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Abstract 

In this paper, we will present a simple method for deciding the lo­
cal returns-to-scale characteristics of DMUs (Decision Making Units) 
in Data Envelopment Analysis. This method proceeds as follows: 
first, we solve the BCC (Banker-Charnes-Cooper) model and find the 
returns-to-scale of BCC-efficient DMUs and a reference set to each 
BCC-inefficient DMU. We can then decide the local returns-to-scale 
characteristics of each BCC-inefficient DMU by observing only the 
returns-to-scale characteristics of DMUs in their respective reference 
sets. No extra computation is required. We can also apply this method 
to the output oriented model. 

Keywords: DEA, returns to scale, computation 

1 Introduction 

The standard model for analyzing returns-to-scale in DEA was first proposed 

by Banker (1980) and subsequently, Banker, Charnes and Cooper (1984), 

Banker (1984) and Fare, Grosskopf and Lovell (FGL, 1985) have extended 

its contents and analysis substantially. 

*Graduate School of Policy Science; Saitama University, Urawa, Saitama 338, Japan. 
e-mail: tone@poli-sci.saitama-u.ac.jp 
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Then, Banker and Thrall {BT, 1992) presented extensive research with 

respect to returns-to-scale in DEA. Recently, Banker, Bardham and Cooper 

(BBC, 1995) added computational convenience and efficiency to the work of 

Banker and Thrall (BT, 1992). 

Although the concept of returns-to-scale is unambiguous only at points 

on the efficient sections of the production frontier, several pieces of research 

extended this concept to inefficient DMUs by moving them to the efficient 

frontiers. Naturally, in this case, returns-to-scale depend on the method used 

to bring such DMUs to efficient frontiers. FGL (1985) and Banker, Chang 

and Cooper (BCC, 1995) address this subject. Both methods employ a two­

step approach to estimate returns-to-scale. Specifically, FGL(1985) solve, in 

step 1, the BCC and CCR models and in step 2 solve a linear program for 

each nonconstant returns-to-scale DMU. Therefore, they need to solve three 

LPs for nonconstant returns-to-scale DMUs. On the other hand, BCC(1995) 

solve the CCR model in step 1 and then an LP further for each DMU with 

nonconstant returns-to-scale characteristics in step 2. 

The method that we will propose in this paper solves the BCC model and 

then determines returns-to-scale of BCC-efficient DMUs. It will be demon­

strated that returns-to-scale of projected BCC-inefficient DMUs can be de­

termined automatically from their reference set. From the computational 

point of view, one pass of BCC computation and BT (1992) process for 

BCC-efficient DMUs are all that is needed for estimating returns-to-scale. 

The rest of the paper is organized as follows. Sections 2 and 3 offer pre­

liminary information, concerned with definitions and known theorems that 

will be used in the succeeding section. Section 4 is the main part of the pa­

per, in which an alternative method will be presented. In Section 5, we will 

exhibit a numerical example of our method and then a similar analysis will 
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be presented for the output oriented case. Finally, comparisons with other 

methods will be discussed in Section 7. 

2 The CCR and BCC Models 

We will deal with n DMUs (Decision Making Units) with the input and 

output matrices X = (:i:j) E Rmxn and Y = (yj) E R'xn, respectively. We 

assume that :llj and Yj are semipositive, i.e. :llj 2: 0, :llj # 0 and Yj 2: 0, Yj # 
0 for j = 1, ... , n. 

2.1 The CCR Model 

The production possibility set Pc of the CCR (Charnes, Cooper and Rhodes, 

1978) model is defined as a set of semipositive (:i:, y) as follows: 

(1) Pc= {(:i:, y) J :i: 2: X >.., y ~ Y >.., >.. 2: O}, 

where >.. is a semi positive vector in Rn. 

The CCR model evaluates the efficiency of each DMU0 (:v 0 , y 0 ) (o = 1, ... , n) 

by solving the following linear program: 

(2) 

(3) 

(4) 

(5) 

subject to 

(CCR0 ) 

Bc:i:o 

>.. 

mm Be 

X>..- s,, 

Y>.. - Sy 

> o, s,, 

The dual problem of (CCR0 ) is described by: 

(DCCR0 ) max uy0 

- 0 

- Yo 

> 0, 

(6) 

(7) subject to v:v 0 - 1 
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(8) 

(9) 

-vX + uY < 0 

v 2:: 0, u > o, 

where v E Rm and u E R' are row vectors and represent dual variables 

corresponding to (3) and (4), respectively. 

In every optimal solution for (CCR0 ) and (DCCR0 ), the pairs (sx,v) 

and (sy, u) are complementary each other, i.e., it holds 

(10) VSx = 0 and USy = 0. 

We use the following two-phase process with the purpose of solving ( CCR0 ) 

and determining the input surplus Bx and output shortage Sy· In Phase I, 

we solve (CCR0 ), and in Phase II we maximize esx + esy (the sum of input 

surplus and output shortage) under the added condition Be =Be (the Phase 

I optimal objective value), where e is a row vector in which all elements are 

equal to 1. 

Let an optimal solution in Phase II be (Be,>..*, s;, s;), based on which we 

define CCR-efficiency as follows: 

Definition 1 (CCR-Efficiency) 

A DMU0 is called CCR-efficient if it has Be - 1, s; - 0 and s; - 0. 

Otherwise, it is called CCR-inefficient. 

If a DlvIU0 is CCR-efficient, it holds that s; = 0 and s; = 0 for every 

optimal solution for (CCR0 ). Thus, the strong theorem of complementary 

·slackness ensures the existence of a positive optimal solution (v*, u*) for the 

dual problem (DCCR0 ). 

Lemma 1 If a DMU0 is CCR-efficient, then (DCCR0 ) has an optimal so­

lution (v•, u•) such that 

(11) v· > 0 and u• > 0. 
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Suppose that Dlv!U;,, ... , DMU;, are CCR-efficient. Let a sernipositive ac­

tivity (x, y) be a nonnegative combination of them: 

k k 

(12) x = L; >.1x;, and y = L; >.1Y;,· 
I=! I=! 

Then, we have the following well established theorem, which will be utilized 

later in demonstrating our main theorems. 

Theorem 1 

If DMU;., ... , DMU;, are CCR-efficient, then the activity expressed by (12) 

is also CCR-efficient. 

If a DMU0 is CCR-inefficient, a reference set to the DMU0 is defined by 

(13) E;=Ul>.J>O, j=l, ... ,n}. 

The optimal solution satisfies the following relations: 

(14) 

(15) 

80x0 - L; >.Jx; + s; 
jEEf 

Yo = L >.JY; - s;. 
jEEf 

The CCR-projection based on the optimal solution is defined by: 

(16) 

(17) 

x~ - 80x0 - s; = L; >.Jx; 
jEEf 

Y~ - Yo+ s; = L >.JY;· 
jEEf 

Lemma 2 Every DMU in the reference set E; is CCR-efficient. 

Lemma 3 The CCR-projected activity (x~, y~) is CCR-efficient. 
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2.2 BCC Model 

The production possibility set of the BCC (Banker, Charnes and Cooper, 

1984) model is described as: 

(18) Pe= {(x,y) Ix;::: XA., y:::; YA., eA. = 1, A. 2:: O}. 

The BCC model evaluates the efficiency of each DMU0 (x 0 , y 0 ) (o = 1, ... , n) 

by solving the following linear program: 

(19) (ECC0 ) min Be 

(20) subject to Bex 0 -XA.-s,, - 0 

(21) YA.-sy - Yo 

(22) eA. - 1 

(23) A. > o, s,, ;::: o, Sy > 0. 

We express the dual program of (BCC0 ) as: 

(24) (DECC0 ) ma.x z - UYo - uo 

(25) subject to VX 0 - 1 

(26) -vX +uY-u0 e :::; 0 

(27) v > o, u > 0, 

where u0 is free in sign. 

As with the CCR case, we employ the two phase process for solving (ECC0 ). 

Let an optimal solution in Phase II be (B:B, A.*, s;, s;), based on which we 

define BCC-efficiency as follows: 

Definition 2 (BCC-Efficiency) 

A DMU0 is called BCC-ef!icient, if it has B:B - 1, s; = 0 ands; - 0. 

Otherwise, it is called BCC-inef!icient. 
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If a DMU0 is ECG-efficient, then there exists an optimal solution (v*, u•, u0) 
with v• > 0 and u• > 0. 

If a DMU0 is ECG-inefficient, the reference set Et and the ECG-projection 

( :c~, y~) based on the reference set, are defined as: 

(28) EB - UI>-; > o, j=l, ... ,n} 
0 

(29) :CB e· • I: .>-j:cj e - BZo-S::r = 
jEEf 

(30) y~ - Yo+ s; = I: >-jYi· 
jEEf 

Corresponding to Lemmas 2 and 3, we have: 

Lemma 4 Every DMU in the reference set Et is ECG-efficient. 

Lemma 5 The ECG projected activity (:c~, y~) is ECG-efficient. 

3 Returns to Scale of BCC-Efficient DMUs 

Banker and Thrall (1992) demonstrated the following theorem on returns­

to-scale of BCC efficient DMUs. 

Theorem 2 (Returns-to-Scale) 

Suppose DMU0 is ECG-efficient and let the sup and inf of u0 in the optimal 

solution for (DBCC0 ) be u0 and Jki, respectively. Then, we have: 

1. If 0 > u0 , then increasing returns-to-scale prevail in the DMU0 • 

2. If ilo 2: 0 2: Jhi, then constant returns-to-scale prevail in the Dlv!U0 • 

3. If Jki > 0, then decreasing returns-to-scale prevail in the DMU0 • 
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We will denote increasing, constant and decreasing returns-to-scale by IRS, 

CRS and DRS, respectively. 

Corollary 1 DMU0 is CCR-efficient if and only if it is ECG-efficient 

and displays CRS. 

Usually, we solve (BCC0 ) by the simplex method of linear programming 

and obtain an optimal dual solution ( v*, u*, u0) as the simplex multiplier of 

the Phase I optimal tableau. Thus, if ujj > 0, then we need to solve the 

lower bound 1!Q, and if u0 < 0, then we need to solve the upper bound u0 

for deciding the returns-to-scale characteristics of the DMU. If ujj = 0, the 

DMU shows CRS. The computation of 1!o (or u0 ) is carried out in the primal 

side of LP. 

4 Characterization of Returns to Scale 

Theorem 3 

If a DMU (x 0 , y 0 ) is ECG-inefficient, the reference set E: to (x 0 , y
0

) defined 

by (28), does not include both IRS and DRS DMUs. 

Proof. Let an optimal solution for (DBCC0 ) to the BCC-projected activity 

(xf,yf) be (v.,u.,uo.), with v. > 0 and u. > 0. Since (xf,yf) is BCC­

efficient, we obtain the following relations: 

(31) B 1 UeYe - Uoe -

(32) B 1 'Ve Xe -

(33) -v.X + u.Y - uo.e < 0 

(34) v. > o, u. 2: 0. 
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Hence, for j. E E1j, we have: 

(35) 

From (31) and (32), it holds: 

(36) B B 0 - v.:i:. + u.y. - uo. = · 

By substituting the righthand side of equations (29) and (30) for (36), we 

obtain: 

(37) - v.( L >.j:i:;) + u.( L >.jy;) - uo. = 0. 
jEEe iEEf 

This equation can be transformed, using LjeE! >.; = 1, into: 

(38) L >.j(-v.:i:; + u.y; - Uoe) = 0. 
iEEf! 

From (35), (38) and >.; > 0 (j E E!), we have the equation: 

(39) 

Thus, (v.,u., u0.) is a coefficient of a supporting hyperplane at (:i:;,Y;) for 

every j E Elj. Let t; = l/v.:i:; (> 0), then (t;v., t;u., t;uo.) is an optimal 

solution for (DBCC;) for j E E1j. 

Suppose that Elj contains an IRS DMU a and a DRS DMU f3. Then, 

u0• must be negative, since DMU °' shows IRS. At the same time, u0• must 

be positive, since DMU /3 has DRS. This leads to a contradiction. D 

Corollary 2 Let a reference set to a ECG-inefficient D1VIU (:v 0 ,y0 ) be 

Elj. Then, E1; consists of one of the following combinations of ECG-efficient 

DiVIUs. 

• (i) All DMUs have IRS. 
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• (ii) Mixture of DMUs with IRS and CRS. 

• (iii) All DMUs have CRS. 

• (iv) Mixture of DMUs with CRS and DRS. 

• (v) All DMUs show DRS. 

Theorem 4 (Characterization of Return-to-Scale) 

Let the ECG-projected activity of a ECG-inefficient DMU ( x 0 , y 0 ) be (x~, y~) 

and the reference set to ( x 0 , y 0) be E!. Then, ( x~, y~) belongs to 

1. IRS, if E! consists of DMUs in categories (i) or (ii) of Corollary 2, 

2. CRS, if E! consists of DMUs in category (iii), and 

3. DRS, if E! consists of DMUs in categories (iv) or (v). 

Proof. In the case of (i) or (ii), E! contains at least one DMU with IRS and 

any supporting hyperplane at ( x:, y:) is also a supporting hyperplane at 

the IRS DMU, as shown in the proof of Theorem 3. Thus, the upper bound 

of u00 must be negative. By the same reasoning, in the case of (iv) or (v), 

the projected activity is DRS. In the case of (iii), every DMU j (j E E!) 
is CCR-efficient by Corollary 1. Since ( x:, y:) is a convex combination 

of CCR-efficient DMUs, it is CCR-efficient, too. Thus, it shows CRS by 

Corollary 1. D 

5 A Numerical Example 

Table 1 exhibits the data of 14 general hospitals, each with 2 inputs and 2 

outputs. Our method is as follows. First, we solve the BCC model; the results 
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are shown in the columns 'BCC (RTS)' and 'Reference Set'. In the 'BCC 

(RTS)' column, the returns-to-scale of BCC-effi.cient DMUs (Bii = 1) are 

evaluated by BT (1992) and denoted by (I), (C) and (D), which mean IRS, 

CRS and DRS, respectively. The returns-to-scale characteristics of BCC­

inefficient DMUs are decided by those in the reference set, using Theorem 

4. For example, H4 has the reference set consisting of Hl, which has IRS. 

Hence, the BCC-projected activity of H4 shows IRS. The reference set of H7 

consists of Hl(I), H3(C) and HS(C) and we can conclude that H7 has IRS. 

Since H13 has HlO(C), H12(D) and H14(D) as reference, H13 has DRS. 

Table 1: Data of General Hospital and Returns-to-Scale 

Input Output BCC Reference RTS 
Hospital Doctor Nurse Outpatient Inpatient (RTS) Set 
Hl 3008 20980 97775 101225 1 (I) 
H2 3985 25643 135871 130580 1 (C) 
H3 4324 26978 133655 168473 1 (C) 
H4 3534 25361 46243 100407 0.851 Hl I 
HS 8836 40796 176661 215616 0.845 H2, H3, HlO c 
H6 5376 37562 182576 217615 1 (C) 
H7 4982 33088 98880 167278 0.862 Hl, H3, H8 I 
H8 4775 39122 136701 193393 1 (C) 
H9 8046 42958 225138 256575 0.996 H2, HlO c 
HlO 8554 48955 257370 312877 1 (C) 
Hll 6147 45514 165274 227099 0.919 H6, H12 D 
H12 8366 55140 203989 321623 1 (D) 
H13 13479 68037 174270 341743 0.794 HlO, H12, H14 D 
H14 21808 78302 322990 487539 1 (D) 
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6 The Output Oriented Case 

The output oriented BCC model can be dealt with similarly. This model is 

described as: 

(40) (BCC00 ) max TB 

(41) subject to X.A + Bz - Xo 

(42) TsYo - Y.A +By - 0 

(43) e.A - 1 

(44) .A ;:: o, Bz > o, By 2: 0. 

Let an optimal solution for (BCC00 ) be (r.B,.A*,s;,s;). A DMU (:i: 0 ,y0 ) 

is defined to be output oriented ECG-efficient (BCCO-efficient) if and only 

if it holds that r.B = 1, s; = 0 and s; = 0, and hence if and only if it is 

BCC-efficient. 

The returns-to-scale characteristics of a BCCO-efficient DMU are the 

same as those in the BCC case. For a BCCO-inefficient DMU, the BCCO­

projected activity (:i:., y.) is defined by 

(45) 

(46) • + • 
Ye - TsYo BY. 

The returns-to-scale of such activity are generally different from those of the 

BCC-projected case. However, we can decide the characteristics in a similar 

way as in the BCC case, using the reference set. 

7 Comparisons with Other Methods 

We will briefly survey two representative methods related to returns-to-scale 

and compare them with our method. 
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7.1 Fare, Grosskopf and Lovell (1985) 

FGL (1985) suggest the following two-step method to estimate returns-to­

scale. In step 1, the BCC and the CCR models' are solved to determine 

the optimal objective values Bii and B0 and define the scale efficiency B5 as 

Bs = B0/Bii. A value Bs = 1 indicates that t;he DMU has CRS and a value 

Bs < 1 indicates IRS or DRS. In step 2, when Bs < 1, the following linear 

program is solved to determine whether the scale inefficiency is associated 

with IRS or DRS. 

(47) (LPE) B£ - min BE 

(48) subject to BEX0 -X>.- S,, - 0 

(49) Y>.- Sy = Yo 

(50) e>. < 1 

(51) >. > 0, s,, > 0, Sy ?: 0. 

FGL (1985) state that if B£ < 1 and BE; = Bii, then the DMU has IRS and if 

BE;< 1 and BE;< Bii, then the DMU shows DRS. 

This method requires 3 LP solutions (BCC, CCR and the above (LPE)) 

for IRS and DRS DMUs, and is said to be a three-pass method. We can 

simplify this method by applying Theorem 4 described in this paper, since 

solving (LPE) is necessary only for DMUs with BS- < 1 and Bii = 1. 

7.2 Banker, Chang and Cooper (1995) 

BCC(1995) solve the CCR model in step 1, and if e>.* = 1, then the DMU 

has CRS, and if e>. • < 1, they proceed to step 2. In step 2, the following 

linear program is solved to determine whether the DMU is associated with 
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CRS or IRS. 

(52) (LPz) z• - max eA 

(53) subject to XA+s,,, - B'Cxo 

(54) YA-Sy - Yo 

(55) eA < 1 

(56) A > 0, s,,, ?: 0, Sy ;?: 0, 

where 80 is the optimal objective value for the CCR model. IF z• = 1, then 

the DMU has CRS and if z• < 1, it shows IRS. The case eA• > 1 in the 

CCR model can be handled in an obvious modification of the above linear 

program (LPz). 

This method requires 2 LP solutions for DMU s with eA • of. 1 and is 

concerned only with the returns-to-scale characteristics and the information 

obtained from the CCR model. The BCC-projection is not explicitly de­

scribed in this method. 

8 Conclusion 

In this paper we presented a simple alternative method for deciding the 

returns-to-scale characteristics of BCC (BCCO)-projected activities. This 

method is 'one' pass in the sense that BCC software equipped with a proce­

dure for deciding returns-to-scale of BCC-efficient DMUs (e.g. Banker and 

Thrall (1992)), is sufficient for this purpose. No other software is needed. 

Since the number of BCC-efficient DMUs is considerably less than that of 

BCC-inefficient ones, this method will contribute to save computation time. 

Also, Theorems 3, 4 and Corollary 2 contribute to the development of theory 

and algorithms in DEA. 
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