisture (GM): Content of moisture percolated into the deep layers of the 

subsurface isolated from atmospheric effects. This component releases water directly 

to surface layers. Groundwater storage is a most common term; however, ground 

moisture is used to keep consistency with the variable definition with the 

EU-WATCH (EU-WATCH).  

 Soil Moisture (SM): Soil water content in total soil layer (not independent sublayers), 

including all phases (vapor, liquid, and ice). 

 Surface Water Storage (SS): Total liquid water storage in surface storages like lakes, 

river channels, reservoirs, and wetlands. 

 Snow Water Equivalent (SWE): Total water content in snowpack (frozen or liquid). 
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Table 2-1. 

 Summary of General Circulation Models (GCMs), and Emission Scenarios Used on 

These Models. 

GCMs (Hagemann et al., 2011) 

Complete Name Short Name Center Description Reference 

ECHAM5/MPI-OM ECHAM Max Planck 

Institute 

Coupled Atmosphere 

(ECHAM5) and Ocean 

(MPI-OM) 

(Jungclaus et al., 2006; Roeckner et al., 

2003) 

CNRM-CM3 CNRM Centre National de 

Recherches 

Meteotologiques 

Submodels: 

Atmosphere: 

ARPEGUES 

Ocean: OPA 

Sea Ice: GELATO 2 

(Déqué, Dreveton, Braun, & Cariolle, 1994; 

Déqué & Piedelievre, 1995; Madec, 

Delecluse, Imbard, & Lévy; Royer et al., 

2002; Salas-Mélia, 2002) 

IPSL CM4 IPSL L’Institut 

Pierre-Simon 

Laplace 

Submodels: 

Atmosphere: LMDZ-4 

Ocean: ORCA 

Sea Ice: LIM 

(Fichefet & Maqueda, 1997; Goosse & 

Fichefet, 1999; Hourdin et al., 2006; Madec 

et al., 1998) 

 Scenarios 

Name World 

Operation 

Population Economic Development 

 

Scale 

 

Sustainability 

A2 Divided Continuously increasing Local Ecologically non-Friendly 

B1 Integrated Rises to 9 billion in 2050 

Then decreases 

Global Ecologically Friendly 
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Table 2-2.  

Overview of Models Included in This Research and Their Characteristics. 

Model Name Precipitation 

input 

Storage 

components 

Provided PET Reference 

GWAVA P GM, SM, 

SWE 

No Meigh, McKenzie, and Sene 

(1999) 

H08 R, S SM, SWE Yes Hanasaki et al. (2008) 

HTESSEL R, S SM, SWE No Balsamo et al. (2009) 

JULES R, S SM, SWE No Cox et al. (1999); (Essery, Best, 

Betts, Cox, & Taylor, 2003) 

LPJmL P GM, SM, 

SS, SWE 

Yes Bondeau et al. (2007); (Rost et 

al., 2008) 

MATSIRO R, S SM, SWE No (Koirala, Yeh, Hirabayashi, 

Kanae, & Oki, 2014; Takata, 

Emori, & Watanabe, 2003) 

MPI-HM P SM, SWE Yes (Hagemann & Dümenil, 1997; 

Hagemann & Gates, 2003) 

WaterGAP P GM, SM, 

SS, SWE 

Yes (Alcamo et al., 2003) 

Note: Adapted from (Gudmundsson, Tallaksen, et al., 2012; Gudmundsson, Wagener, 

Tallaksen, & Engeland, 2012; Haddeland et al., 2011). Model names in bold are 

considered as LSMs. Precipitation input is either provided as total Precipitation (P) or as 

rainfall (R) and snowfall (S) separately. Storage can be handled in models as ground 

moisture (GM), soil moisture (SM), surface storage (SS) and snow water equivalent 

(SWE). 
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3. Understanding the hydrologic functions through a classification of temporal 

variations of water balance 

 

Parts of the contents of this chapter have been published in Fernandez and Sayama 

(2015b), including figures and tables. 

 

3.1. Introduction 

 

The hydrological cycle, as one of the main earth systems is directly dependent on 

several periodical cycles with a variety of frequencies. Rotation of the earth on its own 

axis, rotation around the sun, rotation of the moon around the earth and variations on the 

earth’s axial tilt are the main causes for temporal variations in the land surface and 

atmosphere. Variations at seasonal scale are the most recognized patterns in most 

hydrological processes and play important roles in water resource management. Other 

climatological changes and additional anthropogenic pressure also add to the complexity 

of the hydrological cycle. 

Regardless the complexity, the primary function of a river basin in the 

hydrological cycle is simply characterized with three main functions: collection, storage 

and discharge (Black, 1997). The collection function describes the different paths that 

supplied water from precipitation follows until it reaches a storage component. This 

collected water is stored at different states and locations within a basin. Water storage, as 

the first order state variable of river basins, represents its hydrologic condition and serves 

as the link between collection and discharge regulating the timing and amount of 

collected water to be released. The discharge function refers to the processes that release 

the stored water in the form of evaporation back into the atmosphere or as runoff. Among 

these functions, the prediction and understanding of the release as runoff has been of high 
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importance to understand water hazards and resource management. Nevertheless, as 

runoff is highly dependent on the other two functions, understanding the dynamics of 

water collection and storage is unavoidable in order to understand hydrological processes 

of river basins.  

The importance of storage dynamics has been highlighted with emerging new 

concepts in watershed hydrology. Fill and Spill (Shaw, Vanderkamp, Conly, Pietroniro, & 

Martz, 2012; Spence & Woo, 2003; Tromp‐van Meerveld & McDonnell, 2006), 

connectivity (McGlynn, Nippgen, Jencso, & Emanuel, 2013, December) and threshold 

(Ali et al., 2013; C. Fu, Chen, Jiang, & Dong, 2013) are a few examples among various 

concepts of runoff generation mechanisms highlighting the importance of water storage 

and its capacity. Recent studies have demonstrated similar concepts at multiple scales 

based on water balance analysis (Sayama et al., 2011), combinations of soil moisture and 

streamflow measurements (Sidle et al., 2000), and numerical simulations (Graham & 

McDonnell, 2010). For larger river basins, there are only a few studies that have 

identified water storage dynamics at lake/wetland river systems (Spence, 2007; Spence et 

al., 2010). The stored water volume and its partitioning are important also because they 

control on residence time and source areas (Sayama & McDonnell, 2009), which 

ultimately influence on the sensitivity of the system to climate change (Tague & Peng, 

2013). Hence storage dynamics should be incorporated as a fundamental metric for 

catchment classifications and comparisons (McNamara et al., 2011; Wagener et al., 

2007). 

 Jothityangkoon and Sivapalan (2009) introduced a simple theoretical framework 

for classifying different hydrologic regimes based on storage dynamics on different 

semi-arid and temperate catchments. The framework shows temporal patterns of storage 

change with periodic rainfall rate and constant potential evaporation. The amount of 

runoff generated is assumed to be varied significantly depending on water storage being 
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below or above the soil moisture at field capacity and saturation. Therefore with different 

balances in rainfall, potential evaporation and the soil properties, other variables 

including ET, storage and runoff exhibit different temporal patterns, and these are further 

used for a hydrologic regime classification. The assessment further explores the effects of 

storminess, seasonality and interannual climate variability and their effect on their 

proposed regimes. Other examples of different approaches for hydrological classification 

include (Weiskel et al., 2014) and the series of papers (Cheng et al., 2012; Coopersmith et 

al., 2012; Yaeger et al., 2012; Ye, Yaeger, Coopersmith, Cheng, & Sivapalan, 2012). 

Coopersmith et al. (2012) derived the classification using the aridity index, seasonality, 

and precipitation peak with respect to potential evaporation and the day of peak runoff for 

428 catchments in the United States. This classification was further used to categorize 

hydrological change by analyzing the conditions of the indicators (Coopersmith, Minsker, 

& Sivapalan, 2014). Berghuijs et al. (2014) used seasonal water balance and temporal 

interaction of variables to group catchments across the United States.  

Larger scales studies have also been done especially for the United States and 

Europe. Runoff regionalization and classifications have been developed for the Nordic 

countries although it has been highlighted that further definition of the controls on the 

identified regimes are still in need (Gottschalk, 1985; Gottschalk, Lundager, Dan, Reijo, 

& Arne, 1979). In Western and Northern Europe, efforts to regionalize streamflow 

patterns (Krasovskaia, Arnell, & Gottschalk, 1994) and study the controls of climate, 

orography and snow in the different patterns (Stanescu & Ungureau, 1997). In the United 

States, particular to storage components, the effects that precipitation and evaporation 

have on soil moisture have also been assessed (Huang et al., 1996) even assessing the 

links between trends in precipitation and evaporation with the trends of soil moisture 

(Hamlet et al., 2007). Further studies have analyzed macroscale water balance through 

model simulations assuming that by guaranteeing an accurate streamflow simulation with 
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respect to observations, the simulated evaporation and soil moisture are also accurate 

(Maurer et al., 2002). More recently, the climatic responses that drive patterns in soil 

moisture have been assessed (Georgakakos & Smith, 2001). 

For global scale, several studies have also assessed the interaction of storage 

variables by using global circulation models. Delworth and Manabe (1988) explored the 

relationship between soil moisture and potential evaporation and how these two 

interacted and affected climate. Further, they explored the relationship of the persistence 

of soil wetness with the persistence of relative humidity by comparing their lagged 

autocorrelations (Delworth & Manabe, 1989). Also, at global scale, the interactions 

between runoff processes, their feedback with the atmosphere and their effects on 

simulated water cycle have been thoroughly studied by Emori et al. (1996). Macroscale 

effects of water and energy supplies (Milly & Dunne, 2002) and their influence on river 

discharge have been also analyzed using observed data and GCMs (Milly & Wetherald, 

2002). For river basin characterization with storage information, (Masuda, Hashimoto, 

Matsuyama, & Oki, 2001) used basin and atmosphere budgets to evaluate water storage 

and described similarities among storage patterns for major basins in the world. 

McMahon, Vogel, Peel, and Pegram (2007) did an assessment on the streamflow 

characteristics for large rivers across the world analyzing their statistical variability and 

distributions, and later assessed the characteristics in reservoirs (McMahon, Vogel, 

Pegram, Peel, & Etkin, 2007) and finally intercompared across countries and climates 

(McMahon, Peel, Vogel, & Pegram, 2007). More recently Kim et al. (2009) used two 

indices to quantify the significance of different storage components in terrestrial water 

storage, namely subsurface storage, snow and river storage, and describe their behavior in 

29 basins.  

These examples ranging from hillslope to global scale have identified that there are 

important feedbacks and controls between storage and flux components in the land 
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surface and atmosphere; however, the link of precipitation to runoff through storage is not 

yet fully understood in a holistic approach. How this interactions vary across regions and 

which are the main drivers for these controls are also not been fully understood. 

Understanding the dominant controls of basin structure and climate on the hydrologic 

functions (Wagener et al., 2007) an unifying theories of different controls in different 

regions (McMahon, Vogel, Peel, et al., 2007) considering holistic conceptualization, e.g. 

(Black, 1997), is key for defining current hydrological behavior of large river basins. 

The objective of the component presented in this chapter is to propose a 

classification framework for large river basins employing the temporal patterns in 

precipitation, evaporation, storage and runoff utilizing a global dataset. The frameworks 

of (Jothityangkoon & Sivapalan, 2009; Kim et al., 2009; Masuda et al., 2001) are 

followed, in terms of analyzing the temporal variations of the four main hydrological 

variables in different climatologies to find similarities and dependencies in runoff 

generation and variable interactions. The temporal variations are assessed by analyzing 

the recurrence of different variables. It is expected that the different recurrences found in 

different hydrological variables will provide a regionalization, identify drivers that 

determine the different recurrence patterns, and that the characteristics of recurrence can 

provide an idea of the interannual variability and characteristics of extremes in different 

basins. 

 

3.2. Recurrence: Concepts and its measurement 

 

Among a variety of metrics, this chapter focuses on the temporal variations of 

hydrological variables. Recurrence is introduced as a metric and defined as the degree to 

which a monthly hydrological variable returns to the same state in subsequent years. The 

reason for choosing the recurrence as a metric is practical. The recurrence of runoff (Q) 
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and the other three hydrological variables (P, E, and S) are of high importance from a 

water management perspective. For example, Error! Reference source not found. 

ompares monthly runoff from two different basins with high and low recurrence 

characteristics. Although total runoff volume and seasonality are obviously dominant 

factors for water resource management and therefore, many previous classification 

studies have focused on metrics to represent them (Weingartner et al., 2013), 

anthropogenic systems have already adapted to the local hydrological regimes to some 

extent. Generally, it is more challenging for water managers to handle a random pattern 

with high fluctuations different from past experiences, such as floods and droughts, 

happening in unexpected magnitudes in unexpected seasons. The feature of a 

classification using recurrence is to show which variables are recurrent or non-recurrent 

and how different combinations of recurrence distribute around the world. The discussion 

of this chapter works under the assumption that the temporal variations distribute through 

the hydrological variables depending on the hydrologic functionality of the basins. That 

means that the pattern of recurrence or non-recurrence propagates through the 

hydrological cycle or is changed depending on the behavior of the functions. 

 

3.2.1. Quantifying recurrence 

This section introduces three metrics for evaluating recurrence. We select three 

statistical measurements used to calculate periodicity and persistence because of the 

nature of recurrence. We include autocorrelation (AC), fast Fourier transform intensity 

(FFT intensity) and Colwell Index of Contingency (Colwell, 1974). In this study, since 

our interest is the recurrence of monthly variable defined above, we used a period of 12 

months for each metric. 

Lagged Autocorrelation (AC) 

 A serial AC defined as (4) describes the correlation of a time series with time 
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lag k: 
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where rk is the AC coefficient for lag k, N is the total number of observations, and x̄ is the 

mean. This AC calculation loses intensity as the lag increases dying down to zero as it 

approaches N. The AC can further be calculated in terms of the covariance but this 

computation is considered as a biased calculation of AC. In order to avoid the biased 

calculation and still be able to calculate a correlation between partial series with larger 

lags, this series can be assumed as totally separate series with different mean and variance 

and the calculations can be computed as simple correlation with the following equation: 
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For the recurrence measure with monthly time series, evaluating the AC of time 

lag 12 only is insufficient because it would only take into account the recurrence in 

contiguous years. It is more appropriate to include the AC at other multiples of 12. Given 

the length of the time series used in this study, we decided to use the mean of AC from 

time lags 12, 24, 36, 48 and 60. 

The results will be dependent also on the temporal resolution (e.g. daily or yearly 

time series). However in this study we decided to use a monthly resolution and look at 
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yearly cycles because one year is usually a unit at which most of human activities and 

natural cycles repeat themselves.  

Fast Fourier Transforms (FFT) 

 Another measure tested in this study is Fast Fourier Transform (FFT) 

intensity which can identify important periods based on a periodogram. The 

periodical part of a time series can be described by the following equation: 
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where mτ is the harmonically fitted mean, μ is the population mean, Ai and Bi are the 

Fourier coefficients, p is a period (12 for monthly data), and h is the total number of 

harmonics (usually p/2). 

The Fourier coefficients are calculated as follows: 
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The intensity can be calculated from these parameters as follows: 
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The FFT intensity is important to identify the periodicity at a particular 

frequency. A peak in the plot of intensity vs. frequency (periodogram) identifies a 
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frequency for which a periodical pattern is found. For most hydrological data a peak at a 

frequency equivalent to a year exists (i.e., 12 months for monthly data, 52 weeks for 

weekly, and 365 for daily). If a series follows a pattern similar to a sinusoidal function, 

the intensity will be higher than a series departing from this pattern. Additionally if a 

series contains much noise the intensity will also be reduced. Hence, a recurrent pattern 

shows higher FFT intensity. Since the FFT intensity is sensitive to the amplitude and 

magnitude we applied a standard normalization. 

Colwell’s Contingency Index 

 Colwell (1974) introduced the indices of constancy and contingency, which 

together form the index called predictability. These indices have been used to 

analyze physical and biological temporal fluctuations. The index has been 

used widely in the analysis of flowering trees (Colwell, 1974), variations in 

river temperature (Vannote & Sweeney, 1980), variations in flow velocity 

(Riddell & Leggett, 1981), rainfall distribution at a yearly basis (Miller, 1984), 

periodicity analysis in streamflow or rainfall data (Gan, McMahon, & 

Finlayson, 1991), classification of flow regimes for environmental flow 

assessments (Y. Zhang et al., 2012), and description of waterholes in 

hydrological regimes (Webb, Thoms, & Reid, 2012). Colwell (1974) defined 

predictability as the measure of the certainty of knowing a state at a given 

time composed by the sum of two components: constancy, which represent 

how uniform the state of a variable is at different time cycles, and contingency, 

which measures the degree to which state and time are dependent on each 

other. 

Calculation of Colwell’s index first requires categorizing the continuous data to 

prepare a matrix. The columns of the matrix represent time categories and rows represent 

the states of a phenomenon. In this study, the columns represent different months and the 
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rows represent ranges of standard deviations (σ) whose ranges are between minus four 

and plus four, which is equally divided into 16 categories with intervals of 0.5σ. 

Now let Nij be the number of times that a variable falls in state i at time step j. 

The sum of all columns for each state i is Xi, the sum of all rows for each time step j is Yi, 

and the total number is Z. Then Contingency (M) of Colwell’s Index is defined as follows: 
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where s is the number of rows, H(X), H(Y), and H(XY) are defined as: 
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Contingency becomes 1 if a variable is at the same state at a particular time step, 

while the index becomes 0 if the occurrences in different time steps take place at the same 

state. Contingency will be higher as more occurrences in a particular time happen in a 

particular state. If the values of a variable in a given month are similar, they will fall under 

the same state interval. This will be the case with variables with high recurrence. For 

reference, the Constancy (C) and Predictability (Pred) are defined as follows: 
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3.2.2. Distribution of recurrence and classification 

The variables considered in this study are precipitation P, evaporation E, runoff Q 

and storage S, which compose the general hydrological cycle and are the main 

components of the water balance equation. P comes from the WFD dataset and the rest of 

the variables come from the 20CMO dataset, all selected at a monthly time step for the 

period 1979-2001. At global scale or basin scale, each of the four variables are identified 

as being of high or low recurrence based on the description in previous sections. The first 

order division of the classification is whether runoff has high or low recurrence, followed 

by precipitation, evaporation and storage. As a graphical guidance we introduce a 

classification tree in Figure 3-2. The figure shows the 16 possible classes and 

combinations that were found not within the basins included in this study. It is provided to 

be used as a guide to understand further figures. We used runoff as the first variable for 

the classification, as it is the main concern for water resource management, and the other 

three variables were further used to explain why the runoff in each basin or region shows 

high or low recurrence. The value used for classifying the basins as high or low 

recurrence was an AC of 0.75. 

First, we quantified recurrence at the global scale, except for Greenland, where 

the models’ performance is questionable due to its particular conditions, and Antarctica, 

which the EU-WATCH product did not cover. This global analysis was performed for the 

given time series of each variables at each individual grid. The analysis for the world’s 

largest 35 basins was performed for the time series of each variable considering the 

spatial average of the grids included within the limits of the basin. 
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Among all the model outputs from EU-WATCH, particular attention was paid to the 

WaterGAP model results because it is the only model that includes a calibration module 

and is closest to observations (Haddeland et al., 2011). Meanwhile, all other model results 

are also analyzed to cover different model behaviors and discuss model uncertainty. 

 

3.3. Recurrence around the world 

 

In this section, the results of recurrence based on AC from the WaterGAP model as 

the representative case are described. WaterGAP is selected here as it is the only model 

with a simple calibration module and has better agreement with observations (Haddeland 

et al., 2011). AC fits our goal because it precisely measures the degree of similarity of 

each year when lagged by 12 months. Section 3.4 discusses the differences in results for 

the other metrics and the rest of the different models’ results. Figure 3-3 shows the global 

distribution maps of the recurrence (i.e., AC in this case) in the four variables: 

precipitation, evaporation, storage and runoff. From the recurrence calculated for each 

variable’s time series, each grid was identified with red for very low recurrence (<0.5), 

yellow for low recurrence (0.5~0.75) and green for high recurrence (0.75~1.0). To 

explain the distribution of the recurrences in the four variables, this paper uses the 

following terms for different latitude zones for both hemispheres: Tropical (0
o
-23.5

o
), 

Subtropical (23.5
o
-35

o
), Temperate (35

o
-55

o
) and Subarctic and Arctic (55

o
-90

o
). 

The precipitation in the tropical region is basically characterized by the seasonality 

caused by the oscillation of the intertropical convergence zone (ITCZ) and energy supply 

due to the effects of the earth’s tilt fluctuation. Because of this seasonality, two bands 

between 5
o 

and 23.5
o
 for both hemispheres show high recurrence in all variables, while 

they are lower in general at the equatorial band between 5
o
S and 5

o
N where there is no 

seasonality. The rest of the variables generally follow the same pattern as precipitation 
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although the high recurrence areas of storage and runoff are comparatively smaller than 

that of precipitation. 

The subtropical region is mainly characterized by the latitudinal desert belts. This 

region is characterized by low humidity and general dryness in soil conditions. In this 

region, precipitation events are typically sudden and intense without following a certain 

temporal pattern. During rainfall events, the other variables also behave similarly. Hence, 

all four variables tend to have low recurrence. The Southeast Asia Monsoon area is an 

exception due to atmospheric blocking by the Himalayan Ridge which allows warmer 

temperatures from the humid tropics to reach this latitude, therefore displaying high 

recurrence in all variables. 

The temperate region also shows generally low recurrence in precipitation due to 

continental climates or oceanic climates with no dry season. Eastern Asia is the only 

region showing high recurrence due to the effects of the Asian Monsoon. Evaporation in 

this region has high recurrence due to the seasonality of energy with exception of dry 

areas in Europe and Asia. Storage has different geographic patterns throughout the region. 

Runoff follows the same regionalization as storage except for Europe which has 

comparatively low recurrence in general. 

Precipitation in the subarctic and arctic regions shows low recurrence except for 

some areas in North America and Eastern Siberia. Evaporation also exhibits higher 

recurrence in this area due to the differential of energy availability from winter to summer. 

The extent area of high recurrence in storage and runoff is larger in this region, mainly 

due to the amount of snow. 

By taking the spatial average of each variable inside the 35 largest river basins in 

the world, we calculated recurrence and classified them following the tree illustrated in 

Figure 3-2. Figure 3-4 shows the result of the classification, which is described below 

according to each latitude region. Figure 3-5 graphically displays the results of the 
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calculations of recurrence for each variable. The figure shows the results of the calculated 

recurrence from the WaterGAP model output and also shows the maximum, minimum, 

mean and interquartile of recurrence calculated using the other models. Table A1 

summarizes the characteristics of each class. 

 

3.3.1. Tropical region (0.0
o
-23.5

o
) 

The tropical region has the most diversity of classes as seen in Figure 3-4. In this region 

basins belonging to the QPES, QPS, PES, PE and E were found. Mainly, there are two 

distinct patterns observed in runoff. High recurrence in runoff takes place in the most 

humid basins exemplified in Point a of Figure 3-6 by Amazon (QPES) and Point b of 

Figure 3-6 by Orinoco (QPS). Consistent with the global analysis results, we found that 

precipitation is highly recurrent for these classes due to a repeating pattern resulting from 

the oscillation of the ITCZ. Evaporation and Storage are also highly recurrent as they 

follow the same pattern as precipitation as it can be seen in the Amazon time series in 

Point a of Figure 3-7. In Point b of Figure 3-6 and Point b of Figure 3-7 it can also be seen 

that in Orinoco EP is much smaller than P. This allows for evaporation to increase 

towards the energy limit at almost any point of the year. The general pattern of E rises and 

falls similar to the pattern of P following water availability. However, much variability 

exists as evaporation may rise in dry season reducing recurrence. Storage on the other 

hand follows the same pattern as precipitation’s resulting in a highly recurrent pattern. 

More than half of the basins in the tropics exhibit a low recurrence pattern in runoff. 

These basins are exemplified by Zambezi (PES) and Congo (PE) in Figure 3-6 and 

Figure 3-7. These basins are drier, with less runoff ratio, than basins with recurrent runoff 

and they are water limited during some periods of the year. Precipitation shows high 

recurrence due to the availability of moisture being related to the ITCZ. In these classes 

evaporation follows the same pattern as precipitation, following the moisture availability 
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pattern. Storage has high recurrence in PES basins mainly because they are characterized 

by peaks in precipitation and potential evaporation taking place at a different time of the 

year as seen on the Zambezi River’s climatology in Figure 3-6. As a result the storage 

fluctuates largely mainly because the soil moisture component fills in the wet season and 

nearly dries in the dry season (Figure 3-6). This creates a strong seasonal pattern in total 

storage leading to high recurrence. PE class is characterized by the peaks of potential 

evaporation and P peaking at the same time (Figure 3-6d: Congo PE). Compared to the 

Amazon, average precipitation is much lower but potential evaporation is almost the 

same. The Congo basin can be energy limited (P>EP) in the wet season; therefore, 

regardless of the amount of precipitation, evaporation will reach its potential, creating 

more recurrent patterns in evaporation. The anomalies in precipitation directly transfer to 

storage and runoff variations, and since runoff ratio (Q/P) and storage change ratio (ΔS/P) 

are much smaller, these anomalies are larger relative fluctuations to these variables, hence 

recurrence in storage and runoff patterns is low. The Sao Francisco basin is an exception 

in this region consisting only of recurrent evaporation. This case is exactly the opposite 

from the Orinoco-QPS basin and the reason for this behavior is also opposite. 

Precipitation in Sao Francisco has low recurrence, but it is seasonal, exceeding EP in the 

period from November through March season. At this point, regardless of the low 

recurrence in precipitation evaporation reaches the potential rate consistently year after 

year maintaining the same pattern. Regarding this difference between Orinoco and Sao 

Francisco, it is possible that the shape of the basin is an important factor in determining 

the recurrence of variables. For instance, Sao Francisco is an elongated basin in the 

North-South direction, whereas Orinoco is not elongated and is located closer to the 

equator. The variation in moisture availability is larger in Sao Francisco which results in a 

portion of water limitation, and other portion with a limitation of energy. This condition 

creates a well-defined repetitive pattern. The constant energy in Orinoco due to its 
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geographical position allows for the pattern explained before. 

 

3.3.2. Subtropical region (23.5
o
-35.0

 o 
N/S) 

In the subtropical region, two main classes are observed in Figure 3-4. QPES river 

basins are located in the Southeast Asian Monsoon area, where similar behaviors are 

observed as the same class river basins in tropical region in Figure 3-4. These basins have 

tropical weather due to atmospheric blocking by the Himalayan Mountain Ridge which 

prevents colder weather from the north and allows the flow of warmer temperatures from 

the humid tropics. 

On the other hand we can observe the basins that are extremely dry in Figure 3-4, 

represented by Orange basin in Figure 3-6. In these basins, all variables follow the 

patterns of precipitation being, sudden, abrupt and lacking any defined temporal 

distribution, leading to class L (i.e. all variables have low recurrence). The Indus river 

basin is an exception in this region belonging to the E class.  

 

3.3.3. Temperate region (35.0
o
-55.0

 o
 N/S) 

In the temperate region there are three particular classes observed: PE, ES and E 

as seen on Figure 3-4. All of these classes have low recurrence in runoff and high 

recurrence in evaporation due to the seasonality in energy supply. 

Basins located in Eastern Asia belong to the PE class explained previously on the 

Tropical Region section. The reasons for this class to be taking place are the same for the 

temperate region as the tropical region; the reason for recurrence in precipitation comes 

from the moisture supply following the Asia Monsoon Pattern. Similar to the PE basins in 

the tropics, these basins have lower Q/P ratios increasing the weighing of precipitation 

anomalies in storage and runoff. 

A dominant class in this region is the ES class exemplified by the Mississippi 
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Basin in Figure 3-6. In this type of basin the precipitation pattern is not recurrent without 

a distinct dry season. Storage is recurrent in these basins as a result of the energy balance 

characteristics. Due to the limited energy during the winter season, precipitation is 

directly transferred to storage increase. During the summer, the basins in this class are 

characterized as being water limited, and therefore, most of the precipitated water is 

evaporated allowing for storage to decrease.  In these basins, there is some influence of 

snow; however, the amount of snow is not high enough to create a recurrent runoff 

pattern.  

Another group in the temperate region is characterized by recurrence in 

evaporation only as is exemplified by the Danube river basin. In these basins, 

precipitation has a pattern of low recurrence that transfers to the variables of storage and 

runoff. As compared to Mississippi, the Danube River Basin is not energy limited during 

the summer. This creates a pattern where the anomalies and low recurrence of 

precipitation also transfer to storage reducing its recurrence. 

 

3.3.4. Subarctic and arctic region (55.0
o
-90

o
 N/S) 

In the subarctic region, basins belonging to the QPES, QPE, QES, QE, and E 

classes were found as seen on Figure 3-4. As in the temperate region, evaporation is 

recurrent due to the seasonality of energy supply. All of the basins in this region, except 

Kolyma, have recurrent runoff. The runoff pattern is dominated by snowmelt taking place 

similarly year after year observed in the sudden peak in runoff during spring (Figure 

3-6h-j). 

Basins belonging to the QPES and QPE classes have high recurrence in 

precipitation due to moisture inflow from the ocean (Figure 3-4). The recurrence in 

storage is dependent on the amount of snow. The climatologies of these basins (Figure 

3-6, Points h-j) show that storage peaks during the winter months due to the accumulation 
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of snow. Figure 3-8 shows the climatology of storage in these basins further subdivided 

into the volume of the different components. Table 3-1 shows the Component 

Contribution Ratio (CCR), calculated as (Kim et al., 2009) and explained in Appendix A, 

describing the contribution of each storage variation to the variation of total storage. As it 

can be seen, in these basins the highest contribution takes place from snow. The 

WaterGAP model in particular has a small groundwater tank which includes only the 

dynamical part making it small in volume and contribution. Figure 3-9 and Figure 3-10 

show the snow water equivalent and seasonal precipitation amounts. From these two 

figures, we can observe that basins with higher snow amounts have higher recurrence 

both in storage and runoff.  

Basins with low recurrence in precipitation (QES and QE) are basins located on 

continental areas experiencing precipitation patterns with no defined dry period. From 

Figure 3-8, Figure 3-9 and Figure 3-10 we can also conclude that storage is recurrent for 

these basins depending on the amount of snow; higher SWE and winter precipitation are 

linked to higher recurrence. For this region, the recurrence in storage and runoff is 

independent from the recurrence in precipitation but it is dependent on the precipitation 

and snow amounts. 

 

3.4. The behavior of recurrence and of the classes 

 

3.4.1. Characteristics of recurrence measured by AC 

Recurrence vs. seasonality 

 This section discusses the characteristics of recurrence measured by AC from 

monthly variables with the lags of 12 month multiples. Firstly we compare 

the recurrence and seasonality, following the definition of Walsh and Lawler 

(1981): 
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where nx  is the mean of a variable of month n and X  is the annual mean of a 

hydrological variable. Hence, the seasonality measures the degree to which each monthly 

variable of a regime curve deviates from the overall annual mean. Seasonality is 

essentially different from the recurrence, which, as defined above, measures the degree to 

which a monthly hydrological variable returns to the same state in subsequent years. 

Figure 3-11displays the relationship between recurrence and seasonality for the time 

series of each variable from every basin for the WaterGAP model. The figure suggests 

that generally, higher seasonal variables tend to have higher recurrence. This is because if 

a variable has strong seasonality, the influence of the deviation from the climatology has 

comparatively less impact on the AC.  

Nevertheless, there are exceptions where variables are highly seasonal but not 

recurrent.   For example, Figure 3-12 shows the monthly average precipitation in the Ob 

and Yenisei river basins. The two basins are located in the same latitudinal region, sharing 

their borders. The climatologies of the precipitation in both basins are similar, with 

comparable magnitudes at all months. However, the year-to-year variability in both 

basins is different; Ob shows higher variations than Yenisei. Therefore the precipitation in 

Ob has lower recurrence (0.65) than that in Yenisei (0.88). Similar cases can be observed 

when comparing the climatologies shown in Figure 3-6 and the measure of recurrence 

presented in Figure 3-5, and in previous work, such as Kim et al. (2009) where storage 

climatologies show strong seasonality but the yearly time series does not behave in a 

recurrent manner. 

To further explain the difference between recurrence and seasonality, Figure 
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3-13 is presented to show several examples. Case 1 represents a repeating sinusoidal 

pattern with small amplitude resulting in low seasonality and high recurrence. Case 2, is a 

randomly generated series without seasonality and low recurrence. Cases 3 and 4 are 

precipitation of the Yenisei and Ob with similar seasonality, high recurrence in Yenisei, 

and low recurrence in Ob as discussed above. Case 5 is a sinusoidal pattern repeating the 

exact same values and shows high seasonality and recurrence. Case 6 adds a decreasing 

trend to Case 5, but it keeps similar seasonality and recurrence. In summary, seasonality is 

calculated from the climatology of a variable which results from a long term average, 

while recurrence measures the year to year variability of the monthly pattern of a variable. 

Recurrence is an additional feature of temporal patterns of basins, providing different 

information than seasonality.  

Figure 3-14 shows the distribution of seasonality and recurrence in all variables 

for the 35 basins with the results of the WaterGAP model. Precipitation shows high 

recurrence in most of South America, most of Africa, Southeast Asia, and the majority of 

basins in Eastern Asia (Figure 1-14 Point a). In Figure 3-14, Point b, seasonality is not 

that strong for the majority of the basins, aside from a few basins in Africa and the Ganges 

in Southeast Asia. Figure 3-14, Points c and d show the recurrence and seasonality of 

evaporation, respectively. Evaporation is the most recurrent variable. However, the 

seasonality is low except for the subarctic basins related to the availability of energy. This 

highlights the fact that the pattern of a variable can be repetitive, hence being recurrence, 

without it necessarily experiencing opposite extremes (seasonality) in a year. Runoff is 

mostly recurrent in some basins of the subarctic region and some basins in the tropics and 

Southeast Asia (Figure 3-14, Point e), whereas it does not display seasonality except for 

the Ganges and Lena basins (Figure 3-14, Point f). Finally, Storage is a recurrent variable 

in some basins of South America, Africa, and Asia, as can be seen from Figure 3-14, 

Point g. In the case of storage it does not display significant seasonality around the world 
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(Figure 3-14, Point h). 

Recurrence vs. aridity 

 Recurrence in runoff and storage also has some relation with the aridity of a 

basin as well as the timings of energy and water availability. These basin 

characteristics are essential in determining the hydrologic functionality of 

river basins as they are a descriptor of how much water from precipitation is 

transferred to evaporation, storage change or runoff and they have been 

included as classification indices in previous works such as Berghuijs et al. 

(2014); Coopersmith et al. (2014); Coopersmith et al. (2012); Jothityangkoon 

and Sivapalan (2009). Figure 3-15 shows the relations between aridity, 

timing of peaks in P (water supply) and EP (energy supply) with recurrence in 

runoff and precipitation by region.  

Figure 3-15, Points a and b show that in humid basins, where the runoff ratio and 

the storage change ratio are high, runoff and storage follow the patterns in precipitation. 

Drier basins have low recurrence in runoff (classified as PES, PE, ES or E), essentially 

due to the high sensitivity of runoff to precipitation under smaller runoff ratios. For 

example, the case of the Amazon and Congo, aforementioned in section 3.1.1, has 

differences in the recurrence of storage and runoff. For precipitation, both variables have 

similar relative variations but the total precipitation in the Congo is about 70% of the 

precipitation in the Amazon. Additionally, the runoff ratio is smaller in the Congo (0.40) 

than in the Amazon (0.45). The physical meaning of this aspect is that there is less water 

volume in the Congo transferring from precipitation into storage fluctuation and runoff 

generation. Hence, the same anomalies in precipitation have a larger impact in the Congo 

than in the Amazon. Furthermore, recurrence of storage and runoff depend also on the 

timing of P and EP peaks. As Figure 3-15 Points c and d indicate, the recurrence becomes 

higher if P and EP are out of phase (>2 months). 
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3.4.2. Recurrence measured by FFT intensity and Colwell’s Contingency compared to 

AC 

The proposed indices to measure recurrence are lagged AC, FFT intensity and 

Colwell’s Indices. For most of the cases, the basins that show higher AC also have higher 

values of FFT intensity and Colwell’s Predictability. However, it is to be noted that some 

basins showing lower AC and FFT intensity have high Colwell Predictability, especially 

in dry conditions. For example, in the arid basins, where all the variables are low in 

magnitude most of the time except for abrupt peaks, AC and FFT intensity are low, while 

Colwell’s Constancy and Predictability are high. However, these basins are rather low in 

Colwell’s Contingency (Table 3-2). Contingency measures the degree to which state and 

time are dependent on each other, measuring the degree to which a particular state takes 

place at a particular time. For this reason, Colwell’s Contingency results are highly 

consistent with the results of AC and FFT intensity. Colwell’s Contingency is not only 

consistent with the other indices but also adequate for measuring recurrence as defined 

above. Table 3-3 shows the classification of each basin using the different metrics. 

Figure 3-16 shows the correlation between AC and FFT intensity and AC and 

Colwell’s Contingency from the WaterGAP model. All indices correlate well, although 

there are particular cases that deviate from the regressions. As mentioned in Section 3.2.1, 

the threshold selected for AC was 0.75. For FFT intensity and Colwell’s Contingency 

measures, thresholds of 150 and 0.25 were selected to minimize the number of basins 

categorized as different classes.  

The FFT procedure is used to represent a time series by fitting a sine and cosine 

function; therefore, the FFT intensity will be higher for variables following a sinusoidal 

pattern. Figure 3-17 exemplifies the different periodograms with their respective partial 

time series and climatology. Figure 3-17 shows the example of evaporation in 
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Changjiang, for which a highly sinusoidal pattern indicates high AC and FFT intensity. It 

also shows an example of low recurrence with low AC and FFT intensity. However, there 

are two examples where the FFT intensity value indicates low recurrence while AC 

indicates high recurrence. First, Figure 3-17 (evaporation in Congo) shows a bimodal 

pattern that has a high AC but low FFT intensity; since the peaks in evaporation appear at 

different frequencies, the intensity at a period of 12 months becomes weaker and other 

high intensities appear at different frequencies. The second example shown in Figure 

3-17, takes place with basins in the subarctic region, where the highest volume in runoff 

comes from snowmelt in early spring but the peak in precipitation takes place during the 

summer, creating a lump in the recession of the runoff climatology. This second lump 

reduces the intensity at a period of 12 months and increases other frequencies seen on the 

periodogram. For both of these cases with deviations from a sinusoidal function, AC 

better represents the concept of recurrence because if the same pattern repeats, 

independent of the shape of the pattern, AC at lag multiples of 12 will be higher. 

Colwell’s Contingency also has high correlation with AC. However, Colwell’s 

Index is mainly used for qualitative descriptions in ecological sciences, but it is adjustable 

to time series when variable intervals are used as states. Limitations of the use of 

Colwell’s Index for hydrological time series has been extensively discussed by Gan et al. 

(1991) and include the dependence of the results on the amount of classes selected, and 

the tendency for higher values in contingency with shorter record lengths. These are the 

intrinsic limitations of Colwell’s Index with the discretization of data. 

 

3.4.3. Result dependency on model structure 

Model differences and uncertainties have been widely discussed in literature 

about model intercomparison (Haddeland et al., 2011). Main differences among the 

models are attributed to evaporation and snow modules, as well as their storage 
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components. This section briefly discusses how the model structural differences affect the 

results in the calculation of recurrence. Figure 3-18 shows the boxplots containing the 

ranges of recurrence for every variable in all basins by the eight different models. 

Marginal differences in recurrence are found in most of the tropical humid basins 

on the QPES class. Larger differences are observed in storage variables in these basins. 

For the case of Brahmaputra, GWAVA and MPI-HM are outliers in the recurrence of 

storage computing 0.03 and 0.55 respectively, while other models range between 0.92. 

and 0.96. Haddeland et al. (2011) highlighted the overestimation of evaporation on this 

basin due to the use of the Thornthwaite evaporation scheme used by the MPI-HM model. 

This leads to higher interannual variations on storage components due to higher 

evaporation. In the case of GWAVA, the storage series for this basin shows a cyclic 

increase in storage until it is abruptly decreased to a lower volume. This pattern is only 

observed in the snow component of storage, which is highly overestimated in GWAVA 

compared to other models. 

Models in the temperate zone show larger differences mostly in runoff and 

storage recurrence. This is due to the variety of climatologies that are present in this zone 

and the presence of snow. Snowfall is treated differently in each GHM, with different 

thresholds for snowfall, and among -all models, there are different melting schemes. 

These differences mainly affect basins that are around the threshold zone between 0 and 

1˚C, where precipitation is partitioned between snow and rain and melting processes start 

(Haddeland et al., 2011). Despite these large differences, most models indicate the same 

class for most basins. In subarctic basins, where the influence of snow is much more 

important, the differences are low, but the WaterGAP represents the lowest recurrent 

pattern of all models. This is possibly due to the degree day method. Temporal and spatial 

variations in snow content are larger in the WaterGAP model, decreasing recurrence. 

However, the relation of storage recurrence and snow amount is kept, as basins with 
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higher snow content also- exhibit higher recurrence. 

Finally, arid basins have wide ranges due to the differences in partition between 

evaporation and runoff in each model. The MATSIRO model is an outlier in having high 

recurrence in evaporation. When inspecting the time series of storage for these 

catchments, a marked decreasing trend was found. This can be partially attributed to the 

deep groundwater tank that keeps water available for evaporation despite the lack of 

water supply through precipitation. Evaporation follows the seasonal cycle of EP in 

MATSIRO, increasing recurrence. Storage also shows higher recurrence than other 

models despite the decreasing trend because it also contains a seasonal oscillation in a 

similar fashion as the schematic pattern of case 6 in Figure 3-13. 

The WaterGAP and LPJmL models subdivided storage into more than two components, 

featuring a groundwater and surface storage tank. The groundwater stores water 

infiltrated from soil moisture deeper underground and drains directly into a lake tank. 

This groundwater component represents a small volume, only simulating a dynamical 

part of the groundwater that actually exists in a basin. Deep groundwater is not 

represented by these two models. The surface water storage component includes tanks for 

lakes, wetlands, and river channels. These tanks receive as input direct runoff, flow from 

the groundwater tank, and direct precipitation. The outflow from the surface water 

component is given by discharge onto a downstream cell. Due to the inclusion of a river 

channel tank, the possibility that our results are affected by the time lag in lengthy river 

channels exists. However, among the difference in the results shown in Figure 3-15 and 

Figure 3-18 there were no differences that could be attributable to the time lag due to the 

length of the river. Further analysis should be performed in order to understand the effects 

of the inclusion of river channel storage in the measures of recurrence. 
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3.4.4. The storage hydrologic function of basins 

The inclusion of storage and explaining its temporal variations are two of the features of 

this chapter. The approach adds to previous studies that have identified storage as an 

important component for runoff generation (Black, 1997; Sayama et al., 2011) and 

highlighted its interaction with precipitation and evaporation temporal patterns 

(Jothityangkoon & Sivapalan, 2009). The classification remarks on how storage is 

controlled and how it controls runoff in different classes. It is identified that for particular 

classes, the effects of precipitation and potential evaporation transfer more directly to 

runoff, while in other classes, runoff is buffered by storage. The following regional 

hypotheses are derived from the patterns observed among the basins used in this study. 

 

Tropics and Subtropics: 

It was identified that in this region, aridity is the key aspect that determines if 

whether recurrence propagates through the variables. In the most humid basins, runoff 

and storage will follow the same pattern as precipitation. Since evaporation is limited by 

energy, evaporation will reach its potential and it will mainly follow the pattern of energy 

(more constant as it approaches the equator). As aridity increases, energy starts to 

compete with water availability, making evaporation more of a dominant force. Under 

these conditions, the timing of the peaks in energy and water become important and are 

noticeable in the propagation of the temporal patterns of precipitation through the pattern 

of other variables. Where these cycles are out of phase, storage increases during the wet 

season following precipitation, but after reaching the seasonal maximum, energy demand 

withdraws this moisture, reducing the amount that generates runoff. In the basins that are 

in phase, moisture is withdrawn at the same time that it is supplied, leaving less moisture 

to storage variation and runoff generation. Arid basins are completely dominated by 

energy, and moisture is available only sporadically in high intensity events. When these 
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events take place, all variables exhibit a peak that follows the peak from precipitation.. 

 

Temperate region: 

In the temperate region, seasonality plays a major role in the hydrologic 

functions of basins. Precipitation is recurrent only where it is also seasonal; however, 

among the investigated basins, this condition only takes place in basins in phase with 

energy following the same functioning from the tropics. Seasonality of energy is quite 

marked in this region, and it is mostly concentrated in the summer. This allows for basins 

out of phase to have a recurrent storage even if precipitation is not recurrent. The lack of 

demand from energy allows for storage increase during the winter. During the summer, 

energy takes this available moisture, leaving less water for runoff generation. Basins in 

phase experience the same case as phased basins in the tropics, leaving recurrence only in 

evaporation because it follows the seasonality of energy. 

 

Sub-arctic region 

In the subarctic region, the functioning of basins is mostly dependent on storage. 

Snow is the most dominant component and accumulates over a long period of time. 

Regardless of the pattern of precipitation, evaporation and runoff will follow storage as 

energy becomes available during the spring and into summer. However, in order to 

sustain the patterns of runoff and evaporation, the storage amount has to be large. Hence, 

the functioning of the basin is not directly related to the pattern of precipitation but rather 

to its volume. 

 

3.4.5. Implications of recurrence to hydrology and engineering 

From and engineering perspective, the behavior of runoff is of most importance. 

River infrastructure is usually design to withstand extreme events of a certain return 
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period. In addition, water managers also design water supply and irrigation infrastructure 

and supply reservoirs depending on expected low extremes of a certain return period. 

Since basins with high recurrence have less departure from the annual pattern, it also 

means that their extremes are also not as large as in basins with lower recurrence. This 

would mean that if an extreme value distribution function is drawn for a basin with high 

recurrence in runoff and a basin with low recurrence in runoff the basins with low 

recurrence would have a steeper curve indicating more variability in inter annual 

extremes. 

 Additionally, the recurrence in hydrological variables can also be an indicator of 

the interannual variability of hydrological variables. According to the definition of 

recurrence, a variable with higher recurrence is less likely to have a high range of 

interannual variability as it should not deviate largely from the annual cycle. It can also 

indicate the intra annual variability of hydrological variables. In this regard, intra annual 

variability does not refer to the variability of having two marked extremes but that the 

extremes or constancy of a variable are kept in the same period of the year. Once again 

citing the example of Figure 3-12, the pattern of precipitation in the Ob river basin with 

low recurrence, also has greater intra annual variability since high and low extremes of 

different years can be accounted for in different months. Furthermore, the predictability 

of hydrological variables can also be related to their degree of recurrence. A highly 

recurrent variable is likely to follow the same pattern year after year; hence, it will be 

easier to predict its state at a particular part of the year. 

 From a hydrological science perspective, recurrence in hydrological variables 

has also been proven to indicate that different combinations are the result of 

characteristics in basins related to aridity, seasonality, synchronization of peaks in water 

and energy availability. Also, an important regionalization was found, meaning that it is 

possible to deduct certain basin characteristics by quantifying recurrence or vice versa. 
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 Through the classification presented in this chapter, it is also possible to know 

which types of basins are expected to have recurrence in certain variables and it is 

possible for water managers to deduct that basins with certain aridity, seasonality or other 

characteristics, will present a certain degree of recurrence. 

 

3.4.6. Limitations of the current method 

This study was carried out using a multi model dataset developed with reanalysis 

forcing. It is important to know that even if the differences from model to model 

regarding the classification were not large, and the outliers were possible to relate to 

particular characteristics of the models, the study is not based or compared with 

observations. The presented results and figures are developed from the WaterGAP model, 

which is the only out of the eight models to be calibrated against runoff observations. 

However, even this model is known to compensate errors in other variables, especially 

the storage components (Döll, Kaspar, & Lehner, 2003). The discrepancies from model to 

model are likely to exist due to compensation from different variables in order to maintain 

water balance (Haddeland et al., 2011). Future possibilities to test this classification 

include using satellite datasets, or those based in observations, such as the GPCC, GRDC, 

and GRACE for precipitation, runoff and storage respectively, or better yet, a 

combination of models, observations, reanalysis and remote sensed data. 

This study also considers large river basins only (areas higher than 600,000 km
2
). 

These basins possibly include several sub climates, heterogeneity in geology and soils, 

heterogeneity in land cover, heterogeneity in topography, and different impacts from 

humans. For the present study only the spatial average of hydrological variables was 

accounted for, meaning that the regions where these variables are larger dominate the 

patterns that were quantified. For example, the Niger and Nile basins have about half of 

its area in extremely humid and extremely dry areas. Since the magnitude of the variables 
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in dry areas is extremely low compared to humid areas, the patterns of humid areas 

dominate; hence they were classified in the same class as the Amazon River. Most 

probably, if accounted for as sub-basins, the dry areas would be classified under different 

characteristics having different implications for said sub-basin. 

It is hypothesize that this analysis can be also used at basins of any sizes. Within the 

data set, there is no evidence to think that the scale of the basins can influence the 

recurrence of hydrological variables as there are high and low recurrence patterns in 

basins of all sizes. However, smaller basins respond much faster to the hydrological cycle, 

especially the rainfall runoff relation can be only of a few hours. If the temporal scale of 

the analysis is kept at a monthly scale, it is likely that the methodology can still be applied 

since small basins are also likely to have high and dry periods even if every individual 

event is quick (i.e., there will be more events during wet months giving higher monthly 

totals, which should be recurrent or non-recurrent). Still, the limitation of the scale 

remains since smaller basins are much more sensitive to other factors such as human 

impacts (also ignored in the current study), and physiographic effects (e.g., impacts from 

lakes). 

These limitations are possibilities and opportunities for future research. 

 

3.5. Concluding summary 

 

This chapter presented a framework of hydrologic classification applicable to large 

scale river basins based on monthly temporal variations of precipitation, evaporation, 

storage, and runoff. The classification was derived from the concept of hydrological 

recurrence as a metric defined as the degree to which a monthly hydrological variable 

returns to the same state in subsequent years. The recurrence was measured using the 

mean of AC with multiples of 12 up to 60 month lags, the intensity of FFT intensity, and 
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Colwell’s Contingency Index. These measures were calculated at global gridded scale 

(0.5
o
) and at the 35 largest basins of the world based on the WFD or the 20CMO datasets. 

The recurrence of individual variables is generally different in different latitudinal 

regions. For the recurrence in precipitation, the seasonality of moisture plays an 

important role, while for that in evaporation, the effect of seasonality in energy is more 

dominant. Storage recurrence is more dependent on the seasonality of moisture in the 

tropics and snow at higher latitudes. Finally, all combinations control the characteristics 

of the recurrence in runoff. 

According to our proposed classification, which results in 16 possible classes from 

the combinations of high or low recurrence of the four variables, only 10 classes are 

present from our study river basins. Figure 3-19 summarizes the classes and the factors 

that affect them. In the tropical region, recurrence in runoff and storage is essentially 

dependent on aridity. Humid basins are highly recurrent in all variables. Drier basins have 

low recurrence in runoff but storage recurrence is dependent on the timing of the peaks in 

precipitation and EP.  

In the temperate region, evaporation is always recurrent due to high seasonality, 

while precipitation shows low recurrence in this region, due to basins’ aridity. In these 

basins, the timing of peaks between P and EP also influence the recurrence in Q and S. 

In the subarctic region, evaporation is again highly recurrent due to extreme 

seasonality. Precipitation is recurrent in areas with moisture from oceanic current 

influences. Recurrence in storage is in the basins with larger amounts of snow whose 

melting process dominates the patterns of runoff. As a result, the runoff recurrence is also 

high in this region, while the storage recurrence varies in different areas. Therefore, the 

river basins are mainly classified into QPES, QPE, QES or QE depending on their 

combinations. 

The above results were primarily obtained based on the analysis of AC metric with 
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the WaterGAP model output. However, the other two metrics, FFT intensity and 

Colwell’s Contingency, and other eight models also essentially showed consistent results. 

Overall the presented approach is an attempt to define basin similarity accounting 

for the temporal patterns of water balance components. River basins in the different 

classes are likely to behave differently even under the similar changes in climate control. 

The same framework may be applied to long-term time series data from different sources 

including GCM future projections. Furthermore, by using long-term time series breaking 

down into several partial time series, the proposed framework may identify a hydrologic 

regime shift from one class to another, as well as the characteristics of hydrologic 

sensitivity in different classes. For this kind of study, EU-WATCH provides useful 

datasets for projecting future hydrologic variables. 

Finally, there are several limitations that are intrinsic to the classification 

framework. Although, some of the combinations that were not found are considered not 

feasible (e.g. only recurrent runoff), there are other classes that may be found if the 

sample of basins is further extended. The classification also considers no landscape 

controls in the hydrological processes, effects of land use, or human interactions among 

other important factors that also dominate and influence the temporal variability of 

hydrological variables. The framework currently uses the spatial average of large river 

basins, leaving aside heterogeneity in climatic and geographic characteristics. 

Downscaling to smaller sub-basins can bring insight not only in the behavior at smaller 

scale but also on how different sub-basins add up to create a general pattern in the large 

scale basins. Even though the presented method is not a definite and exclusive 

classification framework, the analysis comparing different classes provide useful insights 

into the functions of large river basins in the world. 
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Table 3-1 

Component contribution ratio (CCR) for basins located in the Subarctic region. 

Basin GroundMoist SoilMoist SurfStor SWE 

Yenisei 0.056 0.095 0.247 0.602 

Lena 0.021 0.076 0.391 0.512 

Mackenzie 0.077 0.135 0.109 0.679 

Ob 0.077 0.225 0.112 0.586 

Volga 0.083 0.271 0.145 0.501 

Yukon 0.059 0.052 0.312 0.577 

Kolyma 0.011 0.034 0.322 0.633 

Note: The CCR is calculated as in Kim et al. (2009).  
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Table 3-2 

Results of Colwell’s Indices: Constancy (C), Contingency (M) and Predictability (Pred) for 

all variables in arid basins. 

 

  

Basin Variable C M Pred 

Colorado 

P 0.303 0.110 0.413 

E 0.284 0.265 0.549 

Q 0.433 0.115 0.548 

S 0.302 0.209 0.511 

Darling 

P 0.300 0.073 0.373 

E 0.297 0.209 0.506 

Q 0.380 0.179 0.559 

S 0.291 0.170 0.461 

Grande 

P 0.320 0.173 0.493 

E 0.320 0.207 0.527 

Q 0.432 0.089 0.521 

S 0.297 0.077 0.374 

Orange 

P 0.339 0.176 0.515 

E 0.311 0.202 0.513 

Q 0.507 0.067 0.574 

S 0.365 0.077 0.442 
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Table 3-3 

Classification using different metrics, Autocorrelation (AC), Colwell’s Contingency (M) 

and Fast Fourier Transform intensity (FFT intensity). 

  
Basin AC M FFTintensity 

Amazon QPES QPES QPES 

Amur QPE QPE QPE 

Brahmaputra QPES QPES QPES 

Changjiang QPES QPES QPES 

Colorado L E S 

Columbia ES ES ES 

Congo PE PE L 

Danube E E ES 

Darling L L L 

Euphrates ES PES QPES 

Ganges QPES QPES PES 

Grande L L L 

Huanghe PE PE PE 

Indus E E L 

Kolyma E QE E 

Lena QPE QPE PE 

Mackenzie QPE QPE PES 

Mekong QPES QPES QPES 

Mississippi ES ES ES 

Nelson E E PES 

Niger QPES QPES QPES 

Nile QPES QPES QPES 

Ob QES QES ES 

Okavango PE PE PE 

Orange L L L 

Orinoco QPS QPS QPES 

Plata PE PE PES 

Sao Francisco E E PES 

St. Lawrence E E ES 

Syr Darya ES ES ES 

Tocantins PES PES QPES 

Volga QES QES ES 

Yenisei QPES QPES PES 

Yukon QE QE QE 

Zambezi PES PES PES 
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Figure 3-1 Schematic representation of different levels of recurrence in runoff (Q) time 

series the Mekong and La Grande river basins. 
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Figure 3-2 Hydrological classification tree. Color codes indicate the colors used in 

further maps to identify the classes to which basins belong. Dashed lines indicate paths 

into classes that were not found in the studied basins. 
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Figure 3-3 Recurrence (AC) in main hydrological variables at global scale: (a) 

precipitation, (b) evaporation, (c) storage and (d) runoff. The map identifies the areas 

with lowest recurrence (< 0.5), low recurrence (0.5–0.75) and high recurrence (0.75 <). 

Reference latitude lines identify the divisions in latitudinal regions where particular 

conditions and similarities were found to exist. The results shown in this figure are based 

on the WaterGAP model output only. 
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Figure 3-4 Basin location map with identification by class. A threshold for defining high 

recurrence or low recurrence was set at 0.75. Latitude regions were defined between the 

reference lines shown on the map for both hemispheres delimiting the tropical region 

between 0.0 and 23.5, subtropical region between 23.5 and 35.0, temperate region 

between 35.0 and 55.0 and subarctic and arctic regions greater than 55.0
o
. This map is 

based on the results of the WaterGAP model only. 

  



61 

 

 

Figure 3-5 Radar charts depicting the results of recurrence for each variable in each individual basin. Results from the WaterGAP model 

are highlighted in red, the model mean is shown as a solid black line, the interquartile is shaded in gray, and the max. and min. values are 

shown with a dashed black line. 
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Figure 3-6 Variable climatologies for selected basins for each class and region. The charts 

present a particular basin for each of the 10 classes found sorted by region. Comparable 

axis of precipitation, evaporation, runoff, and potential evaporation are shown on the left 

vertical axis and storage axis is shown on the right vertical axis.   
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Figure 3-7 Monthly time series of selected basins in the tropics from each class: (a) 

Amazon – QPES, (b) Orinoco – QPS, (c) Zambezi – PES, (d) Congo – PE. The graphs 

exemplify time series with high or low recurrence depending on the classification. The 

averaged AC coefficient is provided in the top right corner of each graph. 
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Figure 3-8 Climatology of storage and the various storage components for subarctic 

basins. 
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Figure 3-9 Snow water equivalent seasonality of subarctic basins. 

 

Figure 3-10 Seasonal precipitation climatology of subarctic basins. 
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Figure 3-11 Relationship between recurrence and seasonality from all of the time series 

corresponding to each variable in each basin. 

 

Figure 3-12 Seasonal climatologies of precipitation in Yenisei and Ob river basins (a), 

long-term mean (b), and (c) 23-year precipitation in Yenisei and Ob river basins. (b) and 

(c) show the minimum, maximum quartiles and mean for each month.  



67 

 

 

Figure 3-13 Schematic time series representing different levels of recurrence, variability 

and seasonality. 
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Figure 3-14 Global comparison of recurrence and seasonality. (a) Recurrence of 

precipitation, (b) seasonality of precipitation, (c) recurrence of evaporation, (d) 

seasonality of evaporation, (e) recurrence of runoff, (f) seasonality of runoff, (g) 

recurrence of storage, (h) seasonality of storage. Recurrence and seasonality use the same 

color scale. 
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Figure 3-15 Relation of Aridity and Timing of peaks and recurrence in runoff and storage. 

(a) Timing of P and EP with recurrence in storage, (b) relation of timing of peaks in P and 

EP peaks and recurrence in runoff, (c) relation of aridity and recurrence in storage., and 

(d) relation between aridity and recurrence in runoff. 
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Figure 3-16 Comparison of AC with Colwell’s contingency (M), and FFT intensity. 
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Figure 3-17 Examples of variables with different results in FFT intensity. (a) Changjiang’s evaporation, (b) runoff in Yenisei, (c) 

precipitation in Congo and (d) storage in Orange. 

  



72 

 

 

Figure 3-18 Model differences. Box plots show the recurrence measure for each variable 

in each basin displaying an interquartile uncertainty band, WaterGAP marked by the red 

spot, the mean highlighted by the black mark and the maximum and minimum values. 
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Figure 3-19 Summary of classes based on recurrence and the basin characteristics that 

were found to influence the differences between classes. 
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4. The effect of climate change in the hydrological functions: Comparing process 

complexity vs. conceptual simplicity in future runoff projections 

 

Parts of the contents of this chapter, including figures and tables, have been submitted for 

publication in Hydrological Research Letters and are currently under review (Fernandez 

& Sayama, 2015a). 

 

4.1. Introduction  

 

4.1.1. Process complexity: hydrological modeling 

How will climate change affect the runoff of a basin? This question is the source 

of many studies within the hydrological sciences. A common approach to address this 

question is through the use of HMs driven by outputs of GCMs with different scenarios 

(Field & Van Aalst, 2014). This approach has wide acceptability since both GCMs and 

HMs are process based models that simulate the climate and land surface conditions to a 

certain degree of accuracy (Alcamo et al., 2003; Bondeau et al., 2007; Déqué et al., 1994; 

Déqué & Piedelievre, 1995; Fichefet & Maqueda, 1997; Hagemann & Dümenil, 1997; 

Hagemann & Gates, 2003; Hourdin et al., 2006; Jungclaus et al., 2006; Madec et al., 

1998; Rost et al., 2008; Royer et al., 2002), and provide spatial and temporal variations of 

water fluxes and storages for detailed analysis (Haddeland et al., 2011). Additionally the 

variety of GCMs and HMs allows completion of ensemble comparisons of multiple 

climates, from local to global scales (Haddeland et al., 2011; Haddeland et al., 2014; 

Hagemann et al., 2013). However, since each model has its own emphasis with different 

theoretical backgrounds, the projection results usually show a wide range depending on 

the choice of models and their settings (Beven, 2006; Lo, Famiglietti, Yeh, & Syed, 2010; 

Müller Schmied et al., 2014; A. Y. Sun, Green, Swenson, & Rodell, 2012). Therefore, 
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their use and interpretation require high levels of expertise in order to improve calibration, 

reduce equifinality, and guarantee process based results. Moreover, atmospheric and 

hydrological models can be computationally expensive, as the numerical methods used 

within them require a large amount of iterations, updating variables, and storing all the 

relevant time series (Bierkens et al.; Kollet et al., 2010; Kumar, Livneh, & Samaniego, 

2013; Maxwell, 2013; Yamazaki, Almeida, & Bates, 2013) 

 

4.1.2. Conceptual simplicity  

Instead of using process based models, simpler analytical frameworks have been 

proposed. One of the approaches has been based on the Budyko framework which uses 

the water and energy balance concepts to define the partition of precipitation into 

evaporation and runoff (Budyko, 1974). The climatic variables that govern water and 

energy availability are the variables likely to change due to global warming making the 

Budyko type equations an adequate tool to analyze these changes (Roderick & Farquhar, 

2011). Several functional forms of the Budyko equation exist as nonparametric (Budyko, 

1974; Ol’Dekop, 1911; Pike, 1964; Schreiber, 1904), or parametric (including catchment 

properties) (Choudhury, 1999; B. Fu, 1981; Mezentsev, 1955; X. Zhang, Harvey, Hogg, 

& Yuzyk, 2001) which have evolved throughout the years depending on the application or 

to improve the accuracy of the method. Some examples of the evolution of the water and 

balance relation are introduced in Table 4-1. 

The changes in climate through Budyko type studies have been carried out usually 

by separating a time series into two periods and comparing the changes in characteristics 

from both periods, either with observations (Jiang et al., 2015; Liang & Liu, 2014; Liu & 

McVicar, 2012; Xu, Yang, Yang, & Lei, 2014; H. Yang, Yang, & Hu, 2014; Z. Zhang, 

Chen, Huang, & Zhang, 2014) or using modelled data (Y. Sun, Tian, Yang, & Hu, 2014). 

Some of the detected changes are easily attributable to climate through precipitation or 
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potential evapotranspiration and have been analyzed through sensitivity frameworks 

(Roderick & Farquhar, 2011). However, the changes in mean annual P and Ep do not 

entirely explain the changes in Q, hence much of the study has been dedicated to analyze 

the change in catchment properties and attribute it through the catchment parameter. In 

general, the catchment properties can encompass any characteristic that would have any 

influence in the partition of precipitation into evaporation and runoff but mostly refers to 

the changes in vegetation (Chen, Alimohammadi, & Wang, 2013; Donohue, Roderick, & 

McVicar, 2007; Li, Pan, Cong, Zhang, & Wood, 2013; D. Yang et al., 2009; Lu Zhang, 

Dawes, & Walker, 2001), or rainfall patterns  (Li, 2014; L Zhang et al., 2004). Most of 

these studies have been applied at single basins (Donohue, Roderick, & McVicar, 2011; 

Jiang et al., 2015; Liang & Liu, 2014; Liu & McVicar, 2012; Roderick & Farquhar, 2011; 

Xu et al., 2014; Z. Zhang et al., 2014) or under varied climatologies within a region: the 

United States (Carmona, Sivapalan, Yaeger, & Poveda, 2014; Chen et al., 2013; 

Istanbulluoglu, Wang, Wright, & Lenters, 2012; D. Wang & Hejazi, 2011), Australia 

(Donohue et al., 2007; Donohue, Roderick, & McVicar, 2010; Donohue, Roderick, & 

McVicar, 2012; Teng, Chiew, Vaze, Marvanek, & Kirono, 2012), China (Cong, Zhang, Li, 

Yang, & Yang, 2015; Xiong & Guo, 2012; D. Yang et al., 2009; D. Yang et al., 2007; H. 

Yang & Yang, 2011; H. Yang et al., 2014; Yu et al., 2013) and Europe (Oudin, 

Andréassian, Lerat, & Michel, 2008; Velde et al., 2014). The framework has also been 

applied at the global scale in a variety of studies to develop functional forms (Arora, 

2002; Koster & Suarez, 1999; L. Zhang et al., 2001) or study the catchment properties 

parameter (Li et al., 2013; Williams et al., 2012). 

 

4.1.3. The need of a comparison 

Despite all the literature exploring hydrological change through the Budyko type 

equations, the comparison of these projections to projections with models has been 
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limited (Roderick, Sun, Lim, & Farquhar, 2014; Teng et al., 2012). Teng et al. (2012) used 

a hydrological model to generate hydrological projections for Australia driving them with 

the output of 15 GCMs and compared it to Fu’s equation (Table 4-1). They concluded that 

the Budyko equation is suitable for estimating climate change impact on mean annual 

runoff over large regions as the projections using it were similar to the projections from 

hydrological models, and mainly were inside of the spread of results with different GCMs. 

They also found biases in particular regions, but their study was limited to Australia. 

Roderick et al. (2014) compared the Budyko framework using Choudhury’s equation 

(Table 4-1) to projected GCM ensemble mean changes at a gridded global scale. In 

general, they found that not did only the models’ output follow a Budyko relation but also 

that the projection of changes with the Budyko framework and GCM projections was in 

good agreement. Roderick et al. (2014) did not do a detailed regional comparison aside 

from using an approximation of P-E only from GCMs. Still missing from the literature is 

an extensive comparison of the projections of Budyko framework and models using multi 

scenario, multi-GCMs, and GHMs to compare the performance of Budyko at different 

global climatologies. 

This chapter presents the performance of the projections made with the simple 

Budyko framework against detailed and process based projections from a global 

hydrological model. The selected model is the Lund-Potsdam-Jena managed Land 

(LPJmL) global hydrological model (Gerten, Schaphoff, Haberlandt, Lucht, & Sitch, 

2004; Rost et al., 2008). The choice of the model was bound by the data requirements of 

the Budyko framework (particularly that potential evapotranspiration be provided) and 

the availability of the model output data at the time when the study was carried out. 

Additionally, the LPJmL model contains one of the most detailed storage schemes within 

the dataset, which allowed us to explore possible storage change characteristics in the 

projections. The objective is to determine whether the ignoring processes such as 
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seasonality and storage characteristics (Budyko) represents similar results as an approach 

that considers them (HMs). Specifically, Budyko equation’s performance with respect to 

the models regionally and climatologically is tested. The literature using Budyko to 

project into the future is massive but it is important to know how it performs with respect 

to physically based models, what types of basins it can represent better, and the reasons 

for the differences between projections from HMs and Budyko. It is believed that 

different basins subject to different climates have different reactions in the whole 

hydrological cycle which can result in Budyko equation behaving in a particular fashion 

respective to the models. Finally, the reasons for the particularities in the tendencies of the 

Budyko framework are discussed by analyzing the changes in storage and seasonality that 

the model is able to reproduce. Possible errors and biases from Budyko equation can be 

the result of changes in the state variables of the basins when they are subjected to 

persistent trends in climatological variables adjusting the hydrological functioning to the 

new conditions. 

 

4.2. The method for comparison 

This section describes the regional division for this chapter and the methods to calculate 

the projection from the Budyko type framework, assess the statistical significance of 

projected changes by models, and assess the errors of the projections using Budyko’s 

equation with respect to the models’ projection. 

 

4.2.1. Regions 

The regional division used for this chapter is described as follows: 

 Humid tropics (HT): basins within the latitudes -23.5
o
 and 23.5

o
 or are 

affected by tropical climate such as the Brahmaputra and Ganges basin, and 

that have precipitation higher than 750 mm 
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 Dry basins (Dry): Considered for any latitude having an aridity index higher 

than 2 and precipitation less than 750 mm 

 Temperate basins (Temp): Considered as non-dry basins in the latitudes 

between 23.5
o
 and 55

o
 

 Subarctic basins (SA): Considered as basins with the majority of its area 

above the latitude 55
o
. 

 

4.2.2. Budyko equation and projection to climate change 

As mentioned above, the Budyko framework is a model to represent the partition 

of precipitation into evaporation and runoff based on the water and energy balance: 

 

 PEPfE ,         (4-1) 

 

 There have been mainly two branches of Budyko-type equations that have 

evolved into several functional forms resulting from the application given in the afore 

mentioned studies and the region of application. One branch has worked with the 

functional form of B. Fu (1981), exemplified in the works of Potter, Zhang, Milly, 

McMahon, and Jakeman (2005); D. Yang, Sun, Liu, Cong, and Lei (2006); D. Yang et al. 

(2007); L Zhang et al. (2004). Fu’s equation (Table 4-1)can be rewritten as: 

 

   /1

Pp EPEPE        (4-2)  

 

The other branch (Bagrov, 1953; Mezentsev, 1955; Milly & Dunne, 2002; Pike, 1964; 

Turc, 1954), is generalized in the form of Choudhury (1999), and re-written from 

Choudhury’s equation (Table 4-1): 
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Both functional are characterized by including parameters ω and n to represent catchment 

characteristic and were unified by a linear relationship (H. Yang, Yang, Lei, & Sun, 2008). 

For the current study we select equation (4.3) known as the Mezentzev-Choudhury-Yang 

(MCY) functional form. 

Based on the Budyko formula, future runoff was projected as described in the 

following steps. First, the parameter n was estimated using the current climatic variables, 

including P, EP, and E obtained from the WDD and 21CMO datasets. Then, future runoff 

(P-E) was calculated from the projected climatic variables (i.e., future P and EP) with the 

estimated parameter n. Note that the procedure imitates one procedure to project future 

runoff based on the Budyko framework. The catchment parameter n reflects all the 

factors that can affect the partition of precipitation into evaporation or runoff (Roderick & 

Farquhar, 2011). It includes topography, soil characteristics, geologic characteristics, 

vegetation, land cover, and climatic factors (precipitation seasonality, intensity and 

spatial distribution etc.)  (Roderick & Farquhar, 2011; D. Yang et al., 2007; H. Yang et al., 

2008; L. Zhang et al., 2001).  Although geology, topography and soils are not likely to 

experience any large scale changes in the time considered in this study, the catchment 

characteristic of n itself may change in the future due to land cover change (Li et al., 

2013) and vegetation change (Porporato, Daly, & Rodriguez‐Iturbe, 2004; D. Yang et al., 

2009) increased CO2 (Gedney et al., 2006), those changes in the catchment 

characteristics are out of the scope of this study since the compared global hydrologic 

models also assume constant land and vegetation covers. 

Most of the literature, quantifies the projections of Q using the sensitivity 

framework of Roderick and Farquhar (2011) introduced in the Appendix. This sensitivity 
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framework uses a Taylor approximation to solve the differential equations which results 

in errors quantified in H. Yang et al. (2014). Since the dataset allows to directly use the 

MCY equation to find E and Q we avoid the error of the sensitivity framework by doing 

the calculation directly. In the rest of the chapter the MCY equation is referred to as the 

Budyko equation. 

 

4.2.3. Metrics of performance 

In order to test the performance of the projections from the Budyko equation with 

respect to the model projection we calculated the squared correlation coefficient r
2
, 

coefficient of determination R
2
, and the median error ME. These metrics are calculated 

as: 
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where QBi  and QMi  are the runoff projected by Budyko and the model respectively for 

any given case i, and n is the total number of cases (35 basins x 3 GCMs x 2 scenarios = 

210). 
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4.2.4. Mann-Whitney Test for significance 

To test for significant changes in runoff and other variables for each basin we used 

https://en.wikipedia.org/wiki/X
https://en.wikipedia.org/wiki/X
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the non-parametric statistical test of Mann-Whitney. The test posts the null hypothesis 

that μX=μY, where μ represents the means of the series X and Y. The test unifies both 

series as one and ranks them. The test statistic is defined as follows: 

 





Xn

i

iw RM
1

        (4-7) 

 

where Ri is the rank of each value of series X or Y. Critical values of the test statistic are 

provided in Von Storch and Zwiers (2001). 

 

4.3. Results of the comparison 

Figure 4-1 shows the comparison of runoff in the future period projected by global 

hydrologic models and the Budyko equation. The grey shades in the figure illustrate the 

ranges of discrepancy corresponding to ±20%, ±10%, and ±5% between projections by 

the two approaches. The figure indicates that 95% of the 210 total cases (35 river basins x 

3 GCMs x 2 Scenarios) are within ±20% of the error, 70% of the cases are within ±10%, 

and 38% are within ±5% (Table 4-2). To quantify the overall performance, Table 4-3 
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 also displays the squared correlation coefficient r
2
 and the coefficient of determination 

R
2
. Furthermore, to make the figure more visible with individual river basin names, Table 

4-2 presents the same results but only from outputs of a single GCM (CNRM GCM) 

under A2 scenario. 

It is obvious that the magnitude of projected future runoff differs significantly 

depending on the climatic zones. According to the statistics summarized in Table 4-3, 

Humid Tropic (HT) region has the best performance (r
2

 = 0.993, R
2

 = 0.986), followed by 

Dry region (r
2

 = 0.956, R
2

 = 0.931). On the other hand, Temperate (Temp) and Subarctic 

(SA) regions show comparatively low performance (r
2

 = 0.760, R
2

 = 0.724; r
2

 = 0.919, R
2
 

= 0.599 respectively). 

For further understanding of the Budyko performance, the relative changes of 

runoff from the present period (1960-2000) to the future period (2060-2100) were 

calculated. Table 4-3 shows the results of the relative changes of runoff projected by the 

two approaches with the identifications of significant or non-significant changes in runoff. 

The significance of the changes in runoff was determined using the Mann-Whitney test 

(Von Storch & Zwiers, 2001) with a 5% confidence level. The figure suggests that in the 

HT region, about 56% of the cases show significant changes (Table 4-4) and the majority 

of changes are increases in runoff in the future. In this region, Budyko consistently 

underestimates future runoff (ME = -0.042). 

Figure 4-2 shows that the SA region has the highest number of cases with significant 

runoff changes (86%; Table 4-4). In addition, both the hydrologic model and the Budyko 

equation suggest increases in runoff. The relative runoff change in Figure 4-2 clearly 

shows that the Budyko equation consistently overestimates the future runoff as compared 

to the models in this region. The overestimation by the Budyko equation can be also 

confirmed in Figure 4-3, which shows the distributions of the relative errors and their 

mean values (ME = 0.110). 
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The Temp and Dry regions have lower median errors (ME = -0.008 and ME = -0.019); 

however, this is due to the compensation of large positive and negative errors. In these 

regions, the ranges of the relative errors are larger than in HT and SA regions as shown in 

Figure 4-3. 

 

4.4. Patterns of changes in runoff: the contribution of storage and seasonality 

 

As described in the previous section, unique characteristics in the performance of 

the Budyko projections were found. In this section, the possible reasons for the different 

performance in different climatic regions with respect to the seasonality of water and 

energy availability, and hydrologic storage changes are discussed.  

 

4.4.1. Humid Tropics 

In the HT region, most of the basins showed increases in runoff by both methods, 

which were underestimated by the Budyko equation. Figure 4-4 Point a displays the 

present and future climatology of P, E, Q, and EP at the Ganges River basin as an example. 

The main characteristic of the basins in this region are energy limited in the wet season 

and the excess rainfall becomes runoff with temporal water storage in the basin. 

According to the GHM, runoff ratio (Q/P) in the present condition is 0.543. Note that in 

this study, Q/P by the Budyko equation becomes the same as the one by hydrologic model 

for the present climate condition because the parameter n was estimated based on the 

output of the hydrologic model. On the other hand, for the future climate condition, 

estimated Q/P will be higher by the model (0.646) than the Budyko equation (0.616). To 

find out the reason why the Q/P increases more by the hydrologic model, we analyzed 

how different storage components contribute to runoff. To quantify the contribution ratio, 

the CCR introduced by Kim et al. (2009) was used (see Appendix). According to the CCR, 
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we found that soil moisture and surface storage dominate the runoff in this basin. In terms 

of their changes, the CCR of surfaces storage increases from 39% to 46%, while that of 

soil moisture decreases from 54% to 50%. Hence the process based hydrologic model 

suggests more contribution from quick response-type surface runoff as the soil moisture 

storage approaches an upper limit with the increase of precipitation in the future (Milly, 

1994). On the contrary, the constant n parameter in the Budyko equation assumes no 

change in the runoff generating mechanism. As a result, the Budyko equation 

comparatively underestimates the increase of the future runoff. 

 

4.4.2. Subarctic Arctic 

In the SA region, all of the basins also showed increases in runoff, but they were 

overestimated by the Budyko equation. As an example, Figure 4-4 displays the present 

and future climatology of P, E, Q, and EP at the Yenisei River basin. The main 

characteristic of the basins in this region are water limited in summer and the seasonality 

of water and energy availability are in phase. From the figure, it can be seen that both E 

and Q are increased by the increase in P. However, the difference lies in how it is 

partitioned in the future. Budyko projects a partition of E/P=0.424 and Q/P=0.576. The 

partition projected by Budyko only considers changes at mean annual scale, therefore 

ignoring the effects of seasonality. On the other hand, the model is able to take into 

account the seasonal differences in water and energy balances. Since the basins in the SA 

region are water limited during spring and summer periods (March-September), the 

model partitions more precipitation into evaporation than Budyko. The model partitions 

E/P=0.458 and Q/P=0.509, therefore projecting less change in the partition especially in 

runoff. 
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4.4.3. Dry and Temperate regions 

Contrary to the HT and SA regions, there is no apparent pattern that defines the 

behavior of the Budyko projections with respect to the model. According to basin by 

basin inspection (Figure 4-5 as a selected example), seasonality of water and energy 

availability affect over- or under- estimations by the Budyko equation. Basically basins 

with in phase of P and EP showed the similar behavior as the SA region (i.e., 

overestimation), out of phase basins show similar behavior as the HT region (i.e. 

underestimation). Nevertheless, for basins in Dry and Temp regions, further assessment is 

required to understand the characteristics of runoff projections by the Budyko equation. 

The patterns were also more complex in the two regions because the projected climate 

change shows more diverse patterns in those basins. 

 

4.4.4. Basins without significant changes in runoff but significant changes in 

precipitation 

There are several basins that are projected to experience increases or decreases in 

precipitation without significant changes in runoff according to the modeled data. In these 

cases, the Budyko equation readjusts the basin to the new water availability causing 

larger errors in small change basins. Some of the cases include projections from Budyko 

equation and the GHM with different sign (i.e. Budyko equation increases runoff but the 

model decreases it or vice versa). From these cases, it is noted that the phasing of the 

change is reliant on the projection in the case of the model. This happens because while 

total precipitation decreases, there is an increase during the winter months, at which 

runoff can be generated. Budyko only accounts for total precipitation, hence the 

projection decreases. The opposite case happens if a total increase in precipitation with 

the increase happens during summer with a slight decrease in winter. This further 

exemplifies how the sensitivity of runoff can be dependent to seasonality and to the 
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timing of changes. 

 

4.4.5. Particularities in the comparison due to the LPJmL model structure 

The Lund-Potsdam-Jena managed Land (LPJmL) model features the dynamic global 

vegetation model (DGVM), designed to simulate the carbon and vegetation patterns with 

the components to simulate the state variables and fluxes  in the land atmosphere 

interaction (Gerten et al., 2004; Rost et al., 2008). One of the main features of the model is 

that vegetation behavior reacts to the atmospheric forcing and land surface behavior in the 

attempt of creating more realistic simulations than stand-alone hydrological models 

(Gerten et al., 2004). Since vegetation dynamics is one of the dominating factors of the 

catchment characteristic parameter of the Budyko equation, some particularities in the 

LPJmL model can also be addressed as reasons for the departure of both methodologies to 

project into the future. The parameter n in the Budyko equation has been found to be 

related to the vegetation characteristics of stomatal opening (Roderick & Farquhar, 2011),  

vegetation type (L. Zhang et al., 2001), and vegetation cover (Roderick & Farquhar, 

2011; D. Yang et al., 2009). Additionally, other factors such as infiltration (D. Yang et al., 

2007) are also related to vegetation type and cover and also affect the parameter n. Of 

these characteristics, stomatal opening is perhaps the feature that could have important 

implications in this comparison since the dynamical vegetation of LPJmL adapts to 

different climate conditions and to modified carbon levels influencing stomatal openings 

and plant outtake from soil moisture (Gerten et al., 2004). Roderick and Farquhar (2011) 

identified qualitatively that decreasing stomatal openings would decrease the parameter n, 

hence partitioning more water to runoff than to evaporation. 

 Gerten et al. (2004) analyzed how the increases in CO2 would affect runoff 

generation globally. Their main findings were that runoff would increase dramatically in 

higher latitudes and in the wet tropics. Also, they found that in energy limited 
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environments there was a reduction of transpiration due to increased carbon assimilation, 

decreasing water loss through stomata. In drier regions, transpiration is limited by water 

availability; hence the basins were not sensitive to carbon changes. The results from 

Gerten et al. (2004) consider doubling of the carbon content, which would be consistent 

with the A2 scenario used in this study, but it maintained the same climatic data. In the 

case of this study, only the climatic data changed. Despite this aspect, Gerten et al. (2004) 

found only a 5.5% present increase in runoff, consistent also with other studies (Hickler, 

Prentice, Smith, & Sykes, 2003). As it has been discussed, the model dramatically 

increases runoff in humid tropical basins which could be related to the underestimation by 

Budyko in this region. However, the model also increases dramatically the runoff in the 

subarctic, which is overestimated by Budyko, meaning that Budyko projects even higher 

changes. 

 Regarding a basin by basin analysis, also performed by Gerten et al. (2004) 

found that the model overestimates humid and dry basins (consistent also with Haddeland 

et al. (2011)) and underestimates high latitude basins. This can justify that the Budyko 

equation underestimations in the tropical basins and overestimations of Budyko equation 

in the subarctic region. Gerten et al. (2004) also found good agreement in basins of the 

temperate region like Mississippi and Danube where no particular behavior in the 

projections was found. 

 

4.5. Concluding summary 

 

This chapter compared future runoff projections by using a detailed, process 

based hydrological model and a simple Budyko equation for the 35 largest basins of the 

world by using the WDD and 21CMO described in Chapter 2. The obtained conclusions 

are summarized as follows: 
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 The future runoff projections by the two approaches agree with each other; 95% of 

the 210 total cases are within ±20% error, 70% of the cases are within ±10%, and 

38% of the cases are within ±5%. 

 In the HT region, Budyko underestimated the future runoff with ME = -0.042. With 

the increase of P in the future, Q/P also shows increasing patterns according to the 

hydrologic model due to more saturation, whose mechanism is not represented by the 

Budyko equation. This condition is summarized in Figure 4-6 Point a. 

 In the SA region, Budyko overestimated the future runoff with ME = 0.112. The 

basins in this region will also experience the increase of P, but the high seasonality of 

P and water limitation in the summer will partition more water towards E according 

to the hydrologic model. Those seasonalities are not considered by the Budyko 

equation, which results in the overestimation of the future runoff. This condition is 

summarized in Figure 4-6. 

 Basins in the Dry and Temp regions showed larger discrepancy between the model 

and Budyko projections. Although the seasonality of P and EP seems to be an 

important factor for the underestimation or overestimation, there are many other 

possible reasons for the behavior, which requires further detailed investigation in 

these regions. The possible mechanisms of change in these regions are presented in 

Figure 4-6 Point b for basins in phase and Figure 4-6 Point c for basins out of phase. 

 Additionally in the Dry and Temp region projections, contradicting directions were 

found. This is due to the timing of changes in water with respect to energy. Budyko 

can only account for the total annual change and project it according to its equation 

while the models are sensitive to this aspect, as discussed before.  

 Particularities of the LPJmL model, especially the complex dynamic vegetation 

component can have particular implications in the representation of present climate 

and projections into the future. It is important to test the Budyko type equation with 
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the projections of other types of models were other behaviors can be identified and 

attributed to the different components and conceptualization of hydrological models. 

Additionally, it is also important to test the projections of the Budyko equation, not 

only with predetermined modeled data like in the present study, but with the freedom 

to modify parameters in models and assess how these changes relate to such 

projections. 
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Table 4-1 

Functional Forms of the Water Energy Balance 

Id Functional Form Parameter Reference 

Screiber )]/exp(1[ PEPE P  None (Schreiber, 1904) 

Ol’Dekop )/tanh( PP EPEE   None (Ol’Dekop, 1911) 

Pike   5.02)/(1/ PEPPE   None (Pike, 1964) 

Budyko    5.0
)/tanh()/exp(1 PPP EPEPEPE   None (Budyko, 1974) 

Fu    )//(1/)/(1 PPP EPPEPEPE    ω (B. Fu, 1981; L. Zhang et 

al., 2001) 

Choudhury   nn

PEPPE
/1

)/(1/   n (Choudhury, 1999; 

Mezentsev, 1955) 

Note: Based on H. Yang et al. (2008) 

 

Table 4-2 

Number of Cases Within the Relative Errors (5%, 10%, 20%) by the Budyko Equation 

with Respect to the Model Projections. 

  Relative Error 

  5% 10% 20% 

All Cases (210) 80 (38%) 150 (71%) 201 (95%) 

HT (66) 33 (50%) 56 (85%) 66 (100%) 

Dry (48) 14 (29%) 29 (60) 45 (94%) 

Temp (54) 23 (43%) 41 (76%) 50 (92%) 

SA (42) 10 (24%) 24 (57%) 40 (95%) 

 

  



92 

 

Table 4-3 

Performance of the Projections by the Budyko Equation with Respect to the Model 

Projections. 

  All Cases 

Region Metric 

  r
2
 R

2
 ME 

HT 0.993 0.986 -0.042 

Dry 0.956 0.931 -0.006 

Temp 0.760 0.724 -0.008 

SA 0.919 0.599 0.110 

Total 0.985 0.983 0.011 

  CNRM A2 

Region Metric 

  r
2
 R

2
 ME 

HT 0.997 0.991 -0.042 

Dry 0.965 0.927 0.042 

Temp 0.961 0.959 -0.008 

SA 0.848 0.274 0.091 

Total 0.996 0.995 -0.007 

 

  



93 

 

Table 4-4 

Summary of Significant Change Assessment Using the Mann-Whitney Test. 

 Region All Dataset CCNRM-A2 

 
Total No. Cases 

Basins with  

Significant 

Change 

Total No. Basins 

Basins with  

Significant 

Change 

All Cases 210 132 (43%) 35 25 (71%) 

HT 66 37 (56%) 11 9 (82%) 

Dry 48 23 (48%) 8 4 (50%) 

Temp 54 25 (46%) 9 5 (56%) 

SA 42 36 (86%) 7 7 (100%) 
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Figure 4-1 Scatter plot of model projection and projections using the Budyko equation a) 

for all the cases within the dataset and b) using the projections driven by the CNRM GCM 

under A2 scenario conditions. 



95 

 

 

Figure 4-2 Scatter plot of relative changes from model projection and projections using 

the Budyko equation a) for all the cases within the dataset and b) using the projections 

driven by the CNRM GCM under A2 scenario conditions. 
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Figure 4-3 Distribution of relative errors and Bias (Mean of relative errors) of projections 

using the Budyko equation with respect to the projections from the hydrological model 

calculated for basins with significant change only. 
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Figure 4-4 Example of projected changes in the Ganges River basin (in HT region) and in 

the Yenisei River basin (in SA region). 
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Figure 4-5 Example of projected changes in the Columbia basin (Out of Phase) and in the 

Danube basin (In Phase) both in the Temp region. 
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Figure 4-6 Schematic summary of possible mechanistic changes in different regions and 

basin characteristics. 
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5. Conclusions and Policy Implications 

 

The general objective of this thesis was to increase the understanding of how 

hydrologic functions are related in different climatologies, and how these functions 

change under future projections. By analyzing the temporal variations of precipitation, 

evaporation, runoff, and storage, hypotheses about the hydrologic functions in these 

different climatologies were derived. Particular relations of water and energy balances 

had an important impact on these hypotheses; therefore, it was decided to compare future 

climate change projections by using a simplified water-energy balance framework to 

hydrological models, and analyze how the models feature functional changes in the 

different climates. This chapter presents general conclusions of the thesis as detailed 

conclusions of each part are given in each chapter. In this study, the spatial average of the 

35 largest river basins of the world was used with the global datasets of model outputs 

from the EUWATCH project. 

 

5.1. Conclusions 

 

The hydrological functions of river basins are characterized by the main 

hydrological variables of precipitation, evaporation, storage and runoff. The temporal 

characteristics of these variables and their propagation from variable to variable can be an 

indicator of the manner in which the hydrologic functions work in a basin. To achieve the 

objective of determining the present hydrologic functionality of different river basins a 

sub objective of deriving a classification using a simple measure was pursued. The 

concept of recurrence was introduced as the degree to which a monthly hydrological 

variable returns to the same state in subsequent years. It was found that the relation and 

effect of hydrological variables is greatly affected by seasonality, aridity and the phasing 
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of water and energy balances. Of particular importance, it was found that the recurrence 

in runoff is greatly affected as aridity increases and evaporation represents a greater 

component of the water balance in a basin. Additionally, in regions such as the temperate 

area and the subarctic, storage dominates the temporal characteristics of runoff, but the 

amount of precipitation determines that these characteristics are maintained. This 

component of the thesis emphasized previous knowledge about aridity, seasonality and 

phasing as important aspects to account for in water management for the timing and 

amount of water available through runoff but also gave new insights on their relation to 

the interannual variability of the cyclical yearly pattern. Additionally it was possible to 

some degree, to identify a regionalization in the patterns of recurrence. 

For simplicity, the main results were shown using a single model; however, the 

analysis was performed using four LSMs and four GHMs. Consistency in the 

classification and behavior of the patterns of recurrence was found in most of the models. 

Several outliers were found in particular types of basins but it was possible to attribute the 

different behavior to a particular feature within the different model. The methodology 

could be improved if a dataset based on observations is used instead that a modeled 

dataset. 

An important implication of recurrence is that it can be an indicator of inter- and 

intra- annual variability. It is also an indicator of the behavior of an extreme value 

distribution, as less recurrent variables are likely to have steeper distributions. Less 

recurrent variables are also likely to have less predictability than recurrent variables.  

The second general objective of the thesis was to evaluate how the hydrologic 

functions react to changes from climate. Since the relations of energy and water 

availability proved to be important drivers of the hydrologic functionality of basins, it 

was decided to compare future climate change projections from a framework that relates 

these balances but ignores the hydrologic functionality (Budyko framework), to 
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hydrological modelling. Hydrological modelling also related water and energy balances 

and allowed for analysis of the functionality of basins. It was found that in general terms, 

the two approaches agree well; however, the performance varies from region to region. It 

was found that in the HT region, Budyko underestimates runoff, although it has higher 

agreement. In the SA region it was found that Budyko overestimates runoff and has larger 

errors. The dry and temperate regions have larger errors and the performance is quite 

complex due to the changes also being complex. From the comparison it was found that 

the models are able to represent changes in seasonality and storage that Budyko is notable 

to do. Three different behaviors of change were found mainly showing adjustment in the 

storage components of basins further influencing the behavior of runoff. 

It is important to highlight that these component was carried out with only one 

model that has particular characteristics, specially a dynamic vegetation module. This 

aspect has particular implications on how the model simulates the present state of basins 

and projects into the future. It is important to expand a comparison to models that have 

different types of modules and conceptualizations to test how Budyko performs with 

respect to these other model characteristics. Additionally, it would be important to use a 

hydrological model, and modify its parameterizations to analyze the behavior of Budyko 

to known modifications, instead of using a predetermined dataset. 

 

5.2. Limitations 

 

Undertaking the task of analyzing the hydrologic functions and particularly the 

behavior of storage characteristics is highly complex. In order to carry out the analysis 

performed in this study several assumptions and simplifications were made. The dataset 

used also has several assumptions. Vegetation has a great effect on hydrology as it 

influences evaporation and effective rainfall through interception and throughfall 
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processes. If vegetation changes the hydrological processes are also modified. However, 

in this study it is assumed that vegetation cover and type does not change. Additionally, 

the characteristics of vegetation are not included to derive the hydrologic functions’ 

behavior. 

Aside from the emission scenarios used through the GCMs to derive the datasets this 

study does not consider the impacts of humans on hydrological processes because the 

dataset considers naturalized conditions. Humans impact hydrology by extracting water 

for several uses such as agriculture, industry, and energy generation among others, and by 

building hydraulic infrastructures such as reservoirs or diversion channels. Additionally, 

they have other effects by modifying landscape through mining, road construction, 

agricultural terracing, and other land cover changes. All these aspects modify runoff 

processes by changing runoff coefficients, infiltration coefficients and evaporation. The 

impacts of humans on the hydrological cycle will increase as the human population 

continues to increase. It is also important to consider that the human system, the 

hydrological system, and the climate system give feedback to each other. This issue calls 

for multidisciplinary studies for our understanding to become each time more holistic. 

Another limitation of this study is the scale selected. Following a top-down approach, a 

large river basin scale was selected. With this approach, general processes were identified, 

but at smaller scale, more specific processes have a more important role. Large scale 

studies are important, but it is also important to bring the concepts acquired at this scale to 

smaller scales and vice versa. Additionally large basins are heterogenic in geology, 

topography and land cover, making it necessary to downscale these large studies into 

smaller areas at which specific impacts can be tested. From any study of hydrological 

classifications, there are always existing exceptions, which are proof of other aspects that 

affect the hydrological processes of basins. 

This study used a multimodel dataset which can have large uncertainties due to the 
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limitation in the representation of processes in models. There are other data sets, that also 

have large uncertainties but that can prove complementary to this study. There are 

reanalysis, remotely sensed, and gridded datasets derived from observations that can be 

used and compared to the results with the current dataset. All of these datasets including 

the ones used in the current study will be improved in the future with the increase in 

knowledge and technology, making it possible to improve conceptualizations.  

 

5.3. Future Work and policy implications 

 

One of the issues to highlight from the current study is the aspect that recurrence can be 

an important measure for water managers and policy makers. It is of high importance for 

such professionals to understand the degree of confidence that they can have upon the 

“typical” yearly pattern of available water in a given basin. It is also important to know 

how this property can change in the future and whether the recurrence of a variable can 

decrease in the future. 

If the classification presented in this study can be further downscaled, it might be 

interesting to analyze how the different patterns in sub basins create a general pattern in 

the complete large basin. This information can help policy makers and water managers to 

identify important regions in basins that require more attention for preservation. 

As with any other classification, the final goal is to have a transferability of 

concepts among subjects of similar classes, in this case of basins. If transferability of 

concepts is achieved, transferability of actions can also be possible. Additionally, since 

basins are dynamical systems under constant change, different classes are examples of 

different conditions and can be an indicator of the future of present basins under a given 

change. 

Information about runoff sensitivity can be an important indicator of future 
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water availability. Runoff sensitivity is defined as the relative changes of runoff with 

respect to relative changes in precipitation. However, we know that according to the 

hydrologic functions, the sensitivity of runoff is not necessarily related directly to 

precipitation. It is important to assess the sensitivity of evaporation and storage 

components to precipitation, and the sensitivity of runoff to storage. The final goal should 

be to derive a function of the sensitivity of runoff with respect to precipitation but take 

into account the characteristics of storage and effects of energy. This has important policy 

implications, as the policies regarding water have to be developed accounting for future 

runoff conditions. 

An important aspect highlighted from this study is the recurrence of hydrological 

variables. Seasonality and aridity are important factors to which humans have adapted 

over years of interaction. For example, cultures that developed in dry areas have 

particular adjustments to those conditions. The patterns of recurrence should also be 

included as an important metric of variable characteristics, especially in runoff. The 

recurrent pattern of runoff will be an indicator of how variable the availability of water is 

and how this indicator will change in the future. 

Most important is to eventually involve human impacts into hydrological assessments. 

Understanding the natural hydrological system is important, but human activity is more 

incidental every day. Measures for water use, disaster prevention and resource 

preservation have to be related to hydrologic functioning but most importantly, the study 

of hydrologic functioning has to relate to human interference. This task is not only 

important but is also an enormous challenge due to the complexity of societal growth and 

the uncertainties of population projections and economic development. 

Gaining an understanding of the different properties of basins and how they can 

change might make it possible to study the resilience of current states of basins and 

therefore be able to know the effects that particular pressures can have on basin 

functionality and the amount of pressure to which basins can be subjected.  



106 

 

References 

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., . . . Bolvin, D. (2003). The 

version-2 global precipitation climatology project (GPCP) monthly precipitation analysis 

(1979-present). Journal of Hydrometeorology, 4(6), 1147-1167.  

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., & Siebert, S. (2003). Development and 

testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences 

Journal, 48(3), 317-337.  

Ali, G., Oswald, C. J., Spence, C., Cammeraat, E. L., McGuire, K. J., Meixner, T., & Reaney, S. M. (2013). 

Towards a unified threshold‐based hydrological theory: necessary components and recurring 

challenges. Hydrological Processes, 27(2), 313-318.  

Arora, V. K. (2002). The use of the aridity index to assess climate change effect on annual runoff. Journal of 

Hydrology, 265(1), 164-177. doi: 10.1016/S0022-1694(02)00101-4 

Bae, D.-H., Jung, I.-W., & Lettenmaier, D. P. (2011). Hydrologic uncertainties in climate change from IPCC 

AR4 GCM simulations of the Chungju Basin, Korea. Journal of Hydrology, 401(1), 90-105.  

Bagrov, N. A. (1953). Mean long-term evaporation from land surface. Meteorologiya i Gidrologiya, 10, 

20-25.  

Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., & Betts, A. K. (2009). A 

revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage 

and impact in the Integrated Forecast System. Journal of Hydrometeorology, 10(3), 623-643.  

Berghuijs, W. R., Sivapalan, M., Woods, R. A., & Savenije, H. H. G. (2014). Patterns of similarity of 

seasonal water balances: A window into streamflow variability over a range of time scales. Water 

Resources Research, 50(7), 5638-5661. doi: 10.1002/2014WR015692 

Beven, K. J. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320(1), 18-36. doi: 

10.1016/j.jhydrol.2005.07.007 

Beven, K. J. (2011). Rainfall-runoff modelling: the primer: John Wiley & Sons. 

Bierkens, M. F., Bell, V. A., Burek, P., Chaney, N., Condon, L., David, C. H., . . . Famiglietti, J. S. 



107 

 

Hyper-resolution global hydrological modelling: what’s next? Hydrological Processes, 29(2), 

310-320. doi: 10.1002/hyp.10391 

Black, P. E. (1997). Watershed functions. JAWRA Journal of the American Water Resources Association, 

33(1), 1-11.  

Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., . . . Reichstein, M. (2007). 

Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global 

Change Biology, 13(3), 679-706. doi: 10.1111/j.1365-2486.2006.01305.x 

Boulanger, J.-P., Martinez, F., & Segura, E. C. (2007). Projection of future climate change conditions using 

IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and 

seasonal cycle in South America. Climate Dynamics, 28(2-3), 255-271.  

Bracken, L., Wainwright, J., Ali, G., Tetzlaff, D., Smith, M., Reaney, S., & Roy, A. (2013). Concepts of 

hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science 

Reviews, 119, 17-34.  

Budyko, M. (1974). Climate and life, English Edition: Academic, San Diego, Clifornia. 

Carmona, A. M., Sivapalan, M., Yaeger, M. A., & Poveda, G. (2014). Regional patterns of interannual 

variability of catchment water balances across the continental US: A Budyko framework. Water 

Resources Research, 50(12), 9177-9193. doi: 10.1002/2014WR016013 

Chen, X., Alimohammadi, N., & Wang, D. (2013). Modeling interannual variability of seasonal 

evaporation and storage change based on the extended Budyko framework. Water Resources 

Research, 49(9), 6067-6078. doi: 10.1002/wrcr.20493 

Cheng, L., Yaeger, M., Viglione, A., Coopersmith, E., Ye, S., & Sivapalan, M. (2012). Exploring the 

physical controls of regional patterns of flow duration curves--Part 1: Insights from statistical 

analyses. Hydrology & Earth System Sciences Discussions, 9(6), 4435-4446.  

Choudhury, B. (1999). Evaluation of an empirical equation for annual evaporation using field observations 

and results from a biophysical model. Journal of Hydrology, 216(1), 99-110. doi: 

10.1016/S0022-1694(98)00293-5 



108 

 

Colwell, R. K. (1974). Predictability, constancy, and contingency of periodic phenomena. Ecology, 55, 

1148-1153.  

Cong, Z., Zhang, X., Li, D., Yang, H., & Yang, D. (2015). Understanding hydrological trends by combining 

the Budyko hypothesis and a stochastic soil moisture model. Hydrological Sciences Journal, 60(1), 

145-155. doi: 10.1080/02626667.2013.866710 

Coopersmith, E., Minsker, B., & Sivapalan, M. (2014). Patterns of regional hydroclimatic shifts: An 

analysis of changing hydrologic regimes. Water Resources Research, 50(3), 1960-1983.  

Coopersmith, E., Yaeger, M., Ye, S., Cheng, L., & Sivapalan, M. (2012). Exploring the physical controls of 

regional patterns of flow duration curves--Part 3: A catchment classification system based on 

regime curve indicators. Hydrology & Earth System Sciences, 16(11), 4467-4482.  

Cox, P., Betts, R., Bunton, C., Essery, R., Rowntree, P., & Smith, J. (1999). The impact of new land surface 

physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics, 15(3), 

183-203.  

Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate 

Change, 3(1), 52-58.  

Delworth, T., & Manabe, S. (1988). The influence of potential evaporation on the variabilities of simulated 

soil wetness and climate. Journal of Climate, 1(5), 523-547.  

Delworth, T., & Manabe, S. (1989). The influence of soil wetness on near-surface atmospheric variability. 

Journal of Climate, 2(12), 1447-1462.  

Déqué, M., Dreveton, C., Braun, A., & Cariolle, D. (1994). The ARPEGE/IFS atmosphere model: a 

contribution to the French community climate modelling. Climate Dynamics, 10(4-5), 249-266. 

doi: 10.1007/BF00208992 

Déqué, M., & Piedelievre, J. P. (1995). High resolution climate simulation over Europe. Climate Dynamics, 

11(6), 321-339. doi: 10.1007/BF00215735 

Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change projections: the role 

of internal variability. Climate Dynamics, 38(3-4), 527-546.  



109 

 

Döll, P., Kaspar, F., & Lehner, B. (2003). A global hydrological model for deriving water availability 

indicators: model tuning and validation. Journal of Hydrology, 270(1), 105-134.  

Donohue, R. J., Roderick, M., & McVicar, T. (2007). On the importance of including vegetation dynamics 

in Budyko's hydrological model. Hydrology and Earth System Sciences Discussions, 11(2), 

983-995. doi: 10.5194/hess-11-983-2007 

Donohue, R. J., Roderick, M., & McVicar, T. (2010). Can dynamic vegetation information improve the 

accuracy of Budyko’s hydrological model? Journal of Hydrology, 390(1), 23-34. doi: 

10.1016/j.jhydrol.2010.06.025 

Donohue, R. J., Roderick, M. L., & McVicar, T. R. (2011). Assessing the differences in sensitivities of 

runoff to changes in climatic conditions across a large basin. Journal of Hydrology, 406(3), 

234-244. doi: 10.1016/j.jhydrol.2011.07.003 

Donohue, R. J., Roderick, M. L., & McVicar, T. R. (2012). Roots, storms and soil pores: Incorporating key 

ecohydrological processes into Budyko’s hydrological model. Journal of Hydrology, 436, 35-50. 

doi: 10.1016/j.jhydrol.2012.02.033 

Dooge, J., Bruen, M., & Parmentier, B. (1999). A simple model for estimating the sensitivity of runoff to 

long-term changes in precipitation without a change in vegetation. Advances in Water Resources, 

23(2), 153-163.  

Emori, S., Abe, K., Numaguti, A., & Mitsumoto, S. (1996). Sensitivity of a simulated water cycle to a 

runoff process with atmospheric feedback. Journal of the Meteorological Society of Japan, 74(6), 

815-832.  

Essery, R., Best, M., Betts, R., Cox, P. M., & Taylor, C. M. (2003). Explicit representation of subgrid 

heterogeneity in a GCM land surface scheme. Journal of Hydrometeorology, 4(3), 530-543.  

EU-WATCH. Data Format.   Retrieved 2015/06/30, 2015, from 

http://www.eu-watch.org/watermip/data-format 

Fernandez, R., & Sayama, T. (2015a). Comparison of future runoff projections using Budyko framework 

and global hydrologic model: conceptual simplicity vs process complexity. Hydrological 

http://www.eu-watch.org/watermip/data-format


110 

 

Research Letters, Under Review.  

Fernandez, R., & Sayama, T. (2015b). Hydrological recurrence as a measure for large river basin 

classification and process understanding. Hydrology and Earth System Sciences, 19(4), 1919-1942. 

doi: 10.5194/hess-19-1919-2015 

Fichefet, T., & Maqueda, M. (1997). Sensitivity of a global sea ice model to the treatment of ice 

thermodynamics and dynamics. Journal of Geophysical Research: Oceans (1978–2012), 102(C6), 

12609-12646. doi: DOI: 10.1029/97JC00480 

Field, C., & Van Aalst, M. (2014). Climate change 2014: impacts, adaptation, and vulnerability. 

Intergovernmental panel on climate change report (Vol. 1). Cambridge, UK: Cambridge 

University Press. 

Fu, B. (1981). On the calculation of the evaporation from land surface. Sci. Atmos. Sin, 5(1), 23-31.  

Fu, C., Chen, J., Jiang, H., & Dong, L. (2013). Threshold behavior in a fissured granitic catchment in 

southern China: 1. Analysis of field monitoring results. Water Resources Research, 49, 

2519-2535.  

Gan, K., McMahon, T., & Finlayson, B. (1991). Analysis of periodicity in streamflow and rainfall data by 

Colwell's indices. Journal of Hydrology, 123(1), 105-118.  

Gedney, N., Cox, P., Betts, R., Boucher, O., Huntingford, C., & Stott, P. (2006). Detection of a direct carbon 

dioxide effect in continental river runoff records. Nature, 439(7078), 835-838.  

Georgakakos, K. P., & Smith, D. E. (2001). Soil moisture tendencies into the next century for the 

conterminous United States. Journal of Geophysical Research: Atmospheres (1984–2012), 

106(D21), 27367-27382.  

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., & Sitch, S. (2004). Terrestrial vegetation and water 

balance—hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 

286(1), 249-270.  

Ghosh, S., & Misra, C. (2010). Assessing hydrological impacts of climate change: modeling techniques and 

challenges. Open Hydrology Journal, 4(1), 115-121.  



111 

 

Goosse, H., & Fichefet, T. (1999). Importance of ice‐ocean interactions for the global ocean circulation: A 

model study. Journal of Geophysical Research: Oceans (1978–2012), 104(C10), 23337-23355. 

doi: 10.1029/1999JC900215 

Gottschalk, L. (1985). Hydrological regionalization of Sweden. Hydrological Sciences Journal, 30(1), 

65-83.  

Gottschalk, L., Lundager, J. J., Dan, L., Reijo, S., & Arne, T. (1979). Hydrologic regions in the Nordic 

countries. Nordic hydrology, 10(5), 273-286.  

Graham, C. B., & McDonnell, J. J. (2010). Hillslope threshold response to rainfall:(2) Development and use 

of a macroscale model. Journal of Hydrology, 393(1), 77-93.  

Graham, C. B., Woods, R. A., & McDonnell, J. J. (2010). Hillslope threshold response to rainfall:(1) A field 

based forensic approach. Journal of Hydrology, 393(1), 65-76.  

Groisman, P. Y., Knight, R. W., & Karl, T. R. (2001). Heavy precipitation and high streamflow in the 

contiguous United States: Trends in the twentieth century. Bulletin of the American 

Meteorological Society, 82(2), 219-246.  

Groisman, P. Y., Knight, R. W., Karl, T. R., Easterling, D. R., Sun, B., & Lawrimore, J. H. (2004). 

Contemporary changes of the hydrological cycle over the contiguous United States: Trends 

derived from in situ observations. Journal of Hydrometeorology, 5(1), 64-85.  

Gudmundsson, L., Tallaksen, L. M., Stahl, K., Clark, D. B., Dumont, E., Hagemann, S., . . . Hanasaki, N. 

(2012). Comparing large-scale hydrological model simulations to observed runoff percentiles in 

Europe. Journal of Hydrometeorology, 13(2), 604-620.  

Gudmundsson, L., Wagener, T., Tallaksen, L., & Engeland, K. (2012). Evaluation of nine large‐scale 

hydrological models with respect to the seasonal runoff climatology in Europe. Water Resources 

Research, 48, W11504. doi: 10.1029/2011WR010911 

Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., . . . Gerten, D. (2011). 

Multimodel estimate of the global terrestrial water balance: setup and first results. Journal of 

Hydrometeorology, 12(5), 869-884.  



112 

 

Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., . . . Schewe, J. (2014). Global 

water resources affected by human interventions and climate change. Proceedings of the National 

Academy of Sciences, 111(9), 3251-3256.  

Hagemann, S., Chen, C., Clark, D., Folwell, S., Gosling, S. N., Haddeland, I., . . . Voss, F. (2013). Climate 

change impact on available water resources obtained using multiple global climate and hydrology 

models. Earth System Dynamics, 4, 129-144.  

Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., & Piani, C. (2011). Impact of a statistical 

bias correction on the projected hydrological changes obtained from three GCMs and two 

hydrology models. Journal of Hydrometeorology, 12(4), 556-578. doi: 10.1175/2011JHM1336.1 

Hagemann, S., & Dümenil, L. (1997). A parametrization of the lateral waterflow for the global scale. 

Climate Dynamics, 14(1), 17-31.  

Hagemann, S., & Gates, L. D. (2003). Improving a subgrid runoff parameterization scheme for climate 

models by the use of high resolution data derived from satellite observations. Climate Dynamics, 

21(3-4), 349-359.  

Hamlet, A. F., Mote, P. W., Clark, M. P., & Lettenmaier, D. P. (2007). Twentieth-century trends in runoff, 

evapotranspiration, and soil moisture in the Western United States*. Journal of Climate, 20(8), 

1468-1486.  

Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., . . . Tanaka, K. (2008). An 

integrated model for the assessment of global water resources–Part 1: Model description and input 

meteorological forcing. Hydrology and Earth System Sciences, 12(4), 1007-1025.  

Harman, C., & Troch, P. (2014). What makes Darwinian hydrology" Darwinian"? Asking a different kind 

of question about landscapes. Hydrology and Earth System Sciences, 18(2), 417-433.  

He, M., & Hogue, T. S. (2012). Integrating hydrologic modeling and land use projections for evaluation of 

hydrologic response and regional water supply impacts in semi-arid environments. Environmental 

Earth Sciences, 65(6), 1671-1685.  

Heal, G., & Kriström, B. (2002). Uncertainty and climate change. Environmental and Resource Economics, 



113 

 

22(1), 3-39.  

Hickler, T., Prentice, I. C., Smith, B., & Sykes, M. (2003). Simulating the effects of elevated CO2 on 

productivity at the Duke Forest FACE experiment: a test of the dynamic global vegetation model 

LPJ. Paper presented at the EGS-AGU-EUG Joint Assembly. 

Houghton, J. T. (1996). Climate change 1995: The science of climate change: contribution of working 

group I to the second assessment report of the Intergovernmental Panel on Climate Change (Vol. 

2). Cambridge, UK: Cambridge University Press. 

Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., . . . Johnson, C. (2001). 

Climate change 2001: the scientific basis.  

Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., . . . Grandpeix, J.-Y. (2006). The 

LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics 

with emphasis on tropical convection. Climate Dynamics, 27(7-8), 787-813. doi: 

10.1007/s00382-006-0158-0 

Huang, J., van den Dool, H. M., & Georgarakos, K. P. (1996). Analysis of model-calculated soil moisture 

over the United States (1931-1993) and applications to long-range temperature forecasts. Journal 

of Climate, 9(6), 1350-1362.  

Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and 

precipitation. science, 269(5224), 676-679.  

Istanbulluoglu, E., Wang, T., Wright, O. M., & Lenters, J. D. (2012). Interpretation of hydrologic trends 

from a water balance perspective: The role of groundwater storage in the Budyko hypothesis. 

Water Resources Research, 48(3), W00H16. doi: 10.1029/2010WR010100 

Jiang, C., Xiong, L., Wang, D., Liu, P., Guo, S., & Xu, C.-Y. (2015). Separating the impacts of climate 

change and human activities on runoff using the Budyko-type equations with time-varying 

parameters. Journal of Hydrology, 522, 326-338. doi: 10.1016/j.jhydrol.2014.12.060 

Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C., Mechler, R., Botzen, W. W., . . . Ward, P. J. 

(2014). Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 4(4), 



114 

 

264-268.  

Jothityangkoon, C., & Sivapalan, M. (2009). Framework for exploration of climatic and landscape controls 

on catchment water balance, with emphasis on inter-annual variability. Journal of Hydrology, 

371(1), 154-168.  

Jungclaus, J., Keenlyside, N., Botzet, M., Haak, H., Luo, J.-J., Latif, M., . . . Roeckner, E. (2006). Ocean 

circulation and tropical variability in the coupled model ECHAM5/MPI-OM. Journal of Climate, 

19(16), 3952-3972. doi: 10.1175/JCLI3827.1 

Kaspersen, P. S., Høegh Ravn, N., Arnbjerg-Nielsen, K., Madsen, H., & Drews, M. (2015). Influence of 

urban land cover changes and climate change for the exposure of European cities to flooding 

during high-intensity precipitation. Proceedings of the International Association of Hydrological 

Sciences (IAHS), 370, 21-27.  

Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., & Senior, C. A. (2014). Heavier 

summer downpours with climate change revealed by weather forecast resolution model. Nature 

Climate Change, 4, 570-576.  

Kim, H., Yeh, P. J. F., Oki, T., & Kanae, S. (2009). Role of rivers in the seasonal variations of terrestrial 

water storage over global basins. Geophysical Research Letters, 36(17). doi: 

10.1029/2009GL039006 

Koirala, S., Yeh, P. J. F., Hirabayashi, Y., Kanae, S., & Oki, T. (2014). Global‐scale land surface 

hydrologic modeling with the representation of water table dynamics. Journal of Geophysical 

Research: Atmospheres, 119(1), 75-89.  

Kollet, S. J., Maxwell, R. M., Woodward, C. S., Smith, S., Vanderborght, J., Vereecken, H., & Simmer, C. 

(2010). Proof of concept of regional scale hydrologic simulations at hydrologic resolution 

utilizing massively parallel computer resources. Water Resources Research, 46(4), W04201. doi: 

10.1029/2009WR008730 

Koster, R. D., & Suarez, M. J. (1999). A simple framework for examining the interannual variability of land 

surface moisture fluxes. Journal of Climate, 12(7), 1911-1917. doi: 



115 

 

10.1175/1520-0442(1999)012<1911:ASFFET>2.0.CO;2 

Krasovskaia, I., Arnell, N., & Gottschalk, L. (1994). Flow regimes in northern and western Europe: 

development and application of procedures for classifying flow regimes. IAHS 

Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 221, 

185-192.  

Kumar, R., Livneh, B., & Samaniego, L. (2013). Toward computationally efficient large‐scale hydrologic 

predictions with a multiscale regionalization scheme. Water Resources Research, 49(9), 

5700-5714. doi: 10.1002/wrcr.20431 

Li, D. (2014). Assessing the impact of interannual variability of precipitation and potential evaporation on 

evapotranspiration. Advances in Water Resources, 70, 1-11.  

Li, D., Pan, M., Cong, Z., Zhang, L., & Wood, E. (2013). Vegetation control on water and energy balance 

within the Budyko framework. Water Resources Research, 49(2), 969-976. doi: 

10.1002/wrcr.20107 

Liang, L., & Liu, Q. (2014). Streamflow sensitivity analysis to climate change for a large water‐limited 

basin. Hydrological Processes, 28(4), 1767-1774. doi: 10.1002/hyp.9720 

Lins, H. F., & Slack, J. R. (1999). Streamflow trends in the United States. Geophysical Research Letters, 

26(2), 227-230.  

Liu, Q., & McVicar, T. R. (2012). Assessing climate change induced modification of Penman potential 

evaporation and runoff sensitivity in a large water-limited basin. Journal of Hydrology, 464, 

352-362. doi: 10.1016/j.jhydrol.2012.07.032 

Lo, M. H., Famiglietti, J. S., Yeh, P. F., & Syed, T. (2010). Improving parameter estimation and water table 

depth simulation in a land surface model using GRACE water storage and estimated base flow 

data. Water Resources Research, 46(5), W05517. doi: 10.1029/2009WR007855 

Madec, G., Delecluse, P., Imbard, M., & Lévy, C. (1998). OPA version 8. Ocean General Circulation Model 

reference manual, 1997. Rapp. Int., LODYC, France, 200pp. doi: 

10.1016/j.advwatres.2012.10.001 



116 

 

Masuda, K., Hashimoto, Y., Matsuyama, H., & Oki, T. (2001). Seasonal cycle of water storage in major 

river basins of the world. Geophysical Research Letters, 28(16), 3215-3218.  

Maurer, E., Wood, A., Adam, J., Lettenmaier, D., & Nijssen, B. (2002). A long-term hydrologically based 

dataset of land surface fluxes and states for the conterminous United States*. Journal of Climate, 

15(22), 3237-3251.  

Maxwell, R. M. (2013). A terrain-following grid transform and preconditioner for parallel, large-scale, 

integrated hydrologic modeling. Advances in Water Resources, 53, 109-117. doi: 

10.1016/j.advwatres.2012.10.001 

McGlynn, B., Nippgen, F., Jencso, K., & Emanuel, R. (2013, December). Spatial and temporal patterns of 

hydrologic connectivity between upland landscapes and stream networks. Paper presented at the 

AGU Fall Meeting Abstracts, San Francisco, CA, USA. 

McMahon, T. A., Peel, M. C., Vogel, R. M., & Pegram, G. G. (2007). Global streamflows–Part 3: Country 

and climate zone characteristics. Journal of Hydrology, 347(3), 272-291.  

McMahon, T. A., Vogel, R. M., Peel, M. C., & Pegram, G. G. (2007). Global streamflows–Part 1: 

Characteristics of annual streamflows. Journal of Hydrology, 347(3), 243-259.  

McMahon, T. A., Vogel, R. M., Pegram, G. G., Peel, M. C., & Etkin, D. (2007). Global streamflows–Part 2: 

Reservoir storage–yield performance. Journal of Hydrology, 347(3), 260-271.  

McNamara, J. P., Tetzlaff, D., Bishop, K., Soulsby, C., Seyfried, M., Peters, N. E., . . . Hooper, R. (2011). 

Storage as a metric of catchment comparison. Hydrological Processes, 25(21), 3364-3371.  

Meigh, J., McKenzie, A., & Sene, K. (1999). A grid-based approach to water scarcity estimates for eastern 

and southern Africa. Water Resources Management, 13(2), 85-115.  

Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The impact of climate change on 

global tropical cyclone damage. Nature Climate Change, 2(3), 205-209.  

Mezentsev, V. (1955). More on the computation of total evaporation (Yechio raz o rastchetie srednevo 

summarnovo ispareniia). Meteorologiya i Gidrologiya, 5, 24-26.  

Miller, G. (1984). Ballooning in Geolycosa turricola (Treat) and Geolycosa patellonigra Wallace: high 



117 

 

dispersal frequencies in stable habitats. Canadian journal of zoology, 62(10), 2110-2111.  

Milly, P., & Dunne, K. (2002). Macroscale water fluxes 2. Water and energy supply control of their 

interannual variability. Water Resources Research, 38(10), 24-21-24-29. doi: 

10.1029/2001WR000760 

Milly, P., & Wetherald, R. T. (2002). Macroscale water fluxes 3. Effects of land processes on variability of 

monthly river discharge. Water Resources Research, 38(11), 1235. doi: 10.1029/2001WR000761 

Mouri, G., Minoshima, D., Golosov, V., Chalov, S., Seto, S., Yoshimura, K., . . . Oki, T. (2013). Probability 

assessment of flood and sediment disasters in Japan using the Total Runoff-Integrating Pathways 

model. International Journal of Disaster Risk Reduction, 3, 31-43.  

Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., & Döll, P. (2014). 

Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological 

model structure, human water use and calibration. Hydrology and Earth System Sciences, 18(9), 

3511-3538. doi: 10.5194/hess-18-3511-2014 

Ol’Dekop, E. (1911). On evaporation from the surface of river basins. Transactions on meteorological 

observations, 4.  

Oudin, L., Andréassian, V., Lerat, J., & Michel, C. (2008). Has land cover a significant impact on mean 

annual streamflow? An international assessment using 1508 catchments. Journal of Hydrology, 

357(3), 303-316. doi: 10.1016/j.jhydrol.2008.05.021 

Pachauri, R. K., Allen, M., Barros, V., Broome, J., Cramer, W., Christ, R., . . . Dasgupta, P. (2014). Climate 

Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: 

Cambridge University Press. 

Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Paper presented at the 

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 

Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., & Haerter, J. (2010). Statistical bias 

correction of global simulated daily precipitation and temperature for the application of 



118 

 

hydrological models. Journal of Hydrology, 395(3), 199-215.  

Pike, J. (1964). The estimation of annual run-off from meteorological data in a tropical climate. Journal of 

Hydrology, 2(2), 116-123. doi: DOI: 10.1016/0022-1694(64)90022-8 

Porporato, A., Daly, E., & Rodriguez‐Iturbe, I. (2004). Soil water balance and ecosystem response to 

climate change. The American Naturalist, 164(5), 625-632.  

Potter, N., Zhang, L., Milly, P., McMahon, T., & Jakeman, A. (2005). Effects of rainfall seasonality and soil 

moisture capacity on mean annual water balance for Australian catchments. Water Resources 

Research, 41(6). doi: 10.1029/2004WR003697 

Qureshi, M. E., Hanjra, M. A., & Ward, J. (2013). Impact of water scarcity in Australia on global food 

security in an era of climate change. Food Policy, 38, 136-145.  

Riddell, B. E., & Leggett, W. C. (1981). Evidence of an adaptive basis for geographic variation in body 

morphology and time of downstream migration of juvenile Atlantic salmon (Salmo salar). 

Canadian Journal of Fisheries and Aquatic Sciences, 38(3), 308-320.  

Roderick, M. L., & Farquhar, G. D. (2011). A simple framework for relating variations in runoff to 

variations in climatic conditions and catchment properties. Water Resources Research, 47(12). 

doi: 10.1029/2010WR009826 

Roderick, M. L., Sun, F., Lim, W. H., & Farquhar, G. D. (2014). A general framework for understanding the 

response of the water cycle to global warming over land and ocean. Hydrology and Earth System 

Sciences, 18(5), 1575-1589. doi: 10.5194/hess-18-1575-2014 

Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., . . . Manzini, E. (2003). 

The atmospheric general circulation model ECHAM 5. PART I: Model description MPI Report 

349 (pp. 127). Hamburg, Germany: Max Planck Institute for Meteorology. 

Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., & Schaphoff, S. (2008). Agricultural green and 

blue water consumption and its influence on the global water system. Water Resources Research, 

44(9), W09405. doi: 10.1029/2007WR006331 

Royer, J.-F., Cariolle, D., Chauvin, F., Déqué, M., Douville, H., Hu, R.-M., . . . Melia, D. S. Y. (2002). 



119 

 

Simulation des changements climatiques au cours du XXI e siècle incluant l'ozone stratosphérique. 

Comptes Rendus Geoscience, 334(3), 147-154. doi: 10.1016/S1631-0713(02)01728-5 

Salas-Mélia, D. (2002). A global coupled sea ice–ocean model. Ocean Modelling, 4(2), 137-172. doi: 

10.1016/S1463-5003(01)00015-4 

Sankarasubramanian, A., Vogel, R. M., & Limbrunner, J. F. (2001). Climate elasticity of streamflow in the 

United States. Water Resources Research, 37(6), 1771-1781. doi: 10.1029/2000WR900330 

Satoh, M. (2013). Atmospheric circulation dynamics and general circulation models. New York, USA: 

Springer Science & Business Media. 

Sayama, T., & McDonnell, J. J. (2009). A new time‐space accounting scheme to predict stream water 

residence time and hydrograph source components at the watershed scale. Water Resources 

Research, 45(7), W07401. doi: 10.1029/2008WR007549 

Sayama, T., McDonnell, J. J., Dhakal, A., & Sullivan, K. (2011). How much water can a watershed store? 

Hydrological Processes, 25(25), 3899-3908.  

Schaake, J. C., & Waggoner, P. (1990). From climate to flow Climate change and US water resources. (pp. 

177-206): John Wiley and Sons Inc. 

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., . . . Colón-González, F. J. 

(2014). Multimodel assessment of water scarcity under climate change. Proceedings of the 

National Academy of Sciences, 111(9), 3245-3250.  

Schreiber, P. (1904). Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse 

in Mitteleuropa. Z. Meteorol, 21(10), 441-452.  

Scoccimarro, E., Gualdi, S., Zampieri, M., Bellucci, A., & Navarra, A. (2013). Heavy precipitation events 

in a warmer climate: results from CMIP5 models. Journal of Climate, 26, 7902–7911.  

Seinfeld, J. H., & Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate 

change. New Jersey: John Wiley & Sons. 

Shaw, D. A., Vanderkamp, G., Conly, F. M., Pietroniro, A., & Martz, L. (2012). The Fill–Spill Hydrology of 

Prairie Wetland Complexes during Drought and Deluge. Hydrological Processes, 26(20), 



120 

 

3147-3156.  

Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., & Shimizu, T. (2000). Stormflow 

generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrological 

Processes, 14(3), 369-385.  

Smith, K. (2013). Environmental hazards: assessing risk and reducing disaster. New York: Routledge. 

Sorg, A., Bolch, T., Stoffel, M., Solomina, O., & Beniston, M. (2012). Climate change impacts on glaciers 

and runoff in Tien Shan (Central Asia). Nature Climate Change, 2(10), 725-731.  

Spence, C. (2007). On the relation between dynamic storage and runoff: A discussion on thresholds, 

efficiency, and function. Water Resources Research, 43(12), W12416.  

Spence, C., Guan, X., Phillips, R., Hedstrom, N., Granger, R., & Reid, B. (2010). Storage dynamics and 

streamflow in a catchment with a variable contributing area. Hydrological Processes, 24(16), 

2209-2221.  

Spence, C., & Woo, M.-k. (2003). Hydrology of subarctic Canadian shield: soil-filled valleys. Journal of 

Hydrology, 279(1), 151-166.  

Stanescu, V. A., & Ungureau, V. (1997). Hydrological regimes in the FRIEND-AMHY area: space 

variability and stability. Paper presented at the Friend'97-Regional Hydrology: Concepts and 

Models for Sustainable Water Resource Management; Proceedings of the Third International 

Conference on FRIEND Held at Postojna, Slovenia, from 30 September to 4 October 1997. 

Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K.-S., & Lima, M. (2002). Ecological 

effects of climate fluctuations. science, 297(5585), 1292-1296.  

Sun, A. Y., Green, R., Swenson, S., & Rodell, M. (2012). Toward calibration of regional groundwater 

models using GRACE data. Journal of Hydrology, 422, 1-9. doi: 10.1016/j.jhydrol.2011.10.025 

Sun, X., Thyer, M., Renard, B., & Lang, M. (2014). A general regional frequency analysis framework for 

quantifying local-scale climate effects: A case study of ENSO effects on Southeast Queensland 

rainfall. Journal of Hydrology, 512, 53-68.  

Sun, Y., Tian, F., Yang, L., & Hu, H. (2014). Exploring the spatial variability of contributions from climate 



121 

 

variation and change in catchment properties to streamflow decrease in a mesoscale basin by three 

different methods. Journal of Hydrology, 508, 170-180. doi: 10.1016/j.jhydrol.2013.11.004 

Tague, C., & Peng, H. (2013). The sensitivity of forest water use to the timing of precipitation and 

snowmelt recharge in the California Sierra: Implications for a warming climate. Journal of 

Geophysical Research: Biogeosciences, 118(2), 875-887.  

Takata, K., Emori, S., & Watanabe, T. (2003). Development of the minimal advanced treatments of surface 

interaction and runoff. Global and Planetary Change, 38(1), 209-222.  

Tang, Q., & Lettenmaier, D. P. (2012). 21st century runoff sensitivities of major global river basins. 

Geophysical Research Letters, 39(6), L06403.  

Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., . . . Edmunds, M. (2013). Ground 

water and climate change. Nature Climate Change, 3(4), 322-329.  

Teng, J., Chiew, F., Vaze, J., Marvanek, S., & Kirono, D. (2012). Estimation of climate change impact on 

mean annual runoff across continental Australia using Budyko and Fu equations and hydrological 

models. Journal of Hydrometeorology, 13(3), 1094-1106. doi: 10.1175/JHM-D-11-097.1 

Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 

66(1), 55-94.  

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123.  

Tromp‐van Meerveld, H., & McDonnell, J. (2006). Threshold relations in subsurface stormflow: 2. The 

fill and spill hypothesis. Water Resources Research, 42(2).  

Turc, L. (1954). Le bilan d'eau des sols: relations entre les précipitations, l'évaporation et l'écoulement. Ann. 

Agron., 5, 491-569.  

Turner, A. G., & Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature 

Climate Change, 2(8), 587-595.  

Uppala, S. M., Kållberg, P., Simmons, A., Andrae, U., Bechtold, V., Fiorino, M., . . . Kelly, G. (2005). The 

ERA‐40 re‐ analysis. Quarterly Journal of the Royal Meteorological Society, 131(612), 

2961-3012.  



122 

 

Vannote, R. L., & Sweeney, B. W. (1980). Geographic analysis of thermal equilibria: a conceptual model 

for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. 

American naturalist, 115(5), 667-695.  

Velde, Y., Vercauteren, N., Jaramillo, F., Dekker, S. C., Destouni, G., & Lyon, S. W. (2014). Exploring 

hydroclimatic change disparity via the Budyko framework. Hydrological Processes, 28(13), 

4110-4118. doi: 10.1002/hyp.9949 

Velicogna, I., Tong, J., Zhang, T., & Kimball, J. (2012). Increasing subsurface water storage in 

discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. 

Geophysical Research Letters, 39(9), L09403.  

Von Storch, H., & Zwiers, F. W. (2001). Statistical analysis in climate research. Cambridge, UK: 

Cambridge university press. 

Wagener, T., Sivapalan, M., Troch, P., & Woods, R. (2007). Catchment classification and hydrologic 

similarity. Geography Compass, 1(4), 901-931.  

Walsh, R., & Lawler, D. (1981). Rainfall seasonality: description, spatial patterns and change through time. 

Weather, 36(7), 201-208.  

Wang, B., Liu, J., Kim, H.-J., Webster, P. J., Yim, S.-Y., & Xiang, B. (2013). Northern Hemisphere summer 

monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. 

Proceedings of the National Academy of Sciences, 110(14), 5347-5352.  

Wang, D., & Hejazi, M. (2011). Quantifying the relative contribution of the climate and direct human 

impacts on mean annual streamflow in the contiguous United States. Water Resources Research, 

47(10), Q00J12. doi: 10.1029/2010WR010283 

Weaver, A. J., & Zwiers, F. W. (2000). Uncertainty in climate change. Nature, 407(6804), 571-572.  

Webb, M., Thoms, M., & Reid, M. (2012). Determining the ecohydrological character of aquatic refugia in 

a dryland river system: the importance of temporal scale. Ecohydrology & Hydrobiology, 12(1), 

21-33.  

Weedon, G., Gomes, S., Viterbo, P., Österle, H., Adam, J., Bellouin, N., . . . Best, M. (2010). The WATCH 



123 

 

FORCING DATA 1958-2001: A Meteorological forcing dataset for land surface-and 

hydrological-models. WATCH Technical Report, 22, 44.  

Weedon, G., Gomes, S., Viterbo, P., Shuttleworth, W., Blyth, E., Österle, H., . . . Best, M. (2011). Creation 

of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation 

over land during the twentieth century. Journal of Hydrometeorology, 12(5), 823-848.  

Weingartner, R., Bloeschl, G., Hannah, D. M., Marks, D. G., Parajka, J., Pearson, C. S., . . . Viglione, A. 

(2013). Prediction of seasonal runoff in ungauged basins. In G. Bloeschl, M. Sivapalan, T. 

Wagener, A. Viglione & H. Savenije (Eds.), Runoff Prediction in Ungauged Basins: Synthesis 

across processes, places and scales (Vol. 1, pp. 102-134). Cambridge, UK: Cambridge University 

Press. 

Weiskel, P., Wolock, D., Zarriello, P., Vogel, R., Levin, S., & Lent, R. (2014). Hydroclimatic regimes: a 

distributed water-balance framework for hydrologic assessment, classification, and management. 

Hydrology and Earth System Sciences, 18(10), 3855-3872.  

Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. science, 341(6145), 

508-513.  

Wilks, D. S. (1992). Adapting stochastic weather generation algorithms for climate change studies. 

Climatic Change, 22(1), 67-84.  

Williams, C. A., Reichstein, M., Buchmann, N., Baldocchi, D., Beer, C., Schwalm, C., . . . Foken, T. (2012). 

Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration 

measured across a global network of flux towers. Water Resources Research, 48(6). doi: 

10.1029/2011WR011586 

Woldemeskel, F., Sharma, A., Sivakumar, B., & Mehrotra, R. (2014). A framework to quantify GCM 

uncertainties for use in impact assessment studies. Journal of Hydrology, 519, 1453-1465.  

Xiong, L., & Guo, S. (2012). Appraisal of Budyko formula in calculating long‐term water balance in 

humid watersheds of southern China. Hydrological Processes, 26(9), 1370-1378. doi: 

10.1002/hyp.8273 



124 

 

Xu, X., Yang, D., Yang, H., & Lei, H. (2014). Attribution analysis based on the Budyko hypothesis for 

detecting the dominant cause of runoff decline in Haihe basin. Journal of Hydrology, 510, 530-540. 

doi: 10.1016/j.jhydrol.2013.12.052 

Yaeger, M., Coopersmith, E., Ye, S., Cheng, L., Viglione, A., & Sivapalan, M. (2012). Exploring the 

physical controls of regional patterns of flow duration curves--Part 4: A synthesis of empirical 

analysis, process modeling and catchment classification. Hydrology & Earth System Sciences 

Discussions, 9(6), 4483-4498.  

Yamazaki, D., Almeida, G. A., & Bates, P. D. (2013). Improving computational efficiency in global river 

models by implementing the local inertial flow equation and a vector‐based river network map. 

Water Resources Research, 49(11), 7221-7235.  

Yang, D., Shao, W., Yeh, P. J. F., Yang, H., Kanae, S., & Oki, T. (2009). Impact of vegetation coverage on 

regional water balance in the nonhumid regions of China. Water Resources Research, 45(7), 

W00A14. doi: 10.1029/2008WR006948 

Yang, D., Sun, F., Liu, Z., Cong, Z., & Lei, Z. (2006). Interpreting the complementary relationship in non‐

humid environments based on the Budyko and Penman hypotheses. Geophysical Research Letters, 

33(18), L18402. doi: 10.1029/2006GL027657 

Yang, D., Sun, F., Liu, Z., Cong, Z., Ni, G., & Lei, Z. (2007). Analyzing spatial and temporal variability of 

annual water‐energy balance in nonhumid regions of China using the Budyko hypothesis. Water 

Resources Research, 43(4), W04426. doi: 10.1029/2006WR005224 

Yang, H., & Yang, D. (2011). Derivation of climate elasticity of runoff to assess the effects of climate 

change on annual runoff. Water Resources Research, 47(7), W07526. doi: DOI: 

10.1029/2010WR009287 

Yang, H., Yang, D., & Hu, Q. (2014). An error analysis of the Budyko hypothesis for assessing the 

contribution of climate change to runoff. Water Resources Research, 50(12), 9620-9629. doi: 

10.1002/2014WR015451 

Yang, H., Yang, D., Lei, Z., & Sun, F. (2008). New analytical derivation of the mean annual water‐energy 



125 

 

balance equation. Water Resources Research, 44(3), W03410. doi: 10.1029/2007WR006135 

Ye, S., Yaeger, M., Coopersmith, E., Cheng, L., & Sivapalan, M. (2012). Exploring the physical controls of 

regional patterns of flow duration curves--Part 2: Role of seasonality, the regime curve, and 

associated process controls. Hydrology & Earth System Sciences, 16(11), 4447-4465.  

Yu, Z., Cai, H., Yang, C., Ju, Q., Liu, D., & Sun, A. (2013). Adaptivity of Budyko Hypothesis in Evaluating 

Interannual Variability of Watershed Water Balance in Northern China. Journal of Hydrologic 

Engineering, 19(4), 699-706. doi: 10.1061/(ASCE)HE.1943-5584.0000862 

Zhang, L., Dawes, W., & Walker, G. (2001). Response of mean annual evapotranspiration to vegetation 

changes at catchment scale. Water Resources Research, 37(3), 701-708. doi: 

10.1029/2000WR900325 

Zhang, L., Hickel, K., Dawes, W., Chiew, F. H., Western, A., & Briggs, P. (2004). A rational function 

approach for estimating mean annual evapotranspiration. Water Resources Research, 40(2), 

W02502. doi: 10.1029/2003WR002710 

Zhang, X., Harvey, K. D., Hogg, W., & Yuzyk, T. R. (2001). Trends in Canadian streamflow. Water 

Resources Research, 37(4), 987-998.  

Zhang, Y., Arthington, A., Bunn, S., Mackay, S., Xia, J., & Kennard, M. (2012). Classification of flow 

regimes for environmental flow assessment in regulated rivers: the Huai River Basin, China. River 

Research and Applications, 28(7), 989-1005.  

Zhang, Z., Chen, X., Huang, Y., & Zhang, Y. (2014). Effect of catchment properties on runoff coefficient in 

a karst area of southwest China. Hydrological Processes, 28(11), 3691-3702. doi: 

10.1002/hyp.9920 

 

 

 

 

 



126 

 

 

 

 

 

 

 

 

 

blank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



127 

 

Appendix A 

Storage properties metrics 

The metric used in this study to analyse the storage contribution is the CCR originally 

proposed by (Kim et al., 2009). The CCR of each component is given by: 

 

TV

MAD
CCR S

S 
       (A1) 

 

where MADS is the mean absolute deviation of each component given by: 
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       (A2) 

 

In Eq. A2, N is the number of months, St is the storage at month t, and S is the average of 

the storage component. TV in Eq. A3 represents the total variability of storage and is 

equal to the summation of MAD of each component: 
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Sensitivity framework based on the MCY functional form of the Budyko equation. 

This section introduces the methodology derived by Roderick and Farquhar (2011). 

From equation 4.3, the sensitivity of E to changes in P, EP, and n is deriver as follows: 
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The partial differentials of equation A4 are described as the sensitivity coefficients and 

are given as follows: 
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This sensitivity framework assumes steady state, meaning that it considers any change in 

storage negligible. Using the water balance concept introduced in Equation 1.3, the 

sensitivity of runoff is given as follows: 

dEdPdQ         (A8) 

Combining A4 and A8 the sensitivity of runoff becomes: 
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Further, the relative changes in runoff 
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This framework uses an first order approximation of the Taylor expansion to obtain the 

differentials that give the sensitivity coefficients (H. Yang et al., 2014). H. Yang et al. 

(2014) calculated the higher orders of the Taylor expansion and calculated the possible 

errors of using Roderick’s framework directly. Since the dataset employed in this study 

allows the calculation of the changes in E and Q, directly from the changes of P and EP, 

without calculating the sensitivity coefficients, Roderick’s framework is not used. 
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Table A1 

Summary of Class Characteristics from the classification using recurrence. 

Class Basins Region Characteristics Observations 

QPES 

Amazon, 

Brahmaputra, 

Changjiang,  

Ganges, Mekong, 

Niger, Nile, Yenisei 

Tropics, Subtropics (Asian 

Monsoon), and Subarctic 

(Central Eurasia) 

Tropical and Subtropical 

Humid Basins 

Snow dominated basins with 

high recurrence in 

precipitation and high 

precipitation during winter 

Variables follow the same pattern as precipitation fills storage and storage 

further supplies runoff and evaporation in an equally recurrent pattern 

QPE Lena, Mackenzie 
Subarctic (West Eurasia and 

Central North America) 

Snow dominated basins with 

small precipitation in winter 

P is recurrent but concentrated in summer, winter snow volume is not high 

enough to make storage recurrent. However the amount of snow does 

generate a recurrent pattern in runoff 

QPS Orinoco Tropics 
Equatorial basin with highly 

constant evaporation pattern 

P, S, and Q have a recurrent pattern but the constant high water and low 

energy supplies result in a low recurrence pattern in evaporation 

QES Ob, Volga Subarctic (Central Asia) 

Snow dominated basins with 

low recurrence in 

precipitation, water limited in 

summer, and high 

precipitation during winter 

 

Important amount of precipitation during winter creates a large snow volume 

which creates a recurrent runoff pattern regardless of the low recurrence in 

precipitation 
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QE Yukon Subarctic (Alaska) 

Snow dominated basin with 

low recurrence in 

precipitation, water limited in 

summer and rather low 

precipitation in winter 

Low P in winter does not allow a recurrent pattern in storage because of low 

snow volume; however, Q is recurrent 

PES Tocantins, Zambezi 
Tropics (Southern South 

America and Africa), 

Temperate (East Eurasian 

Continent affected by Oceanic 

atmospheric flow) 

Tropical humid basins with EP 

peaks at different time as P 

 

Desynchronization of the P and EP cycles allows for filling of storage and 

also emptying during rainy and dry seasons, respectively. Q is only generated 

for extreme precipitation due to lack of saturation in S. 

PE 

Amur, Congo, 

Huang He, 

Okavango, Plata 

 

Basins with high evaporative 

index (0.7-0.8) with EP 

peaking at the same time as P 

 

Runoff generation and storage change are highly limited by E due to the 

synchronization of P and EP. 

ES 

Columbia, 

Euphrates, 

Mississippi, 

Syr Darya 

Temperate (North America, 

Europe and Central Asia) 

South America 

 

 

Mid-latitude basins with 

important amount of 

precipitation in winter, some 

influence of snow, and water 

limited in summer 

 

 

S increases during winter regardless of the P pattern, however snow volume 

is not such as to pass the pattern onto Q. 
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E 

Danube, Indus, 

Kolyma, Nelson, 

Sao Francisco, St. 

Lawrence 

Temperate (North America, 

Europe and Central Asia) 

South America 

Winter storage dominated 

basins due to the presence of 

snow with low storage 

fluctuations  

Tropical basin with no 

recurrent patterns in 

precipitation but water 

availability restrained to one 

particular season only 

Irregular or low P patterns transmit directly on to other variables, but E is 

recurrent due to the seasonal availability of energy. 

L 
Colorado, Darling, 

Grande, Orange 
Subtropics (Desert Belt) Arid basins 

Irregular P transmits to other variables as isolated events are the only water 

available for any hydrological process to take place 

 

 


