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Abstract: In the study, we propose a nonparametric efficien@asurement approach for the
forecasting model selection problem. Three aut@sgijve models and three fuzzy time series
approaches are employed for the calibration of datacture to depict the trend. The directional
distance function and portfolio theory are furthesed to evaluate the performance of BDI
predictions. A directional distance function isidetl that looks for possible increases in accuracy
and skewness, and decreases in variance obtaineds/efficiencies of those forecasting models.
We also establish a link to proper indirect accyraariance -skewness (AVS) utility function for
various users in various utilities. An empiricaten on a set of forecasting Baltic Dry Index
(BDI) forecasting models serves as an illustration.

Keyword: Baltic dry index; portfolio theory; cross efficigyidhe directional distance function.

Though most forecasting studies adopt variousraite

1. INTRODUCTION to evaluate the accuracy of competing forecastingets,

An international shipping freight index, Baltic Dry the assessment of these forecasting models leary
Index (BDI), which is expressed a freight rate tbe different rankings due to a specific measure gbecic
price of the maritime transportation (such as ime, criterion (e.g., Sadorsky, 2005; 2006; Coppola, 800
coal and grain by Handymax, Panamax and Capsizk) anAgnolucci, 2009; Murat and Tokat, 2009; Marzo and
it is unique indicator of the state of the worldromy. Zagaglia, 2010). Taking all criteria into accourst i
It would be highly correlated with the pricing pathall essential for the purposes of better performance
these commodities and currencies that are assdciateevaluation of which model performs best overall
with dry cargo transportation. The BDI is an impott ~ (Ouenniche et al, 2015).
response of maritime information for the tradingdan In much of the forecasting studies literature, ¢hre
settlement of physical and derivative contractac&ithe  performance criteria have typically been used: (1)
forecasting model for the BDI influence the accyra€ goodness-of-fit (how close the forecasts are from t
the results, it plays a critical role for the shigpfirms in actual values), (2) biasedness (whether the meaahelst
their economic decision making and defining investin ~ to systematically over-estimate or under-estimdte t
strategy. The aim of this study is to investigéte forecasts) and (3) correct sign (the ability of adel to
forecasting performance to select an appropriatd BD produce forecasts that are consistent with acinatkat
forecasting model in the shipping business by forecasts reveal increase (resp. decrease) in vahes
considering lower variance, probability of obtaipima actuals increase (resp. decrease) in value) (Oclemrat
large inaccuracy and higher accuracy in dimensimins al, 2015). However, one of the major problems of
goodness-of-fit, biasedness and correct sign. existing forecasting studies dealing with this ére
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performance criteria is that their ranking lackse th

function is to account for a preference for botlsipree

consideration of the three measures simultaneouslyaccuracy and skewness associated with an aversion t

Ouenniche et al, (2015) proposed an orientatioa-fre
super-efficiency Data Envelopment Analysis (DEA)
framework to obtain a single ranking for the pemiance
evaluation of volatility forecasting models by tadi
account of several criteria to fill in this gap.

To empirically implement this evaluation, Ouenniche
et al, (2015) have used the slacks-based superesity
DEA framework for assessing the relative perforneanc
of competing volatility forecasting models in which
measures of biasedness and goodness-of-fit are ased

variance. Second, this directional distance fumctio
projects a combination of forecasting models foiicivh
improvements can be found, in terms of increasing
accuracy and skew, decreasing variance, onto the
efficient forecasting frontier and labels thesefinency.
Third, we also assess the degree of satisfactiarserfs’
preferences in which a dual approach specifyingé8
utility function to choose among these frontier
combinations. For given variance aversion and proee

parameters, we can obtain an optimal point on the

input, whereas measures of correct sign are used aoundary of the nonconvex AVS combination frontier.

output. Their approach may suffer from two problems
First, the performance of forecasting
well-diversified in terms of their
multiple evaluation criteria. Second, the combimatof

each of these models for getting better performdace

performance on

In sum, the proposed prediction and performance

models evaluation approach judges simultaneously accuaady

skewness expansions and variance contractions;lyjame
a portfolio-based DEA framework with cross effiaign
for assessing the relative performance of compeging

invalid. We, therefore, advocate the use of crossforecasting models.

efficiency DEA models to circumvent the first prebi
and portfolio theory with directional distance ftioa to
providing better prediction values with the considion
of user’s preference.

Note that regardless of how one forecasts the vagia
and skewness of accuracy of BDI, one could notsasse
the

The remaining structure of this article is orgadizes
follows: Section 2 literature review. Section 3 g@ets
cross efficiency, the directional distance functiand
portfolio theory. The prediction and performance
evaluation of forecasting in the manner that it can
incorporate accuracy, variance and skewness. $edtio

relative performance of competing forecasting applies the proposed framework to the predictiod an

models and finds out which ones or the combinationsperformance evaluation of BDI forecasting. Cona@usi

have the potential of doing a good “prediction job{
order to overcome this methodological
objective is therefore to address these
developing

an accuracy-variance-skewness

issue, our
issues by. LITERATURE REVIEW
(AVS)

and future extensions are summarized in the lasiose

framework of combination selection based on DEA 2.1.Forecasting model performance evaluation

cross-efficiency evaluation. The basic idea is that
forecasting model’'s simple efficiency score, vac@aand
skewness of its cross-efficiencies are used toesgmt
the prediction’s accuracy, variance and low proligbi
of obtaining a large
Subsequently, the AVS combination frontier approigch
used to determine the forecasting model’s inclusioa

inaccuracy characteristics.

In the last decades, many studies have paid aitetdi
reveal the appropriate forecasting methods andr erro
measures (Armstrong & Collopy, 1992; Hibon, Meade,
Makridakis, & Fildes, 1998; Hyndman & Koehler, 2006
Makridakis & Hibon, 2000; Makridakis et al., 1993).
They investigated to define an appropriate methgd b
considering features of data, proper accuracy osetri

portfolio-based combination in this research, which in-sample and post-sample results, type of unit test

overcomes the following issues. First, the dirawio

and length of data series. In the Makridakis anabldn’s

distance function is used to represent the accuracystudy (2000), more than twenty different forecagtin

variance and skewness space and as an efficiencynethods and expert systems including artificial raku

measure for forecasting models. The directiongbdie

networks are applied to measure their accuracypdain
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in-sample and post-sample. They found that thdteesti improve the forecasting accuracy in the dry bulk
the accuracy control in terms of post-sample fag th shipping index. Bulut (2014) embeds the classicARV
simple forecasting methods is superior than morelogics in the fuzzy time series algorithm to impeov
complex algorithm. According to the Makridakis and forecasting accuracy. Although many papers propose
Hibbon, some principles can be emphasized as fellow different methods to improve the forecasting accyra
- Statistically sophisticated or complex methods dofew studies investigate the performance of the
not necessarily provide more accurate forecasts thaforecasting methods in the shipping industry. Belkoh
simpler ones. et al. (2007) test the performance of popular tseges
The relative ranking of the performance of the model in predicting spot and forward rates on major
various methods varies according to the accuracyseaborne freight rates. In their study, they usé gome

measure being used. accuracy control methods to compare results of the
The accuracy of the various methods depends uponraditional forecasting methods such as ARIMA, VAR
the length of the forecasting horizon involved. and VECM.

The characteristics of the data series are an
important factor in determining relative performanc 3. METHODOLOGY
between methods. We will be discussing first the DEA AVS
In the existing literature, some studies also uatad cross-efficiency model, and then introduce the
envelopment analysis (DEA) method to measure thedirectional distance function in an attempt to sral
performance of forecasting models by considering afrontier of efficient prediction combinations using
specific level of a specific criterion (B Xu & Oueiche, portfolio theory.
2011; Bing Xu & Ouenniche, 2012a, 2012b), in which
single ranking that takes account of several daiter 3.1.DEA AVS cross-efficiency model
However, how to find out about the multidimensional Suppose there are N DMUs in a reference set, each
rankings with respect to different measures witerss DMU j, j=1...,N has M inputs, denoted as

preferences is still an issue need to be overcome. X]- = (le 1 X505 Xy )T , S outputs, denoted as
Y, =(Yyjs Yoy 00 Yy ), whereT in the super script
2.2.BDI forecasting indicates transpose. Without loss of generality, s
For the shipping industry and shipping firms, denote the DMU under evaluation as DMU n. The
forecasting plays a critical role for the investingming, original DEA model of proposed by Charnes, Cooper,

market entry-exist decisions, freight discovery amghy and Rhodes (CCR) (1978) can be given in (1)..
aspects of the shipping prediction required (Bulutru,
& Yoshida, 2013). The shipping business researsh al Ej = maxZu Yan 1)
cannot ignore the importance of the forecasting -
performance to reduce cost and making successfulm
investment decisions (Bulut, Duru, & Yoshida, 2012; z mXm — ZU ys 21, j=1...,N (1-1)
Bulut, 2014). Batchelor et al. (2007)

In the existing literature, there are many papers wm
propose the forecasting model to estimate the Hteig szka =1 (1-2)
rates and ship prices. Veenstra & Franses (1997ly ap mt
the Vector Autoregression (VAR) model for the u,v,z2¢e,s=1...Sm=1.. M
forecasting of the ocean dry bulk freight ratesoldkis where & is a positive non-Archimedean infinitesimal,
et al. (2003) use Error Correction method for thppdy ~ and Ug, v, are multipliers on outputs and inputs,
and demand of ship prices forecasting. Duru fai12)  respectively, to be determined by optimizing thedelo
develop a DELPHI method by using fuzzy algorithm to BY solving model (1), we can obtain the optimalsioin
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S, mfor DMU j (j=1,..,N) . Then, the cross account for high moment pricing effects.

efficiency of DMU j using DMU n’s multipliers caneb To address this issue, we extend the model proposed
calculated as in (2). by Lim et al. (2014) and develop a AVS framework of
prediction model combination selection based on

Zurnyrj cross-efficiency evaluation. The basic idea is that

Ejn = , n=1...,N, j=1...,N (2 DMU’s expected efficiency score, the co-variance an
n . .. .
Z:Vm)gj co-skewness of its cross-efficiencies are used to
m=1

represent the DMU’s return, risk and prudence
For a DMU j, the return characteristic is definedita characteristics. Alternatives are characterized ay

average of cross-efficiency scordEF(nzl,...,N) expected efficiency EI:R]-] for je{l,--~,N} ,

which implies that the return of DMU j is determihby where the co-variance matrix and co-skewness of its
averaging the efficiencies of DMU j using various cross-efficiencies are as (5) and (6), respectively

multipliers. ..
Q;=COV[R,R | i,je{l: N} (5)
N
2§
R =L — je{l- N} 3)
N s g RERD(R-E[R])
In this regard, each DMU is exposed to the risk of 1k B E[F\’k])
change in multipliers. The risk characteristic taen be
defined as variance of its cross-efficiency Scoresi,,j,ke{l,--- ,N} ©)

Ef(n=1...,N) as
A combination & = (¢,,..., ) _is composed by a

N
n 2
) Z(Ei -R) N
p—l n=1 i Y 1 1
o] = je{l--- N} (4)  proportion of each of thesealternatives gai ). In
As claimed by Lim et al. (2014) “the simple use of general, the set of admissible combination s can be
cross-efficiency evaluation in portfolio selection written as follows (re-write).

individual DMUs selected in a portfolio, it failsot
consider the risk for the portfolio overall.” Ingiin model,
Markowitz’ mean-variance formulation is used to When a portfolio & is included, we have the return of
determine the DMU’s inclusion in a portfolio under this portfolio as:

consideration. However, in the literature, manyotats

effectively considers the risk of change in weigfis N
7% {aeRN:Zai:LaZO} )

i=1

N
regard that portfolio returns are generally notnmalty R(a)= ZaiR (8)
distributed. Furthermore, returns are said to be =1
non-normally distributed and this is generally ihtited For a given combination, the expected accuransy, it

to skewness. The mean-variance (MV) framework of variance, and its skewness are as follows:

portfolio selection effectively increases returndan

reduces risk but fails to contribute to a better E[R(a)]= 205 E[R]=u() 9)
understanding of risk preferences via its estinmatid =1

risk aversion and prudence in the long run. Thera i

growing literature dealing with portfolio modelsath
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Var[R(a)| = E[(R(a )u @ ))2} a',a’,++,a% under evaluation, S,(p“) , as the

ZZaiajCov[R,RJ}: Zaiani]j

following cubic program:

i1 -1 i1 -1 max S, ©“)=0o (13)
) st
Sk,E fo {! = EI: (R(a )# @ ))3:| E[R((Z)] > E[R( pk)]+5gM ’ (13_1)
- 0@, E[R u#@)R, #@)R, @)
e | ) Var[R(a)] <Var[ R(p") | -39, (13-2)
= a,CKS .
2.2, 2 e nCKS K[R@)]2 K[R(p)]+60s (13-3)
(11) "
We denote conbination byr = (c,...,a, )€ RY, zaj =La,20,j=1,.. N (13-4)
the function )] is defined by I=

d)(a)=(E[R(a)] ,Va|{ R@] S<[ Ré }) to Given the expected accurancy, its variance, and its
an&kewness as equations (9)—(11), model (13) can be

represent its expected accurancy, variance, )
rewritten as follows:

skewness.
k
max S, (p° )=0o (14)

To measure combination efficiency, we give a

disposal representation séDR of combinations below:  g.t.
~ (E\V,S)eR*>3aey,(EV,S)< 12)
(E[R(e)],~V[R()],S[R(«)])

to define a subset of this representation set knasvthe
efficient frontier:

leajE[Rj]z E[R(p) ] +50y. (14-1)

=t

M=
'MZ

aa;,Q  <Var| R(p“) |- 59, 14-2)

ij —

1
a
1

Given a directional vectorg =(gE,—gv , gs) eR’, '

the directional distance functionS (a), defined on N
¢ ZaiajakCKSJ,kZSk[R(pk)]+5gS

1 k=1

S (05) :sup{5 :CD(oc) +0ge CR} (14-4)

M=
M=

the disposal representation sBIR is

Il
=
Il

This directional distance function represents a
prediction model combination efficiency indicator.

AMZ
R
Il
=
\Y

Il
=

0,j=1,.. N (14-5)

3.2.The directional distance function and the Suppose that there is a sample of q combinations of

AVS utility function forecasting model requires calculating model (1d) f

each of these g combinations in turn. These functio

In production theory, the directional distance fiote measures the maximal feasible reductiondn This

measures are defined as the technical efficienofes function seeks the simultaneous maximum reduction i

some point of the production possibility set an@ th its risk and expansion in its accuracy and skewiretse

Pareto frontier. Assume a sample of g combinations direction of vector g. 1f§=0, we say that the

q evaluated combination is efficient in the g direnti

0{1,0{2,---,0{ , we calculate the directional distance

Feasible but inefficient firms will take on valugeeater

function for a specific combination p* for . .
P P than zero, reflecting the additional accuracy and

Ming-Miin Yu, Emrah Bulut <5>
123



skewness and reduction in risk that the particular

combination could achieve if it were on the bestctice
frontier. In words, there exists a combination dher

To show how the optimal combinatiom” can be

estimated, the nonlinear optimization program ca&n b

forecasting models that yields a higher accuracg an written as follows:

skewness and a lower risk; the evaluated combimasio

situated below the boundary, thus inefficient. The

directional distance function
combination efficiency (PE) is defined as the qitgnt

PE =6 which not necessarily project a point on the Zaj =1¢,20,

nonconvex portfolio frontier

3.3.Efficient combination of predictions with
users’ preferences

Although disposal representation set representtién
the technology are conceptually useful, a pointivied
by Model (14) is not necessarily on the frontier
maximizing the users’ indirect AVS utility functiort If
one were to have a convex representation set, imgpos
tangent iso-utility surfaces compatible with the eé
admissible AVS combinations is required. Briec bt a
(2007) defined an MVS utility function as a thirdder
polynomial approximation of expected utility whiéh
relative to a convexified MVS portfolio frontier.h&y
defined the convex representation set, CR, asvistio

(EV,S)eR Vu,pxeR’,
U (m,p.x) 2 HE— pV + &S

CR= (15)

Let the AVS utility function for a specific combitian
a be

Ui (@)

(16)
= uE[R(a)]- pVar [R(a)]+ xSKk[R(a)]

Given the utility function satisfies positive mangl

Max E[R(a)]-¢Var [R(a)]+yK[R(a)] (18)

is also a measure ofs.t.

N
(18-1)
j=1

where ¢ = L

U

and 1//=£, represent the degree of
7]

absolute risk aversion and the degree of absolute

prudence, respectively. Given a set of parameters

representing decision maker’s absolute risk averaiad

absolute prudence, the maximum value function may b

estimated.

The specific combination inefficiency evaluated can
be obtained by model (14). By maximizing the dexisi
maker’s direct AVS utility function (17), a unique
efficient combination among those on the weakly
efficient frontier may be estimated.

By alternatively choosing the convexified AVS
combination frontier, the hyper-portfolio efficignc

(HPE), ég (a) , defined on CR can also be derived

Sg(a):sup{é :d)(a)+§geCR}

where the HPE guarantees reaching a point on the
frontier maximizing the investor's indirect AVS litly
function

The DDF introduced into portfolio analysis by Brietc

utility of expected accuracy, skewness and negativeal. (2007 is useful to distinguish between overall,

marginal utility of risk, we have the indirect AM&ility
function is as

j=1

N
(.p ) @ ),zaj B 1al y %

U (i, p,x)= max{U

(17)

! Briec et al. (2015) show how the directional dis&function is
linked to the dual approach based on the spedditatf an MVS
utility function.

allocative, convexity, and portfolio inefficiency hen
evaluating the scope for improvements in combimatio
selection. Given the definition of overall inefficicy
(CE)

OE(a; u, p,ic) =
Sup{é (u—p J()(CD(a)+5g)£U* wpo K }
The relationships between overall, allocative, epity,

and combination inefficiency may be established as
follows:
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The allocative inefficiency (AE) index

N

AE (o 1, p,x) =OE (it ,p )~ §, (@) > (F-AY

i=1

The convexity inefficiency (CE) index NRMSE = ﬁ (22)
~ ax in
CE(a)=8, (2)-S, () n n_
That is where A = |\/||:61le and A, = I\i/lzllnA
OE=AE+CE + PE Percentage of correct direction change predictions
(PCDCP) acts as output in the cross efficiency DEA
3.4.Accuracy control model.
In this paper, the four different accuracy methods,
mean absolute scaled error (MASE), median relative PCDCP= Zzt/n (23)
absolute error (MdRAE), symmetrical mean absolute =1

percentage error (SMAPE), normalized root meanwhere z is a binary variable set equal to 1 if
squared error (NRMSE) are applied to control the .

prediction results of forecasting methods, and axt (A_A_l).(Ft_A‘l)>-0 and 0 otherwise.
inputs in the cross efficiency DEA model. The
mathematical algorithm of accuracy control methads 4. RESULTS

defined as follows; 4.1.BDI forecasting

In this paper, the BDI monthly data set between

MASE = mean|q| (19) :
01M1985 and 12M2011 is used to calculate the resdlt
the forecasts methods and it is divided into sampléd
g = n# (19-1) (01M1985-04M2007) and  post-sample  period
=A-AL (05M2007-12M2011). Augmented Dickey-Fuller (ADF)
fi and Philips-Perron (PP) test are utilized for ttaignary
e=A-F (19-2) control and Table 1 clearly display that the dathis

found non-stationary in 99% and %95 confidencelleve
for PP test while it is stationary in 99% confiderevel
for ADF. Therefore, a differencing operation foetBDI
value, subscript t represents those out-sample ddiée data set is used for the transformation to obtitionary
i represents those in-sample data for estimatingdata. Four fundamental methods of conventional time
forecasting models. series analysis (autoregressive-AR, autoregressive
integrated moving average-ARIMA, seasonal
Let I, =3* denote the relative error, whei®is  ARIMA-SARIMA and Holt-Winter's Exponential
G Smoothing-HW) are applied for the accuracy measures
the forecast error obtained from the benchmark ateth Among autoregressive models (AR, ARIMA-ARMA,

where A is raw data series andF, represents forecast

(Naive). SARIMA), significance and goodness of fit are
. investigated to define proper version of AR confajion.
MARAE = median|r| (20) Vestd properersion region.
Since seasonal fluctuation exists in BDI time serie
SARIMA model is found appropriate one.
1 [R-A[
SMAPE = Z (21)
i=1 (|A|+|F |)
2
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Since the different fuzzy time series (FTS) appheac Table 1: Unit root test of BDI (01M1985 — 12M2011).

are widely proposed to improve the forecasting e

in the literature, three different FTS models (Clken
algorithm, FILF and EFILF methods) are applied. €ke
algorithm is utilized both raw and first differeddta while
others are only applied stationary BDI data set.

In the empirical study,
mentioned above is utilized to compute their aoccyra

measures.

each forecasting methodsos |evel

ADF PP

Levels Levels Diffrence
t-statistics  -4.288 -3.287 -11.007
(p*) (0.003) (0.070) (0.000)*
1% level -3.986 -3.986

-3.423 -3.423
10% level -3.134 -3.134
*p-value.

* Stationary in %1 critical value (99% confidenewél).

4.2.Forecasting model performances.

Following Hyndman and Koehle (2006), Table 2
accuracy measures of scale-independent

Inputs and output of BDIM time series foreasting models

. . odel Inputs Output
used as input, whereas measures of correct sigr
. . MASE MdRAE SMAPE NRMSE PCDCP
are used as outputThis results in a total of 5
. SARIMA Al 1.040 0.850 0.090 0.210 0.583
measures for each forecasting model, as
. H-W A2 3.800 4.720 0.290 0.640 0.056
presented in Table 2.
. S cFTS (raw) A3 0.941 1.014 0.092 0.212 0.333
Their superiority is based on accuracy _
control method. For instance, FILF method isCFTS (diff) A4 1187 1349 0118 0.288 0.333
found superior according to the results of the FILF AS 0938 1013 0091 0212 0.667
MASE while SARIMA has the most accurate EFILF A6 0952 1.030 0.093 0.209 0.806
result for MARAE and SMAPE.
According to the results of accuracy control method scoreA set of four inputs of scale-independent

it cannot safely say that one method is found sapéosr

all  accuracy control Therefore, a
framework the performance
evaluation of competing models of BDI forecastirsg i

proposed in this study. Prior to formal modeling, fivst

methods.

multidimensional for

present descriptive statistics on four measureghef
scale-independent and one measure of correctcigix
forecasting models of BDI. Table 2 exhibits theues of
all measures of which serves to provide some bghthe
plausibility of the derivative DEA AVS cross-effaicy

goodness-of-fit and one output of correct sign \ati
from prediction results of listed forecasting maglend
compute a set of cross efficiencies based on tleetsd

set of inputs and outputs. Table 3 shows the
cross-efficiency scores obtained by using the MASE,
MdRAE, SMAPE and NRMSE as inputs, PCDCP as
outputs. Notice that BDI forecasting models ranketh
best to worst using the CCR and CEM efficiency esor
are different.

Table 3 Cross efficiency-based multidimensional rakings of BDIM time series forecasting models

CEM Al A2 A3 A4 A5 A6  CEM-mearRanking-CEMRanking-CCR
Al 0.876 0.720 0.876 0.662 0.747 0.747 0.771 3 2
A2 0.015 0.023 0.015 0.017 0.022 0.022 0.019 6 6
A3 0.420 0.407 0420 0.418 0.418 0.418 0.417 4 4
A4 0.315 0.300 0.315 0.331 0.326 0.326 0.319 5 5
A5 0.841 0.816 0.841 0.840 0.846 0.846 0.838 2 3
A6 1 1 1 1 1 1 1.000 1 1
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In order to take portfolio theory into consideratior ~ Table 5 Combination of the BDIM time series
evaluating the performance of BDI predictions, one forecasting models

would need rankings that takes account of Al A2 A3 A4 A5 A6

accuracy-variance-skewness (AVS) utility functioor f Al 0681 0.319
various users in various utilities, which we prarigsing A2 0.978 0.017 0.003 0.002
the proposed DEA framework. Some notes should be a3 0.462 0.468 0.070
made from the overall, allocative, convexity, and g4 0.637 0.315 0.048
combination inefficiency estimates in Table 4, the Aag 0.726 0.274
overall inefficiency estimate of 0.248 suggestst tha A6 1.000

forecasting model wastes around 24.8% of its ietdit

relative to the best-practice forecasting model.e Th 5 CONCLUSION AND FUTURE EXTENSIONS
decomposition indicates that 9.5% of this poor the reguits above demonstrate that the proposed

performa_mce is due to '_DE' while the remaining 1.58% approach can be a promising tool for forecastingleho
the gap is due to AE* (includes CE). In other wortiie combination selection as a means of fundamental

PE level of 0.095 suggests that model just los®.5 analysis. Our results also show that the crossieffcy

combination inefficiency that the best-practice BDI | in avs approach is more effective than the onseba
forecasting model could make under the nonconvex . ihe simple use of CCR or cross-efficiency scates
combination frontier. The AE* level of 0.0153 impi |05t for this particular application. Overall, dindings

the model choosing a wrong mix of accuracy, skeenes .nqjstently support the effectiveness of our apgio
and risk given postulated risk aversion and prudenc

parameters. These results also show that PE lef¢ie REFERENCES
tested models are well below those of HPE, and CExpaimes A Cooper WW, and Rhodes E, (1978)
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