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Abstract 

As a natural extension of Roos and Vial's "Long steps 

with logarithmic penalty barrier function in llnear programming" 

(1989) and Ye's "An O(n3 L) potential reduction algorithm for 

linear programming" (1989), it will be shown that the classical 

logarithmic barrier function method can be adjusted so that it 

generates the optimal solution in O(/IlL) iterations, where n is 

the number of variables and L is the data length. 
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1. Introduction 

Since the epoch-making breakthrough by Karmarkar[12], the 

interior point methods for linear programming have been extensive­

ly studied in many aspects. One of ·the focuses of the studies is 

on the central trajectory leading to the optimal point. (See, for 

example, Sonnevend [ 19] , Renegar [ 1 7] , Bayer and Lagarias [ 1] , 

Megiddo [15], Kojima, Mizuno and Yosise [13], Monteiro and Adler 
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[16], Goldfarb and Liu [7], Ye and Todd [22], Todd and Ye [20].) 

The algorithm dealing with the central trajectory can be 

classified into two groups: one that follows the central 

trajectory directly and the other that minimizes a substitute 

function of the problem so that the successive points of 

iteration remain in the proximity of the central trajectory 

consequently. Among the latter approach, some are called as 

large-step algorithms in the sense that the step size of the 

movement in an iteration has no a priori bound but is determined 

by minimizing the substitute function on a line segment. 

There are several types of such functions. We will deal with two 

of them. One is the classical logarithmic barrier functions 

originated by Frisch [4] and studied by Fiacco and McCormick [2] 

as applied to linear programming by many authors.(See Gill,Murray, 

Saunders, Tomlin and Wright [ 6] , Gonzaga [ 8], Kojima, Mizuno and 

Yoshise [14] and Roos and Vial [18].) The other is the modern 

potential function introduced by Karmarkar [ 12] , studied and 

extended by many researchers.(See Gonzaga [10], Ye [21], Freund 

[3], Todd and Ye [20], among others.) 

Recently, Roos and Vial [ 18] has proposed an o ( nL) i tera ti on 

large-step logarithmic barrier function algorithms and Ye [ 21] 

has developed an O(./IlL) iteration potential reduction algorithm 

based on the primal-dual potential functiqn. (Freund [ 3] and 

Gonzaga [10] have presented similar results.) The O(./IlL) 

iteration seems to be the best theoretical bound as of November 

1989. 

The purpose of this paper is to show a new 0 ( ./IlL) i tera ti on 

large-step logarithmic barrier function algorithm based on the 

results developed by Roos and Vial [ 18] and Ye [ 21]. Al though 

Gonzaga [9] has ·presented an algorithm with the same polynomial 

bound in the same track, the formula for the control of the 

parameter is different from the present method. Gonzaga reduces 

it by a fixed rate when a centering condition comes to be 

satisfied, while our method reduces it adaptively. 
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2. Problem and Barrier Functions 

We will deal with the primal form of the linear programming 

problem: 

<P~ min {cTx : Ax=b, x~O} (2.1) 

where A is an (m,n) matrix, b and c are m- and n-dimensional 

vectors respectively, x is the variable n-dimensional vector to 

be determined optimally and the symbol T denotes the transpose. 

The dual Torm of <P> is expressed as 

(2.2) 

where s and y are variable n- and m-dimensional vectors 

respectively. 

For all x and y that are feasible for <P> and <D>, we have 

(2.3) 

where z 0 P 

<P> ( <D>). 

denotes the minimal(maximal) objective value of 

As far as notations are concerned, e denotes the 

vector of all ones. The upper cas,e letter (X) designates the 

diagonal matrix of the vector (x) in the lower case. 

For <P> and <D>, we assume that 

(1) the relative interior of the feasible regions of <P> and 

<D> is nonempty and we have an interior feasible solution x 0 and 

y 0 for <P> and <D> such that 

and 

(2) A has full rank, 

and 

(2.4) 

( 2. 5) 

(3) the objective function value crx is not a constant on the 

feasible region. 

Associated with <P>, we consider the logarithmic barrier 

function 

n 

µ 
- ~ ln ( Xj ) 

J :: 1 
(2.6) f(x,µ) = 

where µ is a positive parameter. 
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The function f is strictly convex on the relative interior of 

the feasible region and achieves a minimum value at a unique 

point in it. In contrast to the classical barrier function 

f ( x, µ.) , several authors have been studying extensively another 

types of functions motivated by Karmarkar [12]. ([8],[20],[21], 

[22]). 

We will consider here two of them: 

the primal potential function for an interior feasible x 

n 
fp ( x, z) = p ln ( c r x-_z) - ~ ln ( x · ) 

j = 1 J 
(2.7) 

and 

the primal-dual potential function for an interior feasible 

pair (x, s) 

n 
fpo(x,s) = p ln(xTs) - ~ ln(XjSj) 

j "' 1 
( 2. 8) 

where z is a lower bound to z 0 P and p is a positive parameter . 
.. 

For a pair of interior feasible primal-dual solution (x,s), let 

z=bTy, then we have a relation between the primal and the primal­

dual potential functions: 

n 
fpo (x,s) = fp (x,~) - :E ln(Sj). 

j "' 1 
(2.9) 

For an interior feasible x 0 and a positive parameter µ. 0 , the 

projected Newton (ascent) direction p associated with f is given 

by 

p = 
µ. 0 

where s = c - AT y 

and 

- e (2.10) 

(2.11) 

y = (A(X 0 )2AT )-tAX 0 (x 0 c - µ 0 e). (2.12) 

For an interior feasible x 0 and a lower bound z 0 to z0 P, 

the projected Newton direction PP associated with fp is given by 

p 
x0 s - e (2.13) PP 

where 
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s :;; c - ATy (2.14) 

and 
e) • (2.15) 

p 

For the derivation of the above formulae, see Hertog and Roos [11]. 

It is evident that if we choose the parameter µ 0 as 

µ.O :;; (2.16) 
p 

then we have 

p :;; PP. (2.17) 

This fact is the basis on which our algorithm stands. 

3. Algorithm and Complexity 

This algorithm generates successive pairs of interior feasible 

solutions (x 0 , s 0 ), (xt , s 1 ), ••• , from a given initial pair (x 0 , s 0 ). 

Since (xk + 1 , sk + 1 ) is completely determined by (xk , sk ) , we 

describe the algorithm as the process to generate (xt , st ) from 

(xo,so). 

[Algorithm A] 

Set p :;; n + v./Il with v ~ 1 and O(v) :;; 1 

a :;; 0 .4. 

(3.1) 

Given x 0 , s 0 and y 0 such that Ax 0 = b, x 0 >0 and s 0 =c-Ary 0 >o, 

Compute 

zO = bTyO 

p 

y = (A(X 0 )2AT)-1AX 0 (x 0 c - µ 0 e). 

s = c - ATy 

and 

p - e. 
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If llP II ~ C! 

then begin the primal-step as follows: 

X 1 = XO - ~OXOp With e0 = argmin6~0 f(XO - pX 0 p,µ 0 ) 

(3.8) 
yl = yO 

z1 zO 

s1 = so 

crx1 - zO 
µ. 1 = 

p 

else begin the dual-step as follows: 
xi XO 

y1 = y 

z1 = bTy 

51 = s 

er xo - bTy 
µ1 

p 

end. 

The process terminates if the relation 

cTxk - bTyk < 2-L 

is satisfied for some k. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The following two lemmas are essentially proved by Roos and Vial 

[ 18] . 

[Lemma l] 

If ]lpfl < <J. then (y,s), defined by (3.5) and (3.6), is an 

interior dual feasible solution and we have 

c T x 0 - z 0 p < c T x 0 - b T y :S µ. 0 ( n + am) . ( 3 . 18 ) 

Hence, noting x 1=x 0 , ll 0 =(cTx 0 -~ 0 )/(n+v./Il), s 1 =s and ~ 1 =bTy, we 

have 

cT X 1 - Z 1 S 
n+a./Il 

n+v/Il 
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Thus, the duality gap is reduced at least by a factor 

(n+a/Il) I (n+v./Il) ( <1). 

Proof. See Appendix 1. 

[Lemma 2] 

If a step length of j=(l+l!Pllm )-t is taken from x 0 along the 

direction -X 0 p, then the change in the barrier function f, 

denoted by Af satisfies 

Af s -llPll + in c 1 + 11 P 11 ) • 

If llPll ~ a = 0.4, then 

8f s -0.04. 

Proof. See Roos and Vial [ 18] . 

On the line segment x 0 -,sx 0 p (0<£<,Sm, ,Sm=min{l/Pi :pj>O, 

j=l,2, .. ,n}), we define a "gap function" g(f3) as 

(3.20) 

(3.21) 

g(,S) = f(x 0 -px 0 p,µ 0 ) - fp (x 0 -px0p,~0 ). (3.22) 

[Lemma 3] 

g(f3) is increasing for f3 (O<f3</3m). 

Proof. 

dg ( f3) p,S(cTXop)2 
~-----------------------~----------- >0. 

(crxo _ ~o)(cTxo _ zo _ {3crxop) 
Q.E.D. 

d/3 

The following two lemmas are derived from those by Ye [21]. 

[Lemma 4] 

Let O<a<0.7 and p=n+vlll with v~l. 

If llPll < a, then we have 

fpo(x 0 ,s) s fpo (x 0 ,s 0 ) - v + 

1 
s fpo (x 0 ,s 0 ) - + 

2 

wheres is defined by (3.6). 

v a2 (l+a//1-a2) 
(a +1) + 

l+v 2(1·-2a 2 ) 

a a2 ( 1 +a/ /l - a2 ) 
+ (3.23) 

2 2(1-2a 2 ) 

If we set a=0.4, then the reduction in the primal-dual potential 

function is as follows: 
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fpo(x 0 ,s) :S fpo(x 0 ,s 0 ) - 0.13. (3.24) 

Proof. See Appendix 3. 

[Lemma 5] 

Let p;:;n+v./Il with v~l and (xk,sk)(k;::;0,1,2, ... ) be a series of 

interior primal-dual feasible solutions with fpo(x 0 ,s 0 )=0(/IlL). 

If, for a positive o independent of n, the relation 

f p D ( X k + 1 , S k + l ) !:: f p D ( xk , S k ) - O (3.25) 

holds for each k, then in O(v/nL) iterations, we have 

crxk-bTyk;::; (xk)Tsk < 2-L. 

If O(V)'=l moreover, ·then the· polynomial bound of iteration is 

0 (/IlL) . 

Proof. See Appendix 4. 

Now we are ready to show the theorem. 

[Theorem l] 

If Algorithm A starts from an interior primal-dual feasible"·· 

solution (x 0 ,s 0
) with fpn (x 0 ,s 0 )=0(/IlL), then it terminates in 

O(./IlL) iterations. 

Proof. 

Let the series of the interior feasible primal-dual solutions 

generated by Algorithm A be (xk ,sk)(k=0,1,2, ... ). For each 

(xk,sk), we have three potential functions f, fp and fpn defined 

by (2.6), (2.7) and (2.8) respectively. We will show that, for 

each iteration, the primal-dual potential function reduces at 

least by a positive value 5=0.04 and then we have the conclusion 

by Lemma 5. 

The case []p If 2: a: 

In thi~ case we move in the primal space from x 0 to x 1 as 

defined by (3.8). From Lemma 2, we have 

f(x 1 ,µ. 0 ) - f(x 0 ,µ 0 ) :S 0.04. 

Using the gap function g , the change in the primal potential 

function.is expressed as 

fp (x 1 .~0 ) - fp (x 0 ,z 0 ) = f(x 1 ,µ. 0 ) - g({3°) - f(x 0 ,µ. 0
) + g(O) 
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s -0.04 - g(p) + g(O). 

By Lemma 3, we have g(p 0 ) 2 g(O). 

Hence, 

fp(x 1 ,z 0 ) - fp(x 0 ,z 0 ) S -0.04. 

Noting s 1 =s 0 in this case, we have 

n 
l: ln ( s · 0 ) 
j "' 1 J 

n 
~ fp (XO, Z O) - l: ln ( Sj O) - 0. 04 

- j ;; 1 

s fpn (x 0 ,s 0 ) - 0.04. 

The case []p 11 < a: 

From Lemma 5, we have 

fp D ( X 1 , S l) S fp D (XO, SO) -Q .13 

4. Concluding Remarks 

We will point out several features of our algorithm. 

4.1 On primal- and dual-step 

Q.E.D. 

In Algor i th.m A, we choose either the primal or the dual step 

depending on []p[J. Specifically, if Jlpll2a(=0.4), then we employ 

the primal, otherwise the dual. The value 0.4 is not mandatory, 

but is used to assure a constant reduction in the primal-dual 

potential function even in the worst case. So, in the 

implementational phase of the algorithm, the following procedure 

may be recommendable; 

If 11 p 11<1 and ( x 0 
, s ) ( s defined by ( 3 . 6 ) ) reduces f P n a certain 

amount, then we go into the dual step, otherwise into the primal. 

Also, the minimization of fpn with respect to z may be 

considerable. Anyway the dual step is cheap compared with the 

primal. 

4.2 On updating z 

If Jlp[f<l, then we have, from (3.19), 

z 0 p 2 z 1 > z 0 • (4.1) 
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Thus, we can update the lower bound strictly. This fact means 

that if we start from z 0 =z 0 P , then the centering condition ]]p 11<1 

never holds and so we never visit the dual step. 

It should benoted that to be in a proximity of the center, as 

cha~acterized by llPll<l, is not the object or goal of the path­

following algorithm, but just a stimulus. By choosing µ=(cx-z)/p, 

we change the stimulus, in a sense, adaptively and continuously. 

This shows a sharp contrast to Roos and Vial [18] and Gonzaga [9] 

where the centering condition is a necessity to promote their 

"outer step". 

4.3 On the choice of p 

Although we employ p=n+v/Il with v~l, O(v)=l, it is interesting 

to observe the case p=B(n+v./Il), with B>l, 0(9)=1. From Lemma 5, 

the polynomial bound of iteration is O(nL), worse than O(./IlL) of 

the present algorithm. Then, if llPll<a and we go into the dual 

step, it holds 

n+arn 

e (n+v/Il) 

1 
= --(xo)r so. (4.2) 

e 
Thus, duality gap reduces at least by a factor 1/B(<l). If we set 

B=2, then Algorithm A will behave similarly to Roos and Vial [18] 

although the correspondence is not exact. 

4.4 On the step size of the algorithm 

Algorithm A uses the logarithmic barrier function f to determine 

the step size in the primal step. If, instead, we employ the 

primal potential function fp for this purpose, then Algorithm A 

coincides with Ye's primal potential reduction algorithm [21]. In 

this context, it may be possible that other types of the 

substitute functions with the same polynomial bound exist. 

As for the step size, let 

(4.3) 

and 

(4.4) 
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Then, we have 

{30 ;:5 pl, 

as otherwise Lemma 3 does not hold. 

Append1x 

Appendix l. (Proof of Lemma l)(Roos and Vial [18]) 

Since 

l!Pll = \1 
x 0 s 

---- - e 11 < a <l, 
µ. 0 

(4.5) 

(s,y) is an interior dual feasible solution and so ~1 =bTy<zop. 

On the other hand, 

x0 s 

and 

jeT(--- e)I S llell 11 
µ. 0 

x 0 s 
- e 11 s am 

x 0 s (x 0 )Ts crx 0 - bTy 
eT(--- - e) = - n = - n. 

µO µ.O µO 

Hence, noting x 1 =x 0 , µ. 0 =(cTx 0 -z 0 )/(n+v/Il), s 1 =s and z 1 =bry, 

we have 

Appendix 2. 

[Lemma 6] 

n+a./Il 

n+v/Il 

n+arn 

n+v./Il 

Given two numbers a and v with O<a<v, the function 

h(x) = x ln((x+a)/(x+v)) 

is decreasing for x>O. 

Proof. 

a-v (v-a)x 
h ' ( x ) = ln ( 1 + ----) + 

x+v (x+a) (x+v) 

Since (a-v)/(x+v)>-l for x>O, we have 

a-v ( v-a) x a(a-v) 
h' (x) ;::; + = 

x+v (x+a) (x+v) (x+a) (x+v) 

11 
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Appendix 3. (Proof of Lemma 4) 

Ye [21] proved that if llPll<r./n/(n+y 2 ) with y<l then the 

following inequality holds 

n 
n ln ( x 0 )T s 1 - ~ ln ( x · 0 s j 1 

j = t J 

n 
s n ln ( x 0 ) r s 0 - z 1 n ( x · 0 s · 0 ) 

j = 1 J J 

+ 
2(1-y) 

Thus, for l]plf<o: with a<0.7, we have 

n n 
n ln(x 0 )Ts 1 - l: ln(x· 0 

Sj 1 ) s n ln(x 0 ) 7 s 0 - l: ln(x· 0 s· 0 ) 
j:t J j=t J J 

a 2 ( l + aln/ ( n - o: 2 ) ) 
+ 

2(1-a 2 -a 2 /n) 

n 
:S n ln ( x 0 ) T s 0 - z ln ( x · 0 s · 0 ) 

j = t J J 

+ 
a 2 (l+a//l-a 2 ) 

2(1-2a 2 ) 

On the other hand, we have from (3.19), 

n+a./il 
------). 

n+v./Il 

By Lemma 6 above, the right hand side 0£ (A2) attains a 

minimum at n=l for n~l. Thus, 

l+a 

l+v 

a-v 
< 

l+v 

From (Al) and (A3), we have, for a<0.7, 

a-v 
ln(l+ 

l+v 

l+a 
= -1+ 

l+v 

(A2) 

(A3) 

fpn(x 0 ,s) S fp D (XO , SO) 
v a2 ( 1 +a/ ll - a 2 ) 

- v + (a +l) + 
l+v 2(1-2a 2 ) 

:S fpo (x 0 ,s 0 ) 
1 a a2 (l+o://1-o:2 ) 

- + -- + 
2 2 2(1-2a 2 ) 

because -v+v(a+l)/(l+v) attains its maximum at v=l for v~l. 

Q.E.D. 
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Appendix 4. (Proof of Lemma 5)(Ye [21]) 

n 
f P D ( X , S ) = p ln ( X T S ) - :E ln(x·s·) 

j = 1 J J 

n 
= ( p-n) ln ( x r s ) - z ln ( ( x j s i ) / ( x r s ) ) . 

j = 1 

From the inequality of the geometric mean and the arithmetic 

mean, we have n 
- ~ ln ( ( Xj s j ) I ( x r s ) ) 2 n ln n . 

j = 1 

Bence, 

(p-n) ln(cTx-bTy) = (p-n) ln(xTs) :S fpn (x,s) - n ln n 

:s fpn(x,s). 

Thus, if we can reduce fpn at least by o (a constant independent 

of n), at each iteration, we have, after -(p-n)L/o iterations, 

(p-n) ln(cTx-bTy) :s -(p-n)L + fpn(x 0 ,s 0 ). 

Assume that fpn (x 0 ,s 0 )=0(/IlL) and p=n+vlll, then after O(v/nL) 

iterations, we have 

CT X - b T y :S 2- l • Q.E.D. 
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