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Abstract: 

W.W. Cooper* and Kaoru Tone** 

A SURVEY OF SOME RECENT DEVELOPMENTS IN 
DATA ENVELOPMENT ANALYSIS*** 

This is a survey of selected recent developments in DEA. Included are (1) new measures for 
evaluating "technical efficiency; (2) new ways of determining "returns-to-scale efficiencies; and (3) 
new approaches for evaluating "allocative efficiencies." A final section outlines areas where additional 
research is needed. 

1. Introductjon: 

DEA can best be described as data-oriented in that it effects performance evaluations and other 

inferences directly from observed data with minimal assumptions . A tide of reports on its uses and 

extensions has developed and this has been increasing, at an increasing rate, since publication of the 

article by Charnes, Cooper and Rhodes [16] in the European Journal of Operations Research. The 

bibliographies released periodically by L.M. Seiford [28] are now approaching 1,000 references. 

Included are numerous references to uses of DEA to evaluate the performances of not-for-profit and 

governmental entities, with DEA being applied to activities that have proved resistant to other methods 

of inference and evaluation. Examples include the activities of schools ancf universities, military 

services, hospitals and court systems and, more recently, evaluations of the performances of whole 

economic and social systems. See [24] and [25]. 

The developments in DEA involve OR tools, such as mathematical programming, which have been 

adapted to uses involving inferences from already generated data (ex post) as distinguished from more 

traditional uses, as in ex ante planning. This is accomplished in a manner that can be described as 

follows: Application is to observed data generated from past behavior. Common to all uses of DEA are 

the choices of (a) inputs and ouqmts from which evaluations are to be effected and (b) the choices of 

DMUs (=Decision Making Units) that represent the organizations which are to be evaluated relative to 

each other. The result is a new method for effecting inferences which replaces statistical (or otl1er) 

averages obtained from optimizations over all observations in order to obtain inferences which are 
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••Graduate School of Policy Science, Saitama University, Japan 
•••Paper to be presented at the 14th European Conference on Operational Research to be held at Hebrew University, 
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optimal for each observation. Opportunities are thereby opened for complementing as well as competing 

uses with other approaches for effecting evaluations and measuring efficiency. See Bardhan [9]. 

Different choices of DMUs can lead to different results (and yield different insights) and the same 

is true of the input and output choices. These choices are important, of course, but they also offer 

possibilities that can be exploited in a variety of ways which include expanding or contracting the 

number of inputs and outputs and DMUs as well as other forms of sensitivity analysis. See 

Thompson, Dharmapala and Thrall [31]. Weights can also be used or suitable aggregates can be 

assembled from initially designated inputs, outputs and DMUs. A priori choices of weights, however, 

are not required by DEA and, when desired, a use of exact weights may be replaced with upper or 

lower bounds while allowing DEA to determine a best set of exact values directly from records of past 

performance. See Cooper, Tone, Takamori and Sueyoshi [18]. 

•' 

2. Measures of Efficjency: 1 

Our discussions here start with a measure of efficiency that has recently been introduced into the 

literature of DEA by Thompson, Dharmpala, and Thrall [31], viz., 

s s 

L Ur Yro I L Ur Yrk max r=l r=l ---u,v m m 
LViXio LViXik 

where 
i=l i=l 

s 

L Ur Yrk 
r=l '-'---=max 

s 
L Ur Yrj 
r=l 

(1) 

J=l, .. .,n 

which we refer to as the TDT measure ofrelative efficiency. Here (u,v) are vectors with components 

Un vi <:: 0, with values to be determined by DEA from the observed values of i = 1, .. ., m inputs used 

and r = 1, .. ., s outputs produced for each of j = 1, .. ., n DMUs. DMU0 , as represented in the 

numerator for the objective in (1), is the DMU to be evaluated by choosing (u,v) to maximize its value 

relative to the highest score that this~ (u,v) choice accords to the similarly formed ratios for the 

entire collection of DMUj, j = 1, .. ., n-with DMU0 included in this collection. 

1The materials in this section are adapted from Banker and Cooper [7]. 
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Formally we can also represent the ratio of ratios in the objective of (1) by 

Tu_ /Yk 
Xo xk 

(2) 

where y0 , Yk represent "virtual outputs" and x0 , xk represent "virtual inputs." Because Yk/Xk is 

maximal over the set k = 1, .. ., n, which includes k = o, we have Yo/Xo '.'> Yk/Xk· The above ratios 

therefore have a maximum value of unity which is achievable if and only if DMU0's performance is 

!lQ1 bettered by some~ DMU. 

Note, therefore, that the representation in (1) produces a new method of choosing weights. These 

weights are not fixed a priori. Rather a~ set of weights is to be determined for~ DMU to be 

evaluated in the sense that the weights selected should maximize the objective in (1) for each DMU that 

is to be evaluated. This choice of weights is effected directly from the data in a manner which 

guarantees that the resulting choice is best relative to the best score that these same weights will assign 

to the other DMUs (including the DMU0 to be evaluated). 

This TDT measure may be interpreted in various ways. It might be regarded as an extreme value 

statistic, for example, and treated by suitably extended versions of extreme value statistical theory. The 

formulation in (1) may also be approached deterministically as a mathematical programming problem to 

be modeled and solved in ways suited to choosing the u and v vectors, and this is the way in which we 

now proceed. The following model, known as the CCR ratio model,2 can clarify what is involved, 

max 
u,v 

subject to 

2see [16]. See also E. Rhodes [27]. 

s 
L Ur Yro 
r=l 
m 
L vi Xj 0 
i=l 

s 
L Ur Yrj 
r=l 
m 
"V· X .. 
£.., 1 lJ 

i=l 

m 
L vi Xj 0 
i=l 

m 

v· 1 

L vi Xj 0 
i=l 

3 

(3) 

:'> l; j=l, .. ., n. 

r=l, .. ., s. 

i=l, .. ., m. 



Here the only new element is e, a positive Non-Archimedean infinitesimal. We elaborate on its 

mathematical properties later after noting that its use e.nsures that all inputs and outputs are accorded 

"some" positive value. These values need not be specified explicitly but can be dealt with by 

computational processes like the ones described in [2]. 

As shown in [16], the formulation in (3), greatly generalizes the usual single-output-to-single-input 

ratio definitions of efficiency that are used in engineering and science. It also relates these engineering­

science definitions and usages to definitions in economics-e.g., the Pareto-Koopmans definitions of 

efficiency given in Charnes et al. [13]-which can be accorded operationally implementable form via 

the following definition, 

Efficiency: The performance ofDMU0 is to be considered fully (100%) efficient if and only if 
the performance of other DMUs does not provide evidence that some of the inputs or outputs 
of DMU0 could have been improved without worsening some of its other inputs or outputs. 

We will shortly provide a transformation of (3) that makes it possible to identify the sources and 

estimate the amounts of inefficiency in~ input and output for~ DMU in a manner that uses 

minimal assumptions for empirical studies. Here we note that a relation to (1) is established by simply 

observing that a necessary condition for optimality in (3) is that at least oqe of the j = 1, ... , n output­

to-input ratios in the constraints must be at its upper bound of unity. Thus, for this case the 

denominator in (1) has a value of unity and the efficiency evaluation for DMU0 then reduces to 

whether the numerator in (1) or (2) is unity or less. 

Maximizing y0/X0 can be managerially interpreted in terms of achieving the greatest virtual output 

per unit virtual input This provides a basis for extending DEA to consider returns to scale efficiencies, 

as we shall later see. Here, however, we simply note that this interpretation corresponds 

mathematically to finding values which can be associated with the slopes of the supports that envelop 

the observations. Nothing need be said explicitly about the functions that govern tl1e relations between 

inputs and outputs and these relations are allowed to vary from one DMU to another. 

3. Linear Pro~ffammine Equivalents: 

Reference to (3) shows that it is a nonlinear, nonconvex programming problem, and hence is best 

used for conceptual clarification. To give these concepts computationally implementable form, we 

introduce new variables defined as follows, 
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µr=tur, r = 1, .. ., s 

Vj = t Vj, i = l, .. ., m 
m 

1 = I Vj Xio· 
i=l 

(4) 

These are the so-called "Charnes-Cooper transformations" from Charnes and Cooper [12] which 

initiated the field of "fractional programming." Here we use them to transform the problem in (3) to the 

problem on the right in the following dual pair of linear programming problems with assurance (from 

fractional programming) that their optimal values will also be optimal for (3). 

min 9 

subject to: 
n 

0 - 9x· - "' x·· A.· - s~ - 10 . .L..!JJ 1 
J=l 
n 

Yro = .I Yri A.i 
J=l 

max 

subject to: 

s 
L µ,Yro 
r=l 

m s 
-.I Vj Xjj + L µ, Yrj :;;; 0 

l=l r=l 
m 
L Vj Xio 
i=l 

-Vi 

=1 (5) 

where i = l, .. ., m indexes the inputs, r = l, ... , s indexes the outputs, andj = 1, ... , n indexes the 

DMUs. As before, j = o is used to identify the DMU to be evaluated by (a) placing its data in the 

objective while also (b) leaving it in the constraints. Leaving the data for DMUo in the constraints 

guarantees that solutions exist for both problems in (5) and, by the dual theorem of linear 

programming, it follows that they will have finite and equal optimal values. 

We now assume that the Xij• Yrj are all positive3 so that we can move back and forth between (5) 
m 

and (3) because the constraint I Vj Xio = 1, Vj ;:: 0, all i, means that we have t > 0 in (5). Hence we 
i=l 

have the full power of available linear programming algorithms and computer codes to solve (5) or (3), 

as we wish. We also have its interpretative power available (after suitable adaptations) for use in DEA 

efficiency analyses and inferences. 

Using * to _den<'.te an optimal value, the condition for full (100%) DEA efficiency as defined above 

becomes: 

s * L µr Yro = 1 
r=l 

3TJtls condition can be relaxed. See A. Chames, W.W. Cooper and R. M. Thrall (17]. 
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for the problem on the right in (5). Interest usually attaches to identifying sources and amounts of 

inefficiency in each input and output This is most easily done from the problem on the left where the 

conditions for efficiency become, 
(i) e • = 1 

(7) 
(ii) All optimum slack values are zero. 

It is to be noted that the presence of non-zero slacks means that the measure of inefficiency 

resulting from (7) involves a two-component number of the form e• - k* e where k* =sum of slacks. 

Bothe• and k* are real numbers and hence are Archimedean, whereas e is a Non-Archirnedean 

infinitesimal so that e• - k* e is not a real number unless k* = 0. 

One way to achieve a single real-number measure of inefficiency is to confine attention to "weak 

efficiency" and thereby ignore the slacks. Also referred to as "Farrell" or "Farrell-Debreu" efficiency­

see references-its use corresponds to an assumption of "free disposal" so that, mathematically, e > 0 

is replaced by zero and the property of maximizing the slacks after ascertaining an optimal e• is 

thereby lost. See Fare, Grosskopf and Lovell [21]. However, when slacks are an important source of 

possible inefficiency (e.g., because inefficient mixes have been used) then alternate approaches may 

need to be considered. The measures referred to as MID and MED in Bardhan et al. [10] might then be 

adapted to more general situations by using what are referred to as the CCR projections which we 

describe in the following manner. 

First observe that the Non-Archimedean element e > 0 is not present in the constraints for the 

problem on the left in (5). Hence the values in the constraints involve only real numbers. Thus, when 

an optimal solution is available we )lave, 

* -* n * * 9 Xio - s i = .L Xij A j = Xio 
J=I 

where xi~· i = 1, ... , m, represents the value of the ill! virtual input for DMU0 • It therefore follows that 
• Xio - Xio ::; Xio 

or (8) 
• Xio - Xio < 1 

Xio ' 
and, similarly, 

+* * Yro +Sr = Yro 
or (9) 

* Yro -;. Yro < 1 
Yro 
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from which we can derive the following measure of inefficiency, 

• s • 
~ Xj 0 - Xjo + L Yro-;. Yro 

O $ i=l Xia r=l Yro < 1 s + rn (10) 

wheres is the number of outputs and mis the number of inputs. As can be seen, this represents an 

average of the inefficiency proportions due to (i) excessive inputs in the first term and (ii) output 

shortfalls in the second term. To convert this to a measure of efficiency we replace the above with 

• • ~ X io - Xia + ~ Y ro - Yro 
_;.. x· ;.., • 

1 _ 1=1 10 r=l Yro $ 1. 
s + rn (11) 

Referring to the measure in (10) as MIP (Measure of Inefficiency Proportions) and the measure in (11) 

as MEP (Measure of Efficiency Proportions) we see that full efficiency is attained only with MEP = 1 

or MIP = 0. 

This now provides a way of reducing the conditions represented in ( 6) or (7) to a single real 

number without losing the ability to identify the inefficiencies that may be present in inputs, in outputs, 

or in subsets thereof.4 Extensions to weighted measures and the treatment of zeros which may appear 

to be sources of trouble in some of the denominators are discussed in Bardhan et al. [10]. We therefore 

do not cover these topics here because this treatment requires only very natural extensions of the :MID 

and MED measures discussed in Bardhan et al. [11] as well as in Banker and Cooper [7]. We do need 

to note, however, that these measures also lend themselves to rankings of DMU performances whereas 

this is not the case for the often used e• values obtained from (5) because (a) the latter measure is 

incomplete and (b) these e• values may be determined from different facets-which means that these 

values are being derived from comparisons involving performanc.es of different sets of DMUs. 

4 . Returns to Scale: 

We have just completed our discussion of some of the more recent developments like the TDT and 

MEP measures of "technical efficiency" in DEA. Next we turn to some of the recent developments for 

uses of DEA to identify "returns-to-scale" situations and we initiate this discussion with the following 

theorem from Banker and Thrall [8] which is to be used with the primal model in (5): 

4An analogous measure has been developed by C.A.K. Lovell and J. Pastor [25] which they refer to as GEM 
(=Generalized Efficiency Measure). 
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CCR Returns to Scale Theorem (Banker and Thrall): 

n 
If i~l A.j = 1 in any alternate optima then constant returns to scale prevail. 

n 
If j~l A.j > 1 for all alternate optima then decreasing returns to scale prevail. 

n 
If L A.j < 1 for all alternate optima then increasing returns to scale prevail. 

j=l . 

where"*" refers to an optimal value for the DMU0 being evaluated. 

Banker and Thrall assume that the input-output vector (X0 , Y 0) for the DMU0 to be evaluated is 

positioned on the frontier which is "radially (i.e., Farrell-Debreu) efficient. More recent papers by 

Banker, Chang and Cooper [4] and [5] show how this assumption may be eliminated. 

We illustrate this BCC procedure by proceeding as follows: Suppose we have an optimum solution 
n 

to (5) with L A.j < 1. To check on alternate optima possibilities we utilize 
j=l 

max 

subject to 

• £x·t /\ 
90 X0 = . I J J 

+ s· 
J= 

(12) 

n "+ Yo = L;Y·t - s . J J 
j=l 

1 ;:;: f ~j. 
j=l . 

where 96 is the optimal value for (5) and the slack vectors~- and ~. as well as the components of the 

vector~. are constrained to be non-negative. 

As we shall shortly see, we can dispense with the non-Archimedean terms in the objective for (5). 

Because it is incorporated in (12) we can obtain an optimal solution from (5) without worrying about 

slack inefficiencies and then utilize (12) for which we have the following theorem from [4]: 

n 
Theorem: Given the existence of an optimal solution with j~l 'J..t < 1 in (5), 

the returns to scale associated with (X0 , Y 0 ) will be constant if and only if 

"~* "~* L Aj = 1 and increasing if and only if L Aj < 1 in (12). 
j=l j=l 
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We are here restricting attention to solutions of (12) with I ~j :o; 1 because we are considering the 
j=l 

n * n * 
case of an optimal solution to (5) with I "-i < 1. To consider the alternative situation of I "-i > 1 

j=l j=l 

we simply reorient the objective and reverse the inequality to I ~j <:: 1 in (12). Finally, nothing 
j=l 

n * 
further is required if I "-i = 1 in (5). 

. j=l 

For illustration, we use Figure 1, below, to which we assign the following coordinate values, 
3 1 A= (1, 1), B = (2, 2), C = (3, 4), D = (4, 5), E = (4, 42) (13) 

with the frrst component an input and the second an output. The points A, B, C and Dare all on the 

solid line that represents the efficiency frontier for the "BCC model"-see Banker, Charnes and Cooper 

[6]-which is the same as primal model on the left in (5) with the convexity condition I ~j = 1 
j=l 

adjoined. The ray represented by the broken line from the origin represents the efficiency frontier for 

the CCR model. 

The region from B to C lies in the intersection of the two frontiers, and lhis. is. J1Q1 ~ fQr Ilm'. other 

efficientl2Qint. This is referred to as the region of MPSS (=Most Productive Scale Size) because it is 

where the output to input ratio is maximal. This follows readily from 

d(Y/x) x~ - y 
~ = x2 = 0 

so that for x ;t 0 we have marginal product equal to average product 

This, in turn, gives 

!Qz _ d In y 
y dx - d In x 1 

so that proportional increases in input are associated with equi-proportional increases in output and 

returns to scale are constant in this region. Finally we now note that a point like B or C, which is CCR 

efficient will also be BCC efficient, but the converse is not necessarily true. See [1] 

We illustrate by using the coordinates of A in (13). Substituting in (5) from the data in (13) gives 
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min00 

subject to 

100 ~ lAA +~AB+ 3"-c + 4AD + 4AE 

1 !> lAA + 2AB + 4"-c + 5AD + ~AE 
0 !> AA, AB, Ac, D· AE. 

(14) 

This problem has min 00 = 0~ ~ ~ with alternate optima represented by Ai; = k or A~=~ and all other 
n 

A•= 0. In either case, we have l: Aj < 1, so we utilize (12) to write 
j=l 

subject to 

~ =l~A+ ~~B+3~+4~n+4~E + ~- (15) 

1 = l~A + 2~B + 4~ + 5~D + ~~E 
A ~ A A ~ 

1 ~ XA + AB + Xe + AD + A.E . 

The solution with this objective gives ~ i'i = 1 and all other variables zero. It follows from the above 

theorem that increasing returns to scale prevails at A in Figure 1. 

As previously observed, assigning the non-Archimedean element to the slacks in (15), makes it 

unnecessary to use it in (5). We also note that we have eliminated the need !or examining all alternate 
n ~* 

optima, as required by the Banker-Thrall theorem, since our solution with l: A.j < 1 in (15) suffices 
. i=l 

n ~ * 
to establish that no solution is available with l: Aj ~ 1 and 90 = 3 /4. 

i=l 

Although A is not MPSS, such a point is readily obtained from the following projection operators 

due to Banker and Morey [8], 

A* 
Xio 

A* 
Yro = 

* A * 0oXio-si 
Il A* 
l: A' . J 

J=l 

A+* 
Yro +Sr 

n A* 

.I Ai 
J=l 

i = 1, .. ., m 
(16) 

r=l, ... ,s, 

n i\. . 

where the l: Aj and the~ i * and~ t *refer to optimal solutions for (12) and 0~ is the value transferred 
i=l . 

from (5) to (12). Thus, using our solution to (15) we obtain 
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3 " -· "* 4- s 1 
Xio = l 2 

"* Yro 

2 

A+*. 
1+ s 

l 
2 

2 

(17) 

and observe from the coordinates given in (13) that this projects into B in Figure 1 which is MPSS. 

Although it is not necessary to do so, we use the alternate optimum with t::_ = ±for £ ~j and obtain 
. Fl · 

"* 3 I I Xo=4 4 =3 
(18) 

"* i I 1 Yo = 4 =4 

which projects into C-also MPSS-and, of course, convex combinations of these alternate optima 

may be used to obtain other points between B and C which are all MPSS. 

Now we turn to E in (7) which is not on either the CCR or the BCC efficiency frontiers. To 

evaluate E, however, we simply alter the terms on the left in (15) to obtain 

min 90 
subject to 

490 ~ lAA + iAB + 3Ac + 4AD + 4AE 

9 ' 9 2 ~ 111.A + 2AB + 4Ac + 5AD + 2AE 

0 ~ AA, AB, Ac, AD, AE. 

(19) 

Again we have alternate optima with, now, 9~ =~~for either AB =~or AC =~and all other A• = 0. 

n * 
Hence, :L Aj > 1 in both cases. So, proceeding to the indicated modification of (12), we form 

j=l . 
(!. /I. " /I. 

min U•A + AB + Xe + AD + 
subject to · 

~? = l~A + i~B + 3~ + 4~D + 4~E 
~ = l~A + 2~B + 4~ + 5~D + ~~E 

(!. /I. " AA+ AB+ Xe+ 

~A, ~B, ~e, ~D, ~E. 

11 

/I. " " AE)-E(s-+s+) 

" + s-

" -s+ 

(20) 



This has its optimum at~~ =~with all other variables equal to zero. We therefore conclude that 

decreasing returns prevail for this point or, more precisely, at the point on the frontier to which this 

solution is projected by (8) and (9). 

Again, for further insight, we use (16) to obtain 

"* 21; 9 xo = 8 8 = 3, "* 9 I 9 Yo= 2 8 =4, (21) 

and reference to (13) shows that these are the coordinates for C in Figure 1. Similarly an application to 

A.; = ~' the alternate optimum to (20), gives . 

"* 21 I 9 3 xo =-s -4 --, -2 (22) 

which are the coordinates for B. 

We now note that C and B are also basis members with positive coefficients in all of our optima 

where they serve as the reference DMUs in the set of efficient DMUs used to evaluate other DMUs. 

These are points in the interval that is common to both the BCC and CCR efficiency frontiers. These 

points and their convex combinations are MPSS, and these are the .Q!l))'. points that are both CCR and 

BCC efficient 

Outputy 

' 
, 

0 

' 

'--y--/ 

MPSS 

' 

Figure 1: MPSS =-Most Productive Scale Size 
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Using the above examples for guidance we can see that the situation is general from the following 

considerations. First, as already remarked, a point which is found to be efficient for the CCR model 

will also be efficient for the BCC model (but the converse is not necessarily true). Second, as shown 

in (3) a DMU can be part of an optimal basis with a positive coefficient only if it is efficient. Hence all 

members of an optimal basis with positive coefficients lie in the intersection of the CCR and BCC 

efficiency frontiers. The rest of what is needed follows from the other properties of the efficiency 

frontiers of both the BCC and CCR models--viz., such frontiers are concave, monotonically increasing 

and continuous. In short, the associated frontier function is "isotonic" in the manner described in 

Chames et al. (13). 

The following mathematical formulation shows what is happening analytically. When (5) and (12) 

are used to evaluate DMU0 with input vector X0 and output vector Y 0 we can write the optimal 

solution as 

(23) 

Here PE is a point onthe efficient production frontier. It is the point used to evaluate DMU0 with 

coordinate values the same as those obtained by using the CCR projection bperators defined in (8) and 

(9). In short, the ~j in (23) effect this same projection and so our returns-to-scale characterizations are 

also obtained from these ~j values for points on the efficient production frontier. Because PE is on the 

CCR efficiency frontier it has constant returns-to-scale. Hence the Banker-Morey projection in (16) 

may be used to bring PE into MPSS, when desired, with no need to adjust the observed mix to the 

efficiency proportions required at MPSS because this has already been accomplished by (23). In any 

case, the value of I ~j serves to relate the scale at which PE operates to what is required for MPSS 
j=l 

with I ~j < 1 when expansion is indicated and I ~j >I when contraction is needed to achieve MPSS. 
j=l j=l 

Using Figure 1 to review what has been said we observe that E was first projected onto the CCR 

frontier which is both technically and scale efficient. Points in the region of MPSS are the only ones 

that can enter an optimal basis with positive coefficients. Hence the sum of these coefficients indicates 

whether the thus projected point is above, below or in this region. Evaluation of the return~ to scale for 
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the corresponding BCC model can thus be effected from the properties of concavity and continuity 

associated with the efficiency frontier for the latter models. 

We should perhaps note that there may be more than one PE if alternate optimum are present in 

(12). This presents no problem because the same optimal value for the sum of the t will be 

applicable. However, as noted in Banker and Thrall [9], the situation for returns to scale may change 

if an "output-oriented" version of the CCR model is used. In important applications, it may therefore 

be a good idea to use both the "input" and the "output oriented" versions of these models and choose 

between them according to whether output augmentation or input conservation is to be emphasized. 

Here we have focused on the CCR model which evaluates both technical and returns-to-scale 

efficiency. The BCC model separates the two-using the primal model to evaluate technical efficiency 

and its dual to evaluate returns-to-scale efficiency. Either the CCR or BCC model may be used to 

determine the situation for returns to scale locally. However, both must be used if quantitative estimates 

are to be made of benefits that are obtainable when increasing or decreasing returns are present 

5. Allocatjyely Most Efficient Points and Regions:5 

When moving from section 3 to section 4, we turned from "tec~cal inefficiencies," to "returns-to­

scale inefficiencies." The latter can involve movement along the efficiency frontier to achieve, say, 

MPSS. This is not the case for technical inefficiencies because in this case movement is to the frontier 

rather than along it. Technical inefficiency, when present, may thus be regarded as "waste" because no 

substitutions are required for their removal. Movement from a point on the efficiency frontier to 

achieve MPS·s will require input-output exchanges with corresponding "tradeoffs." 

We now turn to "allocative inefficiency," which represents a third member of the three categories 

introduced by M.J. Farrell [22] and [23]. This involves movement along the efficiency frontier with 

tradeoffs occurring in response to criteria like unit prices, unit costs, unit profits or utility theoretic 

weight assignments. Unfortunately requisite information in the form of exact values of "prices," etc., 

are often not available in many applications. However, research in DEA has begun to provide 

alternatives in which inequalities may be used to place upper and lower bounds on ranges rather than 

the exact values that would be requifed to determine "Allocatively Most Efficient" (AME) points. One 

5The material in this section has been adapted from Cooper, Tone, Takamori and Sueyoshi [18]. 
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example of results from such research is represented by the "assurance regions" which Thompson, 

Singleton, Thrall and Smith [30] introduced to help locate a site for the "Superconducting Super 

Collider." See also Dyson and Thanassoulis [20]. Another example are "cone ratio envelopments" as 

presented in Charnes et al. [14] and [15] to monitor the performances of individual banks in a 

regulatory system. 

To describe these "cone ratio envelopments we use Figure 2, in which the models in (5) have been 

reoriented to "output maximization" rather than "input minimization"-and we schematically portray 

the outputs of 5 DMUs by associating them with the points P1, P2, P3, P4 and P5 where the amounts 

of each of their two outputs are represented by the coordinate values (y1, yz). 

Using (w1, w2) to represent fixed values such as unit profits, or some similar measure of 

desirability, we can form the expressions 
· WJYI + w2y2 = k, 
or 

k WJ Y2 =-- -y1 w2 w2 

(24) 

in order to rank the choices between YI and Y2 according to the value of k. Here we can simplify matters 

by assuming that the costs incurred and the prices received for each of the.two products are the same 

for every DMU so that revenues (and hence profits) vary at the same wi, w2 rate for each of the output 

choices. 

The broken lines which slant through P3 and P1 in Figure 2 represent two possibilities for the 

(y1, y2) choices that are associated with these lines. Because kz exceeds k1, movement from P3 to Pt 

is justified on these (w1, w2) criteria, even though P3 is technically efficient 

We are here examining the property of "allocative efficiency" and observe that when relative values 

are specified, as in the choice of (w1, w2), it is possible to determine efficient points which are better 

than others even when the latter are also efficient Indeed, a parallel movement of the broken line 

through P3 to a position where it goes through P4 shows the latter to be preferred even though it is not 

on the efficiency frontier. 

Evidently the "technical efficiency" achieved by P3 is not sufficient to guarantee allocative 

efficiency. However, being on the efficiency frontier is a necessary condition for allocative efficiency. 

If a point is not on the efficiency frontier, there will always be some point which is allocatively more 
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efficient. In the situation of Figure 2, in fact~ P1 exhibits the best possible resource allocation when the 

criteria of relative choice are given by the values (w1, w2) associated with the broken lines in Figure 2. 

We next explore possible variations in the values of (w1, w2) that leave Pi invariant as the most 

preferred-i.e., allocatively most efficient choice. The arrows represent "normals" to the line segments 

shown in Figure 2, and these can be related to the values of (wi. w2) in the following way. The dotted 

arrows through P1 and P3 are obtained from the values of (wi, w2) which yield a direction that is 

perpendicular to the broken lines labeled kz and h, respectively. Hence, the arrows represent the 
w2 w2 

direction in which optimization is to be undertaken. No further movement in this direction is possible 

at P1 without leaving the set of production possibilities. Hence P1 is optimal, whereas this is not the 

case for P3 since there are other (yi, yz) choices available on this line which are well inside the set of 

production possibilities. The solid arrows in Figure 2 represent normals to the solid line segments with 

which they are associa.ted. These normals represent the rates at which substitutions must be made 

between YI and Y2 in order to stay on that segment of the frontier. 

The two solid arrows on either side of the dotted arrow at P1 set limits to its allowed variations. 

Changing the tilt of the broken line will not change P1 from its status as allocatively efficient so long as 

the normal associated with each such tilt does not go outside the solid arrows which surround it. Only 

when the tilt is sufficient to produce a dotted arrow that breaches one of these limits is movement to a 

new, allocatively most efficient, point justified. This new allocatively most efficient point can then be 

found from the new values Cwi, w2) which indicate the new direction of optimization associated with 

this breach. 
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FIGURE 2 

ALLOCATIVE EFFICIENCY 

Thus far we have proceeded on the assumption of known values for (w1, w2) which form the 

components of the vector that is normal to (24 ). On this assumption, it becomes possible to identify an 

AME ( =allocatively most efficient) point. However, the assurance region and cone ratio envelopments 

make it possible to deal with cases in which the (w1, w2) values are not known precisely. This is 

accomplished by replacing the search for an AME point by an Allocatively Most Preferred (AMP) 

region which lies within limits prescribed for allowable choices of the dual variables. 

Turning once more to Figure 2, the solid lines represented by A and B form the edges of a cone 

that delimit the region of choice. It is only the points inside this region that lie in the production 

possibility set. In the cone-ratio envelopment approach, the points to be chosen must lie on segments 

of the efficiency frontier with normals that point in directions for movement that remain inside the 

cone. The normal on the segment between P1 and P2 points outside the cone, as shown at the 

intersection with line A. Hence the segment of the efficient frontier between P2 and P1 is eliminated 
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from consideration. However, P1 remains a ciI\~~~k for designation as an efficient performer as do 

P5 and P3-and points on any of the line segme~Kat form these parts of the efficient frontier. 

Tighter limits may be imposed with, in the limit, allocative efficiency being achieved, if possible. 

Alternatively iterative approaches may be used as is done in Charnes, Cooper, Huang and Sun [14] 

and [15] where a set of (supposedly) excellent banks are designated for use in forming the cones by 

reference to their (optimal) dual variable values. This set of excellent banks is then tested for efficiency 

and the ones that fail this test are eliminated from consideration, and so on. 

These approaches also lend themselves to new types of sensitivity analyses as shown by 

Thompson, Dharmapala and Thrall [31] who use their assurance region concepts to introduce a new 

method of sensitivity analysis that allows all data to vary until a change from efficient to inefficient 

status (or vice versa) frrst occurs for any DMU. A reassignment is then made, after which the analysis 

is repeated, and so on. In-exchange for some fusing of the concepts of technical and allocative 

efficiency, to attain AMP regions in place of AME points, we see not only a range of potential new 

applications for DEA but we also see a range of new topics for research being opened. 

6. Conclusion: 

We have now covered some of the recent developments in DEA that deal with technical, scale and 

allocative efficiency. In doing so, we have necessarily short changed or hidden from view many other 

developments. New applications and new analytical developments are now occurring in such a volume 

and at such a rate, however, as to make it almost impossible to keep abreast of them. We therefore 

close, instead, by simply listing topics like the following which are urgently in need of further 

attention: (1) economies of scope (2) efficiency and flexibility tradeoffs (3) efficiency and effectiveness 

interactions and (4) new non-parametric methods for dealing with uncertain data and/or uncertain 

choices of inputs, outputs and DMUs. 
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