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Abstract 

In this paper, we will discuss subjects related to virtual multipliers 
in the cone-ratio model in DEA. Usually, there exists ambiguity in the 
virtual multipliers in the polyhedral cone-ratio method when some 
exemplary efficient DMUs' multipliers are employed as the admissible 
directions of the cone. Firstly, we will show a cell subdivision of the 
multiplier simplex. Then, three practical methods for resolving this 
ambiguity will be presented with an example. 

1 Introduction 

Data Envelopment Analysis (DEA) inaugurated by Charnes, Cooper and 

Rhodes (1978) has been widely applied for evaluating the relative efficiency 

of decision making units (DMUs) with multiple inputs and outputs. The 

relative efficiency is measured by a ratio scale of the virtual input vs. the 

virtual output, which are the weighted sums of inputs and outputs, respec

tively. The weights to inputs and outputs are usually non-negative and are 
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decided to be most preferable to the DMU concerned, via a linear program

ming solution. Since the original Charnes, Cooper and Rhodes {CCR) model, 

many studies have been developed to cope with the actual situations of the 

problems. One of them is directed to research in the feasible region of the 

weights and has actually imposed some additional constraints to the weights. 

Representatively, such studies resulted in the Assurance Region (AR) model 

and the Cone-Ratio (CR) model. The assurance region method developed 

by Thompson, Singleton, Thrall and Smith (1986) confines the feasible re

gion of the weights by imposing a lower and an upper bounds to the ratio of 

some selected pairs of weights. (See also Thompson, Langemeir, Lee, Lee and 

Thrall (1990) and Roll and Golany (1993)). On the other hand, the cone

ratio model by Sun (1987), Charnes, Cooper, Wei and Huang (1989) and 

Charnes, Cooper, Huang and Sun (1990) solves the CCR model first and 

chooses a few exemplary efficient DMUs from among all the efficient ones by 

consulting with experts on the problem. Then, the corresponding optimal 

weights to the selected efficient DMUs are used to construct a convex cone 

as the feasible region of the weights. However, usually the optimal weights 

are not uniquely determined and hence there is ambiguity in selecting the 

weights to form the cone. 

In an effort to overcome this problem, this paper will propose three practi

cal methods for deciding the convex cone in accordance with three principles 

which will be explained later. In Section 2, we will discuss the subdivision 

of the multiplier (weight) simplex. Based on the subdivision, the AR and 

CR models will be conceptually compared in Section 3, with emphasis on 

the ambiguity of weights in the CR model. Then, in Section 4, we will pro

pose three practical methods to resolve the ambiguity under three principles, 

i.e. the most restricted, the most relaxed and the central. We will show an 
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example of the proposed method in Section 5. Finally, in Section 6, the 

possible application of the vertex enumeration algorithm will be discussed. 

2 Cell Subdivision of Multiplier Simplex 

Suppose there are n DMUs with m inputs ands outputs. The i-th input and 

the r-th output of the j-th DMU are denoted by Xij and Yri> respectively. 

Let the input and output matrices X and Y be 

(1) X = (x;j) E Rmxn and Y = (Yri) E R'xn. 

We assume X > 0 and Y > 0. The virtual input and output for DMUi are 

defined by 

(2) 

and 

(3) 

m 

V; = L v;X;j (j = 1, ... , n) 
i=l 

' 
Uj = LUrYrj 1 (j = 1, ... ,n) 

r=l 

where (v;) ((ur)) is the the weight (or multiplier) to the input (output) i (r). 

Again, we assume v; > 0 (Vi) and Ur > 0 (Vr) 1• 

Now, we observe the ratio of the virtual input vs. output: 

(4) R
, _ Uj _ LrUrYrj 

J - V. - L,·v·x". (j= 1, ... ,n) 
J t t IJ 

Since the ratio Rj is invariant under any multiplication by a positive scalar 

t to ( v, u), we impose hereafter the simplex constraint to (v, u) as follows: 

m ' 
(5) l::v;+Lur=l. 

i=1 r=1 

1For computational purpose, we can relax these positive constraints to non-negativity. 
See Charnes, Cooper and Thrall (1991) and Tone (1993) 
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By this constraint, together with the positiveness of multipliers, the feasible 

(v, u) forms the interior of the (m + s - 1) dimensional simplex denoted 

by S. Under the above assumptions, for each (ii, ii.) E S, there exists at 

least one DMUj, that maximizes the ratio Rj (j = 1, ... , n) defined by 

(4). We call DMUj, dominates (v,u). It can be demonstrated that the 

(m+s-1) dimensional simplex Sis divided into a finite number of (m+s-1) 

dimensional cells dominated by some DMUs. The cells are not necessarily 

convex. There may exist (m + s - 2) or less dimensional dominant DMUs, 

with the extremal case 0 dimensional (point) dominant DMUs. Fig. 1 shows 

an example of the cell subdivision of the multiplier simplex S, where, for 

example, DMU1i DMU2 and DMU3 are (m+ s -1) dimensional dominants, 

while DMU10 is a 0 dimensional dominant. 

Fig. 1 

3 Assurance Region and Cone-Ratio Models 

In applying DEA to actual problems, we should be conscious of the eco

nomic/socioeconomic aspect of the problems, which is closely related with 

the virtual multiplier (weight) v (u) to the input (output) items. Although 

the original DEA models impose no restriction on v and u except positiv

ity (or non-negativity), we can introduce the relative importance of weights 

by restricting the feasible region of weights. Along this line, two remarkable 

models have been proposed, i.e. the assurance region (AR) and the cone-ratio 

(CR) models. 

The AR model imposes lower and upper bounds to the ratio of some 

selected pairs of weights. For example, we may add a constraint on the ratio 
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of weights to Input 1 and Input 2 as follows: 

(6) 

where 112 and u12 are the lower and upper bounds to the ratio, respectively. 

Likewise, similar constraints may be added to pairs of some output multipliers 

and even to multipliers between some input and output multipliers. See 

Thompson et al. (1986), (1990) and Roll and Golany (1993) for more details. 

The constraint such as (6) restricts the feasible region of multipliers to be 

in the polyhedral cone originated from a vertex of the simplex S. Thus, the 

assurance region, which satisfies all the ratio constraints will come to form a 

polyhedron ABCD in Fig. 2, for example. 

Fig. 2 

On the other hand, in the cone-ratio model, especially in the polyhedral 

cone-ratio model, some exemplary DMUs will be chosen from among the 

CCR efficient DMUs as a result of expert knowledge. Then, the optimal 

weights corresponding to the selected DMUs will be used to form a polyhedral 

cone for an admissible region of multilpiers. (See Charnes et al. (1990) for 

details). However, usually the optimal weights are not uniquely determined. 

For example, let us observe the case when the experts chose DMUs 1, 2 and 

3 in Fig. 1 as exemplary. Obviously, any point in the cell 1, 2 or 3 makes 

the DMU efficient. Therefore, we need some other criteria for selecting a 

reasonable point in the cell. There may be at least three principles for this 

purpose. The first one, the most restricted case, is to choose the cone as the 

minimum diameter convex set which makes the exemplary DMUs efficient. 

See the bold line EF in Fig. 3, for example. 

Fig. 3 
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The next one, the most relaxed case, is to choose the cone as the convex hull 

of the exemplary cells, as designated by the region encircled by the bold lines 

in Fig. 4, for example. 

Fig. 4 

The last one chooses the cone generated by the 'central points' of each ex

emplary DMUs. See Fig. 5, for example. 

Fig. 5 

However, it is not easy to implement the above three principles. In fact, 

the first two might belong to NP-hard problems and the last one depends on 

the method of choosing the central point for each cell. 

4 Practical Methods for Three Cases 

Corresponding to the above mentioned general principles, we will propose 

three practical methods which approximately implement them. 

4.1 The Most Restricted Case 

This approach aims to obtain the cone depicted in Fig. 3. 

Let the chosen exemplary DMUs be DMUQ,, ... , DMUQp· We solve the 

following fractional program (FPk) for each DMUQ, (k = 1, ... ,p). 

(7) L:;=l u, L:#k YrQ; 

2::~1 Vi L;j# XiQ; 

m ' 
(8) subject to 2:: v;x;Q, = 2:: u,y,Q, = 1 

(9) 

(10) 

i:::::l r::::l 
m 

L ViXio.j > 
i=l 

v; ;:: 0 (\Ii) 

(j=l, .. .,p) 

Ur;:: 0 (\Ir). 

6 



It is easy to see that the objective value of (FPk) is not greater than 1 and 

(FPk) tries to find a point in the cell DMUa, that maximizes the composite 

ratio scale of other exemplary DMUs, although a scaling is needed to trans

fer the the optimal ( v•, u*) of (FPk) onto the cell D MU"'. The objective 

value attains 1 if, and only if, the intersection of the cells corresponding to 

DMU"" ... , DMUa, is not empty. In this case, it is sufficient to solve only 

(FP1) and the vertex found will be used as the cone, actually the ray, for the 

cone-ratio model. Otherwise, we will solve (FPk) for k = 1, ... , p and find 

optimal vertices ( vj, uj), ... , ( v;, u;) which will be used to form the cone. 

The fractional program (FPk) can be solved as a linear programming prob

lem via the Charnes and Cooper transformation (1962), which will be briefly 

described in Appendix A. 

4.2 The Most Relaxed Case 

This case aims to obtain a cone approximately realizing the convex hull in 

Fig. 4. Instead of maximizing the objective function in (FPk), we try to 

minimize it, subject to the same constraints. Thus the objective is: 

(11) 

This program will find a vertex in the cell DMUk which is, in a sense, farthest 

from other exemplary DMUs. Let the optimal solution be (vj;,uj;) (k = 

1, ... , p), which will be utilized to form the cone for the cone-ratio model. 

4.3 The Central Case 

This case corresponds to finding a central (relatively interior) point for each 

CCR-efficient DMU as depicted in Fig. 5. 
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The CCR model is formulated for each DMU0 (o = 1, ... , n) as the 

following LP: 

(12) (CCR0 ) max uTy
0 

(13) subject to VTXo - 1 

(14) -vTX + uTY :'S 0 

(15) v ;::: o, u ;::: 0. 

The computation is usually done on the dual side of (CCR 0 ) which is: 

(16) (LPo) nun e 
(17) subject to Bxo X>..- s,, - 0 

(18) Yo - Y>..+ Sy - 0 

(19) >.. > o, s,, ;::: o, Sy 2:: 0. 

Let optimal solutions for (CCR0 ) and (LP0 ) be (v*, u*) and (B*, A.*, s;, s;), 

respectively, for which we have the complementarity: 

(20) (v*f s; = 0 and (u*)T s; = 0. 

Furthermore, for a CCR-efficient DMU, we have 

e· = 1, s: = 0 and s; = 0. 

However, by the strong theorem of complementarity, it can be seen that for a 

CCR-efficient DMU, there exists, in addition, an optimal solution of (CCR0 ) 

with 

(21) v* > 0 and u* > 0. 

There may be two methods for finding a strictly complementary solution for 

a CCR-efficient DMU. 
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4.3.1 Primal-Dual Interior Point Method 

The primal-dual interior point methods for linear programming (see Kojima, 

Mizuno and Yoshise (1989), McShane, Monma and Shanno (1989) and Choi, 

Monma and Shanno (1990), among others) will theoretically converge to 

the center of the optimal facet of the problem and the solution is strictly 

complementary. However, practical implementations of the interior point 

methods usually employ a long step size to the boundary of the feasible region 

for attaining to the next interior iterate and hence the optimal solution is 

strictly complementary but not central. 

4.3.2 Parametric Linear Programming Approach 

If a strictly complementary solution, i.e. v• > 0 and u* > 0, is required 

instead of the central one, we can obtain one, by a simplex based method, 

as follows: 

If a CCR-efficient solution is not strictly complementary, we will solve 

the following parametric linear program in a scalar t: 

(22) maxw - t(eT s., + eT sy) 

(23) subject to Zo - X.A+ s., 

(24) Yo - Y.A - Sy 

(25) .A > o, s., :::: 0, Sy 2': 0. 

Since we have the optimal solution w• = 0 for t = 0 at the end of the 

(CCR0 ) solution, we try to tend t positive, while keepings.,= 0 and Sy= 0. 

A positive t• is guaranteed to exist by the strong theorem of complementarity, 

which turns out, in the (CCR0 ) side, positive weights such that 

(26) v*2':t*e>O and u*2':t*e>O. 
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From the (v*, u*), we can get a strictly complementary solution for ( CCR0 ). 

5 An Example 

Table ~ exhibits data for 14 general hospitals operated under similar environ

ments. As input items, we employ the working hours per month of doctors 

and nurses while, as outputs, the amounts of medical expense insurance for 

outpatients and inpatients are used. 

Table 1: Data of General Hospital and Results 

Input Output 
Hospital Doctor Nurse Outpatient Inpatient 
Hl 3008 20980 97775 101225 
H2 3985 25643 135871 130580 
H3 4324 26978 133655 168473 
H4 3534 25361 46243 100407 
H5 8836 40796 176661 215616 
H6 5376 37562 182576 217615 
H7 4982 33088 98880 167278 
H8 4775 39122 136701 193393 
H9 8046 42958 225138 256575 
HlO 8554 48955 257370 312877 
Hll 6147 45514 165274 227099 
H12 8366 55140 203989 321623 
H13 13479 68037 174270 341743 
H14 21808 78302 322990 487539 

The CCR-efficiency along with weights to inputs and outputs is shown in 

Table 2. Now, suppose that we chose H6 and HlO as exemplary among the 

five CCR-efficient DMUs. The three approaches mentioned in the preceding 

section gave the following results. 
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Table 2: Efficiency and Weight by CCR Model 

Hospital CCR Eff. Doctor Nurse Outpatient Inpatient 
V1 V2 UJ u2 

Hl 0.955 .332E-03 0 .959E-05 .167E-06 
H2 1 .242E-03 .140E-05 .714E-05 .225E-06 
H3 1 .104E-03 .204E-04 .339E-05 .325E-05 
H4 0.702 .282E-03 .128E-06 0 .699E-05 
HS 0.827 0 .245E-04 0 .384E-05 
H6 1 .784E-04 .154E-04 .256E-05 .245E-05 
H7 0.844 .133E-03 .102E-04 0 .SOSE-05 
H8 1 .209E-03 .458E-07 .lllE-07 .516E-05 
H9 0.995 0 .233E-04 .426E-05 .136E-06 
HlO 1 .319E-04 .149E-04 .215E-05 .143E-05 
Hll 0.913 .162E-03 .739E-07 0 .402E-05 
H12 0.969 .793E-04 .611E-05 0 .301E-05 
H13 0.786 0 .147E-04 0 .230E-05 
H14 0.974 0 .128E-04 0 .200E-05 

5.1 The Most Restricted Case 

We solved the fractional program (FP) in Subsection 4.1 for H6 and obtained 

the optimal solution: 

vi= 7.8408 x 10-5 v2 = 1.5401 x 10-5 

ui = 2.5567 x 10-6 u:; = 2.4503 x 10-6 , 

with the optimal objective value = 1. 

Thus, the cells of H6 and HlO have the above common vertex which was 

used as the admissible direction for solving the cone-ratio model. The results 

are exhibited in the 'Restricted' column of Table 3. 
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5.2 The Most Relaxed Case 

We solved the fractional program (FP) with the minimizing objective func

tion (11) for H6 and HlO and obtained the following results: 

For H6 

For HID 

vj = 1.8601 x 10-4 

uj = 5.3658 x 10-5 
v2 = 0 
u2 = 9.3452 x 10-8 , 

with the optimal objective value = 0.8863. 

vj = 0 
·-o U1 -

v~ = 2.0427 x 10-s 
u; = 3.1961 x 10-6 , 

with the optimal objective value = 0.9065. 

The two directions thus obtained were used to form the cone and the 

results are exhibited in the 'Rela.'l:ed' column of Table 3. Eventually, the 

efficiency coincides with that of the CCR model. 

5.3 The Central Case 

For the central case, we used the strong complementary directions ( v, u) for 

H6 and HlO in Table 2, which were obtained by the method mentioned in 

Subsection 4.3.2. The results are shown in the 'Central' column of Table 3. 

Fig. 6 depicts the three efficiencies. As a matter of course, the restricted 

case is severest in efficiency and two out of five CCR-efficient DMUs dropped 

from the peer set of efficiency. The rela.'l:ed case happens to coincide with the 

CCR score and the central case is in-between. Numbers in the last column 

'Fukuda' will be explained in the next section. 
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Table 3: Efficiency by Cone-Ratio Models 

Hospital Restricted Relaxed Central Fukuda 
Hl 0.8910 0.9546 0.9024 0.8870 
H2 0.9434 1 0.9626 0.9359 
H3 1 1 1 1 
H4 0.5456 0.7018 0.5454 0.5826 
HS 0.7418 0.8270 0.7749 0.7812 
HG 1 1 1 1 
H7 0.7361 0.8441 0.7361 0.7601 
H8 0.8428 1 0.8428 0.9033 
H9 0.9318 0.9946 0.9504 0.9452 
HlO 1 1 1 1 
Hll 0.8276 0.9125 0.8276 0.8556 
H12 0.8701 0.9690 0.8700 0.8921 
H13 0.6096 0.7859 0.6251 0.6576 
H14 0.6929 0.9742 0.7632 0.7937 

Fig. 6 I 

6 Enumeration of Optimal Vertices 

It is interesting to know all the vertices (v, u) of the convex polyhedron, 

which makes a DMU efficient, not only for the purposes mentioned in the 

preceding sections but also for understanding the overall positioning of the 

efficient DMU in the (v,u) space. 

Recently, Fukuda (1993) has developed an algorithm and software2 for 

enumerating all vertices of a convex polyhedron defined by a system of linear 

inequalities, base on the Double Description Method (1958). This software 

2The free software "cdd.c" is available via anonymous ftp from ftp.epfl.ch (directory 
incoming/dma). 
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works efficiently for medium size problems. In fact, for an actual problem 

with 42 DMUs, 4 inputs and 2 outputs, all vertices of an efficient DMU 

could be obtained in 0 second on SUN SparkServer 1000 and in 15 seconds 

on Mac Powerbook Duo 210 (68030, 25mhz). The problem has 6 efficient 

DMUs among the all 42 DMUs and the polyhedron corresponding to the 

said DMU has 22 vertices. It has been observed that the number of vertices 

increases exponentially in the number of tight (active) constraints in the 

optimal solution of (CCR0 ). It increases also as the number of inputs and 

outputs does. 

We applied this software for the sample problem above, especially for 

DMUs H6 and HlO and obtained 6 and 5 vertices for H6 and HlO, respec

tively, as follows (CPU-time was negligible): 

Table 4: All Vertices of H6 

No. V1 v2 U1 U2 

1 1.8542E-4 8.4472E-8 0 4.5953E-6 
2 1.8601E-4 0 1.9038E-8 4.5793E-6 
3 1.8601E-4 0 5.3658E-6 9.3452E-8 
4 1.2090E-4 9.3195E-6 0 4.5953E-6 
5 7.3557E-5 I.6095E-5 4.0202E-6 1.2224E-6 
6 7.8408E-5 I.5401E-5 2.5567E-6 2.4503E-6 

From these vertices, we can obtain the 'center', as the average of each 

coordinate value, for each polyhedron as shown in Table 6. By using these 

two directions as admissible for the cone, we have the CCR efficiency as 

denoted in the column 'Fukuda' in Table 3. 
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Table 5: All Vertices of HlO 

No. V1 V2 U1 U2 

1 5.5037E-5 l.0810E-5 l.7946E-6 l.7199E-6 
2 5.1905E-5 l.1357E-5 2.8369E-6 8.6257E-7 
3 0 2.0427E-5 3.7409E-6 l.1890E-7 
4 0 2.0427E-5 0 3.1961E-6 
5 3.2349E-5 l.4774E-5 0 3.1961E-6 

Table 6: Center of Gravity of Polyhedron 

No. V1 V2 U1 U2 

H6 l.3838E-4 6.8166E-6 l.9936E-6 2.9227E-6 
HlO 2.7858E-5 l.5559E-5 l.6745E-6 l.8187E-6 

7 Concluding Remarks 

In this paper, we have proposed three approaches to the cone-ratio model 

with respect to the virtual input/output multipliers. The choice of the ad

missible directions for the cone is crucial for the successful application of the 

cone-ratio model. If experts' knowledge on the virtual multipliers (weights) 

could be combined with the three cases proposed, progress could be made 

in the evaluation of the relative efficiency of DMUs. Also, we have men

tioned the possible applications of a vertex enumeration algorithm for effi

cient DMUs, which would be an interesting future research subject. 

Acknowledgement 

I thank Komei Fukuda for applying his software 'cdd.c' to my DEA problems 

and would encourage many people to use this efficient program for DEA · 

15 



studies. Also, I am grateful to Professor R.M. Thrall for helpful comments 

and corrections. 

Appendix A. Solution of Fractional Programming 

The fractional program (FPk) can be transformed into equivalent linear pro

gram as follows: 

(27) (LPk) max 

m 

(28) subject to L:V. LXfo; 
i=l #k 

m 

(29) LVixia1 
i=l 

m 

(30) LV'ixia; 
i=l 

(31) V; ~ 0 ('v'i), 

' 
LU, LYra; 
r=I #k 

- 1 

' 
- L UrYra, = t 

r=l 

' > L UrYra; (j = 1, ... ,p) 
r=l 

U, ~ 0 ('v'r), t ~ 0. 

Let an optimal solution of (LPk) be (V*, u·, t*). Then we have the optimal 

solution of (FPk) by 

(32) v· = v· /t* and u· = u· /t*. 
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Figure 5. The Central Case 



c 
c 
R 

1 

0. 9 

0.8 

0. 7 

0. 6 

0.5 

t' ~· ., . ' 
. ' . ' . ' . ' . ' . ' 

I~ . 

' I. 1. 

'. ' '. ' 
" ' " 

' ' 

Figure 6. Three Cone-Ratio Models 
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