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Abstract: Since efficiency prediction can help managers to monitor future performance and 

detect potential failures, it is important for production and operation management. Data 

envelopment analysis is comprehensively applied to evaluate the relative performance in 

various areas. However, only few studies try to forecast the relative performance estimated by 

data envelopment analysis. We propose a performance forecasting model that integrates the 

multi-activity dynamic network data envelopment analysis and fuzzy piecewise 

auto-regression. The proposed approach constructs a dynamic performance measurement with 

the network structure to calculate the catching-up efficiency index. The catching-up efficiency 

index is further decomposed into the technical efficiency change and dynamic efficiency 

change to capture the effect of carry-over items. The fuzzy piecewise auto-regression is 

applied to regress the possibility and necessity estimation models by catching-up efficiency 

index for forecasting efficiency. In this paper, a data from banks in Taiwan from 2006 to 2012 

are applied. The results indicate that the proposed approach has highly accuracy rate. 

Keyword: Multi-activity dynamic network Data envelopment analysis, fuzzy piecewise 

auto-regression, catching-up efficiency index, banking performance 

 

1. INTRODUCTION 
To maintain or promote the competitive advantage, it is 

important for firms to utilize resources efficiently to 

generate outcomes. Performance analysis provides a 

method for managers to diagnose and analyze the level 

of resource utilization. By comparing the relative 

performance of each firm in adjacent periods, the 

managers can identify potential performance losses, and 

then identify the direction of resource adjustment. The 

performance prediction is also important for production 

and operation management, because it can monitor future 

performance and detect potential failures. It uses a 

forecasting model to anticipate the possible paths for a 

specific time horizon. The forecast information can help 

managers to avoid potential poor performance in the 

future. 

Although various financial indicators are used to 

assess the performance (Caves, 1980; Megginson et al., 

1994), they only consider single or parts of operational 

factors. Even if a performance is evaluated by 
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aggregating various financial indicators, the appropriate 

weights are difficult to determine. However, data 

envelopment analysis (DEA) allow for the evaluation of 

multiple inputs and multiple outputs without predefining 

any weights (Charnes et al., 1978). Thus, DEA has been 

comprehensively applied to assess the relative 

performance in various areas, such as the banks (Chen 

and Yeh, 2000; Rezvanian and Mehdian, 2002), bus 

transit firms (Nolan et al., 2001; Odeck, 2006), 

government (Hsu and Hsueh, 2008), and schools (Tyagi 

et al., 2009). However, conventional DEA methods treat 

a decision making unit (DMU) as a “black box”. They 

not only ignore the internal structure of the operational 

process, but also exclude the effect of carry-over items 

between two consecutive terms. Since the structure of a 

firm may include multiple activities and multiple 

processes and the operation of a firm is not independent 

among periods, the effects of inter-connected activities 

and processes as well as carry-over items should be 

considered when evaluating the performance. In response 

to these operational characteristics of firms, Yu et al. 

(2015) proposed a multi-activity dynamic network DEA 

(MDNDEA) model to incorporate multiple activities and 

multiple processes into a unified framework with 

considering the carry-over items. In order to obtain a 

more accurate performance measures, the MDNDEA 

model should be adopted. 

In terms of performance prediction, some studies have 

tried to predict the efficiency by combining DEA with 

other predicting techniques. Sueyoshi (2000) proposed a 

stochastic DEA and used the stochastic and conventional 

efficiencies to decide the future efficiency. Kao and Liu 

(2004) introduced fuzzy concepts into DEA to forecast 

bank efficiency. Wu et al. (2006) integrated DEA and 

neural networks (NN) to forecast the efficiency of branch 

offices of Canadian banks. Hsiao et al. (2010) integrated 

DEA and fuzzy piecewise auto-regression analyses to 

forecast relative efficiency. Hsu (2014) forecasted the 

inter-fab performance by integrating DEA and 

back-propagation neural network (BPNN). The above 

methods have their specialty and uniqueness, in which 

the fuzzy regression technique can resolve the non-linear 

problems and is a good forecast method even if the 

available information is vague. However, the 

conventional fuzzy regression model is sensitive to 

outliers in possibility analysis (Redden and Woodall, 

1994), and the necessity area cannot be obtained because 

of the large variation in data in necessity analysis 

(Tanaka et al., 1982; Tanaka and Ishibuchi, 1992; Yu et 

al., 1999, 2001). Yu et al. (1999, 2001) proposed the 

fuzzy piecewise regression models to avoid these two 

problems. Hence, it has the applicability to solve the 

forecasting problems in the real world. 

In addition, the efficiency values evaluated by DEA 

models are censored at zero and one. The censored data 

will increase the complexity of the performance 

forecasting model. In order to avoid this problem, the 

catching-up index (CIE) can be applied. The CIE is the 

measure of efficiency change (EC) between any two 

adjacent periods. Hence, the values of CIE are not 

limited. However, the conventional CIE ignores the 

internal structure and carry-over items. Lei et al. (2013) 

built a dynamic Malmquist model with network structure 

to explore the black box performance. They decomposed 

the dynamic Malmquist productivity index into the EC 

and dynamic technical changes (DTC), in which OEC 

can be decomposed into technical efficiency change 

(TEC) and network efficiency change (NEC). Since this 

paper focuses on the effect of carry-over items, we will 

modify the decomposition process of EC to obtain TEC 

and dynamic efficiency change (DEC). 

In order to account for the appropriate forecasting 

method, this paper proposes a performance forecasting 

model, which integrates MDNDEA and fuzzy piecewise 

auto-regression analyses. Our model includes three 

phases. First, the MDNDEA model proposed by Yu et al. 

(2015) is used to estimate the operational efficiency over 

various periods. Next, the CIE, that is the product of 

TEC and DEC, is applied to calculate the change of 

operational efficiency in adjacent periods. Finally, the 

fuzzy piecewise auto-regression is used to forecast the 

future performance. 

The contributions of this paper are twofold. First, we 

propose a novel performance forecasting model, which 

integrates the MDNDEA model and the fuzzy piecewise 

auto-regression. Second, we decompose the CIE into 

TEC and DEC. 

The rest of this paper is organized as follows. Section 
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2 presents the proposed performance forecasting model. 

Section 3 provides the application of 27 Taiwanese banks 

and describes the results. Finally, Section 4 presents the 

conclusions. 

2. PERFORMANCE FORECASTING 
METHODOLOGY 

This paper proposes a three-phase performance 

forecasting model to predict efficiency and to help in 

strategic decision-making. In the first phase, the 

MDNDEA model is used to evaluate the operational 

efficiency of each DMU in each period. In the second 

phase, the CIE of each DMU in two adjacent periods is 

calculated by dividing the efficiency of each DMU at the 

calculation period to its efficiency at the base period. In 

the third phase, the CIE values of each DMU in the 

training sample are applied to forecast its future 

efficiency by the fuzzy piecewise auto-regression. The 

notations used in the proposed model are shown in Table 

1. 

Table 1: Description of notations 

Variable /Notation Definition/Item 

J  Number of DMUs. 
T  Number of periods. 
P  Number of change points. 

an  Number of common input variables. 

, ,c e gm m m  
Number of desirable intermediate output 
variables in the investment, loans and 
others activities, respectively. 

fm  Number of undesirable intermediate 
output variables in the loans activity. 

qs  Number of desirable output variables in 
the profitability process. 

ir  Number of undesirable carry-over items 
in the loans activity. 

lr  Number of discretionary carry-over 
items in the profitability process. 

,
t
aj sx  

The ath common input variable of 

jDMU  in tth period.  

, , ,, ,t t t
cj OI ej OL gj OOy y y

 

The cth desirable intermediate output 
variable of jDMU  in tth period in the 

investment, loans and others activities, 
respectively. 

,
t
fj OLb  

The fth undesirable intermediate output 
variable of jDMU  in tth period in the 

loans activity. 

,
t
qj Py  

The qth desirable output variable of 

jDMU  in tth period in the 

profitability process.. 
( , 1)
,
t t

ij OLu +  The ith undesirable carry-over item of 

jDMU  carries from tth period to 

t+1th period in the loans activity. 

( , 1)
,
t t

lj Pd +  

The lth discretionary carry-over item of 

jDMU  carries from tth period to 

t+1th period in the profitability process. 
,j k ( , 1,...,j k N= ) Indexes for DMUs. 

t ( 1,..,t T= ) Indexes for periods. 

a ( 1,.., aa n= ) Indexes for common input variables. 

c ( 1,.., cc m= ), 

e ( 1,.., ee m= ), 

g ( 1,.., gg m= ), 

Indexes for desirable intermediate 
output variables in the investment, loans 
and others activities, respectively. 

f ( 1,.., ff m= ) Indexes for undesirable intermediate 
output variables in the loans activity. 

q ( 1,.., qq s= ) Indexes for desirable output variables in 
the profitability process. 

i ( 1,.., ii r= ) Indexes for undesirable carry-over items 
in the loans activity. 

l ( 1,.., ll r= ) Indexes for discretionary carry-over 
items in the profitability process. 

p ( 1,..,p P= ) Indexes for change points. 

, ,

, ,

, ,

,

t t
k OI k OL

t t
k OO k P

β β

β β
 

Inefficiency scores of the investment, 
loans and others activities and the 
profitability process of kth DMU in tth 
period, respectively.  

, ,

, ,

, ,

,

t t
j OI j OL

t t
j OO j P

λ λ

λ λ
 

Intensity variables of the investment, 
loans and others activities and the 
profitability process for projecting 

jDMU  in tth period, respectively. 

, 1t t
kδ

+  

Indexes for technical efficiency change 
and dynamic efficiency change of kth 
DMU in tth and t+1th period, 
respectively. 

, 1 , 1
, ,,t t t t

k TEC k DECη η+ +  Catching-up index of kth DMU in tth 
and t+1th period. 

, , , , , ,
L L L
k TEC k DEC k CIEγ γ γ

 

The lower bounds of possibility 
regression predicting TEC, DEC and 
CIE values of kth DMU, respectively. 

, , , , , ,
U U U
k TEC k DEC k CIEγ γ γ

 

The upper bounds of possibility 
regression predicting TEC, DEC and 
CIE values of kth DMU, respectively. 

, , , , , ,
L L L
k TEC k DEC k CIEπ π π

 

The lower bounds of necessity 
regression predicting TEC, DEC and 
CIE values of kth DMU, respectively. 

, , , , , ,
U U U
k TEC k DEC k CIEπ π π

 

The upper bounds of necessity 
regression predicting TEC, DEC and 
CIE values of kth DMU, respectively. 

,
L
k tυ  

The lower bound of possibility 
regression predicting tth period’s 
efficiency values of kth DMU. 

,
U
k tυ  

The upper bound of possibility 
regression predicting tth period’s 
efficiency values of kth DMU. 

,
L
k tϖ  

The lower bound of necessity regression 
predicting tth period’s efficiency values 
of kth DMU. 

,
U
k tϖ  

The upper bound of necessity regression 
predicting tth period’s efficiency values 
of kth DMU. 
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2.1 Phase I: Efficiency Evaluations 
In this phase, the operational efficiency of each 

DMU in different periods is generated by using the 

MDNDEA model proposed by Yu et al. (2015). However, 

Yu et al.’s (2015) model is constructed based on the 

operational characteristics of bus transit firms. Since the 

operational characteristics among different industries are 

different, the MDNDEA model should be modified to 

suit the bank industry that is applied to illustrate the issue 

of performance prediction in this paper. Before 

modifying the MDNDEA model, the operational 

framework of a bank should be described. Following 

Chao et al. (2015), the operation of a bank mainly 

includes two processes: operating process and 

profitability process. The operating process can be 

further divided into three activities: investment activity, 

loans activity and others activity. The original common 

inputs are shared among activities in the operating 

process. The intermediate outputs produced by individual 

activities flow into the profitability process, including the 

undesirable outputs produced in the loans activity. In the 

profitability process, the final outputs are generated. In 

addition, the carry-over items exist in the loans activity 

and profitability process. However, in the loans activity, 

the carry-over items are undesirable. The operational 

framework is shown in Figure 1. 
 

 
Figure 1: The operational framework of bank 

 

Based on the notations in Section 2.1, the 

operational inefficiency for DMU k can be estimated by 

solving the following MDNDEA model based on the 

directional distance function:  

, , ,

1 ,

( )
max

O OI t OL t OO tT
k OI k OL k OOt

k P t
t k P

w w w w
W

w

β β β
β

β=

 ⋅ + ⋅ +
=  

+ ⋅  
∑

     (1) 

Subject to 

(Investment activity) 

, , , , , ,
1

(1 ) ,

1, , , 1, ,

J
t t t t t t
a OI j OI aj s k OI a OI ak s

j

a

x x

a n t T

µ λ β µ
=

≤ −

= =

∑
K K

        (1.1) 

, , , , 1, , , 1, ,t t t
a OI a OI a OI aL U a n t Tµ< < = =K K      (1.2) 

, , , ,
1 1

, 1, , , 1, ,
J J

t t t t
j OI cj OI j P cj OI c

j j

y y c m t Tλ λ
= =

= = =∑ ∑ K K    

 (1.3) 

,
, , , ,

1

, 1, , , 1, ,
J

t t t t free
j OI cj OI ck OI ck OI c

j

y y S c m t Tλ
=

= − = =∑ K K

  
(1.4) 

(Loans activity) 

, , , , , ,
1

(1 ) ,

1, , , 1, ,

J
t t t t t t
a OL j OL aj s k OL a OL ak s

j

a

x x

a n t T

µ λ β µ
=

≤ −

= =

∑
K K

        (1.5) 

, , , , 1, , , 1, ,t t t
a OL a OL a OL aL U a n t Tµ< < = =K K     (1.6) 

, , , ,
1 1

, 1, , , 1, ,
J J

t t t t
j OL ej OL j P ej OL e

j j

y y e m t Tλ λ
= =

= = =∑ ∑ K K

 
  (1.7) 
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,
, , , ,

1

, 1, , , 1, ,
J

t t t t free
j OL ej OL ek OL ek OL e

j

y y S e m t Tλ
=

= − = =∑ K K

 
(1.8) 

, , , ,
1 1

, 1, , , 1, ,
J J

t t t t
j OL fj OL j P fj OL f

j j

b b f m t Tλ λ
= =

= = =∑ ∑ K K                                   

(1.9) 

, , ,
1

, 1, , , 1, ,
J

t t t
j OL fj OL fk OL f

j

b b f m t Tλ
=

≤ = =∑ K K

  

(1.10) 

( , 1) ( , 1)
, , ,

1

, 1, , , 1, , 1
J

t t t t t
j OL ij OL ik OL i

j

u u i r t Tλ + +

=

≤ = = −∑ K K  (1.11) 

( , 1) 1 ( , 1)
, , , ,

1 1

, 1, , , 1, , 1
J J

t t t t t t
j OL ij OL j OL ij OL i

j j

u u i r t Tλ λ+ + +

= =

= = = −∑ ∑ K K

 
(1.12) 

(Others activity) 

, , , ,
1

, , , ,

(1 )

(1 )(1 ) ,

1, , , 1, ,

J
t t t t
a OI a OL j OO aj s

j

t t t t
k OO a OI a OL ak s

a

x

x

a n t T

µ µ λ

β µ µ

=

− −

≤ − − −

= =

∑

K K

          (1.13) 

, , , ,
1 1

, 1, , , 1, ,
J J

t t t t
j OO gj OO j P gj OO g

j j

y y g m Tλ λ
= =

= = =∑ ∑ K K                                 

(1.14) 

,
, , , ,

1

,

1, , , 1, ,

J
t t t t free
j OO gj OO gk OO gk OO

j

g

y y S

g m t T

λ
=

= −

= =

∑
K K              

(1.15)

 

(Profitability production process) 

, , , ,
1

(1 ) , 1, , , 1, ,
J

t t t t
j P qj P k P qk P q

j

y y q s t Tλ β
=

≥ + = =∑ K K                            

(1.16) 

( , 1) ( , 1) ( , 1),
, , , ,

1

,

1, , , 1, , 1

J
t t t t t t t free
j P lj P lk P lk P

j

l

d d S

l r t T

λ + + +

=

= −

= = −

∑
K K

           (1.17) 

( , 1) 1 ( , 1)
, , , ,

1 1

,

1, , , 1, , 1

J J
t t t t t t
j P lj P j P lj P

j j

l

d d

l r t T

λ λ+ + +

= =

=

= = −

∑ ∑
K K               (1.18) 

(Initial conditions) 

1 (1,1) (0,1)
, , ,

1

, 1, ,
J

j OL ij OL ik OL i
j

u u i rλ
=

= =∑ K               (1.19) 

1 (0,1) (0,1)
, , ,

1

, 1, ,
J

j P lj P lk P l
j

d d l rλ
=

= =∑ K               (1.20) 

1

1
T

t

t

W
=

=∑                                 (1.21) 

1O Pw w+ =                               (1.22) 

1OI OL OOw w w+ + =                         (1.23) 

, , , ,, , , 0, 1, ,j OI j OL j OO j P j Jλ λ λ λ ≥ = K         (1.24) 

, , , , , 0, 1, ,t O P OI OL OOW w w w w w t T≥ = K     (1.25) 
, , ,
, , ,, , : , 1, , ,

1, , , 1, , , 1, ,

t free t free t free
ck OI ek OL gk OO c

e g

S S S free c m

e m g m t T

=

= = =

K

K K K
      (1.26) 

( , 1),
, : , 1, , , 1, , 1t t free

lk P lS free l r t T+ = = −K K       (1.27) 

where ,
t
a OIµ  and ,

t
a OLµ  are the proportions of 

common input a shared to the investment and loans 

activities in period t, respectively. 

, , , ,t OI OL OO OW w w w w
 
and Pw  are the weights on 

period t, the investment activity, loans activity, others 

activity, operating process and profitability process 

respectively, and indicate the relative importance of these 

periods, activities and processes.

 

, , ,
, , ,, ,t free t free t free

ck OI ek OL gk OOS S S  

and ( , 1),
,

t t free
lk PS +  are slack variables. L  and U  are the 

lower bound and upper bound on the shared proportion 

of the various common inputs. Constraints (1.3), (1.4), 

(1.7), (1.8), (1.14) and (1.15) indicate free links between 

the operating process and the profitability process. 

Constraints (1.9) and (1.10) show bad links between the 

loans activity and the profitability process. Constraints 

(1.11) and (1.12) represent undesirable links between 

period t and t+1 in the loan activity. Constraints (1.17) 

and (1.18) indicate free links between period t and t+1 in 

the profitability process. Constraints (1.12) and (1.18) 

impose the continuity condition between two consecutive 

periods. Constraints (1.19) and (1.20) account the initial 

conditions which are given and fixed. Based on the 

above the measures of various inefficiencies, the 

operational efficiency score in period t can be shown as 

follows: 

, , ,

,

1 [ ( )

], 1, ,

t O OI t OL t OO t
k k OI k OL k OO

P t
k P

w w w w

w k J

θ β β β

β

= − ⋅ + ⋅ + ⋅

+ ⋅ = K

  (2)

 

If DMU k is operationally efficient in the tth period, t
kθ  

is equal to one. 

2.2 Phase II: CIE 
By Model (1), the operational efficiency scores can 

be calculated from period 1 to period T. Hence, we can 

further compute the CIE between any two adjacent 

periods. Following Lei et al. (2013), the CIE can be 

formed as 
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1 1 1 1 1 1 ( , 1) ( , 1) 1 ( 1, 2) ( 1, 2)
, , , , , , , , , ,, 1

( 1, ) ( 1, )
, , , , , , ,

( , , , , , , , , , )

( , , , , , , ,

t t t t t t t t t t t t t t t
ak s ck OI ek OL fk OL gk OO ik OL lk P qk P ik OL lk Pt t

k t t t t t t t t t t
ak s ck OI ek OL fk OL gk OO ik OL lk P q

D x y y b y u d y u d

D x y y b y u d y
δ

+ + + + + + + + + + + + +
+

− −
=

( , 1) ( , 1)
, , ,

1

, , )t t t t t
k P ik OL lk P

t
k

t
k

u d

θ
θ

+ +

+

=

                 (3) 

CIE is greater than one as efficiency increases; otherwise, 

it represents efficiency decreases. CIE can be further 

decomposed as 

1 1 1 1 1 1 1
, , , , , ,, 1

, , , , , ,

1 1 1 1 1 1 ( , 1) ( , 1
, , , , , , ,

( , , , , , )

( , , , , , )

( , , , , , ,

t t t t t t t
ak s ck OI ek OL fk OL gk OO qk Pt t

k t t t t t t t
ak s ck OI ek OL fk OL gk OO qk P

t t t t t t t t t t
ak s ck OI ek OL fk OL gk OO ik OL lk P

D x y y b y y

D x y y b y y

D x y y b y u d

δ
+ + + + + + +

+

+ + + + + + + +

=

×
) 1 ( 1, 2) ( 1, 2) 1 1 1 1 1 1 1

, , , , , , , , ,

( 1, ) ( 1, ) ( , 1)
, , , , , , , , , ,

, , , ) ( , , , , , )

( , , , , , , , , ,

t t t t t t t t t t t t
qk P ik OL lk P ak s ck OI ek OL fk OL gk OO qk P

t t t t t t t t t t t t t
ak s ck OI ek OL fk OL gk OO ik OL lk P qk P ik OL lk P

y u d D x y y b y y

D x y y b y u d y u d

+ + + + + + + + + + + +

− − + ( , 1)
, , , , , ,

1 1 1

, 1 , 1
, ,

) ( , , , , , )t t t t t t t t t
ak s ck OI ek OL fk OL gk OO qk P

t t t
k k k

t t t
k k k

t t t t
k TEC k DEC

D x y y b y y

ρ θ ρ
ρ θ ρ

η η

+

+ + +

+ +

=

= ⋅

 (4) 

 

where t
kρ  and 1t

kρ
+  are the measures of 

operational efficiencies for DMU k in period t and 

period t+1 respectively, without considering the effects 

of carry-over items. This two operational efficiencies 

can be obtained by applying the objective function: 

, , , ,max ( )t O OI t OL t OO t P t
k k OI k OL k OO k Pw w w w wρ β β β β= ⋅ + ⋅ + + ⋅

, and the constraints identified in Equations 

(1.1)-(1-10), (1.13)-(1.16) and (1.22)-(1.27).1t t
k kρ ρ+  

is used to measure the TEC with network structure; 
1 1( ) ( )t t t t

k k k kθ ρ θ ρ+ +  is used to measure the DEC in 

order to capture the effects of carry-over items.  

2.3 Phase III: Fuzzy Piecewise Auto-Regression 

After Phase II, number of 1T −  TEC and DEC 

data can be obtained respectively. The TEC and DEC 

of each DMU will be forecasted by applying fuzzy 

piecewise auto-regression, in which number of 2T −  

TEC and DEC data are treat as independent variables 

of fuzzy piecewise auto-regression respectively, and 

the Tth data are dependent variables respectively. 

Fuzzy piecewise auto-regression will find two ranges. 

The first range is estimated by the possibility 

estimation model, indicating that the predicted values 

should be included in the regression range. The second 

range is calculated by the necessity estimation model, 

indicating that the predicted values should be excluded 

in the regression range. Hence, we can respectively 

obtain four TEC and DEC coefficients for each DMU. 

By mixing these TEC and DEC coefficients, we can 

further calculate the CIE coefficients for each DMU, 

and then forecast the future operational efficiency for 

each DMU. 

Fuzzy regression analysis can be interpreted as an 

interval estimation of dependent variables (Yu et al., 

1999; Tanaka and Ishibuchi, 1992; Tanaka and Lee, 

1998). First, an interval, that covers all training data, is 

computed. Then, and a membership function is 

constructed based on this interval. We adopt the 

quadratic form in Phase III for illustrating the 

forecasting process. Based on the observed period T, 

there are one dependent variable, 1,
,

t t
k hη − , and 2t −  

independent variables, ,h TEC DEC= . The linear 

interval regression model for DMU k with independent 

variables using interval parameters iA  ( 0, , 2i t= −K )  

is shown as follows 

1, 2, 1 1,2
, 0 1 , 2 ,...t t t t

k h k h t k hA A Aη η η− − −
−= + + +           (5) 

where 1,
,

t t
k hη −  is the predicted interval for DMU k 

corresponding to the input vector 

( 2, 1
,

t t
k hη − − , 3, 2

,
t t
k hη − − ,.., 1,2

,k hη ), which is a one-dimensional 

input vector for DMU k, and t  is the index for time 

( 1,...,t T= ). An interval defined by the ordered pair in 

brackets is written as follows: 

 [ , ] [ : ]L R L RA a a a a a a= = < <            (6) 

where La  and Ra  denote the left and right 
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limits of A, respectively. Interval A can be also denoted 

by its center and radius as 

( , ) { : }c w c w c wA a a a a a a a a= = − ≤ ≤ +         (7) 

where ca  and wa  denote the center and the 

radius, respectively. Hence, Equation (5) can be 

represented in detail as follows: 
1, 2, 1 1,2

, 0 1 , 2 ,

2, 1
0 , , 0 , , 1 , , 1 , , ,

1,2
2 , , 2 , , ,

, ,

...

       ( , ) ( , )

... ( , )

       ( , )

t t t t
k h k h t k h

t t
c k h w k h c k h w k h k h

t c k h t w k h k h

ck h wk h

A A A

a a a a

a a

Y Y

η η η

η

η

− − −
−

− −

− −

= + + +

= +

+ +

=

   (8) 

where 
2, 1 1,2

, 0 , , 1 , , , 2 , , ,...t t
ck h c k h c k h k h t c k h k hY a a aη η− −

−= + + +     (9) 

2, 1 1,2
, 0 , , 1 , , , 2 , , ,...t t

wk h w k h w k h k h t w k h k hY a a aη η− −
−= + + +    (10) 

where ,ck hY  and ,wk hY  represent the center and the 

radius of predicted interval 1,
,

t t
k hη −  of DMU k. Then, 

the possibility and necessity estimation models are 

explored. First, the possibility estimation model can be 

expressed as follows: 
1, * * * 2, 1 * * 1,2 *

, 0 1 , 2 ,

* * * * 2, 1
0 , , 0 , , 1 , , 1 , , ,

* * 1,2
2 , , 2 , , ,

* *
, ,

( ) ( ) ... ( )

            ( , ) ( , )

... ( , )

            ( , )

t t t t
k h k h t k h

t t
c k h w k h c k h w k h k h

t c k h t w k h k h

ck h wk h

A A A

a a a a

a a

Y Y

η η η

η

η

− − −
−

− −

− −

= + + +

= +

+ +

=

   (11) 

which satisfies the following conditions: 
1, 1, *

, ,( )t t t t
k h k hη η− −⊆  , 1,..,t T=           (12) 

In the possibility analysis, the width of the 

predicted interval 1, *
,( )t t

k hη −  is minimized and includes 

all observed data. Second, the necessary estimate 

model can be written as follows: 

1, 2, 1 1,2
, * 0* 1* , 2* ,

2, 1
0 *, , 0 *, , 1 *, , 1 *, , ,

1,2
2 *, , 2 *, , ,

, * , *

( ) ...

            ( , ) ( , )

... ( , )

            ( , )

t t t t
k h k h t k h

t t
c k h w k h c k h w k h k h

t c k h t w k h k h

ck h wk h

A A A

a a a a

a a

Y Y

η η η

η

η

− − −
−

− −

− −

= + + +

= +

+ +

=

 (13) 

which satisfies the following conditions: 
1, 1,

, * ,( )t t t t
k h k hη η− −⊆  , 1,..,t T=          (14) 

In the necessity analysis, the width of the 

predicted interval 1,
, *( )t t

k hη −  is maximized and is 

included by all observed data. The relations of 

possibility model and necessity model can be 

expressed as follows:  
1, 1, 1, *

, * , ,( ) ( )t t t t t t
k h k h k hη η η− − −⊆ ⊆          (15) 

Furthermore, the fuzzy regression can be extended 

to the fuzzy piecewise regression. We use the quadratic 

programming formulation to determine the necessity 

area by the piecewise linear interval regression model 

as shown in Equation (16).  
2, 1 2, 1

, * ,

1
, * 2 , 1 2 , 1

, , , ,
1

( ) ( )

( )
2

t t t t
k h k h

P
p h t p t p t p t p

k h p h k h p h
p

h

B
P P

η η

η η

− − − −

−
− − − − − − − −

=

=

  
+ − + − 

  
∑

 (16) 

where 2, 1 2, 1
, 0* 1* ,( )t t t t

k h k hh a aη η− − − −= + . , *p hB  is the 

interval of the necessity estimation model of pB . 

, , ,( , )p h pc h pw hB B B=  represents the center and radius of 

,p hB . Similarly, the possibility area can be obtained as 

Equation (16) by substituting *
,p hB  to , *p hB , where 

*
,p hB  is the interval of the possibility estimation model 

of pB . 

Let ,p hP  be a change-point. Then, the operation 

of piecewise term can be written as follows: 
2 , 1 2 , 1

, , , ,

2 , 1 2 , 1
, , , ,

2 , 1
, ,

( )

2

,  if 

0                      ,  if 

t p t p t p t p
k h p h k h p h

t p t p t p t p
k h p h k h p h

t p t p
k h p h

P P

P P

P

η η

η η
η

− − − − − − − −

− − − − − − − −

− − − −

− + −

 − ≥
= 

<

   (17) 

where , 1, ,{ ,.., }p h h P hP P P=  are the values of 

variables 2 , 1
,

t p t p
k hη − − − −  and are subject to an ordering 

constraint 1 2 ... PP P P< < < , 1P N≤ − .  

Hence, the fuzzy piecewise auto-regression 

quadratic programming formulation is shown as 

follows:- 

 
2

2 , 1 2 , 11
, , , ,2, 1

0 , * 1 , * , , *
1 1

(| | )
min  

2

t p t p t p t pN P
k h p h k h p ht t

w h w h k h pw h
k p

P P
a a B

η η
η

− − − − − − − −−
− −

= =

  − + −  
+ +  

    
∑ ∑                          (18) 

Subject to 
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(Possibility constraints) 
*1

,* * 2, 1 2 , 1 2 , 1
0 , 1 , , , , , ,

1

*1
,* * 2, 1 2 , 1 2 , 1

0 , 1 , , , , , , ,
1

( )
2

+ + ( )  
2

P
pc ht t t p t p t p t p

c h c h k h k h p h k h p h
p

P
pw ht t t p t p t p t p

w h w h k h k h p h k h p h k
p

B
a a P P

B
a a P P

η η η

η η η η

−
− − − − − − − − − −

=

−
− − − − − − − − − −

=

  
+ + − + − 

  

    
− − + − ≤  

    

∑

∑ 1, 2 ,t t
h ε− − +

                      (18.1) 

*1
,* * 2, 1 2 , 1 2 , 1

0 , 1 , , , , , ,
1

*1
,* * 2, 1 2 , 1 2 , 1

0 , 1 , , , , , , ,
1

 ( )
2

( )
2

P
pc ht t t p t p t p t p

c h c h k h k h p h k h p h
p

P
pw ht t t p t p t p t p

w h w h k h k h p h k h p h k
p

B
a a P P

B
a a P P

δ η η

δ η η η

−
− − − − − − − − − −

=

−
− − − − − − − − − −

=

  
+ + − + − 

  

    
+ + + − + − ≥  

    

∑

∑ 1, 2 ,

2,  t 1,..., 2     

t t
h

P T T

ε− − −

≤ − ∀ = −

                     (18.2) 

(Necessity constraints) 
1

, *2, 1 2 , 1 2 , 1
0 , * 1 , * , , , , ,

1

1
, *2, 1 2 , 1 2 , 1 1,

0 , * 1 , * , , , , , ,
1

( )
2

+ + ( ) ,
2

P
pc ht t t p t p t p t p

c h c h k h k h p h k h p h
p

P
pw ht t t p t p t p t p t t

w h w h k h k h p h k h p h k h
p

B
a a P P

B
a a P P

η η η

η η η η ε

−
− − − − − − − − − −

=

−
− − − − − − − − − − −

=

 
+ + − + − 

 

   
− − + − ≥ +  
   

∑

∑
                       (18.3) 

1
, *2, 1 2 , 1 2 , 1

0 , * 1 , * , , , , ,
1

1
, *2, 1 2 , 1 2 , 1 1,

0 , * 1 , * , , , , , ,
1

( )
2

( ) ,
2

P
pc ht t t p t p t p t p

c h c h k h k h p h k h p h
p

P
pw ht t t p t p t p t p t t

w h w h k h k h p h k h p h k h
p

B
a a P P

B
a a P P

η η η

η η η η ε

−
− − − − − − − − − −

=

−
− − − − − − − − − − −

=

 
+ + − + − 

 

   
+ + + − + − ≤ −  
   

∑

∑  

,  t 1,..., 2P N T≤ ∀ = −

                    (18.4) 

  where ε  is defined as a very small number. 
 

By calculating *
0 ,c ha , *

1 ,c ha , *
,pc hB , and *

,pw hB , the 

lower bound, ,
L
k hγ ,  and the upper bound, ,

U
k hγ , of 

1,
,

t t
k hη −  for DMU k can be determined by the following 

equations.  
1

* * 2, 1 * 2 , 1
, 0 , 1 , , , ,

1

1
* * 2, 1 * 2 , 1
0 , 1 , , , ,

1

( )

+ +

P
L t t t p t p
k h c h c h k h pc h k h

p

P
t t t p t p

w h w h k h pw h k h
p

a a B

a a B

γ η η

η η

−
− − − − − −

=

−
− − − − − −

=

= + +

 
−  
 

∑

∑
      (19) 

1
* * 2, 1 * 2 , 1

, 0 , 1 , , , ,
1

1
* * 2, 1 * 2 , 1
0 , 1 , , , ,

1

( )

+ +

P
U t t t p t p
k h c h c h k h pc h k h

p

P
t t t p t p

w h w h k h pw h k h
p

a a B

a a B

γ η η

η η

−
− − − − − −

=

−
− − − − − −

=

= + +

 
+  
 

∑

∑
     (20) 

Any 1,
,

t t
k hη −  will lie on , ,[ , ]L U

k h k hγ γ . 

Similarly, by computing 0 , *c ha , 1 , *c ha , , *pc hB , and 

, *pw hB , the lower bound, ,
L
k hπ , and the upper bound, 

,
U
k hπ , of 1,

,
t t
k hη −  for DMU k can be determined by the 

following equations. 

1
2, 1 2 , 1

, 0 , * 1 , * , , * ,
1

1
2, 1 2 , 1

0 , * 1 , * , , * ,
1

+ +

P
L t t t p t p
k h c h c h k h pc h k h

p

P
t t t p t p

w h w h k h pw h k h
p

a a B

a a B

π η η

η η

−
− − − − − −

=

−
− − − − − −

=

= + +

 
+  
 

∑

∑
    (21) 

1
2, 1 2 , 1

, 0 , * 1 , * , , * ,
1

1
2, 1 2 , 1

0 , * 1 , * , , * ,
1

+ +

P
U t t t p t p
k h c h c h k h pc h k h

p

P
t t t p t p

w h w h k h pw h k h
p

a a B

a a B

π η η

η η

−
− − − − − −

=

−
− − − − − −

=

= + +

 
+  
 

∑

∑
     (22) 

All 1,
,

t t
k hη −  could not lie on , ,[ , ]L U

k h k hπ π . 

For any DMU k, we check whether these values 

satisfy the conditions that 

 , , , ,
U U L L
k TEC k TEC k TEC k TECγ π π γ≥ ≥ ≥  and 

 , , , ,
U U L L
k DEC k DEC k DEC k DECγ π π γ≥ ≥ ≥ .  

If these two conditions are satisfied simultaneously, we 

can further calculate the possibility and necessity areas 

of CIE as 

, , ,
L L L
k CIE k TEC k DECγ γ γ= ⋅                          (23) 

, , ,
U U U
k CIE k TEC k DECγ γ γ= ⋅                          (24) 
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, , ,
L L L
k CIE k TEC k DECπ π π= ⋅                         (25) 

, , ,
U U U
k CIE k TEC k DECπ π π= ⋅                         (26) 

where ,
L
k CIEγ  and ,

U
k CIEγ are the lower and upper bounds 

of possibility areas of 1,t t
kδ
−  for DMU k, while  ,

L
k CIEπ  

and ,
U
k CIEπ  are the lower and upper bounds of necessity 

areas of 1,t t
kδ
−  for DMU k. Then, the four operational 

efficiency values, ,
L
k tυ , ,

L
k tϖ , ,

U
k tϖ , and ,

U
k tυ , in the t 

period can be obtained by multiplying  the operational 

efficiency value, 1t
kθ
− , in the t-1 period to 

,
L
k CIEγ , ,

L
k CIEπ , ,

U
k CIEπ , and ,

U
k CIEγ , respectively. Moreover, 

we check , ,[ , ]t L L
k k t k tθ υ ϖ∈ or , ,[ , ]t U U

k k t k tθ ϖ υ∈ . After 

validation, the time horizon is shifted from t  to 1t +  

period to forecast the operational efficiency of each 

DMU. 

3. FORECAST RESULTS 

3.1 The Data  

To demonstrate the validity of the proposed approach, we 

conduct an empirical study to analyze the data of 27 

banks from 2006 to 2012 in Taiwan. The panel data set 

collects from the Taiwan Economic Journal Data Bank. 

Following Chao et al. (2015), we select operating costs 

(OC) and capital utilization expense (CUE) as common 

inputs, which are shared among the investment activity, 

loans activity, others activity and profitability process. 

Investments (I), performing loans (PL) and business 

volume (BV) are treated as the desirable intermediate 

outputs flowing from the investment, loans and others 

activities to the profitability process, respectively. 

Write-offs (WO) is the undesirable intermediate output 

flowing from the loans activity to the profitability 

process. Interest income (IN), non-interest income (NIN) 

and earnings per share (EPS) are selected as the final 

outputs for the profitability process. In addition, 

non-performing loans (NPL) is the undesirable 

carry-over item in the loans activity. Net worth (NW) is 

the discretionary carry-over item in the profitability 

process. Table 2 presents the descriptive statistics of all 

variables used in this paper.  

 

Table 2: Summary statistics of inputs and outputs  
Unit: million NTD 

Variable Mean Std. Dev. Max Min 

OC 22,262 29,876 362,799 2,106 
CUE 5,008 390 18,372 248 
I 284,115 514,066 3,841,931 2,232 
PL 629,715 560,472 2,183,508 69,284 
WO 7,371 5,746 26,542 574 
NPL 6,472 6,596 37,452 118 
BV 3,568,241 9,734,540 78,394,200 56 
IN 22,045 18,380 86,859 2,218 
NIN 11,054 7,494 37,915 49 
EPS(NTD) 4.90 2.68 12.89 0.02 
NW 69,030 55,307 263,734 15,522 

3.2 Efficiency Prediction 

First, the operational efficiency scores from 2006 to 

2012 are evaluated by Model (1). All banks don’t have 

full efficiency during the sample period. Then, the CIE, 

TEC and DEC can be calculated by Equations (3) and (4). 

1 Finally, the fuzzy piecewise auto-regression is used to 

forecast the efficiency of 27 banks in 2012 in Taiwan. 

Since the CIE ranges are obtained from the TEC 

and DEC ranges, the possibility and necessity areas of 

TEC and DEC should be calculated. The possibility and 

necessity estimation models of TEC obtained from 

Model (18) is written as follows:  

[ ] [ ]
[ ]
[ ]

2010,2011 2006,2007
, ,

2008,2009
,

2009,2010
, 1

0.8870,0,0.1739 0,0,0.0057

0,0,0.0161

0,0,0.0058

k TEC k TEC

k TEC

k TEC ESP

η η

η

η

= +

+

+ +

(27) 

where 
, 2 , 11

, ,
1

1 2 , 1
, ,

(
2

)

pc TEC t p t pP
k TEC p TEC

p t p t p
k TEC p TEC

B
P

ESP

P

η

η

− − − −−

= − − − −

 
− 

=  
 + − 

∑ 2.  

The first value in the square bracket represents the center, 

the second value represents the necessity radius, and the 

final value is the possibility radius. 

Similarly, the possibility and necessity estimation 

models of DEC obtained from Model (18) is show as 

                                                 
1 Due to limited space, the values of operational efficiency, 

CIE, TEC and DEC are not presented. They are available 
from the author upon request. 

2 The values of 1ESP  among 27 banks are different. Due to 

limited space, the values of 1ESP  are not presented. They 

are available from the author upon request. 
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follows:  

[ ] [ ]
[ ]
[ ]
[ ]

2010,2011 2006,2007
, ,

2007,2008
,

2008,2009
,

2009,2010
, 2

0.3351,0,0.1359 0.1711,0,0.0022

0.2768,0,0.0281

0.1129,0,0.0169

0,0,0.0168

k DEC k TEC

k TEC

k TEC

k TEC ESP

η η

η

η

η

= +

+

+

+ +

(28) 

where 
, 2 , 11

, ,
2

1 2 , 1
, ,

(
2

)

pc DEC t p t pP
k DEC p DEC

p t p t p
k DEC p DEC

B
P

ESP

P

η

η

− − − −−

= − − − −

 
− 

=  
 + − 

∑ 3.  

Furthermore, using Equations (23)-(28), the lower 

and upper bounds of possibility and necessity areas 

( ,
L
k CIEγ , ,

U
k CIEγ , ,

L
k CIEπ  and ,

U
k CIEπ ) of 2010,2011

kδ  for 

DMU k can be obtained. The validating ranges of 
2010,2011
kδ  are represented in Table 3. The final row in 

Table 3 reports the actual data. The results identify the 

validation of the proposed forecasting approach. 

Table 3: Validating CIE index 
Bank Lγ  Lπ  Uπ  Uγ  2010,2011δ  

1 0.5924 0.9425 0.9425 1.3727            0.8659 
2 0.5687 0.9140 0.9140 1.3407            0.9877 
3 0.7203 1.1055 1.1055 1.5723            1.0010 
4 0.7221 1.1034 1.1034 1.5652            1.2200 
5  0.7172 1.0982 1.0982 1.5595            1.0401 
6  0.7513 1.1363 1.1364 1.6007            1.1431 
7  0.5961 0.9503 0.9503 1.3865            1.0491 
8 0.5309 0.8624 0.8652 1.2772            0.9107 
9 0.7074 1.0838 1.0838 1.5402            1.3020 
10 0.6855 1.0593 1.0593 1.5142            1.0557 
11  0.6780 1.0558 1.0558 1.5148 1.0158 
12  0.7253 1.1093 1.1093 1.5745            1.0643 
13  0.6814 1.0540 1.0540 1.5075            0.9572 
14 0.6429 1.0064 1.0064 1.4505        0.9190 
15  0.7228 1.1066 1.1066 1.5716            1.0584 
16   0.8081 1.2063 1.2100 1.6884            0.9999 
17 0.7378 1.1226 1.1226 1.5879            1.0186 
18   0.6557 1.0238 1.0238 1.4729            1.0017 
19   0.6964 1.0770 1.0770 1.5392  1.0274 
20 0.6431 1.0101 1.0101 1.4595            1.0019 
21 0.7440 1.1301 1.1301 1.5964            1.1209 
22 0.7529 1.1455 1.1455 1.6185            1.1580 
23 0.8141 1.2163 1.2163 1.6990            1.0318 
24 0.6657 1.0415 1.0415 1.5006 0.8846 
25 0.7115 1.0879 1.0905 1.5469 1.1382 
26 0.6846 1.0595 1.0595 1.5149 0.9071 
27 0.5094 0.8377 0.8377 1.2470 0.9008 

 

                                                 
3 Similarly, the values of 2ESP  are available from the author 

upon request. 

After validation, the 2012 operational efficiency 

scores can be forecasted. ,2012
L
kυ , ,2012

L
kϖ , ,2012

U
kϖ , and 

,2012
U
kυ  can be obtained by multiplying  the operational 

efficiency value, 2011
kθ , to ,

L
k CIEγ , ,

L
k CIEπ , ,

U
k CIEπ , and 

,
U
k CIEγ , respectively. The results of efficiency prediction 

are shown in Table 4. The final row reports the actual 

values of operational efficiency in 2012. The results 

show the accuracy rate is 100%. In addition, our 

approach can predict the trend of efficiency change. If 

the actual value of operational efficiency lies on 

2012 2012[ , ]U Uϖ υ , the trend is up; whereas if the actual value 

of operational efficiency lies on 2012 2012[ , ]L Lυ ϖ , the trend 

is down. The results indicate that 11 banks (1, 2, 6, 7, 8, 

13, 14, 20, 24, 26 and 27) have the upward trends, but 16 

banks (3, 4, 5, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23 

and 25) have the downward trends. 

Table 4: The comparison of observed efficiency and 
predicted efficiency 

Bank 2012
Lυ  2012

Lϖ  2012
Uϖ  2012

Uυ  2012θ  

1 0.4916 0.8092 0.8092 1.0000            0.9999  
2 0.4902 0.8081 0.8081 1.0000            0.8758  
3 0.6021 0.9464 0.9464 1.0000            0.8612  
4 0.6300 0.9912 0.9912 1.0000            0.7958  
5  0.6191 0.9808 0.9808 1.0000            0.8972  
6  0.5648 0.8912 0.8912 1.0000            0.9173  
7  0.4508 0.7370 0.7370 1.0000            0.8977  
8 0.3877 0.6529 0.6529 0.9863            0.8458  
9 0.6056 0.9572 0.9572 1.0000            0.8541  
10 0.5901 0.9380 0.9380 1.0000            0.8895  
11  0.5887 0.9343 0.9343 1.0000            0.8501  
12  0.5975 0.9407 0.9407 1.0000            0.8563  
13  0.5586 0.8870 0.8870 1.0000            0.8946  
14 0.4805 0.7753 0.7753 1.0000            0.7917  
15  0.5990 0.9410 0.9410 1.0000            0.8285  
16   0.5679 0.8795 0.8795 1.0000            0.8066  
17 0.6189 0.9680 0.9680 1.0000            0.8710  
18   0.5682 0.9108 0.9108 1.0000            0.8475  
19   0.5927 0.9446 0.9446 1.0000            0.8641  
20 0.5133 0.8313 0.8313 1.0000            0.8604  
21 0.5601 0.8825 0.8825 1.0000            0.7934  
22 0.6383 1.0000 1.0000 1.0000    0.8558  
23 0.6793 1.0000 1.0000 1.0000            0.8492 
24 0.4930 0.7961 0.7961 1.0000            0.8749 
25 0.5948 0.9482 0.9482 1.0000            0.8788 
26 0.5037 0.8072 0.8072 1.0000            0.8471 
27 0.3886 0.6557 0.6557 0.9917    0.9054 
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4. CONCLUSIONS 
This paper develops a performance forecasting 

model by integrating MDNDEA and fuzzy piecewise 

auto-regression. The advantages of the proposed 

approach are: First, the operational efficiency is 

evaluated under the consideration with the internal 

structure of operational process. Second CIE is 

calculated by the relative operational efficiencies in the 

two adjacent periods to avoid the limitation of efficiency 

data. Third, CIE is decomposed into TEC and DEC to 

excavate the effects of carry-over items. Finally, the 

interval estimation can be used to forecast efficiency and 

explore the trend of efficiency change. We conducted an 

empirical study using real data from 27 banks in Taiwan 

from 2006 to 2012 to demonstrate the validation of the 

proposed approach. The results indicate that the 

proposed approach for performance prediction has high 

accuracy.  

However, there are some limitations in this paper. 

First, the effect of network structure is ignore, when CIE 

is decomposed in this paper. Second, the technical 

change could affect the performance movement. 

However, our performance prediction does not consider 

the effect of technical change. Future research can 

further investigate these issues. 
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