
93-B-1 

So1ne Co1nputational Issues 
. 
111 

Data Envelopn1ent Analysis 

Kaoru Tone * 

September 3, 1993 



Some Computational Issues 
. 
Ill 

Data Envelopment Analysis 

Kaoru Tone* 

September 3, 1993 

Abstract 

This paper reflects the author's experiences in developing various 
DEA software, including models such as CCR, BCC, general returns 
to scale, categorical inputs and outputs and different systems. All the 
software deals with the dual side of the original CCR model and no 
non-Archimedian small number is used. 

Introduction 

93-B-1 

This paper discusses some computational issues related to DEA, which was 

firstly introduced by Charnes, Cooper and Rhodes (1978). The CCR model 

estimates the relative efficiency of a decision making unit (Dlv!U0 ) among 

the whole n DMUs by solving the following linear programming problem in 

the weights v E Rm and u E R'. 
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(2) 

(3) 

(4) 

subject to VT x 0 - 1 

vTX 2: uTY 

v 2: o, u 2: 0, 

where X E Rmxn is the input matrix composed of x;;, the ith input value of 

DlvIU;, Y E R'xn the output matrix composed of y,;, the rth output value of 

Dlv!U; and vectors x 0 and y 0 denote those of D1VlU0 concerned. We assume 

X and Y are positive. 

Usually, n (the number of DMUs) exceeds m + s (the sum of numbers of 

inputs and outputs) and hence it is beneficial to solve the dual side of (CCR) 

which is expressed as: 

(5) (LP) mm e 
(6) subject to ex. - X).. + Sx 

(7) Yo = y).. - Sy 

(8) ).. 2: o, Sx > o, Sy > 0. 

The dual formulation has other merits which will be discussed in sequence. 

The expanded CCR models, e.g. Banker Charnes and Cooper (1984) and 

the assurance region method (Thompson et al. ( 1986)) among others, can 

also be solved in the dual form. 

As is pointed out in Ali (1989), (1993) and Ali and Seiford (1989), it 

is not sufficient to use the general purpose LP programs for solving DEA 

problems. This paper is written in line with their viewpoint and reflects the 

author's experiences in developing various DEA software (Tone (1993a)). 

This paper is divided into five sections. In Section 1, we describe gen

eral computational issues of DEA and define the max-slack solution and the 

efficient D1V!Us. A practical procedure for finding a max-slack solution is 
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demonstrated. By the strong theorem of complementary slackness, there ex

ist positive weights v and u for the efficient DMUs in the CCR model. In 

Section 2, we address this subject and show a method for finding positive v 

and u. Banker, Charnes and Cooper (1984) developed the BCC model and 

Banker (1984) discussed the returns to scale of efficient DMUs. In Section 

3, a method for deciding the returns to scale is presented. In Section 4, we 

show a new method for solving the DEA model with categorical inputs and 

outputs.introduced by Banker and Morey (1986), while in Section 5, we deal 

with a practical method for solving the model with different systems. 

1 General Framework of DEA Computation 

1.1 Remarks on the DEA Computation 

Since the DEA computation is basically achieved by means of solving linear 

programming, we can make use of several useful techniques developed there 

(see Murtagh (1981)). However, the coefficient matrix of DEA problems is 

dense and so we need no sparse matrix considerations. The followings are 

points to be noted: 

1. Double precision arithmetics should be applied, 

2. Scaling of matrix is needed, and 

3. Typical tolerances are 10-5 for reduced cost, 10-s for pivot selection 

and 10-10 for zero criterion. 

1.2 Max-Slack Solution 

In DEA, the values of slacks sx and Sy play an essential role in interpreting 

the solution, in addition to e. Hence, we rewrite (LP) in a slightly different 
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way as: 

(9) (LP') First objective mm z - e 
(10) Second objective max w - eT s,, + eT Sy 

(11) subject to Bxa - X>. + s,, 

(12) Yo - Y>. - Sy 

(13) L < eT).. < u 
(14) ).. 2': o, s,, > o, Sy 2': o, 

where e is a vector of ones and L and U are the lower and upper bounds to 

eT >., respectively. The bounds L and U are introduced with the purpose of 

extending the CCR model and have to satisfy the relation 0 ::; L ::; 1 ::; U. 

(See Adolphson et al. (1991).) Since (LP') has an evident feasible solution, 

e = 1, Ao = 1, A; = 0 (Vj =f o), s,, = o, Sy = 0 ' no phase 1 process is 

needed. The initial feasible basis can be easily found by selecting the columns 

corresponding to A0 , B and linearly independent slack variables. Then, first, 

we solve (LP') with the first objective function. Let the optimal objective 

function value be z = B* and then we solve the problem with the second 

objective function under the additional constraint e = e•. Let the optimal 

solutionbe(e•,>.*, s;, s;). 

Definition 1 (Max-Slack Solution) The solution (B*, )..*, s;, s;) is called 

the max-slack solution of (LP') 1 
• 

Definition 2 (Slackless DMU) If the max-slack solution has s; = 0 and 

s; = 0, then we describe the DMU as slackless. 

1We can modify the definition by changing the second objective to w'; s, + w~ s., 
where Wx and Wy are the \veights to the slacks Sz and Sy 1 respectively. Furthermore, we 
can define a ne\v measure of efficiency, which takes account of slacks in the inputs and 
shortage in the outputs. See Tone (1993b) for details. 
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Definition 3 (Efficient DMU) We call a DMU as efficient if its max

slack solution has e· = 1 and is slackless. 

The above procedure and the definition of efficiency are given in Charnes et 

al. (1992), as well. 

1.3 Details of the Max-Slack Solution Procedure 

Let us express (LP') into a more general form as: 

(15) First objective mm z = CT X 

(16) Second objective rmn w - dTX 

(17) subject to Ax - b 

(18) x 2': 0. 

Let the optimal basis of the first objective function be B and the shadow 

price vector of the nonbasic variables be qN. At the next step, we form the 

restricted problem by deleting the nonbasic columns with a negative shadow 

price (qf < 0) from the original problem and proceed to minimize the second 

objective of the restricted problem, starting from the basis B. This process 

can be achieved merely by neglecting those columns ( qf < 0) for candidates 

of basic variables in the succeeding steps of the simplex method. 

Theorem 1 The optimal second objective function value is eq·ual to that of 

the original problem. 

(Proof.) First, we show that for any feasible solution of the restricted 

problem there exists a feasible solution of the original problem with the same 

first objective function value z*. At the end of the optimization of the first 
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objective, we have the objective row as: 

(19) • + "\"""' N N z = z 0 qi x1 , 
jEN 

where N is the set of the nonbasic variables at the end of the first stage. 

Since the restricted problem contains no nonbasic variables with qf < 0, any 

feasible solution of the restricted problem consists of the basic variables and 

the nonbasic variables with qf = 0 at the end of the first stage. Hence, for 

any feasible solution of the restricted problem, we have z = z*. By adding 

the exiled variables with the value xf = 0 to the restricted problem, we 

have a feasible solution of the original problem with the same first objective 

function value. 

On the other hand, for any feasible solution :v to the second stage of 

the original problem, the exiled variables xf with qf < 0 must be zero, 

since otherwise we have z > z* for the x from (19). Thus, for any feasible 

solution to the second stage of the original problem there corresponds a 

feasible solution of the restricted problem with the same first and second 

objective values. The same relation holds between optimal solutions. Hence, 

we have the theorem. 0 

2 Positive Weights in the CCR Model 

In this Section, we restrict the subject in the CCR model, although it can be 

naturally extended to other models of (LP'). As is easily seen, the variables 

(v, u) in the CCR model and the slacks (sx, Sy) are mutually complementary 

and at optimality they satisfy the complementary slackness condition: 

(20) 

6 



By the strong theorem of complementary slackness, a slackless DMU ( s; = 0 

ands; = 0) is guaranteed to have positive weights v and u in the correspond

ing CCR model. However, if we solve the model in the (LP) form and use 

the multipliers as dual variables v and u, it is not certain that they satisfy 

the strong complementary relation. The reason is that the multipliers are 

not unique and we arrived at one of them at the end of the procedure in the 

previous section. A positive (v, u) for an efficient DMU can be obtained as 

follows. 

If an efficient Dlv!U0 has some zero multipliers, then we formulate the fol

lowing parametric linear programming problem in a scaler t. 

(21) max w - t ( eT Sx + eT Sy) 

(22) subject to Xo - X>.. + s,, 

(23) Yo - y A - Sy 

(24) >.. ::::: o, s,, > 0, Sy ::::: 0. 

Since we have the optimal solution w* = 0 for t = 0 at the end of the second 

stage, we try to tend t positive. A positive t* is guaranteed to exist by the 

previous theorem, which turns out, in the (CCR) side, positive weights such 

that 

(25) v :::'.: t*e > 0 and u :::'.: t*e > 0. 

Notice that the positive weights are generally not unique, reflecting the fact 

that the supporting hyperplane to a polyhedral convex set at a vertex is not 

unique. We should be careful in discussions using the optimal weights v• 

and u*. The so-called cross efficiency matrix (see, for example, Sextone et 

al. (1986), Boussofiane et al. (1991)) is misleading as the index for evaluating 

overall efficiency performance of D MU s. 
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The discussions in this Section are closely related with the controversial 

non-Archimedian infinitesimal, which should not be used for any computa

tional purposes. (See Ali and Seiford (1989), Fare and Hunsaker (1986), 

Boyd and Fare (1984) and Charnes and Cooper (1984), among others.) 

3 BCC Model and Returns to Scale 

In (LP'), the case L = U = 1 corresponds to the BCC model (Banker, 

Charnes and Cooper (1984)), whose dual is: 

(26) (BCC) T max z - u y 0 - uo 

(27) subject to VTXo - 1 

(28) -vTX + uTY -uoe < 0 

(29) v > o, u > o, 

where u0 E R is unconstrained in sign. As is pointed out by Banker ( 1984) 

and by Banker and Thrall (1992), the value of u0 for an efficient DMU relates 

to its returns to scale. Specifically, they showed that the lower (upper) bound 

1!iJ ( u0 ) can be found by solving: 

(30) (RS) min (max) - Uo 

(31) subject to VTXo = 1 

(32) -VT x + uTY - Uoe < 0 

(33) T 1 u Yo - Uo -

(34) v > 0, u > 0. 

If u0 < 0 (1!1J > 0), then D i\tf U0 is under increasing {decreasing) returns to 

scale and if 110 2': 0 2': 1!(), then D i\!I U0 is under constant returns to scale. 
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This process can be dualized as follows and be more effectively solved: 

(35) (RSl) 1Io - min (B - Ao) 

(36) subject to Bx 0 > x>.. 

(37) Ao Yo < Y>.. 

(38) -eT >..+Ao - 1 

(39) >.. ~ o, 

and 

(40) (RS2) !!a = max (Ao - B) 

(41) subject to ex. > x>.. 

(42) AoY0 < Y>.. 

(43) eT >.. - Ao - 1 

(44) >.. > 0, 

where e and Ao are unconstrained in sign. 

4 DEA Model with Categorical Inputs and 
Outputs 

Banker and Morey (1986) developed a model corresponding to the case where 

at least one input or output variable is categorical. For example, all the DMUs 

are categorized into three classes, 'class I', 'class II' and 'class III', where the 

'class I' group is operating under the most difficult environment, the 'class 

II' under the moderate one, and the 'class III' under the most favorable one. 

Banker and Morey proposed to evaluate the efficiency of a DMU in 'class I' 

only within the group and that of 'class II' with reference to DMUs in 'class 

I' plus 'class II', while a DMU in 'class III' should be evaluated by using the 
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whole DMUs in the model. In order to formulate this situation, Banker and 

Morey introduced sophisticated binary variables to represent the hierarchy 

structure. 

However, if we design DEA software for this problem, it is easily able to 

cope with these categorical variables without introducing any binary vari

ables. Here, we consider the case (LP) (the case (LP') can be dealt with in 

the same way). 

L Start the simplex method from the initial feasible basis composed of the 

columns corresponding to the variables >.0 , e and linearly independent 

slack variables. 

2. Never choose the DMUs in the higher classes than Di\!JU0 as the can

didates for basic variables in the succeeding procedures of the simplex 

method. 

The above computational process can be implemented by introducing an 

index showing the class number for each DMU. 

5 DEA with Different Systems 

There are situations where the DMUs in the problem are divided into several 

different systems. For example, a set of DMUs belong to the system A, 

while the remaining DMU s to the system B. In the production feasibility 

correspondence, the convex combination of a DMU in the system A with a 

DMU in the system B has no meaning at all, since there is no system between 

A and B. 

Let the input and output data for DMUs in the systems A and B be 

(XA, YA) and (XE, YB), respectively. Then, the production possibility set 
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(:v, y) satisfies: 

(45) x > XA.AA +Xe.As 

(46) y < YA.AA +Ye.As 

(47) LzA < eTAA < UzA 

(48) Lzs < eT .As < Uzs 

(49) ZA +Zs = 1 

(50) AA > o, .As > 0 

(51) ZA, Zs = 0 or 1. 

The set can easily expanded to the case where more than two systems exist. 

The relative efficiency of Dlv!U0 is represented by the following mixed 

binary programming: 

(52) (SP) mine 

(53) subject to e:vo > XA.AA +Xe.As 

(54) Yo < YA.AA +Ye.As 

(55) LzA < eTAA < UzA 

(56) Lzs < er.As < Uzs 

(57) ZA +Zs - 1 

(58) AA ?: o, .As > 0 

(59) ZA, Zs - 0 or 1. 

We can solve this problem by enumeration rather than by mixed integer 0-1 

programming. This is shown below. 

1. Set zA = 1, z8 = 0 and solve (SP) above. Let the optimal objective be 

BA which is infinity if (SP) is infeasible. 
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2. Set zA = 0, zs = 1 and solve (SP) above. Let the optimal objective be 

es which is infinity if (SP) is infeasible. 

3. We have the optimal solution of the mixed integer problem (SP) by 

(60) 

The results can be used to compare overall performance of the systems A 

and B or to estimate the territory of preference one system over the other in 

the production feasibility set. Banker and Morey (1986) (see also Kamakura 

(1988)) discussed the treatment of controllable categorical variables which is 

similar to ours but quite different from ours in that they allow an undefined 

system between two or more systems. 

6 Concluding Remarks 

In this paper, we have discussed the computational issues related to the 

general CCR models, the returns to scale, categorical variables and different 

systems, based on the author's experiences in developing DEA software. In 

addition, we warned against erroneous usage of the optimal weight ( v, u) 

obtained. 

Although we have concentrated on the input-oriented DEA, the output

oriented DEA can be dealt with similarly. 

There are other directions of research on this subject, e.g. reduction of 

computation time. It is to be noted that Ali (1993) has succeeded in realizing 

this objective significantly for CCR, BCC and Additive models and Sueyoshi 

(1992) for the assurance region model. 
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