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Abstract: In the study, we propose a nonparametric efficiency measurement approach for the 

forecasting model selection problem. Three autoregressive models and three fuzzy time series 

approaches are employed for the calibration of data structure to depict the trend. The directional 

distance function and portfolio theory are further used to evaluate the performance of BDI 

predictions. A directional distance function is defined that looks for possible increases in accuracy 

and skewness, and decreases in variance obtained by cross efficiencies of those forecasting models. 

We also establish a link to proper indirect accuracy- variance -skewness (AVS) utility function for 

various users in various utilities. An empirical section on a set of forecasting Baltic Dry Index 

(BDI) forecasting models serves as an illustration.   
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1. INTRODUCTION 
An international shipping freight index, Baltic Dry 

Index (BDI), which is expressed a freight rate for the 

price of the maritime transportation (such as iron ore, 

coal and grain by Handymax, Panamax and Capsize) and 

it is unique indicator of the state of the world economy. 

It would be highly correlated with the pricing path of all 

these commodities and currencies that are associated 

with dry cargo transportation. The BDI is an important 

response of maritime information for the trading and 

settlement of physical and derivative contracts. Since the 

forecasting model for the BDI influence the accuracy of 

the results, it plays a critical role for the shipping firms in 

their economic decision making and defining investment 

strategy.  The aim of this study is to investigate the 

forecasting performance to select an appropriate BDI 

forecasting model in the shipping business by 

considering lower variance, probability of obtaining a 

large inaccuracy and higher accuracy in dimensions of 

goodness-of-fit, biasedness and correct sign. 

Though most forecasting studies adopt various criteria 

to evaluate the accuracy of competing forecasting models, 

the assessment of these forecasting models lead to many 

different rankings due to a specific measure of a specific 

criterion (e.g., Sadorsky, 2005; 2006; Coppola, 2008; 

Agnolucci, 2009; Murat and Tokat, 2009; Marzo and 

Zagaglia, 2010). Taking all criteria into account is 

essential for the purposes of better performance 

evaluation of which model performs best overall 

(Ouenniche et al, 2015).  

In much of the forecasting studies literature, three 

performance criteria have typically been used: (1) 

goodness-of-fit (how close the forecasts are from the 

actual values), (2) biasedness (whether the model tends 

to systematically over-estimate or under-estimate the 

forecasts) and (3) correct sign (the ability of a model to 

produce forecasts that are consistent with actuals in that 

forecasts reveal increase (resp. decrease) in value when 

actuals increase (resp. decrease) in value) (Ouenniche et 

al, 2015). However, one of the major problems of 

existing forecasting studies dealing with this three 
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performance criteria is that their ranking lacks the 

consideration of the three measures simultaneously. 

Ouenniche et al, (2015) proposed an orientation-free 

super-efficiency Data Envelopment Analysis (DEA) 

framework to obtain a single ranking for the performance 

evaluation of volatility forecasting models by taking 

account of several criteria to fill in this gap. 

To empirically implement this evaluation, Ouenniche 

et al, (2015) have used the slacks-based super-efficiency 

DEA framework for assessing the relative performance 

of competing volatility forecasting models in which 

measures of biasedness and goodness-of-fit are used as 

input, whereas measures of correct sign are used as 

output. Their approach may suffer from two problems. 

First, the performance of forecasting models 

well-diversified in terms of their performance on 

multiple evaluation criteria. Second, the combination of 

each of these models for getting better performance is 

invalid. We, therefore, advocate the use of cross 

efficiency DEA models to circumvent the first problem 

and portfolio theory with directional distance function to 

providing better prediction values with the consideration 

of user’s preference. 

Note that regardless of how one forecasts the variance 

and skewness of accuracy of BDI, one could not assess 

the relative performance of competing forecasting 

models and finds out which ones or the combinations 

have the potential of doing a good “prediction job”. In 

order to overcome this methodological issue, our 

objective is therefore to address these issues by 

developing an accuracy-variance-skewness (AVS) 

framework of combination selection based on DEA 

cross-efficiency evaluation. The basic idea is that a 

forecasting model’s simple efficiency score, variance and 

skewness of its cross-efficiencies are used to represent 

the prediction’s accuracy, variance and low probability 

of obtaining a large inaccuracy characteristics. 

Subsequently, the AVS combination frontier approach is 

used to determine the forecasting model’s inclusion in a 

portfolio-based combination in this research, which 

overcomes the following issues. First, the directional 

distance function is used to represent the accuracy, 

variance and skewness space and as an efficiency 

measure for forecasting models. The directional distance 

function is to account for a preference for both positive 

accuracy and skewness associated with an aversion to 

variance. Second, this directional distance function 

projects a combination of forecasting models for which 

improvements can be found, in terms of increasing 

accuracy and skew, decreasing variance, onto the 

efficient forecasting frontier and labels these inefficiency. 

Third, we also assess the degree of satisfaction of users’ 

preferences in which a dual approach specifying an AVS 

utility function to choose among these frontier 

combinations. For given variance aversion and prudence 

parameters, we can obtain an optimal point on the 

boundary of the nonconvex AVS combination frontier. 

In sum, the proposed prediction and performance 

evaluation approach judges simultaneously accuracy and 

skewness expansions and variance contractions; namely, 

a portfolio-based DEA framework with cross efficiency 

for assessing the relative performance of competing BDI 

forecasting models. 

The remaining structure of this article is organized as 

follows: Section 2 literature review. Section 3 presents 

cross efficiency, the directional distance function and 

portfolio theory. The prediction and performance 

evaluation of forecasting in the manner that it can 

incorporate accuracy, variance and skewness. Section 4 

applies the proposed framework to the prediction and 

performance evaluation of BDI forecasting. Conclusion 

and future extensions are summarized in the last section. 

2. LITERATURE REVIEW  

2.1. Forecasting model performance evaluation 
In the last decades, many studies have paid attention to 

reveal the appropriate forecasting methods and error 

measures (Armstrong & Collopy, 1992; Hibon, Meade, 

Makridakis, & Fildes, 1998; Hyndman & Koehler, 2006; 

Makridakis & Hibon, 2000; Makridakis et al., 1993). 

They investigated to define an appropriate method by 

considering features of data, proper accuracy metrics, 

in-sample and post-sample results, type of unit root test 

and length of data series. In the Makridakis and Hibbon’s 

study (2000), more than twenty different forecasting 

methods and expert systems including artificial neural 

networks are applied to measure their accuracy for both 
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in-sample and post-sample. They found that the results of 

the accuracy control in terms of post-sample for the 

simple forecasting methods is superior than more 

complex algorithm. According to the Makridakis and 

Hibbon, some principles can be emphasized as follows: 

• Statistically sophisticated or complex methods do 

not necessarily provide more accurate forecasts than 

simpler ones. 

• The relative ranking of the performance of the 

various methods varies according to the accuracy 

measure being used. 

• The accuracy of the various methods depends upon 

the length of the forecasting horizon involved. 

• The characteristics of the data series are an 

important factor in determining relative performance 

between methods. 

In the existing literature, some studies also use data 

envelopment analysis (DEA) method to measure the 

performance of forecasting models by considering a 

specific level of a specific criterion (B Xu & Ouenniche, 

2011; Bing Xu & Ouenniche, 2012a, 2012b), in which a 

single ranking that takes account of several criteria. 

However, how to find out about the multidimensional 

rankings with respect to different measures with user’s 

preferences is still an issue need to be overcome. 

2.2. BDI forecasting 
For the shipping industry and shipping firms, 

forecasting plays a critical role for the investment timing, 

market entry-exist decisions, freight discovery and many 

aspects of the shipping prediction required (Bulut, Duru, 

& Yoshida, 2013). The shipping business research also 

cannot ignore the importance of the forecasting 

performance to reduce cost and making successful 

investment decisions (Bulut, Duru, & Yoshida, 2012; 

Bulut, 2014). Batchelor et al. (2007)  

In the existing literature, there are many papers 

propose the forecasting model to estimate the freight 

rates and ship prices. Veenstra & Franses (1997) apply 

the Vector Autoregression (VAR) model for the 

forecasting of the ocean dry bulk freight rates. Tsolakis 

et al. (2003) use Error Correction method for the supply 

and demand of ship prices forecasting. Duru et al. (2012) 

develop a DELPHI method by using fuzzy algorithm to 

improve the forecasting accuracy in the dry bulk 

shipping index. Bulut (2014) embeds the classical VAR 

logics in the fuzzy time series algorithm to improve 

forecasting accuracy. Although many papers propose 

different methods to improve the forecasting accuracy, 

few studies investigate the performance of the 

forecasting methods in the shipping industry. Batchelor 

et al. (2007) test the performance of popular time series 

model in predicting spot and forward rates on major 

seaborne freight rates. In their study, they use just some 

accuracy control methods to compare results of the 

traditional forecasting methods such as ARIMA, VAR 

and VECM.   

3. METHODOLOGY 
We will be discussing first the DEA AVS 

cross-efficiency model, and then introduce the 

directional distance function in an attempt to analyze 

frontier of efficient prediction combinations using 

portfolio theory.  

3.1. DEA AVS cross-efficiency model 

Suppose there are N DMUs in a reference set, each 

DMU j, 1, ,j N= K  has M inputs, denoted as 

1 2( , , , )Tj j j MjX x x x= L , S outputs, denoted as 

1 2( , , , )Tj j j SjY y y y= L , where T in the super script 

indicates transpose. Without loss of generality, let us 

denote the DMU under evaluation as DMU n. The 

original DEA model of proposed by Charnes, Cooper, 

and Rhodes (CCR) (1978) can be given in (1)..  

1

max
S

n
n s sn

s

E u y
=

= ∑                     (1) 

1 1

1
M S

m mj s sj
m s

v x u y
= =

− ≥∑ ∑ , 1, ,j N= K       (1-1) 

1

1
M

m mk
m

v x
=

=∑                         (1-2) 

, , 1, , ; 1, ,r mu v s S m Mε≥ = =K K  
where ε  is a positive non-Archimedean infinitesimal, 

and ,s mu v are multipliers on outputs and inputs, 

respectively, to be determined by optimizing the model. 

By solving model (1), we can obtain the optimal solution 
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,n n
s mu v for DMU j  ( 1, ,j N= K ) . Then, the cross 

efficiency of DMU j using DMU n’s multipliers can be 

calculated as in (2). 

1

1

R
n
r rj

n r
j M

n
m ij

m

u y
E

v x

=

=

=
∑

∑
, 1, ,n N= K , 1, ,j N= K    (2) 

For a DMU j, the return characteristic is defined as its 

average of cross-efficiency scores ( 1, , )n
jE n N= K

which implies that the return of DMU j is determined by 

averaging the efficiencies of DMU j using various 

multipliers.  

{ }1 , 1, ,

N
n
j

n
j

E
R j N

N
== ∈
∑

L                   (3) 

In this regard, each DMU is exposed to the risk of 

change in multipliers. The risk characteristic can then be 

defined as variance of its cross-efficiency scores 

( 1, , )n
jE n N= K  as 

2

2 1

( )
N

n
j j

n
j

E R

N
σ =

−
=
∑

, { }1, ,j N∈ L           (4) 

As claimed by Lim et al. (2014) “the simple use of 

cross-efficiency evaluation in portfolio selection 

effectively considers the risk of change in weights for 

individual DMUs selected in a portfolio, it fails to 

consider the risk for the portfolio overall.” In their model, 

Markowitz’ mean-variance formulation is used to 

determine the DMU’s inclusion in a portfolio under 

consideration. However, in the literature, many scholars 

regard that portfolio returns are generally not normally 

distributed. Furthermore, returns are said to be 

non-normally distributed and this is generally attributed 

to skewness. The mean-variance (MV) framework of 

portfolio selection effectively increases return and 

reduces risk but fails to contribute to a better 

understanding of risk preferences via its estimation of 

risk aversion and prudence in the long run. There is a 

growing literature dealing with portfolio models that 

account for high moment pricing effects. 

To address this issue, we extend the model proposed 

by Lim et al. (2014) and develop a AVS framework of 

prediction model combination selection based on 

cross-efficiency evaluation. The basic idea is that a 

DMU’s expected efficiency score, the co-variance and 

co-skewness of its cross-efficiencies are used to 

represent the DMU’s return, risk and prudence 

characteristics. Alternatives are characterized by an 

expected efficiency  jE R    for { }1, ,j N∈ L , 

where the co-variance matrix and co-skewness of its 

cross-efficiencies are as (5) and (6), respectively. 

, ,i j i jCOV R R Ω =   , { }, 1, ,i j N∈ L        (5) 

 

[ ]( )( )
[ ]( )

, ,

i i j j

i j k

k k

R E R R E R
CKS E

R E R

  − −   =
 − 

 

{ },, , 1, ,i j k N∈ L                           (6) 

A combination 1( , , )Nα α α= K _is composed by a 

proportion of each of these n alternatives (
1

N

i
i

α
=
∑ ).  In 

general, the set of admissible combination s can be 

written as follows (re-write). 

1

: 1, 0
N

N
i

i

Rψ α α α
=

 
= ∈ = ≥ 
 

∑              (7) 

When a portfolio α  is included, we have the return of 

this portfolio as: 

1

R( )
N

i i
i

Rα α
=

=∑                             (8) 

For a given combination, the expected accurancy, its 

variance, and its skewness are as follows: 

[ ] [ ]
1

E R( ) ( )
N

i i
i

E Rα α µ α
=

= =∑               (9) 
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[ ] 2

,
1 1 1 1

Var R( ) (R( )- ( ))

,
N N N N

i j i j i j i j
i j i j

E

Cov R R

α α µ α

α α α α
= = = =

 =  

 = = Ω ∑∑ ∑∑
        

(10) 

[ ] 3

1 1 1

, ,
1 1 1

Sk R( ) (R( )- ( ))

(R - ( ))(R - ( ))(R - ( ))
N N N

i j k i j k
i j k

N N N

i j k i j k
i j k

E

E

CKS

α α µ α

αα α µ α µ α µ α

α α α

= = =

= = =

 =  

 =  

=

∑∑∑

∑∑∑

 

(11) 

We denote conbination by 1( , , ) N
N Rα α α= ∈K , 

the function Φ  is defined by

( ) [ ] [ ] [ ]( )= E R( ) ,Var R( ) , R( )Skα α α αΦ to 

represent its expected accurancy, variance, and 

skewness. 

To measure combination efficiency, we give a 

disposal representation set DR  of combinations below: 

[ ] [ ] [ ]

3( , , ) ; , ( , , )
.

( ( ) , ( ) , ( ) )

E V S R E V S
DR

E R V R S R

α ψ

α α α

 ∈ ∃ ∈ ≤ 
=  

−  
 (12) 

to define a subset of this representation set known as the 

efficient frontier: 

Given a directional vector ( ) 3, ,E V Sg g g g R= − ∈ , 

the directional distance function, ( )gS α , defined on 

the disposal representation set DR  is 

( ) ( ){ }=sup :gS g CRα δ α δΦ + ∈  

This directional distance function represents a 

prediction model combination efficiency indicator. 

3.2. The directional distance function and the 

AVS utility function 

In production theory, the directional distance function 

measures are defined as the technical efficiencies of 

some point of the production possibility set and the 

Pareto frontier. Assume a sample of q combinations, 
1 2, , , qα α αL , we calculate the directional distance 

function for a specific combination kp  for 

1 2, , , qα α αL under evaluation, ( )k
gS p , as the 

following cubic program: 

max  ( )k
gS p δ=                          (13) 

s.t. 

[ ] M( ) ( )kE R E R p gα δ ≥ +  ,            (13-1) 

[ ] V( ) ( )kVar R Var R p gα δ ≤ −           (13-2)  

[ ]( ) ( )k
SSk R Sk R p gα δ ≥ +             (13-3) 

1

1, 0, 1, ,
N

j j
j

j Nα α
=

= ≥ =∑ K              (13-4) 

Given the expected accurancy, its variance, and its 

skewness as equations (9)–(11), model (13) can be 

rewritten as follows: 

max  ( )k
gS p δ=                          (14) 

s.t. 

M
1

( )
N

k
j j

j

E R E R p gα δ
=

   ≥ +   ∑ ,         (14-1) 

, V
1 1

( )
N N

k
i j i j

i j

Var R p gα α δ
= =

 Ω ≤ − ∑∑       (14-2)  

, ,
1 1 1

( )
N N N

k
i j k i j k S

i j k

CKS Sk R p gα α α δ
= = =

 ≥ + ∑∑∑  

(14-4) 

1

1, 0, 1, ,
N

j j
j

j Nα α
=

= ≥ =∑ K            (14-5) 

Suppose that there is a sample of q combinations of 

forecasting model requires calculating model (14) for 

each of these q combinations in turn. These function 

measures the maximal feasible reduction in δ . This 

function seeks the simultaneous maximum reduction in 

its risk and expansion in its accuracy and skewness in the 

direction of vector g. If 0δ = , we say that the 

evaluated combination is efficient in the g direction. 

Feasible but inefficient firms will take on values greater 

than zero, reflecting the additional accuracy and 
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skewness and reduction in risk that the particular 

combination could achieve if it were on the best practice 

frontier. In words, there exists a combination of other 

forecasting models that yields a higher accuracy and 

skewness and a lower risk; the evaluated combination is 

situated below the boundary, thus inefficient. The 

directional distance function is also a measure of 

combination efficiency (PE) is defined as the quantity

PE δ=  which not necessarily project a point on the 

nonconvex portfolio frontier  

3.3. Efficient combination of predictions with 

users’ preferences 
Although disposal representation set representations of 

the technology are conceptually useful, a point obtained 

by Model (14) is not necessarily on the frontier 

maximizing the users’ indirect AVS utility function. 1 If 

one were to have a convex representation set, imposing 

tangent iso-utility surfaces compatible with the set of 

admissible AVS combinations is required. Briec et al. 

(2007) defined an MVS utility function as a third-order 

polynomial approximation of expected utility which is 

relative to a convexified MVS portfolio frontier. They 

defined the convex representation set, CR, as follows: 

( )
( )

3 3

*

, , , , , ,

, ,

E V S R R
CR

U E V S

µ ρ κ

µ ρ κ µ ρ κ
+ ∈ ∀ ∈ 

=  
≥ − +  

    (15) 

Let the AVS utility function for a specific combination 

α  be  

[ ] [ ] [ ]
( , , )( )

( ) ( ) ( )

U

E R Var R Sk R

µ ρ κ α

µ α ρ α κ α= − +
   (16) 

Given the utility function satisfies positive marginal 

utility of expected accuracy, skewness and negative 

marginal utility of risk, we have the indirect AVS utility 

function is as 

( , , )

*

1

( , , ) max ( ), 1, 0
N

j j
j

U U
µ ρ κ

µ ρ κ α α α
=

 
= = ≥ 

 
∑

(17) 

                                                           

1 Briec et al. (2015) show how the directional distance function is 

linked to the dual approach based on the specification of an MVS 

utility function. 

To show how the optimal combination *α  can be 

estimated, the nonlinear optimization program can be 

written as follows: 

[ ] [ ] [ ] ( ) ( ) ( )Max E R Var R Sk Rα ϕ α ψ α− +  (18) 

s.t. 

1

1, 0
N

j j
j

α α
=

= ≥∑ ,                       (18-1) 

where 
ρ

ϕ
µ

=  and 
κ

ψ
µ

= , represent the degree of 

absolute risk aversion and the degree of absolute 

prudence, respectively. Given a set of parameters 

representing decision maker’s absolute risk aversion and 

absolute prudence, the maximum value function may be 

estimated. 

The specific combination inefficiency evaluated can 

be obtained by model (14). By maximizing the decision 

maker’s direct AVS utility function (17), a unique 

efficient combination among those on the weakly 

efficient frontier may be estimated. 

By alternatively choosing the convexified AVS 

combination frontier, the hyper-portfolio efficiency 

(HPE), ( )ˆ
gS α , defined on CR can also be derived 

( ) ( ){ }ˆ ˆ ˆ=sup :gS g CRα δ α δΦ + ∈  

where the HPE guarantees reaching a point on the 

frontier maximizing the investor’s indirect AVS utility 

function 

The DDF introduced into portfolio analysis by Briec et 

al. (2007 is useful to distinguish between overall, 

allocative, convexity, and portfolio inefficiency when 

evaluating the scope for improvements in combination 

selection. Given the definition of overall inefficiency 

(OE) 

( )
( ) ( )( ){ }*

; , , =

sup : , , ( , , )

OE

g U

α µ ρ κ

δ µ ρ κ α δ µ ρ κ− Φ + ≤
 

The relationships between overall, allocative, convexity, 

and combination inefficiency may be established as 

follows: 
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The allocative inefficiency (AE) index 

 ( ) ( ) ( )ˆ; , , =O ; , , gAE E Sα µ ρ κ α µ ρ κ α−   

The convexity inefficiency (CE) index 

 ( ) ( ) ( )ˆ= g gCE S Sα α α−   

That is 

O = +E AE CE PE+  

3.4. Accuracy control 
In this paper, the four different accuracy methods, 

mean absolute scaled error (MASE), median relative 

absolute error (MdRAE), symmetrical mean absolute 

percentage error (sMAPE), normalized root mean 

squared error (nRMSE) are applied to control the 

prediction results of forecasting methods, and act as 

inputs in the cross efficiency DEA model. The 

mathematical algorithm of accuracy control methods are 

defined as follows; 

tMASE mean q=     (19) 

1
2

1
t

t n

i i
i

e
q

A A
n −

=

=
−∑

          (19-1) 

t t te A F= −              (19-2) 

where tA  is raw data series and tF represents forecast 

value, subscript t represents those out-sample data, while 

i represents those in-sample data for estimating 

forecasting models. 

Let t
t

t

e
r

e∗
=  denote the relatıve error, where te∗ is 

the forecast error obtained from the benchmark method 

(Naive). 

tMdRAE median r=    (20)  

1

1
( )

2

n
i i

i i i

F A
sMAPE

A Fn =

−
=

+∑   (21) 

2

1

max min

( )
n

i i
i

F A

nnRMSE
A A

=

−

=
−

∑

  (22) 

where max
1

n

i
i

A Max A
=

=  and min
1

n

i
i

A Min A
=

=  

Percentage of correct direction change predictions 

(PCDCP) acts as output in the cross efficiency DEA 

model. 

nzPCDCP
n

t
t∑

=

=
1

  (23) 

where tz  is a binary variable set equal to 1 if 

( ) ( )1 1 0t t t tA A F A− −− ⋅ − f  and 0 otherwise. 

4. RESULTS 

4.1. BDI forecasting 
In this paper, the BDI monthly data set between 

01M1985 and 12M2011 is used to calculate the results of 

the forecasts methods and it is divided into sample period 

(01M1985-04M2007) and post-sample period 

(05M2007-12M2011). Augmented Dickey-Fuller (ADF) 

and Philips-Perron (PP) test are utilized for the stationary 

control and Table 1 clearly display that the data set is 

found non-stationary in 99% and %95 confidence level 

for PP test while it is stationary in 99% confidence level 

for ADF. Therefore, a differencing operation for the BDI 

data set is used for the transformation to obtain stationary 

data. Four fundamental methods of conventional time 

series analysis (autoregressive-AR, autoregressive 

integrated moving average-ARIMA, seasonal 

ARIMA-SARIMA and Holt-Winter`s Exponential 

Smoothing-HW) are applied for the accuracy measures. 

Among autoregressive models (AR, ARIMA-ARMA, 

SARIMA), significance and goodness of fit are 

investigated to define proper version of AR configuration. 

Since seasonal fluctuation exists in BDI time series, 

SARIMA model is found appropriate one.  
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Since the different fuzzy time series (FTS) approaches 

are widely proposed to improve the forecasting accuracy 

in the literature, three different FTS models (Chen`s 

algorithm, FILF and EFILF methods) are applied. Chen`s 

algorithm is utilized both raw and first different data while 

others are only applied stationary BDI data set.  

In the empirical study, each forecasting method 

mentioned above is utilized to compute their accuracy 

measures. 

Table 1: Unit root test of BDI (01M1985 – 12M2011). 

  ADF PP  

 Levels Levels Diffrence 
t-statistics 

(p*) 

-4.288 

(0.003) 

-3.287 

(0.070) 

-11.007 

(0.000)* 

1% level -3.986* -3.986  

5% level -3.423 -3.423  

10% level -3.134 -3.134  

*p-value.    

* Stationary in %1 critical value (99% confidence level). 

4.2. Forecasting model performances. 

Following Hyndman and Koehle (2006), 

accuracy measures of scale-independent are 

used as input, whereas measures of correct sign 

are used as output. This results in a total of 5 

measures for each forecasting model, as 

presented in Table 2. 

Their superiority is based on accuracy 

control method. For instance, FILF method is 

found superior according to the results of the 

MASE while SARIMA has the most accurate 

result for MdRAE and SMAPE. 

Table 2 Inputs and output of BDIM time series forecasting models 

Model 
 

Inputs Output 

  
MASE MdRAE  SMAPE NRMSE PCDCP 

SARIMA A1 1.040 0.850 0.090 0.210 0.583 

H-W A2 3.800 4.720 0.290 0.640 0.056 

cFTS (raw) A3 0.941 1.014 0.092 0.212 0.333 

cFTS (diff) A4 1.187 1.349 0.118 0.288 0.333 

FILF A5 0.938 1.013 0.091 0.212 0.667 

EFILF A6 0.952 1.030 0.093 0.209 0.806 
 

 
According to the results of accuracy control methods, 

it cannot safely say that one method is found superior for 

all accuracy control methods. Therefore, a 

multidimensional framework for the performance 

evaluation of competing models of BDI forecasting is 

proposed in this study. Prior to formal modeling, we first 

present descriptive statistics on four measures of the 

scale-independent and one measure of correct sign, of six 

forecasting models of BDI. Table 2 exhibits the values of 

all measures of which serves to provide some light on the 

plausibility of the derivative DEA AVS cross-efficiency 

scoreA set of four inputs of scale-independent 

goodness-of-fit and one output of correct sign derived 

from prediction results of listed forecasting models, and 

compute a set of cross efficiencies based on the selected 

set of inputs and outputs. Table 3 shows the 

cross-efficiency scores obtained by using the MASE, 

MdRAE, SMAPE and NRMSE as inputs, PCDCP as 

outputs. Notice that BDI forecasting models ranked from 

best to worst using the CCR and CEM efficiency scores 

are different. 

 

Table 3 Cross efficiency-based multidimensional rankings of BDIM time series forecasting models 

CEM A1 A2 A3 A4 A5 A6 CEM-mean Ranking-CEM Ranking-CCR 

A1 0.876 0.720 0.876 0.662 0.747 0.747 0.771 3 2 

A2 0.015 0.023 0.015 0.017 0.022 0.022 0.019 6 6 

A3 0.420 0.407 0.420 0.418 0.418 0.418 0.417 4 4 

A4 0.315 0.300 0.315 0.331 0.326 0.326 0.319 5 5 

A5 0.841 0.816 0.841 0.840 0.846 0.846 0.838 2 3 

A6 1 1 1 1 1 1 1.000 1 1 
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In order to take portfolio theory into consideration for 

evaluating the performance of BDI predictions, one 

would need rankings that takes account of 

accuracy-variance-skewness (AVS) utility function for 

various users in various utilities, which we provide using 

the proposed DEA framework. Some notes should be 

made from the overall, allocative, convexity, and 

combination inefficiency estimates in Table 4, the 

overall inefficiency estimate of 0.248 suggests that A1 

forecasting model wastes around 24.8% of its utilities 

relative to the best-practice forecasting model. The 

decomposition indicates that 9.5% of this poor 

performance is due to PE, while the remaining 1.53% of 

the gap is due to AE* (includes CE). In other words, the 

PE level of 0.095 suggests that model just lost 9.5% 

combination inefficiency that the best-practice BDI 

forecasting model could make under the nonconvex 

combination frontier. The AE* level of 0.0153 implies 

the model choosing a wrong mix of accuracy, skewness, 

and risk given postulated risk aversion and prudence 

parameters. These results also show that PE levels of the 

tested models are well below those of HPE, and CE 

levels are positive. As can be seen in Table 5, our 

approach also provides the optimal weights for selecting 

a better combination of existing forecasting models to 

obtain a more overall-efficient forecasting result. Take 

model A1 as example, the users can select a combination 

of forecasting models A1 and A6 associated with 

weights of 0.681 and 0.319, respectively, to reach 

combination efficiency. 

 
Table 4 Mean-Variance-Skewness Portfolio 
Performance-based BDIM time series forecasting 
models 

 
OE PE AE HPE CE Ranking-HPE 

A1 0.248 0.095 -0.338 0.586 0.491 5 

A2 47.383 0.505 46.654 0.729 0.224 6 

A3 1.204 0.131 0.724 0.480 0.349 2 

A4 1.871 0.018 1.374 0.497 0.479 4 

A5 0.149 0.053 -0.332 0.481 0.428 3 

A6 -0.006 0.000 -0.484 0.478 0.478 1 

 

 

 

 

Table 5 Combination of the BDIM time series 
forecasting models 

 
A1 A2 A3 A4 A5 A6 

A1 0.681 
    

0.319 

A2 
 

0.978 
 

0.017 0.003 0.002 

A3 
 

0.462 
  

0.468 0.070 

A4 
 

0.637 
  

0.315 0.048 

A5 
    

0.726 0.274 

A6 
     

1.000 

5. CONCLUSION AND FUTURE EXTENSIONS 
The results above demonstrate that the proposed 

approach can be a promising tool for forecasting model 

combination selection as a means of fundamental 

analysis. Our results also show that the cross-efficiency 

with AVS approach is more effective than the one based 

on the simple use of CCR or cross-efficiency scores at 

least for this particular application. Overall, our findings 

consistently support the effectiveness of our approach. 
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