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ABSTRACT 

Semi-infinite programs will be solved by bisections within the 

framework of LPs. No gradient information is needed, contrary 

to the usual Newton-Raphson type methods for solving semi-infinite 

programs. The rate of convergence is linear. The method has a 

stable convergence feature derived from the bisection rule. 

1. Prahl.em 

We consider general linear optimization problems with infinitely 

many constraints. 

(P) min CTY 

subject to 

n 
L a (s)y ~ b(s) 
r=l r r 

for all sEs 

where c is an n-dimensional constant vector, 

y is an n-dimensional variable vector, 

S is a nonempty compact subset of RmCm~ 1) and 

a 1 , ... ,a
0 

and bare continuous real functions on S. 

The linear program dual to CP) is: 

CD) max L b(s)x(s) 
gE S 

subject to 

1 



r= 1, ... , n 

x(s)~O for all sE Sand xCs)=O except for 

a finite subset of S. 

2. Outline of the Method 

The method consists of three main parts: initial discretization, 

deletion and subdivision. The discretized problems are solved by 

the simplex method throughout the iterations. 

Step o. (Initial discretization) 

The dual pair CP)-CD) is discretized, i.e. the infinite index 

set S is replaced by a finite set. Let the finite set be 

1 k {s , ... ,s }. We call such sets grid. 

Solve .the resulting dual. pair of linear programs CP
0

)-CD
0

) by 

means of the simplex method. 

CP
0

) min cry 

subject to 

n 
2; ar Cs i) yr~ b Cs i) 
r=l 

k 
max 2; 

i=l 

subject to 

i=l, ... ,k. 

k 
" a (si)x.=cr I £.i r= , ... , n r i i=l 

x.~o i=l, ..• ,k. 
l 

Let the optimal solutions to CP
0

) and CD
0

) be 

T 
y= CY 1 ' · · · 'Y n) 
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and 

T x= < x 1 , ... , xk ) • 

Step 1. <Deletion) 

Apply the 'Deletion rule' as explained later in Sections 3 and 4 

i to the grid {s }. 

Step 2. (Subdivision or bisection) 

Apply the 'Subdivision (bisection) rule' as explained in 

Sections 3 and 4 to the grid. 

Step 3. <New <P 0)-<D0 )) 

Formulate new dual LPs <P0 )-<D0 ) by deleting/augmenting 

constraints/variables to <P0 )-<D0 ). 

Solve them by the simplex method. 

Step 4. (Convergence check) 

Stop the process if the subdivision parameter as explained in 

Sections 3 and 4 becomes less than the tolerance. 

Otherwise go back to Step 1. 

3. Details of the Method When S is One-Dimensional. 

In this section we will show details of the method in case S 

is one-dimensional. Cases with dim(S)>l will be discussed in 

Section 4. 

3.1 Initial Discretization and Subdivision Parameter 

Let the set S be [a,bJc Rand arrange the grid s 0 , ••• ,sk as 

(3 .1) 

where 

si=s 0+i(b-a)/k (i=O, ••• ,k) (3.2) 

We define the subdivision parameter (or mesh size) T to be 

3 



T=(b-a)/k (the length of an interval) (3.3) 

3.2 Solving CD0 ) 

We solve the dual program CD 0 ) by means of the simplex method. 

The reason for dealing with the dual program will be clarified 

later on. The optimal information related to the primal program 

is easilly obtained from the optimal basis of CD0 ). 

Let the optimal solutions to <P0 ) and CD0 ) be 

and 

T 
y= (y 1 • • • • • Y n) 

T x=Cx1 , ••• ,xk) . 

3.3 Deletion I Subdivision Rules 

(3.4) 

(3.5) 

Since the optimal solutions (3.4)-(3.5) solve the discretized 

problems, we have. at grid points .• 
l 

and 

n 
L 
r=l 

n 
L 
r=l 

a Cs.)y =bCs.) 
r 1 r i 

a Cs.)y $;;bCs.) r i r i 

if x.>O 
l 

if x.=O. 
l 

However, it is not certain if the relations 

n 
~ 
r=l 

a (s)y ~ b(s) 
r r 

for every sE S. 

n 
Let ¢ Cs)= L ar Cs) yr -b ( s) . 

r=l 

The discrepancy o (y) of y is defined as 

(3.6) 

( 3 .. 7) 

(3.8) 

(3.9) 
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o (y)= min ¢ (s). 
sE [a,bJ 

A lower bound to o (y) is given by 

2 - f::l. =- (FM
1 

+M
2 

)T /8 

(Kortanek [2J), 

where F> I Yr I 

M1= max 
sE S 

M = 2 

and 

max 
SES 

Cr=l, ... ,n) 
n 

:?.; 
r=l 

I a "(s) 
r 

I b"(S) 

T is defined by (3.3). 

(3.10) 

(3.11) 

It is easy to see that if at two successive grid points s. and 
l 

si+l, we .have 

¢ ( s i ) > f:l. and ¢ ( s i + 1 ) > D. 

then it follows that 

¢ ( s) >O 

Thus, we have the deletion rule for grid points. 

[Deletion Rule] 

If at three successive grid points si' si+l and si+ 2 , we have 

¢ < s i ) > !::l. , ¢ Cs i + 1 ) > D. and ¢ Cs i + 2 ) > D. (3.13) 

then we delete si+l and hence the whole interval <si,si+ 2 > from 

further consideration. Notice that the rule needs to be changed a 

little at the boundary points. 

[Subdivision Rule] 

We subdivide the remaining intervals by introducing a new grid at 

the mid-point of each interval. 
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Thus, we have 

new T=T/2 

and 

new ~=!:l./4. 

(3.14) 

(3.15) 

[Remark 1] Usually it is not easy to determine ~ as defined by 

(3.11). In such a case, ~ should be taken to be a threshold 

for deleting grid points. A smaller ~ deletes more grid points. 

If ¢ (s) is well approximated by a quadratic curve at a local 

maximum, the relation (3.15) will generally hold after the 

subdivision. 

3.4 Solving the New LP 

We delete the columns corresponding to the deleted grid points 

from the dual tableau and introduce new columns corresponding 

to the new grid points to the tableau. The new columns will be 

priced out by using the optimal dual basis of the preceding 

iteration and the primal simplex method will determine the new 

optimal solution. 

3.5 Convergence Check 

We stop the iterations if T comes to satisfy for some tolerance 

T to 1' 

(3.16) 

[Remark 2] A typical process of subdivision (or bisection) is 

sketched in Fig. 1, where the curves represent ¢Cs) with s as 

abscissa and the tolerance !::::i. for each iteration is given by 

the dashed line. 
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Iteration 2 

Iteration 3 

Iteration 4 
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4. General Case. 

In this section we will deal with the dual pair of problems 

CP)-(D) when S is a compact set with L=dim(S)>l. 

4.1 Initial Discretization 

We discretize S by using L-dimensional cubes with edge length 

1 k T. The mesh points are the initial grid points {s , ..• ,s }. 

The grid points are used to formulate CP
0

) and <D
0
), which are 

solved by the simplex meyhod. Let the optimal solutions be y and 

x. 

4.2 Deletion and Subdivision (Bisection) Rules 

Every grid has at most 2L neighbors. 

[Deleting Rule] 

If the relation 

n 
¢Cs)= L a (s)y -b(s)>~ (4.U r r r=l 

8 

holds at a grid and its neighbors, then we will call the convex hull 

of such neighbors as 'a deleted domain'. And in the subdivision 

process which follow, we neglect the grid points inside the deleted 

domain. ~ is a threshold similar to (3.11) (see also [Remark lJ). 

For higher dimensional Ls, it would be difficult to estimate ~ 

by a formula such as (3.11). A practical way to estimate 6. is 

as follows: 

After the initial LPs are solved, we estimate the discrepancy o (y) 

by samplings from S. The value will be used as the initial 6., which 

will be updated by dividing 4 at each iteration. 

[Subdivision Rule] 
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We introduce new grid points outside the deleted domain by subdividing 

each edge of the cubes at the mid-point. Thus, we have 

new T=T/2 (4.2) 

and 

new ~=6./4. (4.3) 

4.3 Solving New LPs and Checking Convergence 

These steps are quite similar to the one-dimensional case as explained 

in subsections 3.4 and 3.5. 

[Remark 3J A typical subdivision process of the two-dimensional s is 

depicted in Fig.2. 
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