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Abstract 
We will show a variant of the Karmarkar's algorithm for LPs with 
sparse matrices. We deal with the standard form LP. Starting 
from an initial interior point, one interation of our method 
consists of choice of a basis, factorization of the basis, 
optimality test, reduced gradient, conjugate gradient method and 
determination of the next point of iterate. A combination of the 
reduced gradient and the conjugate gradient method is used for 
generating the steepest descent direction of the transformed 
objective function. Bases which are maintained and updated 
throughout the iterations are effectively utilized. As a basis, 
we choose the linearly independent columns of the coefficient 
matrix corresponding to the decreasing order of the variables. 
The basis is then factorized in the LU-form which is used in 
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the computations throughout the iteration. Preliminary numerical 
experiments will be reported. Emphasis is laid on the implementational 
issues of the sparse basis. 
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1. Outline of the Revised Karmarkar's Method 

We will introduce the outline of the affine version of the 

revised Karmarkar's method CRK method) along with explanations 

of notations and symbols. (For further details, see [7J 

and ClOJ.) The pro~lem we are going to solve is: 

CL) min CTX (1.1) 

subject to Ax=b, x$:0, 

where A is an Cm,n) matrix. 

The feasible region X of CL) is defined as 



X={xERn: Ax=b, x~O}. (1. 2) 

We impose three assumptions on (L): 

Al) X is nonempty and an interior point x0 e X <x0 >o> is 

known, 

A2) X is bounded 

and 

A3) rank(A)=m. 

A logarithmic barrier-function method to (L) is: 

1' n 
<L') min F<x>=c x-µ. l; In<x.) (1.3) 

j =l J 

subject to Ax=b, 

where µ. (µ. >O) is the barrier parameter. 

* * * If x < µ.) is the solution of (L'), then x < µ.) ~ x (the 

solution of (L)) as µ. ~ 0 (see Fiacco and McCormick [2]). 

Based on an interior point x0 of X, we define the affine 

transformation from x to y as 

y=D- 1x, D=diagcx0 .) 
J 

Notice that x0 corresponds to e=Cl, •• ,,l)T by D. 

We have the transformed problems of (L) and (L') as 

(M) min cTy 

subject to Ay=b, y~O 

where A=AD, ~=DC, 

and 

<M') min GCx>=cTy-µ. <l; In<y.)+ln<det(D))) 
J 

subject to Ay=b. 

(1. 4) 

(1. 5) 

(1. 6) 

(1. 7) 
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The feasible reg~on of <M) is: 

E n -Y={y R :Ay=b, y~Q}. Cl. 8) 

The steepest descent direction d of the g<=V'G<y>) on Y is given 

as 

where 

is the projection matrix, and 

g=Dc-JJ, e. 

We move from e along the direction d to obtain 

a=e+ a a* d 

where 

* a =sup { a E R: e + a d ~ o} 

and 

aE (0,1). 

(1. 9) 

<1.10) 

(1.11) 

(1.12) 

(1.13) 

Cl.14) 

The transformation (1.4) is applied inversely to return a to an 

interior point of X. Thus, we have 

1 x =Da. 

x 1 will replace x0 until the iterations converge. 

(1.15) 

Another look at the orthogonal projection Cl.9) is as follows: 

A least squares problem equivalent to (1.9) is 

(LSQ) min II g-zll 2 

subject to Az=O. 

(1.16) 

(1.17) 

Furthermore, by introducing a bais B of A<=rB I NJ), the 

constraint <l.15) is decomposed into 
- - -
Az=BzB+NzN~o (1.18) 
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and hence 
--1-

zB=-B NzN. Cl.19) 

Then, (LSQ) is reduced to an unconstrained least squares problem: 

CLS) 

where 

min -II g -[-~ l 
,.,, ,.,, T 
g=[Q,gNJ 
"' T T T= 
gN =gN -gB N 
= --1-N=B N. 

(1.20) 

(1.21) 

Cl. 22) 

(1.23) 

The RK method solves the problem <LS) by the conjugate gradient 

methods using gN as the starting value of zN. Th CG process 

converges fast to the optimal solution zN*, if the basis B 

becomes nearly optimal and the optimal solution of (L) is 

nondegenerate. 

Then, we have 

d= -r-~ l 
[Remark ll Although the affine version explained above is simpler 

than the projective version <see [7J) in that no lower bound to 

the optimal value to CL) is needed, it has no guarantee of 

polynomial time convergence. 

[Remark 2J The logarithmic barrier function is first suggested by 

Frisch([3J). Since we consider it as an extension of our 

previous works([7J,C10J), we name it the affine version of the RK 

method rather than the logarithmic barrier function method. 

It is quite similar to the method by Gill et al.([4J) but is 
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different in the implementation. 

2. Impementation of the RK Method with Sparse Matrices 

The RK method starts from the scaling of the input data A,b and 

c and the initialization for Phase 1 follows. Then we proceed 

iteratively until convergence occurs. One iteration consists of 

(1) Choice of the basis 

and 

(2) LU-decomposition of the basis 

(3) Optimality test 

(4) Computation of the reduced gradient 

(5) Conjugate gradient method 

(6) Updata of the iterate x. 

Our implementation deals with MPS format data. Non-zero 

elements are stored in one dimensional arrays with appropriate 

pointers to segment the data. We will explain the main parts of 

the implementation. 

a. Scaling 

The rows are scaled first by the largest coefficient 

<absolute value) and then columns. Also the vectors b and c are 

scaled so that the largest elements in absolute value are ls. 

b. Initialization and Phase 1/Phase 2 

In order to have an initial interior point, we use the Phase 

1 problem: 

(Ll) min <cTx+Mx0) 

subject to Ax+Cb-Ae>x0=b 

x~ 0, x 0 ~ 0 

(2.1) 
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where Mis a sufficiently large positive number (penalty). 

It is easy to see that x=e and x0=1 is an initial interior point 

to CLl). We start Phase 1 of the RK method from this value. 1£ 

x0 comes less than O, then we interpolate the value of x 

corresponding to x0=o, which will be used as the starting 

interior point of the Phase 2 problem, after deletion of x0 • 

c. Basis and its LU-Decomposition 

Since the bases play a big role in the RK method, choice of 

a basis at each iteration is crucial to the efficiency of the 

algorithm. If the problem has a nondegenerate optimal solution, 

it is quite natural to choose m linearly independent columns of A 

corresponding to the decreasing order of elements of the iterate 

x0• This choice will make the convergence of the RK method 

fast. The £allowing rule is applied in the implementation. 

We assume that the indices of the iterate x0 are reordered so 

that 

XO 1 ~XO 2 ~ • • • • • • ~XO n ( >O) • (2.2) 

Ccl) If there are slack variables among <x1 , ••• ,xm>' they are 

included into the basis. Let s be the number of slack variables 

thus chosen. 

Cc2) We make a 'tentative' basis B by adding Cm-s) columns of A 

to the set, according to the index order, which are not 

apparently linearly dependent each other. Thus, B has m 

candidates of pivots but is not assured to be nonsingular. 

{c3·) The Reid's preconditioning CC8J) is applied to B so as to 

curb 'fill in' in the LU-decomposition. Thus, we have: 
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BI =QBR= (2.3) 

where Q and R are permutation matrices. 

(c4) LU-decomposition is applied. However, since linear 

independence is not assured in 'bump', zero pivots may occur in 

the process. In such a case, we put a 'dummy 1' <actually a unit 

vector) at the pivot position and continue the decomposition, 

which results in: 

B' 

(c5) If there are 'dummy 1' columns after the decomposition is 

over, we exile the columns from the basis by using the n 

vectors(a technique in the simplex method). Thus B-l is 

usual I y expressed by Q, R, L, U and 1J vectors. 

d. Computation of the Reduced Gradient 

A simple calculation shows 
- T T T -1 T T -1 -1 
gN =<cN -cB CB N))DN-µ, CeN -eB DB B NDN). 

e. Conjugate Gradient Method 

We use Hestenes and Stiefel's version of the conjugate 

(2.4) 

gradient method for least squares problems ([5J). If we rewrite 
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the system <LS) as 

min II h-Pzll 2, 

then the algorithm is as follows: 

1. z0
=hN 

2. r 0=h-Pz0 

3. sO=PTrO 

4. r 0=11s 0
11 2

2 

5. pl=so 

6. For k=l,2,. .• 

a. qk=Ppk 

repeat the 

b. a k= r k-1 I II q k II 2 2 

c. 2 k= 2 k-1 +a kpk 

d. rk=rk-1 _a kqk 

e. sk=PTrk 

f. r k= II sk II 2 2 

g. 13 k= r k / r k-1 

h. k+l k+ /3 k k P =s P • 

f. Choice of a 

following: 

a is chosen from C0.85,0.95]. 

g. Reduction of u 

J.to=O.l and µk+l=/3 µk </3=0.1) for k=0,1,2, ••• 

h. Changeover to the Simpelx Method 

(2.5) 

We define the infeas~bility of a basis as the sum of primal 

infeasibility and dual infeasibility. The infeasibility usually 
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becomes small at the last few steps of the iterations. A changeover 

to the simplex method is efficient to obtain a fast convergence 



to an optimal basis if the infeasibility becomes less than a 

tolerance, say (m+n)/25. 

We use a perturbation of RHS and a parametric LP as follows: 

b.B. 
1 1 

where 

I ={i: b.<O} 
- 1 

- -1 b.=CB b). 
1 l 

and 

(2.6) 

(2.7) 

(2.8) 

B.= the i-th column of B (basis). (2.9) 
1 

If we perturb b by adding .6b, then B is primal feasible for the 

perturbed problem. Then we obtain an optimal solution of the 

perturbed problem by the primal simplex method and a parametric 

LP is applied to find an optimal solution of the original 

problem. 

3. Sample Problem and Computational Results 

The following is a variation of a scheduling production and 

inventory <multiperiod and staircase) problem by V. Chvatal [lJ: 

k 
min ~ (20yJ.+8zJ.+tJ.) 

j=l 

subject to x.-x. 1~800 
J J -

-x. +x. 1 ~BOO J J-

y. :i 0.3x. 
J J 

z. 1+x.+y.=d.+z. 
J- J J J J 

t.e;15(x.-x. 1> 
J J J -

t.~21(x. 1-x.> 
J . J - J 

(3.1) 
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x 0=5800 

z0=o 
x.,y.,z.,t.$;0 

J J J J 

for j=l, .••. ,k. 

We solved the problem for several ks with the demand 

{d.}(j=l, .. ,k) fixed randomly within a certain range. 
J 

Table 1 shows the computational results along with ~omparisons 

with MINOS 3.0 and MPS2. 

RK MINOS 3.0 MPS2 

M N 

I TR Cl, 2, 3) CPUCCG) ITRCl, 2) CPU ITRCl, 2) 

36 53 11(2,8,1) 0.69(0.33) 31(14,17) 1.47 17(14,3) 

72 107 8(2,4,2) 1.63(0.98) 75(36,37) 3.00 52(39,13) 

144 215 11(3,4,4) 4.19(2.43) 148(74,74) 7.06 94(80,14) 

288 431 16(4,5,7)' 13.74(7.96) 263(137,126) 17.81 187 (164' 23) 

576 863 17(4,6,7) 47.26(30.34) 520(268,252) 56.98 383(337,46) 

Table 1. 

Notes to the Table 1: 

1) M=no. of rowsC=6k), N=no. of columns. Nos. of non-zero 

elements of the coefficient matrix A are 120Cfor M=36), 

246(72), 498(144), 1002(288), and 2010(576). Densities of 
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CPU 

0.72 

1.14 

1. 91 

4.58 

13.91 
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non-zero elements are 11%(for M=36), 5.5%(72), 2.8%(144), 

1.4%(288) and 0.7%(576). 

2) RK:the numbers in RK are averages on ten random sample 

problems. All the iterations finished after having found an 

optimal basis. Double precision arithmetics were used for the 

experiments of the RK method. Th CG method stops when the 

relative change in the norm of residuals of the succeeding 

-4 -5 two steps becomes less than 10 (for M=36,72), 10 (144) 

l0- 6 <288),and 10-8 (576). 

3) "Fill in" in the LU-factorization of the RK method and 71-vectors 

appeared rarely. 

4) MINOS and MPS2: the numbers in MINOS and MPS2 are averages on 

two random sample problems. 

5) ITRCI,2,3) means no. of iterations , Phase !/Phase 2/Phase 3 

iterations. Phase 3 iterations in RK mean those of the simplex 

method after the changeover. We switched to the simplex method 

if the infeasibility of the basis became less than CM+N)/25. 

Nos. of CG iterations are 27CM=36),44(72), 56(144), 96(288), 

and 184(576). 

6) The values of a <step length ratio) in (1.12) are 0.95CM=36,72, 

144,288),and 0.90(576). 

7) CPUCCG): CPUCCG) time in seconds on a HITAC M-260D. 

B> RK and MINOS 3.0 are written by Fortran while the language of 

MPS2 is unknown to the author. 

[Remark 3J The above experiments were done just for a trial to see 

how the algorithm works. We need more extensive experiments to have 
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any decisive conclusions on the efficiency of the method. 

4. Observations and Future Research Subjects 

In this paper, we showed an implementation of the revised 

Karmarkar's method with emphasis on the sparse basis handlings. 

From the very limited experiences, we observe the followings: 

12 

(1) The CG method becomes unstable for large m. Some preconditionings. 

of the CG method will be needed for such cases. 

(2) The choice of a Cthe step length) in Cl.12) and µ. <the 

barrier parameter) in Cl.3) is sensitive to the performances 

of the algorithm. Some other works [4], [9J on the subjects 

should be consulted in the future implementation. 

(3) More than 60 percent of the CPU time is spent in the CG 

computations. Zenios and Mulvey [llJ have succeeded in the 

vectorization of the CG computation for nonlinear network 

programming problems. Their implementation deals with the 

sparse basis and suggests the future possibility of 

vectorization of our algorithm. 

C4) Changeover to the simplex method is effective in speeding up 

the convergence to the optimal basis and in saving the CPU time. 

(5) Efficient updating methods of the sparse basis factorization 

along with the problem reduction by finding the basic or nonbasic 

variables are future research subjects. 

(6) Protections against degenerate optimal solutions and null variables 

should be crucial subjects to be studied further. We need more 

theoretical and empirical studies. 
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