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Abstract 

In this paper, we will discuss subjects related to virtual multipliers 
in the cone-ratio model in DEA. Usually, there exists ambiguity in the 
virtual multipliers in the polyhedral cone-ratio method when some 
exemplary efficient DMUs' multipliers are employed as the admissible 
directions of the cone. Firstly, we will show a cell subdivision of the 
multiplier simplex. Then, three practical methods for resolving this 
ambiguity will be presented with an example. Finally, we will discuss 
possible applications of vertex enumeration software, based on the 
Double Description Method. 

1 Introduction 

Data Envelopment Analysis (DEA) introduced by Charnes, Cooper and 

Rhodes (1978) has been widely applied in evaluating the relative efficiency of 

*Graduate School of Policy Science, Saitama University, Ura\va, Sa.itama 338 1 Japan. 
e-mail: tone@poli-sci.sa.itama-u.ac.jp 
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decision making units (DMUs) with multiple inputs and outputs. Relative 

efficiency is measured by a ratio scale of the virtual input vs. the virtual 

output., which are the weighted sums of inputs and out.puts, respectively. 

The weights t.o inputs and outputs are usually nonnegative and are decided 

according to which are most preferable to the DMU concerned, via a lin

ear programming solution. Since the original Charnes, Cooper and Rhodes 

(CCR) model, many studies have been developed to cope with the real life 

problems. One such study researched t.he feasible region of the weights and 

has actually imposed some additional constraints t.o the weights. Such stud

ies resulted in the Assurance Region (AR) model and the Cone-Ratio (CR) 

model. The assurance region method developed by Thompson, Singleton, 

Thrall and Smith (1986) confines the feasible region of the weights by im

posing lower and upper bounds to the ratio of some selected pairs of weights. 

(See also Thompson, Langemeir, Lee, Lee and Thra.11 (1990), Roll and Golany 

(1993) and Thompson, Dhannapala, Rothenberg and Thrall (1994)). On the 

other hand, the cone-ratio model by Sun (1987), Charnes, Cooper, Wei and 

Huang (1989) and Charnes, Cooper, Huang and Sun (1990) solves the CCR 

model first and chooses a few exemplary efficient DMUs from among all the 

efficient ones by consulting with experts on the problem. Then, the corre

sponding optimal weights to the selected efficient DMUs are used to construct 

a convex cone as the feasible region of the weights. However, usually the op

timal weights are not uniquely determined and hence there is ambiguity in 

selecting the weights to form the cone. 

In an effort to overcome this problem, this paper will propose three practi

cal methods for deciding the convex cone in accordance with three principles 

which will be explained later. In Section 2, we will discuss the subdivision of 

the multiplier (weight) simplex. Based on the subdivision, the AR and CR 
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models will be conceptually compared in Section 3, with emphasis on the 

ambiguity of weights in the CR model. Then, in Section 4, we will propose 

three practical methods to resolve the ambiguity based on three principles, 

i.e. the most restricted, the most relaxed and the central. We will give an 

example of the proposed method in Section 5. Finally, in Section 6, the pos

sible applications of Fukuda's vertex enumeration software (1993), which is 

based on the Double Description Method of Motzkin, Raiffa, Thompson and 

Thrall (1958), will be discussed. It will be seen that this software will open 

a rich field of research and applications in DEA. 

2 Cell Subdivision of the Multiplier Simplex 

Suppose there are n DMUs with m inputs ands outputs. The i-th input and 

the r-th output of the j-th DMU a.re denoted by Xij and y,.j, respectively. 

Let the input and output matrices X and Y be 

(1) 

We assume X > 0 and Y > 0. The virtual input and output for Dl\!IUj are 

defined by 
m 

(2) V- Lv·x·· J - 1 1J (j=l, ... ,n) 
i::::l 

and 
' (3) Uj = LUrYrji (j=l, ... ,n) 

r:::l 

where (vi) ((u,)) is the the weight (or multiplier) to the input (output) i (r). 

Again, we assume v; > 0 (Vi) and u, > 0 (\Ir )1 . 

1For computational purposes, \Ve can relax these positive constraints to nonnegativity. 
See Cha.rnes, Cooper and Thrall (1991) and Tone (1993) 
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Now, we observe the ratio of the virtual input vs. output: 

(4) R
. _ U1 _ L:, u,y,1 

1 - - . (j = 1, ... , n) 
VJ L:; ViXij 

.Since the ratio R1 is invariant under any multiplication by a positive scalar 

t to (v, u), we impose hereafter the simplex constraint to (v, u) as follows: 

m ' 
(5) LVi +LU,= 1. 

i=l r;::;l 

By this constraint, together with the positiveness of multipliers, the feasible 

( v, u) forms the interior of the ( m + s - 1) dimensional simplex denoted 

by S. Under the above assumptions, for each (v, u) E S, there exists at 

least one DNJU1, that maximizes the ratio Rj (j = 1, ... , n) defined by 

(4). We call DNlUj, dominates (v,u). It can be demonstrated that the 

(m+s-1) dimensional simplex Sis divided into a finite number of (m+s-1) 

dimensional cells dominated by some DMUs. The cells a.re not necessarily 

convex. There may exist (m+s-2) or less dimensional dominant DMUs, with 

the extremal case 0 dimensional (point) dominant DlvIUs. Figure 1 shows 

an example of the cell subdivision of the multiplier simplex S, where, for 

example, DNIUi, DNJU2 and DNJU3 a.re (m+ s -1) dimensional dominants, 

while DNJU10 is a. 0 dimensional (point) dominant. We emphasize that this 

figure is for explanatory purposes and not rigorous. 

Figure 1 

3 Assurance Region and Cone-Ratio Models 

In applying DEA to actual problems, we should be conscious of the economic 

and socioeconomic aspects of the problems, which are closely related with 

the virtual multiplier (weight) v (u) to the input (output) items. Although 
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the original DEA models impose no restriction on ·v and 'tJ, except positivity 

(or nonnegativity), we can introduce the relative importance of weights by 

restricting their feasible regions. In this regard, two notable models have been 

proposed, i.e. the assurance region (AR) and the cone-ratio (CR) models. 

3.1 Assurance Region Model 

The AR model imposes lower and upper bounds to the ratio of some selected 

pairs of weights. For example, we may add a constraint on the ratio of 

weights to Input 1 and Input 2 as follows: 

(6) 

where 112 and u12 are the lower and upper bounds to the ratio, respectively. 

Likewise, similar constraints may be added to pairs of some output multipliers 

and even to multipliers between some selected input and output multipliers 

(Thompson et al. (1990) named this type 'linkage constraints'). See Thomp

son et al. (1986), (1990), (1994) and Roll and Golany (1993) for more details 

and further extensions. The constraint such as (6) restricts the feasible region 

of multipliers to the polyhedral cone originated from a vertex of the simplex 

S. Thus, the assurance region, which satisfies all the ratio constraints will 

come to form a polyhedron as in ABCD in Figure 2, for example. 

Figure 2 

3.2 The Intersection For1n Cone-Ratio Model 

On the other hand, in the cone-ratio model, especially in the polyhedral 

cone-ratio model, some exemplary DMUs will be chosen from among the 

CCR efficient DMUs as a result of expert knowledge. Then, the optimal 
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weights corresponding to the selected DMUs will be used to form a polyhedral 

cone for an admissible region of multipliers. We will now briefly describe 

the polyhedral cone-ratio model. (See Charnes et al. (1990) for details). 

Let us assume that the feasible input weight -v is in the polyhedral convex 

cone spanned by the k admissible nonnegative direction (row) vectors ai E 

Rm (j = 1, ... , k ). Thus, a feasible -v can be expressed as 

k 

-v - _L °'iai with °'i ::'.". 0 (Vj) 
j;:::;:l 

aA, 

where AT= (af, ... , a[) E Rmxk and a= (a1, .•. , °'k)· 

Let the convex cone thus defined be 

(7) V = {-vJ-v = aA, a::'.". O}. 

Likewise, based on the l admissible nonnegative direction (row) vector bi E 

R' (j = 1, ... , l), we assume that the feasible output weight u is in the 

polyhedral convex cone defined by 

(8) U = { uJu = ,6B, ,6 ::'.". O}, 

where BT= (b"[, ... , bT) E R'x1 and /3 = ((31, ... ,(31). 

Then, the cone-ratio model for evaluating the relative efficiency of the n 

DMUs coincides with the CCR model that evaluates the same DMUs with 

the following transformed data set (X, Y). 

(9) X =AXE Rkxn and Y =BYE R1x". 

This corresponds to the CR model in 'intersection form' as the direct product 

of V and U, i.e. the components -v and u range independently over the 
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input and output cones. Thus, the intersection form CR model evaluates the 

relative efficiency of DJV!U0 by the following primal and dual linear programs: 

(10) (CRP0 ) max u·y
0 

(11) subject to vX 0 = 1 

(12) -vX + uY < 0 

(13) v ~ 0, u > 0. 

(14) (CRD0 ) mm e 
(15) subject to exo }()..-Bx = 0 

(16) Yo - Y>. + .s. - 0 

(17) ).. > o, Bx~ 0, Sy~ 0. 

3.3 The Linked-Cone Model 

As with the linkage constraints in the AR model, we can define a linked CR 

model as follows. Let the linked multipliers (v, u) be in a cone described by 

(18) (v, ·u) = 7C, 

where "( E Rq, C E Rqx(m+•) and the row vector Cj E Rm+• (j = 1, ... , q) 

corresponds to a linked admissible direction. From (18), the multipliers can 

be expressed as 

(19) 

Let us define 

(20) 
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Based on the data set (X, Y), we have a linked CR model as follows: 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

subject to 

(LCRP0 ) max /Yo 

subject to /X 0 1 

1(-.X + Y) < o 

I > 0. 

(LCRD 0 ) mm e 
exo + (-X+Y)>..-s = Y0 

>.. > 0, s ?:: 0. 

The programs have a finite optimum if the cone generated by C includes 

at least one feasible weight ('v, u) for the original CCR model. Otherwise, 

(LCRP0 ) has no feasible solution and hence we would be obliged to change 

the problem to a 'linked-cone profit model' by neglecting the constraint 

1(-X + Y) ::; 0 in the primal and the >..- term in the dual, in a similar 

way to Thompson et al. (1994) in the extended AR model. However, the 

latter extension is applicable to the CR model, regardless of the feasibility 

of (LCRP0 ). 

3.4 Three Principles for Choosing Cones 

It is not easy to choose the admissible directions, since usually the optimal 

virtual weights for an efficient DMU are not uniquely determined. For ex

ample, let us observe the case when the experts chose DMUs 1, 2 and 3 

in Figure 1 as exemplary. Obviously, any point in the cell 1, 2 or 3 makes 

the DMU efficient. Therefore, we need some other criteria for selecting a 

reasonable point in the cell. There may be at least three principles for this 

8 



purpose. The first one, the most restricted case, is to choose the cone as the 

minimum diameter convex set which makes the exemplary DMUs efficient. 

The next one, the most relaxed case, is to choose the cone as the convex 

hull of the exemplary cells. The last one chooses the cone generated by the 

'central points' of each exemplary DMUs. 

However, from computational points of view, the above three principles 

cannot be easily implemented. In fact, the first two might be NP-hard prob

lems and the last one depends on the method of choosing the central point 

for each cell. 

4 Practical Methods for the Three Cases 

Corresponding to the above mentioned general principles, we will propose 

three practical methods which approximately implement them. 

4.1 The Most Restricted Case 

Let the ch~sen exemplary DMUs be DlvIU"" ... , DlvIU"" We solve the 

following fractional program (FPk) for each DlvIU"' (k = 1, ... ,p). 

. (28) (FPk) max I:::~1 u, L:i# Yrni 

I::i,:,1 Vi I::j# Xiaj 
m ' (29) subject to I:: ViXir.tk L UrYra.k = 1 

i=l 1·=1 
m ' 

(30) L:vx· , lJ > I: UrYrj (j = 1,. . ., n) 
i=l r::::l 

(31) v· > 0 , - (Vi) u, :::: 0 (\Ir). 

The objective of this fractional program is to find a point (v*, u*) among 

the optimal points for DlvIU"' that maximizes the ratio scale of the DMU 

formed by aggregating other exemplary DMUs. 
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The optimal objective value in (FP)k is not greater than 1 and attains 1 if, 

and only if, the intersection of the cells corresponding to DMUa., ... , DiVIUa, 

is not empty. In this case, it is sufficient to solve only (FP1) and the vertex 

found will be used as the cone, (actually the ray) for the cone-ratio model. 

Otherwise, we will solve (FPk) for k = 1, ... , p and find optimal vertices 

("v~, ·un, ... , (·v;, 'U;) which will be used to form the cone. The objective term 

in (FP)k corresponds to the aggregated DMU with (Lj# x;"i' Lj# y,a;) and 

hence the scaling of each component (:v"i' Ya) deserves consideration. In any 

case, there remains ambiguity in the optimal solution if it is degenerate. 

The fractional program (FPk) can. be solved as a linear progra1mning 

problem via the Charnes and Cooper transformation (1962), which is briefly 

described in Appendix A. 

4.2 The Most Relaxed Case 

Instead of maximizing the objective function in (FPk), we try to minimize 

it, subject to the same constraints. Thus the objective is: 

(32) 

This program will find a vertex in the cell DiVJUk which is, in a sense, farthest 

from the other exemplary DMUs. Let the optimal solution be (iii;, u;;) (k = 

1, ... , p), which will be utilized to form the cone for the cone-ratio model. 

4.3 The Central Case 

This case corresponds to finding a central (relatively interior) point for each 

CCR-efficient DMU. 

The CCR model is formulated for each DMU0 (o - 1, ... , n) as the 
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following LP: 

(33) (CCR0 ) max uy
0 

(34) subject to VX 0 - 1 

(35) -vX + uY < 0 

(36) v <::: 0, u > 0. 

The computation is usually done on the dual side of (CCR0 ) which is: 

(37) 

(38) 

(39) 

(40) 

subject to 

(LP0 ) 

emo 

Yo -

mm e 

x>.- s., 

Y>. +Sy 

>. 

- 0 

- 0 

> 0, Sx 2:: 0, Sy 2:: 0. 

Let. optimal solutions for (CCR0 ) and (LP0 ) be (-v*, u*) and (e•, )..*, s;, s;), 

respectively, for which we have the complementarity: 

( 41) v*s; = 0 and u·s; = 0. 

Furthermore, for a CCR-efficient DMU, we have 

e· = 1, s; = 0 and s; = 0. 

However, by the strong theorem of complementarity, it. can be seen that for a 

CCR-efficient DMU, there exists, in aclclition, an optimal solution of (CC R0 ) 

with 

(42) v* > 0 and u* > 0. 

We will present two methods for finding a strictly complementary solution 

for a CCR-efficient DMU. 
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4.3.1 The Primal-Dual Interior Point Method 

The primal-dual interior point methods for linear programming (see Kojima, 

Mizuno and Yoshise (1989), McShane, Monma and Shanno (1989) and Choi, 

Monma and Shanno (1990), among others) will theoretically converge to the 

center of the optimal facet of the problem and the solution is strictly com

plementary. However, practical implementations of interior point methods 

usually employ a. long step size to the boundary of the feasible region for 

attaining the next interior iterate, and hence the optimal solution is strictly 

complementary but not central. Therefore, in order to follow the central 

trajectory, we need to take special care in choosing the step size. 

4.3.2 The Parametric Linear Programming Approach 

If a strictly complementary solution, i.e. v* > 0 and u* > 0, is required 

instead of the central one, we can obtain one by a simplex based method, as 

follows: 

If a CCR-efficient solution is not. strictly complementary, we will solve 

the following parametric linear program in a scalar t: 

(43) maxw - t(e.sx + esy) 

(44) subject to a; 
0 - XA+ Sx 

(45) Yo Y.A - Sy 

(46) .A > o, Sx ::'.: 0, Sy > 0. 

Since we have the optimal solution w* = 0 fort= 0 at the e"nd of the (CCR0 ) 

solution, we try to make t positive, while keeping s., = 0 and Sy = 0. A 

positive t* is guaranteed to exist by the strong theorem of complementarity, 
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which turns out, in the (CC R0 ) side, positive weights such that 

(47) v* ~ t*e > 0 and u* ~ t*e > 0. 

From the (v*, u.*), we can get a strictly complementary solution for (CCR0 ). 

5 An Example 

Table 1 exhibits data for 14 general hospitals operated under similar environ

ments. As input items, we employ the working hours per month of doctors 

and nurses, while as outputs the amounts of medical expense insurance for 

outpatients and inpatients are used. 

Table 1: Data of General Hospital and Results 

Input Output 
Hospital Doctor Nurse Outpatient Inpatient 
HI 3008 20980 97775 101225 
H2 3985 25643 135871 130580 
H3 4324 26978 133655 168'173 
H4 3534 25361 46243 100407 
H5 8836 40796 176661 215616 
HG 5376 37562 182576 217615 
H7 4982 33088 98880 167278 
HS 4775 39122 136701 193393 
H9 8046. 42958 225138 256575 
HlO 8554 48955 257370 312877 
Hll 6147 45514 165274 227099 
H12 8366 55140 203989 321623 
H13 13479 68037 174270 341743 
H14 21808 78302 322990 487539 

The CCR-efficiency, along with weights to inputs and outputs, is shown 

in Table 2. Now, suppose that we chose H6 and HIO as exemplary among the 
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Table 2: Efficiency a.nd Weight by CCR Model 

Hos pi- CCR Doctor Nurse Outpatient Inpatient Reference 
tal Eff. VJ V2 'lt.1 'lf.2 Set 
Hl 0.955 .332E-03 0 .959E-05 .167E-OG H2 HG 
H2 1 .242E-03 .140E-05 .714E-05 .225E-OG II2 
H3 1 .104E-03 .204E-04 .339E-05 .325E-05 H3 
H,1 0.702 .282E-03 .128E-OG 0 .G99E-05 HG HS 
HS 0.827 0 .245E-04 0 .384E-05 II10 
HG 1 .784E-04 .154E-04 .25GE-05 .245E-05 HG 
H7 0.844 .133E-03 .102E-04 0 .SOSE-05 H3 HG 
HS 1 .209E-03 .458E-07 .lllE-07 .SlGE-05 HS 
H9 0.995 0 .233E-04 .42GE-05 .13GE-OG H2 HlO 
H10 1 .319E-04 .149E-04 .215E-05 .143E-05 H10 
Hll 0.913 .JG2E-03 .739E-07 0 .402E-05 HG HS 
H12 0.9G9 .793E-04 .GllE-05 0 .301E-05 H3 HG 
H13 0.78G .0 .147E-04 0 .230E-05 HlO 
H14 0.974 0 .128E-04 0 .200E-05 H10 

five CCR-efficient DMUs. The three approaches mentioned in the preceding 

section would give the following results. 

5.1 The Most Restricted Case 

We solved the fractional program (FP) in Subsection 4.1 for H6 and obtained 

the optimal solution: 

vj = 7.8408 x 10-5 v~ = 1.5401 x 10-5 

uj = 2.5567 x 10-5 u; = 2.4503 x 10-6 , 

with the optimal objective value = 1. 

Thus, the cells of H6 and HlO have the above common vertex, which was 

used as the admissible direction for solving the intersection form cone-ratio 

model. The results are exhibited in the 'Restricted' column of Table 3. 
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5.2 The Most Relaxed Case 

We solved the fractional program (FP) with the minimizing objective func

tion (32) for R6 and RIO and obtained the following results: 

For R6 

For RIO 

vi = 1.8601 x 10-4 v:; = 0 
ui = 5.3658 x 10-5 u:; = 9.3452 x 10-8

, 

with the optimal objective value = 0.8863. 

vi = 0 v; = 2.0427 x 10-5 

ui = 0 u; = 3.1961x10-6
, 

with the optimal objective value = 0.9065. 

The two directions thus obtained were used to form the intersection cone 

and the results are exhibited in the 'Relaxed' column of Table 3. 

5.3 The Central Case 

For the central case, we used the solutions obtained by an interior point 

code 'NUOPT'. This was developed by Mathematical Systems Institute Inc., 

(Yamashita(1992)). The solutions are as follows: 

For R6 

vi = 1. 6534 x 10-• 
·ui = 3 .5461 x 10-5 

For RIO 

(5.5703 x 10-13 ) 

(2.5971 x I0-11 

15 

v; = 2.9591 x 10-5 

u:; = 1.6201 x 10-5 
(3.1123 x 10-11 ) 

(5.6845 x I0-11 ) 



vj = 1.5924 x 10-5 

uj = 2.1308 x 10-6 
(7.9234 x 10-11 ) v2 = 1.764.5 x 10-5 

(5.9213 x 10-11 u:j = 1.4434 x 10-6 
(7.1506 x 10-11 ) 

(8.7413 x 10-10 ) 

The numbers in the parentheses designate the dual slacks. Both solutions are 

sufficiently central in the sense that the complementary slackness conditions 

between each va.riable and slack turned out to give almost equal values. Using 

these two directions, we have the 'Central' column of Table 3. 

On an average, the restricted case is the most severe in efficiency and the 

central case is between the restricted and the relaxed cases. Numbers in the 

last column 'Fukuda' will be explained in the next section. 

Table 3: Efficiency measured by the Intersection Form Cone-Ratio Models: 

Hospital Restricted Relaxed Central Fukuda 
Hl 0.8910 0.95,!G 0.9137 0.8870 
H2 0.9434 l 0.9816 0.9359 
H3 l l 0.9961 l 
H4 0.5456 0.7018 0.5251 0.5826 
HS 0.7418 0.8270 0.7991 0.7812 
H6 l l l l 
H7 0.7361 0.8441 0.7146 0.7601 
HS 0.8428 l 0.8962 0.9033 
ll9 0.9318 0.9946 0.9652 0.9452 
lllO l l l l 
Hll 0.8276 0.9125 0.8402 0.8556 
lll2 0.8701 0.9690 0.8498 0.8921 
Hl3 0.6096 0.7859 0.6110 0.6576 
ll14 0.6929 0.97<12 0.8051 0.7937 
Average 0.8309 0.9260 0.8498 0.8567 

16 



5.4 The Linked-Cone Case 

The results of the linked-cone case, using the same directions, are exhibited in 

Table 4. It is observed that the efficiency is less than that in the intersection 

case, since the feasible region of (v, u) is more restricted in this case. 

Table 4: Efficiency by the Linked Cones Models: 

Hospital Restricted Relaxed Central Fukuda 
HI 0.8910 0.9545 0.9130 0.8776 
H2 0.9434 1 0.9437 0.9118 
H3 1 0.9771 0.9690 0.9815 
H•1 0.5456 0.6195 0.4954 0.5824 
HS 0.7418 0.8269 0.7991 0.7810 
HG 1 1 1 1 
H7 0.7361 0.7910 0.6818 0.7498 
HS 0.8428 0.8462 0.8816 0.9028 
H9 0.9318 0.9345 0.9593 0.9452 
HlO 1 1 1 1 
Hll 0.8276 0.7942 0.8288 0.8554 
Hl2 0.8701 0.9126 0.8126 0.8782 
Hl3 0.6096 0.7859 0.6110 0.6369 
H14 0.6929 0.9742 0.8051 0.7819 
Average 0.8309 0.8869 0.8357 0.8489 

6 Enumeration of Optimal Vertices 

It is interesting to identify all the vertices ( 'V )tL) of the convex polyhedron, 

which makes a DlvIU efficient, not only for the purposes mentioned in the 

preceding sections but also in order to arrive at an understanding of the 

overall positioning of the efficient DMU in the ( 'V)U) space. 
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Recently, Fukuda (1993) has developed an algorithm and software2 for 

enumerating all vertices of a convex polyhedron defined by a system of linear 

inequalities, base on the Double Description Method (1958). This software 

is useful for the above mentioned purposes in several ways. 

6.1 Enun1eration of Optiinal Vertices for Selected DMUs 

Let the convex polyhedron corresponding to a CCR-efficient D i\tlU0 be 

C0 = {(v,u) I ·v:v 0 = uy 0 = 1, VXj 2: ·u.yj (Vj), v 2: 0, u 2: O}. 

We can apply this software to enumerate all the vertices of the convex poly

hedron C0 • It works efficiently for medium size problems. In fact, for an 

actual problem with '12 DMUs, 4 inputs and 2 outputs, all vertices of an 

efficient DMU could be obtained instantly on the SUN SparkServer 1000 and 

in 15 seconds on the Mac Powerbook Duo 210 (68030, 25mhz). The prob

lem has 6 efficient DMUs among the total of 42 DMUs and the polyhedron 

corresponding to the said DMU has 22 vertices. It has been observed that 

the number of vertices increases exponentially with the number of tight (ac

tive) constraints in the optimal solution of (CCR0 ). It increases also as the 

number of inputs and outputs does. 

We applied this software to the sample problem above, especially for 

DMUs H6 and HlO and obtained 6 and 5 vertices for H6 and HlO, respec

tively, as exhibited in Table 5 (CPU-time was negligible). 

For the purpose of comparing vertices of the polyhedra corresponding to 

different DMUs, it is convenient to normalize (v, ·it) so that 

m ' 

l::v; + l::u; = 1. 
i=l r=l 

2T!te free software "cdd.c" is available via anonymous ftp from ftp.epfl.ch (directory 
incoming/dma). 
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Table 5: All Vertices of H6 and HlO 

All Vertices of H6 
No. V1 V2 U1 u2 

1 l.8542E-4 8.4472E-8 0 4.5953E-6 
2 l.8601E-4 0 l.9038E-8 4.5793E-6 
3 l.8601E-4 0 5.3658E-6 9.3452E-8 
4 l.2090E-4 9.3195E-6 0 4.5953E-6 
5 7.3557E-5 l.6095E-5 4.0202E-6 l.2224E-6 
6 7.8408E-5 l.5401E-5 2.5567E-6 2.4503E-6 

All Vertices of HlO 
No. V1 V2 1!1 Uz 
1 5.5037E-5 l.OSIOE-5 l .7946E-6 l.7199E-6 
2 5.1905E-5 l.1357E-5 2.8369E-6 8.6257E-7 
3 0 2.0427E-5 3.7409E-6 l.1890E-7 
4 0 2.0427E-5 0 3.1961E-6 
5 3.2349E-5 l.4774E-5 0 3.J96JE-6 

Table G shows the normalized vertices for H6 a.nd HlO. 

It is observed that HG and HlO have two vertices in common ((No.5 in 

HG and No.2 in HlO) and (No.6 in H6 and No.l in HlO)) and 'the most 

restricted case' in Subsection 5.1 identified the second of these. The last two 

columns of Table 6 show the CCR-ratio sea.le of HG a.nd HlO for each vertex, 

respectively. As expected, 'the most relaxed case' in Subsection 5.2 found the 

vertex that gives the lowest score to the counterpart DMU, in this example. 

From Table 5, we can obtain the 'center', as the average of each coordinate 

value, for ea.ch polyhedron as shown in Table 7. By using these two directions 

as admissible for the cone, we obtained the CCR efficiency a.s denoted in the 

columns 'Fukuda' in Tables 3 and 4. 
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Table 6: Normalized Vert.ices of H6 and H10 

Normalized Vertices of If 6 Efficiency 
No. VJ V2 'l/.j u2 HG HlO 
1 0.9754 0.0004 0.0000 0.02•12 1.0000 0.9041 
2 0.9759 0.0000 0.0001 0.0240 1.0000 0.9035 
3 0.9715 0.0000 0.0280 0.0005 1.0000 0.8863 
4 0.8968 0.0691 0.0000 0.0341 1.0000 0.9647 
5 0.7751 0.1696 0.0424 0.0129 1.0000 1.0000 
6 0.7935 0.1559 0.0259 0.0248 1.0000 1.0000 

Normalized Vertices of HlO Efficiency 
No. VJ V3 U1 U3 H6 HlO 
1 0.7935 0.1559 0.0259 0.0248 1.0000 1.0000 
2 0.7751 0.1696 0.0424 0.0129 1.0000 1.0000 
3 0.0000 0.8411 0.1540 0.0049 0.9239 1.0000 
4 0.0000 0.8647 0.0000 0.1353 0.9065 1.0000 
5 0.6429 0.2936 0.0000 0.0635 0.9543 1.0000 

Table 7: 'Center' of Polyhedron: 

No. VJ V2 V.1 tf.3 

H6 1.3838E-4 6.8166E-6 1.9936E-6 2.9227E-G 
HlO 2.7858E-5 1.5559E-5 J.6745E-6 1.8187E-6 

6.2 Enu1neration of All Optiinal Vertices 

Instead of enumerating all vertices corresponding to selected DMUs, we can 

enumerate optimal vertices (-v, u) of all efficient DMUs as follows. 

Let us define the convex polyhedron C by 

(48) C = {(-v, u) I -vx1 ::'.: uy1 (Vj), ·v ::'.: O, 1t ::'.: O}. 

C is a convex cone pointed to (0, 0) and represented by a set of extreme rays 

{(-vru u,,)}. If an extreme ray (-v,,, u,,) satisfies the relation -vxk = ·uyk 
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for some k, then the DMU (:r;k, Yk) is CCR-efficient and the (v,., ·u,,) 

corresponds to an optimal vertex for the DiVIUk· Table 8 shows the list 

of all twelve optimal extreme rays that make at. least one DMU efficient. 

Notice that the rays are normalized so that the sum of elements is equal 

to one. Fukuda's software cdd provides several useful options, of which we 

will mention two functions (i) to identify the incidence relations between the 

vertices/rays and the inequalities that are satisfied by equality, and (ii) to 

find the adjacent vertices/rays for each vertex/ray. The column 'DMUs' in 

Table 8 exhibits DMUs that are efficient for the corresponding vertex and 

the column 'Adjacency' shows the list of adjacent vertices. The graph of 

the optimal vertices are displayed in Figure 3, where the dominating DMUs 

correspond to the facets. 

Table 8: Enumeration of All Optimal Vertices 

No. V1 V2 "1 "2 DMUs Adjacency 
Vl 0.0000 0.S411 0.1540 0.0049 H2 HlO V3 V5 V12 
V2 0.7935 0.1559 0.0259 0.024S II3 HG HlO V3 V4 VS 
V3 0.7751 0.1G9G 0.0424 0.0129 H2 HG HlO Vl V2 V9 
V4 O.G429 0.293G 0.0000 0.0G35 H3 HlO V2 V5 vs 
V5 0.0000 O.SG47 0.0000 0.1353 HlO Vl V,1 

VG 0.9754 0.0004 0.0000 0.0242 HG HS V7 Vs VlO 
V7 0.9759 0.0000 0.0001 0.0240 HG HS VG V9 VlO 
VS 0.89G8 0.0G91 0.0000 0.0341 H3 HG V2 V4 VG 
V9 0.9715 0.0000 0.02SO 0.0005 H2 HG V3 V7 Vll 
VlO 0.9759 0.0000 0.0000 0.0241 HS VG V7 
Vll 0.9715 0.0000 0.02S5 0.0000 H2 V9 V12 
V12 0.0000 0.S412 0.15SS 0.0000 H2 Vl Vll 

Figure 3 
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6.3 Fro111 Cone-Ratio to Hull-Constraints 

The 'hull' option of Fukuda's cdd does the reverse operation. That is, given 

a. set of rays, this option finds a minimal system of linear inequalities to 

represent the convex cone spanned by the rays. As a matter of course, the 

given set of rays must be full dimensional. We tried two applications of 

this option for our research in the cone-ratio model. One is an equivalent. 

formulation of the model with the separate (intersection) cones V and U and 

the other is the linked cone case in Section 3. 

6.3.1 The Separate Cone Case 

Let the admissible input and output directions of v and ·u be {a;} (j = 

1, ... ,k) and {b;} (j = 1, ... ,1), respectively. (The corresponding cones 

V and U are defined by (7) and (8).) We assume that {a;} ( { b;}) spans 

the m( s) dimensional space. By applying the 'hull' option, we obtain the 

equivalent linear inequalities representation of cones as 

(49) vH ::; 0 and uG::; 0. 

Thus, the cone-ratio model for evaluating DlvJU0 can be expressed by the 

following primal and dual programs 

(50) (Primal) max uy
0 

subject to VX 0 = 1 

-·vX + uY < 0 

vH < 0 

uG < 0 

v 2: 0, ·u > 0. 
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(51) (Dual) min e 
subject to Bx0 - X >.. + H µ - s_, 0 

Yo - Y.A-Gv+sy - 0 

A'.'.:: 0, µ '.'.:: 0, V > 0, S,, '.'.:: 0, Sy '.'.:: 0. 

Example 

Let the two admissible directions for input weights be 

a 1 = (0.7935, 0.1559) and a2 = (0.7751, 0.1696). 

Then, we have the hull expression as follows: 

v1 - 5.090v2 ::; 0 and - v1 + 4.570v2 ::; 0. 

Let the two admissible directions for output weights be 

b1 = (0.0259, 0.0248) and b2 = (0.0424, 0.0129). 

Then, we have the hull expression as follows: 

u1 - 3.287u2 ::; 0 and - u1 + l.044u2 ::; 0. 

6.3.2 The Linked-Cone Case 

Let the set oflinked directions be { c;} (j = 1, .. ., q) with each c; E Rm+•. 

Again, we assume that { c;} spans the ( m + s) dimensional space. Then, 

via the 'hull' option, we will obtain a minimal set of linear inequalities to 

represent the cone spanned by { c;}, such as 

(52) vH +uG::; 0. 
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This constraint will be utilized as the linked constraint in the (Primal) and 

consequently, in the (Dual) side, we have the constraints as below. 

Example 

exo - x .\ + H µ - Sx = 0 

Y0 - Y.\- Gµ+su - 0 

A 2;: 0, µ 2;: 0, s, 2;: 0, Sy 2;: 0. 

Let the linked admissible directions be 

C1 = ( 0.7935 0.1559 0.0259 0.0248 
C2 = ( 0.7751 0.1696 0.0424 0.0129 
C3 = ( 0.7751 0.1696 0.0350 0.0180 
C4 = ( 0.7935 0.1559 0.0405 0.0148 

C5 = ( 3.1372 0.6510 0.1438 0.0705 

Then, we have the hull expression as follows: 

2.197 V1 +v2 -30.58 U1 -44.65 U2 < 
-2.134 V1 -V2 +29.84 U1 +43.30 U2 < 
-2.017 V1 -V2 +28.28 U1 +41.29 U2 ~ 

1.824 V1 +v2 -25.91 U1 -37.59 U2 < 

6.3.3 Notes on Hull Representation 

) 
) 
) 
) 
) 

0 
0 
0 
0 

Theoretically, the cone form DEA is equivalent to the hull form one, if the 

matrix C of the admissible directions is full dimensional. However, the hull 

form is more directly connected to the original DEA problem, in that the 

optimal solution can be interpreted within the framework of the original 

input/output data, similarly to the assurance region model. Furthermore, 

we can extend the model to the 'linked-cone profit model', which is a future 

research subject. 
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7 Concluding Remarks 

In the first half of this paper, we proposed three approaches to the cone-ratio 

model with respect to the virtual input/output multipliers. The choice of the 

admissible directions for the cone is crucial to the successful application of 

the cone-ratio model. If expert knowledge on the virtual multipliers (weights) 

could be combined with the three cases proposed, progress could be made 

in the evaluation of the relative efficiency of DMUs. In the latter half of the 

paper, we described the possible applications of Fukuda's vertex enumeration 

algorithm for efficient DMUs, which would be an interesting future research 

subject. 
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Appendix A. Solution of Fractional Progranuning 

The fractional program (FPh) can be transformed into equivalent linear pro

gram as follows: 

(53) 

(54) subject to 

(55) 

r=l j# 
m 

I:;v;I:;x;.,; - 1 
;=1 j# 

m . 

L Vixiak 
i=l 

' - L UrYr<>k = i 
r=l 
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(56) 

(57) 

m ' L V;x;j > L U,y,j (j = 1, .. ., n) 
r=1 

V; ~ 0 ('v'i), U, ~ 0 ('v'r), t ~ 0. 

Let an optimal solution of (LPk) be (V*, U*, t*). Then we have the optimal 

solution of (FPk) by 

(58) v* = v· ft* and u* = u· ft*. 
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Figure 1. Cell Subdivision 

Figure 2. Assurance Region 
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