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A Slacks-Based Measure of Efficiency in 
Data Envelopment Analysis 

Kaoru Tone* 

Abstract 

In this paper, we will propose a Slacks-Based measure (SBM) of 
efficiency in DEA. This scalar measure deals directly with the input 
surplus and the output shortage of the decision making unit (DMU) 
concerned. It is unit invariant and monotone decreasing with respect 
to input surplus and output shortage. Furthermore, this measure is 
decided only by consulting with the reference set of the DMU and is 
not affected by statistics over the whole data set. The new measure 
has a close connection with other measures proposed so far, e.g., CCR 
and BCC. The dual side of this model can be interpreted as profit max­
imization, in contrast to the ratio maximization of the CCR model. 
Numerical experiments show its validity as an efficiency measurement 
tool and its compatibility with other measures of efficiency. 

Keywords: DEA, efficiency, slacks, profit, unit invariant, mono­
tone, returns to scale 

1 Introduction 

Since the innovative work by Charnes, Cooper and Rhodes (1978), studies in 

Data Envelopment Analysis (DEA) have been extensive: more than one thou­

sand papers by 1996. A main objective of DEA is to measure the efficiency 

of a Decision Making Unit (DMU) by a scalar measure, ranging between 

'Graduate School of Policy Science, Saitama University, Urawa, Saitama 338, Japan. 
e-mail: tone@poli-sci.saitama-u.ac.jp · 
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zero (the worst) and one (the best). This scalar value is measured through a 

linear programming model. Specifically, the Charnes-Cooper-Rhodes (CCR) 

model deals with the ratio of multiple inputs and outputs in an attempt to 

gauge the relative efficiency of the DMU concerned among all the DMUs. 

This fractional program is solved by transforming it into an equivalent linear 

program. The optimal objective value ( B*) is called the ratio (or radial) effi­

ciency of the DMU. The optimal solution reveals also the existence, if any, of 

a surplus in inputs and a shortage in outputs (called slacks). A DMU with 

the full ratio efficiency, B* = 1, and with no slacks in any optimal solution 

is called CCR-efficient. Otherwise, the DMU has a disadvantage against the 

DMUs in its reference set. Therefore, in discussing total efficiency, it is im­

portant to observe both the ratio efficiency and the slacks. Some attempts 

have been done to unify B* and slacks into a scalar measure, see Tone (1993), 

Pastor (1995) among others. 

Meanwhile, Charnes et al. (1985) developed the Additive model of DEA 

that deals directly with input surplus and output shortage. This model has no 

scalar measure (ratio efficiency) per se. Although this model can discriminate 

efficient and inefficient DMUs by the existence of slacks, it has no means to 

gauge the depth of inefficiency similar to B* in the CCR model. In an attempt 

to define inefficiency based on the slacks, Pastor (1996), Lovell and Pastor 

(1995), Cooper and Tone (1997), Thrall (1997) and others have proposed 

several formulae for finding a scalar measure. The following properties are 

considered as important in designing the measures. 

• Pl) Unit invariant : The measure should be invariant with respect 

to the unit of data. 

• P2) Monotone: The measure should be monotone decreasing in each 
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slack in input and output. 

• P3) Translation invariant: The measure should be invariant under 

parallel translation of the coordinate system applied. (Ali and Seiford 

(1990) and Pastor (1996).) 

In this paper, we further introduce a new property below: 

• P4) reference set dependent : The measure should be decided only 

by consulting with the reference set of the DMU concerned and should 

not be affected by the minimum and/or the maximum of the whole 

data set. The concrete meanings of this idea will be clarified in Section 

2. 

Since the minimum and the maximum of data fluctuate largely depending 

on the selection of DMUs to be compared, the measures using these extreme 

values are influenced by the selection. One of the reasons why we propose 

this property is that, in DEA, an inefficient DMU is 'inefficient' with respect 

to DMUs in its reference set. Therefore, the measure of efficiency should be 

decided by the reference set dependent values and should not be influenced 

by the extreme values and by the statistics over the whole data set. 

The new measure proposed in this paper satisfies the properties Pl), P2) 

and P4). Furthermore, it is possible to connect this measure with the ratio 

measure of the CCR as well as that of the Banker, Charnes and Cooper 

(BOC) model (1984), as special cases. 

The rest of the paper is organized as follows. Section 2 proposes a new 

measure of efficiency (SBM) based on an input surplus and output shortage, 

along with the computational scheme for solving the fractional program that 

defines SBM. Then, it is shown that the SBM can be interpreted as the 
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product of input and output inefficiencies. The relationship between the 

SBM model and the CCR (Charnes-Cooper-Rbodes) model is described in 

Section 3. Then, in Section 4, we modify the SBM model to cope with input­

orientation and outputcorientation, and further generalize the basic model 

so that the connection with the CCR model can be clarified by a scalar 

parameter. The dual side of th!O SBM model is presented in Section 5, where 

it is shown that the SBM model maximizes the virtual profit instead of the 

virtual ratio of the CCR model. Returns to scale issues are discussed in 

Section 6. We will relax the positivity assumption of the data set in Section 

7. Finally, in Section 8 numerical examples are exhibited to show the validity 

of the proposed method. 

2 A Slacks-Based Measure of Efficiency 

The definition of a Slacks-Based measure of efficiency (SBM) will be given, 

along with its interpretation as the product of input and output inefficiencies. 

2.1 Definition and Computational Scheme of SBM 

We will deal with n DMUs (Decision Making Units) with the input and 

output matrices X = (x;i) E R!"xn and Y = (Y;i) E Rsxn, respectively. We 

assume that the data set is positive, i.e., X >0 and Y >0 1 
. 

The production possibility set P is defined as 

(1) P = {(x,y) Ix;:::: x>., y:::; Y>., >.;:::: o}, 

where >. is a nonnegative vector in Rn 2 • 

1This assumption will be relaxed in Section 7. 
2We can impose some constraints on >., such as LJ=I >.; = 1 (the BCC model), if it is 

needed to modify the production possibility set. 
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(2) 

(3) 

We consider an expression for describing a certain DMU (x 0 , y 0 ) as 

X 0 - X>..+s­

Yo - Y>..- s+, 

with >.. ~ 0, s- ~ 0 and s+ ~ 0. The values s- E Rm and s+ E R' indicate 

the input surplus and output shortage of this expression, respectively, and are 

called slacks. From the conditions X >0 and>..~ 0, it holds 

(4) 

Using s- and s+, we define an index p as follows: 

(5) 
1 - ;!; I:;::,1 s;:- / Xio 

p = 1 1 ""' +; . + S L.Ji=l Si Yio 

It can be verified that p satisfies the properties Pl) (unit invariant) and P2) 

(monotone). Furthermore, from (4), it holds 

(6) O<p~l. 

In an effort to estimate the efficiency of (x 0 , y 0 ), we formulate the following 

fractional program in>.., s- ands+. 

(7) [SBM] minp 
1 - ;!; I;;::,1 s;:-/ Xio 
1 + ~ I:f=1 st /Yio 

subject to Xo - X>.. + s-

Yo - Y>.. - s+ 

>.. > o, s- ~ 0, s+ ~ 0. 

[SBM] can be transformed into the program below by introducing a positive 

scalar variable t. (See Charnes and Cooper (1962).) 

(8) [SBMt] minr = 
1 m 

t- - I;ts;:-/xio 
m i=l 
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1 s 
subject to 1 - t+- "£ts£/yio 

s i=l 

Xo - x>.+s-

Yo - Y>.- s+ 

>. > o, s-;:::: 0, s+;:::: 0, t > 0. 

Now, let us define 

s- =ts-, s+ = ts+,and A= t>.. 

Then, [SBMt] becomes to the following linear program in t, s-, s+, and A: 

(9) [LP] minr 

subject to 1 

1 m 
- t- - "£8;-/Xio 

m i=l 

1 s 

t + - "£St /Yio 
s i=l 

- XA+s-

ty0 - YA-s+ 

A > O, s- ;:::: 0, s+ ;:::: 0, t > 0. 

Let an optimal solution of [LP] be 

(r• t• A* s-• s+•) , , , ) . 

Then, we have an optimal solution of [SBM] as defined by, 

Based on this optimal solution, we decide a DMU as SBM-efficient as follows: 

Definition 1 (SBM-efficient) A DMU (x0 , y 0 ) is SBM-efficient, if p* = 

1. 
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This condition is equivalent to s-• = 0 and s+• = 0, i.e., no input surplus 

and no output shortage in any optimal solution. 

For an SBM inefficient DMU (x 0 ,y0 ), we have the expression: 

The DMU (x 0 , y 0 ) can be improved and becomes efficient by deleting the 

input surplus and augmenting the output shortage as follows: 

(11) 

(12) 

Based on.>..*, we define the reference set to (x0 , y 0 ) as: 

Definition 2 (Reference set) The set of indices corresponding to positive 

.Ajs is called the reference set to (x 0 , y 0 ). 

In the occurrence of multiple optimal solutions, the reference set is not 

unique. We can choose any one for our purpose. 

The reference set R0 is 

(13) Ro={jl.Xj>O} (jE{l, ... ,n}). 

Using R0 , we can express (xo, y 0 ) by, 

(14) Xo - L xi.Xj + s-• 
jEflo 

(15) Yo - 2= .x· +• Yi i - s . 
jEflo 

Since the Slacks-Based measure p* depends only on s-• and s+•, i.e., the 

reference set dependent values, p* is not affected by values attributed to 
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other DMUs not in the reference set. In this sense, p* proposed in this paper 

is different from other efficiency measures which incorporate statistics over 

the whole data set. 

For instance, Cooper and Pastor (1996) proposed the RAM (Range Ad-

justed Measure of Inefficiency) as follows: 

(16) 
( 

m s-• • s+*) 
RAM= I; i~ +I; r: /(m+s), 

i=l R; r=l Rr 

where Ri = X; -;!;_; : R: =Yr -y_r, with X; = max;{x;;},!f; = min;{x;j} and 

Yr= max;{Yrj}, Y..r = min;{Yr;}, for i = 1, . ., m: r = 1, . ., s. 

The measure 1-RAM satisfies properties Pl) and P2), and further P3), 

if the condition I:>.; = 1 is added. Thus, in the latter case, it can deal with 

negative inputs and outputs. So far, it has good properties 3 . However, RAM 

is largely affected by the range of the data set, as we see from the definition. 

The range changes by addition and/or deletion of the extreme data, which 

often occurs in empirical studies. This dependency on the extreme values 

is, in a sense, opposite to the principle of DEA in measuring efficiency com­

pared with the efficient frontiers, i.e., DMUs in the reference set of the DMU 

concerned. 

In another example, Lovell and Pastor (1995) use the standard deviation 

for each data. Specifically, they employ the measure 

(17) 

where aj represents the standard deviation of the data recorded for input i = 

1, ... , m and a: represents the standard deviation for output r = 1, ... , s. 

This measure is also affected by statistics over the whole data set and is not 

purely dependent on the reference set (frontiers) of the D MU concerned. 
3Thrall (1996) pointed out that optimal dual solutions for the Additive and the BCC 

models are not invariant under translation. 
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2.2 Interpretation of SBM as Product of Input and 
Output Inefficiencies 

The formula for p in (5) can be transformed into 

I m -1• ++ 
p=(-LXio-S; )(-LYio S; )-1. 

m i=l Xio s i=l Yio 

The ratio (x;0 - si)/xio evaluates the relative reduction rate of input i and 

therefore the first term corresponds to the mean reduction rate of inputs 

or input inefficiency. Similarly, in the second term, the ratio (yio + st)/y;0 

evaluates the relative expansion rate of output i and (1/s) L,(y;0 + st)/yio is 

the mean expansion rate of outputs. Its inverse, the second term, measures 

output inefficiency. Thus, SBM p can be interpreted as the product of input 

and output inefficiencies. Further, we have the theorem: 

Theorem 1 If DMU A dominates DMU B, i.e., XA :S xs and YA ;;:::: Ys, 

then it holds that PA ;;:::: Pa. 

Proof. Let an optimal solution of [SBM] for A be (>.A, s;\*, s!*). Then, 

(>.A, xs-XA +s:4*, YA -yB +s!*) is feasible for Band its objective function 

satisfies the following inequality. 

1 - ;!; L,Z:,1 (x;s - X;A + siJ.)/x;s 

1 + ~ Li=1(YiA -yiB + stJ.))/YiB 

Thus, we have the theorem. 

1 1 "m -•; - ffi L.,,i=l SiA XiA * 
:S 1 1 'C"'S +•; =PA-+ s L-i=l S;A YiA 

The reverse of this theorem is not always true. 

0 

With regard to the ordering of DMUs, Dr. Thrall asked the author, in a 

private communication, that, if 1 > PA > p8, is A more efficient than B? 

The answer is yes, if decision makers consent to employ the above definition 

of input/output inefficiency. There may be other possibility for measuring 

the means, e.g., the weighted means that reflect the intention of decision 

makers. We will discuss this issue in Section 4.2. 
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3 Relationship with the CCR Model 

In this section, we will prove that the SBM p* is not greater than the CCR 

(Charnes-Cooper-Rhodes) efficiency measure (B*) and that a DMU is SBM­

efficient if and only if it is CCR-efficient. 

3.1 SBM and the CCR Measure 

The CCR model can be formulated as follows: 

[CCR] min e 

(18) subject to Bxo - Xµ+r 

(19) Yo - Yµ-t+ 

µ :::: 0, t- :::: o, t+ ~ 0. 

Definition 3 (CCR-efficient) A DMU(x0 ,y0 ) is CCR-efficient, if the 

optimal objective value e• is equal to one and the optimal slacks t-• and t+• 

are zero for every optimal solution of [CCR]. 

Let an optimal solution of[CCR] be (B', µ', t-•, t+*). From (18), it holds 

(20) 

(21) 

Let us define 

(22) 

(23) 

(24) 

Xo - Xµ* + t-• + (1- e*)xo 

Yo - Yµ* - t+•. 

),. - µ* 

s - r• + (1 - B*)xo 
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Then, (A., s-, s+) is feasible for [SBM] and its objective value is: 

1 - ;!;{2::~ 1 tj* /xio + m(l - B*)} B* - ;!; 2::~1 tj* /x;o 
p = 1 + 1 "' t+•; = 1 + 1 "' t+•; S Lii=l i Yio S L-i=l i Yio 

(25) 

Evidently, the last term is not greater than e•. Thus, we have: 

Theorem 2 The optimal SBM p* is not greater than the optimal CCR e•. 

Notice that the coefficient 1/ ( m x;0 ) of the input surplus sj in p plays a 

crucial role in validating Theorem 2 . 

Conversely, for an optimal solution (p*, A.•, s-•, s+•), let us transform the 

constraints as 

(26) 

(27) 

Bx0 - XA.* + (B* - l):z:0 + s-• 

Yo - YA.* - s+•. 

Further, we add the constraint 

(28) 

Then, (B, A.*, t- = (B - l):z:0 + s-*, t+ = s+•) is feasible for [CCR]. 

3.2 SBM-Effi.ciency and CCR-Efficiency 

The relationship between CCR-efficiency and SBM-efficiency is shown by the 

following theorem. 

Theorem 3 A DMU (x0 , y 0 ) is CCR-efficient, if and only if it is SBM­

efficient. 

Proof. Suppose that (:z: 0 , y
0

) is CCR-inefficient. Then, we have either 

f}* < 1 or (B* = 1 and (t-•, t+•) "I (0, 0)). From (25), in both cases, we have 

p < 1 for a feasible solution of [SBM]. Therefore, (:z:0 , y 0 ) is SBM-inefficient. 
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On the other hand, suppose that ( x 0 , y 0 ) is SBM-inefficient. Then, it 

holds (s-•, s+*) f. (0, 0). By the statements (26) and (27), (B, >.*, t- = 
(B-l)x 0 +s-•, t+ = s+*) is feasible for [CCR], provided (B-l)x 0 +s-•;::: 0. 

There are two cases. 

(Case 1) B = 1 and (t- = s-•, t+ = s+*) f. (0, 0). In this case, an optimal 

solution for [CCR] is CCR-inefficient. 

(Case 2) B < 1. In this case, (x 0 , y 0 ) is CCR-inefficient. 

Therefore, CCR-inefficiency is equivalent to SBM-inefficiency. Since the 

definitions of efficient and inefficient are mutually exclusive, we have proved 

the theorem. D 

4 Modifications of the SBM Model 

In this section, two modifications and a generalization of the SBM model 

will be developed. Section 4.1 will present the input-oriented and the.output­

oriented SBM models that correspond to those in the CCR model. In section 

4.2, we will show a generalization of the SBM model that connects the SBM 

model to the CCR model via a scalar parameter. 

4.1 Input-Oriented and Output-Oriented SBM Mod­
els 

We will modify the SBM model by introducing a small positive number 

c:(<< 1) in the following ways: 

1. Input-Oriented SBM Model 

In this case we modify the denominator of the measure p by c: as: 

(29) 
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This modification puts more emphasis on the input slacks than the 

output ones and corresponds to the input-oriented CCR model. 

2. Output-Oriented SBM Model 

We modify the numerator of p by i:: as: 

(30) 

This modification puts more emphasis on the output slacks than the 

input ones and corresponds to the output-oriented CCR model. 

The former serves to find input surpluses rather than output shortages and 

the latter serves the reverse function. Decision makers or analysts can choose 

one depending on the purpose· of their analysis. 

Regarding the above two models, we have developed the following theo-

rems. 

Theorem 4 The optimal objective value Pin of the input-oriented SEN! 

model satisfies 

Proof. This can be proved in a similar way as in the case of Theorem 2 . D 

Theorem 5 The optimal value P':mt of the output-oriented SEN! model sat­

isfies 

Proof. 

(31) 

(32) 

(33) 

(34) 

P*<p* <B*. - out -

The output-oriented CCR model is described as: 

1 
max 

B 
subject to :Z:o = Xµ+t-

1 
Yµ-t+ (j Yo -

µ > 0, t-::?: 0, t+ > 

13 
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\ 
Let an optimal solution of this model be (II*,µ*, t-•, t+•). (Notice that the 

ii* is the same with that of the input-oriented case.) Then, we can rewrite 

Yo as 

Y • (l ) +. Yo= µ - ii* - 1 Yo - t · 

Noting II* ::; 1, let 

>.. - µ· 

s - t-• 

s+ - ( 1 ) +• ii• - 1 Y0 + t . 

Then,(>.., s-, s+) is feasible for [SBM] and its objective value for the output­

oriented model is 
_ l-~E~1ti*/xio 

Pout - l/ll• + ! "'! t:l"*/y· · 
.1 L...t=l 1 10 

Evidently, the last term is less than or equal to ii*. 

4.2 A Modified Model with Weighted Slacks 

D 

We can modify the SBM measure p by incorporating weights w- and w+ 

into the input surplus s- and the output shortage s+, respectively, as follows: 

(35) 
1 1 "m - -; - ;:;i' L...i=l Wi Si Xia 

Pw = l 1 "'' + +j , + ; L...i=l Wi Si Yio 

where w- 2:: 0 and w+ 2:: 0, and 

m ' (36) :z:= w; = m and Lwt =s. 
i=l i=l 

The weight wi (wt) reflects the relative importance of the input (output) 

item i. In the basic model, wi = 1 (\;Ii) and wt -:--- 1 (\;Ii) are assumed. Under 

this modification, Theorems 2 and 3 hold, too. Since the ratios; /x;0 (st /y;0 ) 
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is unit-free, the weight w;- (wt) should represent the unit-free importance of 

the slack or the input (output) i. 

Also, the combination of the weighted slacks model with the input or 

output-oriented SBM models deserves consideration. 

The weighted model has a close connection with the goal vectors in Thrall 

(1997). 

4.3 A Generalization of the SBM Model 

We will generalize the SBM model by introducing a scalar parameter a (0 ::; 

a ::; 1) in the following way: 

{37) [MSBM] nun Pa 
(1 - a)1f +a - ~ Er::.1 s-; /xio 

-
1 + ; I:i=I st /Yio 

subject to :Vo - X.>..+s-

Yo - Y.>..-s+ 

(38) S- + (7r - l):v0 > 0 

.>.. > o, s- 2: 0, s+ 2: 0 . 

This model has nonnegative vectors .>.., s-, s+ and a free scalar 'If as 

variables. However, from the constraints (38) and ( 4), 'If is forced to be 

nonnegative. 

We will observe two extreme cases of a: 

•Case 1(a=1) 

In this case, the objective function becomes 

1- ~ 1:~1 s; /xio 
PI = 1 1 "' +; . + :S LJi=l Si Yio 

Thus, this case corresponds to the SBM model. 
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• Case 2 (a= 0) 

We have the objective function as 

Po= 7r. 

The constraints can be transformed into: 

1rX0 - X>. + (7r - l)x0 + S­

Yo - Y>.- s+ 

s- + (7r - l)x0 > 0. 

Therefore, this case corresponds to the CCR model. 

Let the optimal Pa be p~. Then we have, by Theorem 2 , 

• > • 
Po - P1· 

Furthermore, the following theorem holds. 

Theorem 6 p~ is decreasing in a. 

Proof. First, we can rewrite Pa into: 

Pa= + · 
1 + f!. "'- !'.;_ s L....i-1 Yio 

Now, we observe the coefficient of a in the numerator. From the condition 

(38), we have the relation: 

Hence, it holds, 

s-:-_,_ + 7r - 1 > 0. for i = 1, ... , m 
Xio -

1 m -
~S· 

7r - 1 + - L., -'- :2: 0. 
m i=l Xio 
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Thus, the coefficient of a in the numerator is nonnegative and the numerator 

is not increasing in a. The denominator is increasing in a. Therefore, p,,. is 

decreasing in a. 

Now, let an optimal solution for a0 be 

( '. -· +• • • ) Ao,so ,so ,'lro,Pao · 

Since (>. = >.0, s- = s0*, s+ = st*, 7r = 7r0) is feasible to [MSBM] for a ;:::: a0 

and p,,. is decreasing in a, the relation p~ :::; p~0 holds for a ;:::: ao. D 

5 Observations on the Dual Problem 

An important characteristic of DEA is its dual side, as represented by the 

dual program of the original linear program. This links the efficiency evalu­

ation with the economic interpretation. 

5.1 The Dual Program of the SBM Model as Profit 
Maximization 

The dual program of the problem [LP] in Section 2 can be expressed as 

follows, with the dual variables e ER, v E Rm and u ER': 

(39) [DP] max e 

(40) subject to e+vx0 -uy0 1 

(41) -vX+uY :::; 0 

(42) 
1 

v > - [l/x0 ] 
m 

(43) u > e S [l/y0 ], 

where the notation [l/x0 ] designates the row vector (l/x1 0 , l/x20 , ••• , l/xm0 ). 
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By the equation (40), we can eliminate~· Then, this problem is equivalent 

to the following: 

(44) 

(45) 

(46) 

(47) 

[DP'] 

subject to uY - vX < 0 
1 

V ;::>: - [1/:z:o] 
m 

u > 1 - V:Z:o + uyo [1/yo]· 
s 

The dual variables v E Rm and u E R• can be interpreted as the virtual 

costs and prices of input and output items, respectively. The dual problem 

aims to find the optimal virtual costs and prices for the DMU (:z:0 , y
0

) so 

that the profit uyj - v:z:j does not exceed zero for every DMU (including 

(:z:o, y 0 )) and maximizes the profit uy0 -v:z:0 for the DMU (:z:0 , y 0 ) concerned. 

Apparently, the optimal profit is at best zero, and hence ~· = 1 for the SBM 

efficient DMUs. 

The constraints ( 42) and ( 43) restrict the feasible v and u to the positive 

orthant. In this framework, we can incorporate other important develop­

ments related to the virtual dual variables into the SBM model, e.g., the 

assurance region methods (Thompson et al. (1986) (1997), Thompson and 

Thrall (1994)), the cone-ratio models (Charnes et al. (1990), Tone (1997)) 

among others. These modifications will contribute to enhance the potential 

usage of the model. 

We will now observe the role of the dual variables v and u as coefficients 

of the supporting hyperplane to the production possibility set P defined 

by (1) in Section 2. A supporting hyperplane to P satisfies the inequality 

-v:z: + uy :.:::; 0 for every (:z:, y) E P and touches P at least at one point in 

P, i.e., there is a point (:z:, y) that satisfies the equality -v:z: + uy = 0. In 
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Figure 1, the DMU (xe, Ye) is on the efficient frontier of P and the straight 

line H passing through (xe, Ye) is a supporting hyperplane. As is easily seen, 

such a hyperplane may not be decided uniquely. 

For an inefficient DMU, e.g., (x 0 , y 0 ) in Figure 1, the dual program tries 

to find a supporting hyperplane that maximizes -vx0 + uy0 • Anyhow, the 

coefficients v and u are restricted to be positive by ( 42) and ( 43). 

The complementary slackness conditions of the primal and the dual pro­

grams are described as follows: 

(48) s-:* (v~ - _.!_ 2_) - 0 (i=l, ... ,m) 
i i m Xio 

(49) sf* (u! - ~· .2_) - 0. (i = 1, ... ,s) 
i i s Yio 

Hence, it holds that if sj* > 0, then v,~ = l. x
1 and if st* > 0, then 

m •o 

ui = ~ ....!.... Thus, these vj and uj are uniquely decided. However, if 
s Yio 

s,~ = 0, there exists, mostly, infinitely many v,! such that v,~ > l. ....!... , by the 
m Xio 

strong complementary slackness theorem. This corresponds to the existence 

of multiple supporting hyperplanes at (xe, Ye) in Figure 1. 

insert Figure 1. 

5.2 Comparisons of Dual Programs in CCR and SBM 
Models 

The dual program of the CCR model can be expressed as: 

(50) [DCCR] max T/Yo 

(51) subject to ~Xo - 1 

(52) -~X + riY < 0 

(53) ~ ::::: 0, T/ > 0. 
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Originally, this program comes from the ratio form CCR model ( Charnes et 

al. (1978)) below: 

(54) max 'T/Yo 
exo 

(55) subject to 'T/Y; 
ex; 

< 1 (Vj) 

(56) e > 0, 'T/ '2'. 0. 

Thus, the CCR model tries to find the virtual costs e and prices 'T/ so that 

the ratio 'T/Yo/exo is maximized, subject to the ratio constraint 'T/Y;/ex; ::::; 1 

for every D MU j. 

The SBM model proposed in this paper deals with the pmfit instead of 

the ratio in the CCR model. 

It should be noted that, in the SBM model, the optimal dual variable v* 

satisfies, by (42), v*x 0 '2'. 1. Furthermore, ifs-• > 0, then by the comple­

mentary slackness condition, it holds v*x 0 = 1. In this case, the SBM model 

maximizes the ratio form of the CCR model in the more restricted range 

((42) and (43)) of v and u. However, this case is exceptional. 

6 Returns to Scale Issues 

So far, we have dealt with the constant returns-to-scale situation as character­

ized by the production possibility set Pin (1). The variable returns-to-scale 

scenario will be introduced by imposing the convex constraint on A. as: 

eA. = 1, 

where e is the row vector with all elements equal to one. 

We call the thus extended model the VSBM model. Since the production 

possibility set of the VSBM is the same as that of the BCC model (Banker et 
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al. (1984)), and VSBM-efficiency is equivalent to BOC-efficiency, the returns 

to scale characteristics of the VSBM-efficient DMUs can be decided in the 

same way as in the BCC model. 

More concretely, let us begin to consider the dual program of the VSBM 

model that is: 

(57) max uy0 - VX0 - UQ 

(58) subject to uY-vX-euo :::; 0 

(59) v > 
1 
- [l/x0 ] 

m 

(60) u > 
1 - VX0 + uy0 - Uo 

[l/yo] 
s 

(61) Uo : unrestricted in sign. 

If the DMU (x 0 , y 0 ) is VSBM-efficient, its dual variables satisfy the following 

relations: 

(62) u*y - v*x -u* 0 0 0 0 

(63) u*Y - v* X - eu0 < 0 

(64) v* ;::: 1 
- [1/xo] 
m 

(65) u* ;::: 1 
- [1/Yol· s 

Usually the optimal solution is not unique, and let the upper and lower 

bounds of Uo be u0 and 1!(), respectively. Then, following Banker and Thrall 

(1992), we can decide the returns-to-scale of (x 0 , y 0 ) as 

1. Increasing, if 1!() < u0 :::; 0 or 1!()= u;j < 0. 

2. Constant, if 1!() < 0 < u;j or 1!()= u;j = 0. 

3. Decreasing, if 0 :::; 1!() < u;j or 0 < 1!()= u0. 
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Furthermore, if a DMU (x 0 , y 0 ) is VSBM-inefficient, we can project it onto 

the efficient frontier by deleting the input surplus and augmenting the output 

shortage by 

( -· + +•) X 0 - S ,y0 S • 

We can decide returns-to-scale characteristics of this projected DMU by a 

simple rule as follows. (See Tone(l996) for details.) 

1. If the DMUs in the reference set of (x 0 , y 0 ) have the same returns-to­

scale characteristics, then the projected DMU has the same one. 

2. If the DMUs in the reference set of (x 0 , y 0 ) belong to different classes of 

characteristics, i.e., (increasing and constant) or (constant and decreas­

ing), then the projected DMU shows increasing or decreasing charac­

teristics, respectively. 

The combination of increasing and decreasing in the reference set never oc-

curs. 

7 How to Deal with Zeros in Data 

So far, we have assumed that the data set is positive, i.e., X > 0 and Y > 0. 

In this section, we relax this assumption and show how to deal with zeros in 

the input/output data and even negative output data. This will considerably 

expand the applicability of SBM to real world problems, which essentially 

involve systematic zeros in the input-output data matrix. 

7.1 Zeros in Input Data 

If x 0 has zero elements, we can neglect the slacks corresponding to these 

zeros. Suppose, for example, that x10 = 0. Then, the first constraint leads 
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to: 
n 

L xi;>..; + s) = x10 = 0. 
j=l 

Hence, we have s) = 0 for every feasible solution. Thus, we can delete s) 

from the set of variables to be determined by the model. Correspondingly, in 

the objective function, the terms) /x10 is removed and m should be reduced 

by one. (m-> m - 1.) Notice that the above constraint should be kept in 

the set of constraints. 

7.2 Zeros in Output Data 

Suppose that y 0 has y10 = 0. Then, the first output-constraint leads to: 

n 

L Y1;A; - st = Ylo = 0. 
j=l 

There are two important cases to be considered: 

1. (Case 1) The target DMU possesses no function to produce the first 

output. 

In this case, we can delete the term st /y10 from the objective function, 

since st has no role in evaluating the efficiency of the DMU. The num­

ber of terms ( s) in the objective function should be reduced by one. 

(s-> s - 1.) 

2. (Case 2) The target DMU has a function with the potential of pro­

ducing the first output but does not utilize it. 

In this case, we may replace y10 in the objective function by a small 

positive number or by 

Y10 <-
1
1

0 
min{y1; I Y1; > 0, j = 1, ... , n}. 
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It should be remembered that the term si /y10 in the objective func­

tion has the role of a penalty in this case, and that l/y10 should be 

sufficiently large. 

Finally, negative output data can be dealt using the same approach adopted 

for handling zeros in output data (Case 2). 

8 A Numerical Example 

Table 1 exhibits the data of 19 public libraries in the Tokyo Metropolitan 

Area in 1986. As the measurement of efficiency, we use two input and two 

output items as follows: 

• Input: number of books (unit=lOO) and number of staff 

• Output: number of registered residents (unit 1000) and number of 

borrowed books (unit=lOOO) 

insert Table 1 

Under the constant returns-to-scale assumptions, Table 2 compares the CCR 

(input-oriented) and the SBM (basic, input-oriented and output-oriented) 

scores and ranks. c: = 10-G was used in the input and output-oriented SBM 

cases. Also, Table 3 shows similar comparisons under the variable returns­

to-scale assumption. 

insert Table 2 

insert Table 3 
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insert Table 4 

The amount of slacks in the input and output-oriented SBM models is listed 

in Table 4. 

In Table 2, it is observed that all SBM scores are less than the CCR 

score. Since the CCR model in the table is input-oriented, comparisons 

between CCR and input-oriented SBM are reasonable. Both score and rank 

show considerable similarity, except for 12. 12 has a large input surplus 

(books=217.61, staff-6.53) which is reflected in sharp drop in the SBM score 

(0.56994) from the CCR score (0.76935). Similar drops occur at 14 (0.74504 

--t 0.678736), 16 (0.94491 --t 0.87861), 17 (0.82267 --t 0.71233) and 119 

(0.85507 --t 0.78275). These changes are caused by input surpluses, which 

are not fully accounted for in the CCR model. Under the variable returns­

to-scale assumption, in Table 3, similar drops in score are observed at 16 

(0.99761 --t 0.90169), 17 (0.91105 --t 0.83346) and 112 (0.90920 --t 0.80287). 

It should be noted that the output-oriented SBM score of 16 (0.99791) is 

better than the (input-oriented) BCC score (0.99761). This is not unusual, 

since in the BCC model, the input-oriented scores are usually not equal to 

the output-oriented ones. Actually, 16 has 0.99854 as the output-oriented 

BCC score. 

As expected, in the SBM model, the slacks in input/output are positively 

accounted for in the score. 

9 Conclusion 

This article has proposed a new scalar slacks-based measure of efficiency 

(SBM) in DEA. In contrast to the CCR and BCC measures, which are based 
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on the proportional reduction (enlargement) of input (output) vectors and do 

not take account of slacks, the new measure deals directly with input surplus 

and output shortage. Although the Additive model has the (weighted) sum 

of slacks as its objective and can discriminate efficient and inefficient DMUs, 

it has no means to gauge the depth of inefficiency per se. In this regard, SBM 

clearly differs from CCR, BCC and other measures proposed so far. 

This measure satisfies such properties as unit invariance and monotone 

with respect to slacks. Furthermore, it is reference set dependent, i.e., the 

measure is decided only by its reference set and is not affected by statistics 

over the whole data set. Also, this model can be modified to cope with input 

or output-orientation. A generalization of this method showed that SBM has 

a close relationship with the CCR (BCC) model. The dual program revealed 

that SBM tries to find the maximum virtual profit instead of the maximum 

ratio of the CCR model. 

The numerical example showed the compatibility of SBM with other mea­

sures and its potential applicability for practical purposes. 

Although this study concentrated on the basic characteristics of the pro­

posed model, further theoretical research and applications should be devel­

oped in diverse areas, including studies in the combinations of this method 

with other recent developments in DEA, e.g., the assurance region method 

and the cone-ratio models. 
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Table 1: Data of Public Libraries 

lnout Outout 

No. Libraries Books Staff Ree:. Res. Bar. Book 

Ll Chiyoda 163.523 26 5.561 105.321 
L2 Chuo 338.671 30 18.106 314.682 
L3 Taito 281.655 51 16.498 542.349 
L4 Arakawa 400.993 78 30.81 847.872 
L5 Minato 363.116 69 57.279 758.704 
L6 Bunkyo 541.658 114 66.137 1438.746 
L7 Sumida 508.141 61 35.295 839.597 
LB Shibuya 338.804 74 33.188 540.821 
L9 Tashima 393.815 68 41.197 978.117 
L10 Shinjuku 509.682 96 47.032 930.437 
Ll 1 Nakano 527.457 92 56.064 1345.185 
L12 Shinagawa 601.594 127 69.536 1164.801 
L13 Kita 528.799 96 37.467 1348.588 
L14 Koto 394.158 77 57.727 1100.779 
L15 Katusika 515.624 101 46.16 1070.488 
L16 Edogawa 467.617 74 47.236 1223.026 
L17 Nerima 669.996 107 69.576 1901.465 
L18 Adachi 844.949 120 89.401 1909.698 
L19 Ota 1258.981 242 97.941 3055.193 



Table 2: Comparisons of Efficiencies under Constant RTS 

Constant Returns-to-Scale 

CCR SBM 
No. Libraries CCR Rank SBM Rank Input Or. Rank Output Or. Rank 
L1 Chiyoda 0.27945 19 0.25787 19 0.25826 19 0.26928 19 
L2 Chuo 0.76935 12 0.55793 17 0.56994 18 0.72162 11 
L3 Taite 0.67849 16 0.52621 18 0.63845 16 0.54189 18 
L4 Arakawa 0.74504 14 0.62112 15 0.67836 14 0.62214 16 
L5 Minato 1 1 1 1 1 1 1 1 
L6 Bunkyo 0.94491 6 0.85664 7 0.87861 8 0.88854 7 
L7 Sumida 0.82267 11 0.69163 10 0.71233 12 0.81839 9 
LB Shibuya 0.64605 18 0.58385 16 0.60834 17 0.6164 17 
L9 Tashima 0.8801 9 0.84579 8 0.87907 7 0.87839 8 
L10 Shinjuku 0.66094 17 0.65357 14 0.65727 15 0.65981 15 
L 11 Nakano 0.9033 7 0.86302 6 0.89514 6 0.88968 6 
L12 Shinagaw< 0.76674 13 0.71061 9 0.73445 11 0.73815 10 
L13 Kita 0.89861 8 0.65654 13 0.84456 9 0.67579 12 
L14 Kato 1 1 1 1 1 1 1 1 
L15 Katusika 0.73642 15 0.66998 11 0.69628 13 0.67088 13 
L16 Edogawa 0.95398 5 0.92855 5 0.94125 5 0.95394 5 
L17 Nerima 1 1 1 1 1 1 1 1 
L18 Adachi 1 1 1 1 1 1 1 1 
L19 Ota 0.85507 10 0.66469 12 0.78275 10 0.66893 14 

Average 0.81795 0.74147 0.77763 0.76915 



Table 3: Comparisons of Efficiencies under Variable RTS 

Variable Returns-to-Scale 

BCC SBM 
No. Libraries BCC Rank SBM Rank Input Or. Rank Outout Or. Rank 
L1 Chiyoda 1 1 1 1 1 1 1 1 
L2 Chuo 1 1 1 1 1 1 1 1 
L3 Taito 0.94418 11 0.65892 16 0.94045 10 0.65903 18 
L4 Arakawa 0.83683 16 0.62112 19 0.82689 15 0.62405 19 
L5 Minato 1 1 1 1 1 1 1 1 
L6 Bunkyo 0.99761 9 0.90169 10 0.90169 12 0.99791 9 
L7 Sumida 0.91105 13 0.77691 12 0.83346 14 0.89078 12 
LS Shibuya 0.81958 17 0.6344 18 0.75392 17 0.67664 17 
L9 Toshima 0.97953 10 0.91823 9 0.97786 9 0.91823 10 
L10 Shinjuku 0.70321 19 0.65357 17 0.70313 19 0.69531 16 
L 11 Nakano 0.91931 12 0.88025 11 0.91677 11 0.89376 11 
L12 Shinagaw• 0.9092 14 0.75086 13 0.80287 16 0.8471 13 
L13 Kita 0.90683 15 0.68431 14 0.89479 13 0.71399 15 
L14 Koto 1 1 1 1 1 1 1 1 
L15 Katusika 0.75082 18 0.66998 15 0.74768 18 0.73495 14 
L16 Edogawa 1 1 1 1 1 1 1 1 
L17 Nerima 1 1 1 1 1 1 1 1 
L18 Adachi 1 1 1 1 1 1 1 1 
L19 Ota 1 1 1 1 1 1 1 1 

Average 0.9304 0.85001 0.9105 0.87641 



No. 
L1 
L2 
L3 
L4 
LS 
L6 
L7 
LS 
L9 
L10 
L11 
L12 
L13 
L14 
L15 
L16 
L17 
L18 
L19 

Table 4: Slacks of Input Oriented and Output Oriented SBM Models 
under Constant RTS 

Input Oriented Output Oriented 
Input Output Input Output 

Libraries books staff ree:. res. bor. b books staff ree:. res. bor. book 
Chiyoda 125.61 18.6 0 0 0.72 0 11.35 356.72 
Chuo 217.61 6.53 0 0 150.82 0 1.4 218.44 
Taito 90.55 20.48 3.35 0 0 0 21.69 204.07 
Arakawa 102.24 30.29 0.21 0 0 0 27.66 268.65 
Minato 0 0 0 0 0 0 0 0 
Bunkyo 29.84 21.4 0 0 0 8.19 13.19 73.96 
Sumida 210.65 9.81 0 0 78.63 0 10.15 131.17 
Shibuya 119.92 31.77 0 0 0 7.81 16.43 405.37 
Toshima 47.22 8.29 0 0 0 0 5.8 133.05 
Shinjuku 177.15 32.44 0 0 0 0 23.35 497.5 
Nakano 51 10.4 0 0 0 0 7.99 141.89 
Shinagawa 140.33 37.83 0 0 0 9.48 18.57 515.29 
Kita 53.61 20.11 11.88 0 0 0 34.41 55.28 
Koto 0 0 0 0 0 0 0 0 
Katusika 135.91 34.73 0 0 0 0.27 29.36 369.51 
Edogawa 35.78 3.03 0 0 0 0 1.4 81.87 
Nerima 0 0 0 0 0 0 0 0 
Adachi 0 0 0 0 0 0 0 0 
Ota 182.46 70.08 13.85 0 0 0 83.44 421.4 




