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Abstract 

The purposes of this paper are (i) to present DEA (Data Envel­
opment Analysis) without using tl1e non-Archimedian infinitesimal E 

and (ii) to introduce a new measure of efficiency, which takes account 
of slacks in inputs and shortages in outputs and expresses the relative 
efficiency of decision making units more properly than the traditional 
one. 

1 Introduction and Historical Background 

In their ingenious paper (10), Charnes, Cooper and Rhodes introduced a 
fractional programming method to measure the relative efficiency of a deci­
sion making unit (DMU), which was solved by transforming the fractional 
programming into a linear programming problem via the Charnes-Cooper 
scheme [6). The method is called DEA (Data Envelopment Analysis). In 
the paper, it was assumed that the weights to inputs and outputs be non­
negative. In the subsequent "short communication" (11), they changed their 
problems and required that the weights be strictly positive. Thus, the non­
Archimedian infinitesimal ' was introduced to distinguish between nonneg­
ative and positive values. Although, through the subsequent discussions 
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(notably, Boyd and Fare [5], Charnes and Cooper [7], Charnes, Cooper and 
Thrall (12], among others), the role of c has become clear and weakened, it 
is still frequently used in the literature (for example, (4],(8]) and in particu­
lar, in some cases of computational situations, values such as E = 10-5 , 10-6 

(single precision) or E = 10-12 (double precision) are employed instead of 
the non-Archimedian infinitesimal E. Theoretically, this is a contradiction 
and we need a completely c-free development of DEA from both theoretical 
and computational points of view. For this purpose, in Section 2, we will 
define an input oriented DEA model based on the production possibility set. 
Its dual is the Charnes-Cooper-Rhodes (CCR) model with the weights to 
inputs and outputs as variables. Then, we define a DMU as slackless if, for 
every optimal solution to the DEA model, it has no slack in inputs and no 
shortages in outputs. By a theorem of the alternative, it will be proved that 
for a slackless DMU there is a strictly positive weight solution in the corre­
sponding CCR model. Subsequently, for a DMU with non-zero slacks in an 
optimal solution to the DEA model, there exist no positive weight solutions 
in the CCR model. This fact is the source of the non-Archimedian infinites­
imal c and, in the author's view, has not been explicitly pointed out in the 
literature. In Section 3, we will define the max-slack solution and show a 
procedure to find it. The max-slack solution can be used for deciding if the 
DMU is slackless or not. Thus, all jobs of the CCR model can be successfully 
achieved with no recourse to E. In Section 4, we will introduce a new measure 
of relative efficiency, based on the ma.x-slack solution, which takes account of 
slacks in the inputs and shortages in the outputs of the objective Di\IU and 
expresses the relative efficiency of DMUs more properly than the traditional 
one. 

2 Input Oriented DEA and Slackless DMU 

We consider n decision making units (Dl'vIUs) with an input matrix X = 
[x;k] E Rmxn and an output matrix Y = [Yjk] E R'xn, where Xik is the 
amount of input i consumed by DMU k and Yik is the amount of output 
j produced by DMU k. The unit k has the input vector xk = (x;k) E Rm 
composed of m kinds of resources and the output vector Yk = (Yjk) E R' 
composed of s kinds of productions. vVe assume X >0 and Y >0. The 
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production possibility set P ([2], [3], [9]) is defined by 

P = {(x, y)lx 2': X ,\, y::; Y ,\, ,\ 2': O}, (1) 

where x, y and ,\ are m-, s- and n- vectors, respectively. 

For a given DMU denoted by o with the input x0 and the output y0 , we 
consider the following input oriented DEA model as expressed by the linear 
programming (LP0 ). 

(LP0 ) min e (2) 
subject to exo > X,\, 

Yo < Y>., 
,\ > 0, 

where e E R and ,\ E R!' are variables. 
This model contracts inputs as far as possible while controlling for outputs. 
The dual of (LP0 ) is: 

(DP0 ) maxy~ u 

subject to x~ v - 1, 
vTX 

v 2': o, 

where v E Rm and u E R' are variables. 

(3) 

u 2': 0, 

As is well known, (DP0 ) is the linear programming version of the original 
CCR fractional programming problem. The dual variables u and v are the 
weights for outputs and inputs, respectively. 

For (LP0 ), we define the slacks s,. and Sy by 

s,. = Bx0 - X A and Sy = Y ,\ - Yo· (4) 

Let optimal solutions for (LP0 ) and (DP0 ) be (e•,>.*,s;,s;) and (u",v*), 
respectively. Note that these problems are often degenerate and the optimal 
solutions are not always unique. 
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Definition 1 (slackless DMU) If, for every optimal solution Joi· (LP0 ), 

we have 
s; = 0 and s; = 0, (5) 

then we call DMU0 as slackless. 

Theorem 1 DMU0 is slackless if and only if there exists an optimal dual 
solution (u*, v•) for (DP0 ) with u• > 0 and v• > 0. 

Proof. If DMU0 is slackless, there is no solution (.A, sx, s.) for the system: 

e•xo - X.A + Sx 1 (6) 

Yo - Y.A - s., (7) 
.A > o, (8) 

(sx,sy) > 0 and (sx, sy) 'f 0. (9) 

By applying Slater's theorem of the alternative (see Appendix 1), modified 
for the nonhomogenous system, to the system (6)-(9), it is concluded that 
the system 

has a solution 

vTX > uTY - ' 
e·(vT Xo) - UT Yo+ z = o, 

v E Rm, u E R' and z E R with 

z > o, u 2: o, v 2: 0 

or 

z 2: o, u > o, v > 0. 

Since vT x0 2: 0, we have two cases: 

Case (i) vT x0 > 0. 

(v•)T X 0 = 1, . 

( v•)T x 2: ( u•)TY, 

e• - ( u•)T Yo + z* = 0, 

z• 2: O, u• 2: 0, v• 2: 0. 
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Hence, (u•, v*) is feasible for (DP0 ). By the duality relation, we have, from 
(16), 

(18) 

which demonstrates the optimality of (u•, v*) for (DP0 ). Using (13), we have 
u· > 0 and v· > 0. 

Case (ii) VT x0 = 0. 

From (10), we have 0 = vT x0 2: uT y0 2: 0 and hence uT y0 = 0. The 
equation (11) results in z = 0 and, from (13), we have u > 0 and v > 0. 
This contradicts with vT x0 = 0, since x0 > 0 by assumption. Thus, Case (ii) 
never occurs. 

The reverse is also true by the nature of the theorem of the alternative. D 

Evidently, we have: 

Corollary 1 (DP0 ) has no strictly positive optimal solution (u*, v*) if and 
only if (LP0 ) has an optimal solution (B*,):,s;,s;) with (s;,s;) 2: 0 and 
(s;, s;) =I 0. 

3 Max Slack Solution 

The preceding Theorem and Corollary reveal the equivalence between the 
slackless solution in (LP0 ) and the positive solution in (DP0 ). So, hereafter, 
we will mainly deal with (LP0 ), since it can be more easily handled theoret­
icaily and computationally than the latter and needs no E. 

Definition 2 (max slack solution) An optimal solution of (LP0 ) is called 
as max slack, if it maximizes w = eT Sx + eT sy, where the eT are vectors of 
ones. 

The max slack solution can be obtained by a 2-phase process as follows: 
In the first phase, we minimize B of (LP0 ). Then, in the second phase, we 
maximize w = eT sx + eT sy wliile keeping B = B* (the optimal B value). It 
hardly needs pointing out that DA1U0 is slackless if and only if its ma.x slack 
solution satisfies w = eT sx + eT sy = O. As for the definition of efficiency, it 
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is natural to state that a DMU is efficient if it has e· = 1 and is slackless. 
Otherwise, it is inefficient. (The above procedure and the definition of effi­
ciency are given in [12], too.) 

Note: In the original CCR model [10], the weights u and v were required 
to be nonnegative and then, in the subsequent paper [ll], the problem was 
changed and required u and v to be positive, considering the slackness in 
(LP0 ). Specifically, they introduced the non-Archimeclian infinitesimal E. and 
replaced the condition u > 0, v > 0 by u 2': Ee, v 2': Ee. If the optimal 
solution (u*, v") for (DP0 ) under the latter condition happened to be Archi­
median positive, then DiVIU0 is slackless by Theorem 1. However, if some 
elements of (u", v*) are non-Archimeclian infinitesimal, we cannot decide from 
( u*, v*) whether D lvl U 0 is slackless or not. We will be free from this kind of 
information gap so long as we deal with the ma..x slack solution of (LP0 ). 

4 New Measure of Efficiency 

The traditional DEA regards e· as the measure of efficiency. However, e• is 
indifferent to the level of slacks in inputs and outputs a.nd hence is misleading 
as a. practical means for comparing DMUs. Now, we ca.n define another type 
of efficiency by the following principles: (1) it should be the sa.me as e· when 
the DMU is slackless, and (2) it should be decreasing in the relative value of 
slacks in inputs a.nd outputs. 

As a. candidate for this purpose, we propose a. new measure of efficiency, 
defined by 

(19) 

where s; a.nd s; a.re slacks of the max slack solution. It is easy to see tha.t rj" 
thus defined satisfies the a.hove criteria.. Furthermore, rf can be rewritten as 

• eT X >.• eT Yo 
7J = eTx

0 
eTY >..- (20) 

Let us define a DMU (x., y.) by 

Xe = X >. • and Ye = Y >. •. (21) 
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Theorem 2 The DMU (x., y.) is efficient. 

Proof. vVe estimate the efficiency of (x., y.) by solving 

(LP.) mm e. 
subject to e.x. = x>.+s,,, 

Ye = y ,\ - Sy, 

,\ > 0, s,, ::'.:: 0, Sy ::'.:: 0. 

Let a ma."\'. slack optimal solution of (LP.) be (e;, >.:, s;,, s;J. From B*x 0 = 
x. + s; and Yo = Ye - s;, we have 

Since (8*, >.*, s;, s;) is a max slack optimal solution for (x 0 , y0 ) and e; ~ 1, 
we have e: = 1 , s;, = 0 ands;,= 0. Thus, (x., y.) is efficient. D 

Thus, (x., y.) is a projection of (x 0 , y0 ) onto its efficiency facet. r( can 
be interpreted as the product of the average input efficiency eT x0 /eT x 0(~ 1) 
with the average output efficiency eT y0 /eT y.(~ 1). 

Example 

Table 1 shows the input X and the output Y for six DMUs along with the 
max slack solutions. As to DMU6 , it has e;; = 1 which looks like better than 
D111U1 and DlvJU2 • Taking account of s;, = 2 in DA1U6 , its new efficiency 
is fJ6 = 9/11 = 0.82. Thus, DA1U6 drops to the lowest level. 
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Table 1: Efficiency: Old and New 

DMU 1 2 3 4 5 6 
x 4 6 8 4 2 10 

3 2 1 2 4 1 
y 1 1 1 1 1 1 

s;1 0 0 0 0 0 2 
s;? 0 0 0 0 0 0 
s* ,,, 0 0 0 0 0 0 
e· .86 .86 1 1 1 1 

.,,. I .86 .86 1 1 1 .82 I 

5 Concluding Remarks 

In this paper, we observed the primal and the dual sides of the DEA model 
and pointed out the equivalence of the slackless solution in the primal and 
the existence of a positive weight in the dual. Then, we proposed a new 
measure of efficiency. Although we have been mainly concerned with the 
input oriented DEA, we can easily extend the results to the output oriented 
DEA which is usually represented by: 

max ~ 
subject to Xo > X>. , 

~Yo < YA, 
>. > o, 

where ~(2: 1) is the expansion factor of the outputs for DAIU0 • 

By an analogous reasoning, we can define a new measure of efficiency r* for 
the output oriented DEA, using the max slack solution (~*, >.*, s;, s;) by the 
formula: 

(22) 
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Several DEA models (Banker-Charnes-Cooper [3), increasing returns to scale, 
decreasing returns to scale, among others) are presented and extensively stud­
ied. (See for example [1],[4].) The new measure of efficiency proposed here 
can be easily incorporated within these models as long as the models are 
derived from some production possibility set. 

Appendix 

Appendix l(Slater [13]) 

Let A, B, C and D be given matrices with A and B being nonvacuous. Then 
the system (I) or (II) has a solution but never both. 

(I) 
Ax > o, Bx :'.'.: 0, Bx =f 0, Cx :'.'.: 0, Dx ;;;= 0 

has a solution x. 

(II) 
yf A + y~ B + yj c + YID = 0 

with Y1 :'.'.: D, Y1 =f 0, Y2 :'.'.: 0, y3 :'.'.: D 
or 
Y1 :'.'.: 0, Y2 > 0, y3 :'.'.: D 

has a solution (y1, Y2, y3, y4). 
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