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1. INTRODUCTION 

Like most OECD countries, Japan is experiencing 

substantial changes in its socio-economic structure due to the 

growing number of low-wage workers and the rapid pace of 

population ageing. While this necessitates a series of reforms 

in public programs targeted at such disadvantaged households, 

public funds for such programs are limited, restricting the 

scope of possible reforms. Given this lack of resources, it is 

important to achieve higher efficiency in welfare program 

implementation. We would then naturally be interested in 

examining the performance of welfare organization and 

exploring factors that may affect the efficient implementation 

of its programs. Data Envelopment Analysis (DEA) is one of 

the standard tools used for examining efficiency. While a 

number of DEA studies examine public sector activities, those 

addressing social assistance are limited (Martin 2002, Ayala 

et al. 2008, Enache 2012, Habibov and Fan 2010, Broersma et 

al. 2013). This may partly be due to the traditional reluctance 

to conduct economic evaluation as part of social policy (Ayala 

et al. 2008). In addition, DEA studies on social assistance 

address varied concerns. Some are interested in the efficiency 

of welfare offices providing social assistance to a given size of 

welfare recipients (Martin 2002, Ayala et al. 2008), while 

others focus on the efficiency in social expenditure in reducing 

poverty level (Enache 2010, Habibov and Fan 2012). The 

efficiency of social assistance spending across different socio-

economic environments has also been studied (Broersma et al. 

2013). In this study, we examine the efficiency of welfare 

offices, not the efficiency of welfare spending. This focus 

means that the studies of Martin (2002) and Ayala et al. (2008) 

are of direct relevance to our analysis. Martin (2002) may be 

among the first to have applied DEA to welfare programs, 

using the data from social assistance offices in Oregon. In the 

same vein, Ayala et al. (2008) evaluate the efficiency of 41 

social services agencies in Madrid, Spain. 

We aim to improve on these studies by investigating the 

efficiency of social welfare offices in the Japanese system of 

local public administration. The Japanese case indeed merits 

analysis. First, no studies have utilized DEA to investigate 

efficiency issues in the Japanese social assistance program. 

Second, data are available for the Japanese case, pertaining to 

caseloads by category for multiple output variables and public 

employment by type for input variables, both at the municipal 

level. We also take advantage of this availability to conduct a 

second-stage regression (2SR) analysis with the efficiency 

score for social welfare offices, to examine the factors 

influencing the efficiency of municipal programs. 

This paper is organized as follows. Section 2 describes the 

Japanese system of social assistance and activities of its social 

welfare offices to set up an input–output model that yields 
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DEA efficiency scores. It then calculates relevant efficiency 

scores and conducts an analysis. Section 3 then explores the 

effects of external factors on the efficiency scores. For this 

purpose, it utilizes the 2SR analysis. In so doing, it elaborates 

on the issues concerning the 2SR and employ several 

estimation methods proposed in the literature to obtain a set of 

estimates and compare the results. Section 4 extends the 

analysis in Section 3 to perform quantile regressions. It does 

so with an anticipation that the external factors exert different 

impacts on the efficiency, depending on the level of the latter. 

Section 5 concludes this study. 

 

2. EFFICIENCY SCORES 

A DEA study starts by specifying decision-making units 

(DMUs) and variables for inputs and outputs. This section 

specifies the DMUs and the variables for inputs and outputs 

for the current analysis. Finding the relevant inputs and 

outputs for welfare office activities requires an examination of 

the nature of the actual system. It therefore elaborates on our 

DEA model, while discussing the institutional mechanism of 

the Japanese system of social assistance. 

 

2.1. DMUs 

Public Assistance (PA), Seikatsu Hogo in Japanese, acts as 

the last social safety net covering those excluded from the 

upper layers of social programs and is implemented by local 

governments in the country. The Public Assistance Law (PAL) 

allows the Ministry of Health, Labour and Welfare (MHLW) 

to mandate local governments to implement PA programs. 

There are two levels of local government in Japan: prefectures 

and municipalities (cities, towns, villages, and Tokyo 

Metropolitan special wards (TMSWs)). The Social Welfare 

Law (SWL) requires cities, TMSWs, and prefectures to set up 

social welfare offices, through which they implement social 

programs including PA. The SWL does not require towns and 

villages to do so. In towns and villages that do not have their 

own welfare offices, prefectural welfare offices cover their 

respective population. We thus use 658 cities in 2010 as our 

DMUs, excluding villages and towns that have their own 

social welfare offices. Note that we could not utilize all those 

cities that have their own welfare offices, since some of them 

lack all the necessary data required for our analysis. Notice 

also that since a small number of cities have more than one 

social welfare office, the number of DMUs is not necessarily 

identical to the number of individual welfare offices. 

Nonetheless, we do not consider this a major problem, as 

municipalities, not individual welfare offices, make decisions 

on human resource allocation concerning welfare offices. 

 

2.2. Outputs and Inputs 

A function of social welfare offices is to provide PA for 

those who are in need of it. The PA intends to guarantee the 

minimum cost of living for Japanese citizens. Through the 

PAL, the central government sets uniform procedures for 

localities to follow when they provide PA benefits. That is, 

local governments do not set the eligibility standard or the 

benefit levels for their PA programs. The PA benefits are equal 

to the minimum cost of living in excess of what an individual 

earns with his/her best effort. The MHLW determines the 

minimum costs of living, allowing for differences in the cost 

due to regional price differences, the formula for which 

uniformly applies across the nation. To receive the benefits, 

applicants are supposed to exhaust their available resources. 

The PA program therefore requires local welfare offices to 

conduct a careful examination, or a “means test,” of the 

financial situation of the applicants. 

It is then natural to employ welfare caseloads (the number 

of recipients obtaining assistance) as our choice of the output 

variable. Indeed, Martin (2002) and Ayala et al. (2008) make 

analogous choices. However, they also use other variables. In 

addition to caseloads, Martin (2002) uses the number of job 

placements, successful exits (the number of recipients who 

have been off assistance during the last 18 months at least), 

and child support benefits. Meanwhile, Ayala et al. (2008) 
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additionally use the median length of processing applications. 

Our omission of these additional outputs may be justifiable in 

the Japanese institutional context. First, Japanese welfare 

offices do not implement active labor market programs that 

are comparable to those in other OECD countries. Second, 

child support benefits are irrelevant for the Japanese case since 

another municipal branch is responsible for them. Third, 

processing time may be reflected in the caseload size, since 

shorter processing time leads to a larger caseload size in a 

given time period. As we mentioned above, the activities of 

Japanese welfare offices center on means testing, delivery of 

benefits, and monitoring of the recipients. 

While we focus on welfare caseloads as the output in the 

current study, a single type of caseload may not suffice. Since 

the needs of the PA recipients vary depending on their 

characteristics, the services required for different categories of 

PA recipients must also be different. Fortunately, we have 

access to disaggregated caseload data for five categories of 

recipient households: those made only of (i) the elderly (those 

consisting only of those aged 65 years and above), and those 

headed by (ii) single mothers, (iii) the handicapped, (iv) the 

sick and injured, and (v) others. The categorization is 

lexicographic, starting from (i) and proceeding to (v). In 

FY2010, elderly households constituted the largest proportion 

(43%), followed by households headed by the injured and sick 

(23%) and the disabled (11%). The remaining consist of 

households headed by single mothers (8%) and others (16%). 

These categories of recipients apparently require different 

types of casework. We therefore use their caseloads as 

different multiple (five) outputs in our analysis. 

A natural choice for the inputs is the size of employment at 

welfare offices, since “labor” is a straightforward input in this 

production process. Indeed, Ayala et al. (2008) and analogous 

DEA studies on public employment offices (Sheldon 2003, 

Vassiliev et al. 2006, Althin et al. 2010) use the sizes of office 

staff by type as prime inputs. Our data allow us to differentiate 

them into caseworkers and administrative staff. It is also 

natural to consider “capital” type production inputs. For 

example, Martin (2002) considers the number of offices, while 

Althin et al. (2010) employ office space. However, the data for 

office space are not available for the current case. We thus 

have to content ourselves with the use of single types of input, 

i.e., labor. This may not be a serious problem though, since 

labor is more relevant than capital for the analysis of welfare 

programs, given the labor-intensive character of social 

services (Ayala et al. 2008) 

 

2.3. Results 

Given the nature of the PA system in Japan, the size of the 

needy is largely exogenous for municipalities. Although it 

might be possible for welfare offices to implement programs 

to reduce these needs, such changes are indeed slim. Thus, the 

efficiency concept in this analysis concerns how efficiently 

welfare offices manage a given level of caseloads without 

reducing the services for the recipients. We thus employ the 

input-oriented efficiency score E. Formally, the score E is the 

maximal contraction of all inputs x ((i) caseworkers and (ii) 

other staff) that allows us to produce a given combination of 

outputs y (caseloads for (i) the elderly, (ii) single mothers, (iii) 

the handicapped, (iv) the sick and injured, and (v) others). That 

is, E  min{E > 0 | (Ex, y)  T} where T is a technology set. 

The measurement thus utilizes the Charnes–Cooper–Rhodes 

(CCR) model (Charnes et al. 1978) to obtain the score E based 

on the Farrell index of input efficiency. 

A linear programing exercise yields three types of 

efficiency scores (EVRS, ECRS, EDRS), being based respectively 

on the concepts of variable returns to scale (VRS), constant 

returns to scale (CRS), and decreasing returns to scale (DRS). 

Figure 1 shows their kernel distributions. There are noticeable 

differences between the scores based on variable returns to 

scales (EVRS) and those based on the other two types of returns 

(ECRS, EDRS). As expected, EVRS tend to yield higher efficiency 

scores. The distribution of EVRS has an average of 0.459 with a 

standard deviation (s.d.) of 0.191 and ranges from 0.133 to 
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unity. Meanwhile, the distribution of ECRS (EDRS) has an 

average of 0.376 (0.387) with an s.d. of 0.183 (0.196) and 

ranges from 0.064 (0.064) to unity. 

We perform the bootstrapped tests for returns-to-scale as 

indicated by Simar and Wilson (2002, 2011), using the (i) ratio 

of means, (ii) mean of ratios, and (iii) mean of ratios of DEA 

scores less unity (the number of replications is 3,000). The 

tests reject both the null hypotheses of constant returns and 

decreasing returns to scale at the standard levels of statistical 

significance. In the next analysis, we therefore proceed with 

EVRS, the scores based on variable returns to scale. There are 

indeed large differences in the efficiency score among 

municipalities. Only 29 municipalities (4.4%) are located on 

the frontier with a full score of unity, while the other 629 

municipalities (95.6%) are off the frontier. As such, Figure 1 

suggests sizable room for efficiency improvement. 

 

 

Figure 1: Distributions of efficient scores 

 

 

3. EXTERNAL EFFECTS ON EFFICIENCY 

3.1. Adjustments for Environmental/External Factors 

In the previous suction, we noted the large variations in the 

efficiency scores among municipalities. We might then rank 

individual DMUs according to the efficiency scores so that the 

                                                      
1 There are three approaches to such adjustments (Cordero et al., 2009). First, 
one-stage models regard external factors as additional inputs in the standard 

DEA model but obtain the efficiency scores with special restrictions on them 

(Banker and Morey 1986, Ruggiero 1996). Second, two-stage models obtain 
the efficiency scores without external factors in the first stage and regress the 

less efficient DMUs could use them as a benchmark to 

improve their efficiency. However, doing so may not be 

appropriate since Japanese social welfare offices apparently 

operate in non-homogeneous environments, which are likely 

to exert different impacts on the performance of the DMUs. In 

other words, the “inefficiency” may originate from factors 

outside the control of the DMUs, thus limiting the scope of 

efficiency improvement that Figure 1 may otherwise indicate. 

The ranking of the DMUs would then require adjustments of 

the efficiency scores that allow for different external 

(environmental) factors.1 

While the evaluation of individual DMUs is the primary 

objective of DEA, it may also be meaningful to examine if and 

how external factors affect the efficiency. Indeed, it is 

important to examine factors that affect PA implementation at 

social welfare offices and to find the directions and degrees of 

their impacts on their efficiency. For example, if the central 

government can change such external factors, it could 

improve the overall efficiency of municipal PA programs. For 

this reason, Section 3-4 discusses two-stage models but leaves 

the adjustment of efficiency scores to future studies. 

 

3.2. The Second-stage Regression Model 

We specify our 2SR model as a linear-in-parameters form. 

i i iE u  z β     (1) 

where Ei is an efficiency measure obtained in the first stage, zi 

is a vector of external factors,  is a vector of coefficients, ui is 

an error term, and i indexes the DMUs. For the efficiency 

measure (i.e., dependent variable), we alternatively use the 

efficiency score (EVRS) and its reciprocal (distance function 

1/EVRS). For the factors in z, we consider municipal population 

(in log), surface area (in log), the Fiscal Capacity Index (FCI), 

the Obligatory Expenses Ratio (OER), the Local Allocation 

Tax (LAT) received (as the binary variable), and caseload 

scores on a set of external factors in the second stage (Ray 1991). They then 
use the second-stage estimates to adjust the efficiency scores. Third, adjusted 

values models utilize the estimates for the effects on slacks of external factors 

to adjust the values of discretionary variables and obtain the DEA efficiency 
scores with these slack-adjusted values (Muñiz 2002, Fried et al. 1999). 

0 .2 .4 .6 .8 1

VRS CRS DRS
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growth rate. The variables are defined later in this section. We 

select these six factors for the following reasons. 

First, as the literature on local public finance shows, there 

exist economies of scale in local expenditures up to a certain 

level of the population (Duncombe and Yinger 1993). Larger 

localities tend to provide more categories of services than 

smaller ones (Oates 1988), yielding economies of scope in 

more populous municipalities. Using the savings from these 

two scale economies, localities with a higher population could 

invest more resources so that welfare offices may become 

more efficient. These lines of reasoning suggest that a larger 

population would lead to higher efficiencies. 

Second, the space of a given locality should also matter. 

Since caseworkers visit their PA recipients within a given 

period, the more widespread the residences of the recipients, 

the more the time spent on their cases. Since more time spent 

on a case implies that the caseworker will handle a fewer 

number of cases, spacious jurisdictions denote less efficiency. 

Third, fiscal capacity is also a concern. The Japanese 

government estimates an index for the “fiscal capacity” of 

localities with the data obtained from its system of central 

grants (the LAT). The amount of LAT a locality receives is the 

non-negative difference between its Standard Fiscal Demand 

(SFD) and Standard Fiscal Revenue (SFR). The SFD 

estimates the level of local expenditures required to maintain 

the standard level of public services, while the SFR estimates 

standardized local revenues. The system defines the FCI as the 

three-year average of the ratio of the SFR to the SFD. Another 

index of fiscal capacity is the OER, which shows a percentage 

of expenses that a locality cannot easily adjust, including 

personnel expenses, local debt-service payments, and other 

expenses the central government requires them to spend. 

Larger fiscal capacity implies more fiscal abundance, from 

which localities could spare more resources for providing 

welfare offices with more caseworkers and administrative 

staff for a given level of caseloads. This may or may not imply 

that a larger fiscal capacity would lead to lower efficiency. 

However, a drawback in using the FCI as fiscal capacity is 

its negative correlation with the LAT grant a locality receives. 

The LAT may adversely affect the efficiency of local spending 

(e.g., Otsuka et al. 2014), which then suggests that a large 

value of FCI may be associated with a smaller value of the 

efficiency score. To control the effect of receiving transfers, 

the regression below allows for the receipt of LAT grants. In 

addition to its claimed adverse effects, the LAT compensates 

the local burden of PA expenditures. While the central 

government disburses 75% of local PA expenditure with 

matching grants to localities, the SFD allows for the rest of the 

cost. In other words, while LAT recipients enjoy the increase 

in PA benefits covered by the central grants, the non-recipients 

have to meet 25% of that increase out of their own pockets. 

This would then imply that receiving LAT grants adversely 

affects the efficiency score. 

Lastly, the speed of caseload changes affects the efficiency. 

Roughly speaking, efficiency is the ratio of output over input. 

Since inputs are the numbers of caseworkers and other staff 

members, the efficiency tends to increase if the adjustments of 

the inputs are slow relative to the changes in the outputs. The 

analysis seen below allows for this aspect by including the rate 

of increase in PA caseloads from FY2008 to FY2009 as the 

measured input at the beginning of FY2010. 

 

3.3. Econometric Issues 

It is important when estimating 2SR models to recognize 

that DEA scores obtained in the first stage are estimates (Simar 

and Wilson 2007). We can frame the issue as a typical case of 

measurement errors in the dependent variables (Wooldridge 

2010, 7677). The 2SR typically assumes the following data 

generation process (DGP).  

*

i i iE   z β     (2) 

where Ei
* is the true value of the efficiency score. Since Ei

*is 

not observable, the estimated score Ei surrogates Ei
*. Defining 

the measurement error in the dependent variable as si  Ei  

Ei
*, we can express Equation (2) as Equation (1) with ui  si + 
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i. If Ei is consistent, si approaches zero (i.e., Ei approaches Ei
*) 

as the sample size approaches infinity. Since Ei is indeed 

consistent (Banker 1993, Kneip et al. 1998), the existence of 

si does not affect the asymptotic distribution of estimators for 

. In other words, treating DEA scores as estimates does not 

pose an issue if we have a suitably large sample. 

   On the other hand, we are not sure how large a suitable 

sample would be, since the convergence of Ei to Ei
* becomes 

slower as the number of inputs and outputs in the DEA model 

increases (Kneip et al. 1998). This “curse of dimensionality” 

might make the asymptotic approximation fail even with a 

relatively large sample. In addition, the very calculation of 

DEA scores for individual DMUs creates correlations among 

them (Xue and Harker 1999).2 The curse of dimensionality 

and the correlation among the scores makes ui non-spherical 

though si is a finite sample, even if i is spherical (i.e., i.i.d.). 

Furthermore, it is very likely that i is also non-spherical since 

we typically use a sample of the cross-sectional data. We thus 

adjust the covariance matrix of  estimates to arrive at a valid 

inference. As the pattern of non-spherical error u is unknown, 

our choices include utilizing a heteroskedastic consistent 

covariance matrix estimator (McDonald 2009) or 

bootstrapping the covariance matrix (Simar and Wilson 2007).  

Another econometric issue concerns the method to estimate 

Equation (1). The most straightforward is the ordinary least 

squares (OLS) estimator (Ray 1991), which does not 

explicitly allow for the fact that the dependent variable is 

bounded: EVRS  (0, 1] or 1/EVRS  [1, ). To allow for these 

bounds, Bjurek et al. (1992) estimate the 2SR model with 

censoring at unity (Tobit estimator). While a number of studies 

use the method, the Tobit estimator also has its shortcomings 

when applied to the 2SR (McDonald 2009). Therefore, Simar 

and Wilson (2007) model it as a linear model with truncation, 

whereas Hoff (2007) and Ramalho et al. (2010) depart from 

the linear specification to utilize the fractional response (FR) 

                                                      
2 Perturbations of DMUs lying on the estimated frontier change the scores of 
some other DMUs. 

model devised by Papke and Wooldrige (1996). 

 

3.4. Estimation Results 

To estimate Equation (1), we employ all the four models: (i) 

OLS, (ii) Tobit, (iii) truncation, and (iv) FR models.3 The FR 

model is not applicable to cases that employ 1/EVRS as their 

dependent variable. For the covariance matrices of these 

estimators, we bootstrap the standard errors with 3,000 

replications to allow for their possible inconsistency and finite 

sample bias. In addition, we utilize the double bootstrap 

procedure (Algorithm #2) by Simar and Wilson (2007), which 

essentially replaces the original EVRS with bias-corrected 

bootstrapped EVRS when bootstrapping the truncated 

regression of Equation (1). The number of replications for the 

bias-corrected EVRS and 2SR is 200 and 3,000 respectively. 

Note that, since this method is not computationally applicable 

to the efficiency score with bounds (0, 1] (Simar and Wilson 

2008, Besstremyannaya and Simm 2015), we apply it only to 

the case with the distance function. 

Table 1 lists the results. The first four columns are cases 

with the efficiency score and the last four are cases with its 

reciprocal (distance function). These results are robust in the 

sense that the statistical significances do not change over 

different estimation methods for a given dependent variable 

(EVRS or 1/EVRS). In all the cases, population, surface area, the 

FCI, and the LAT received are all statistically significant, 

while the OER and caseload changes are not. The results show 

that larger population, smaller surface area, lower fiscal 

capacity, and the non-receipt of LAT grants tend to increase 

the efficiency as expected, whereas the other two variables do 

not affect the efficiency. In particular, the insignificance on the 

caseload changes imply that the inputs (caseworkers and other 

staff members) adjust smoothly against the changes in the 

outputs (PA caseloads). 

Furthermore, the marginal effects of these external factors 

3 We use the logistic distribution for the cumulative distribution that shapes the 
fractional response. 
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are almost similar among the E-OLS, E-Tobit, and E-FR and 

between the D-OLS and D-Tobit models (where E and D 

denote efficiency and distance respectively). On the other 

hand, the differences in values with truncated regression and 

those from other models are rather conspicuous, albeit not so 

large, with statistically significant coefficients. These 

differences are likely due to different samples rather than the 

different DGP or estimation method (truncated or not), as E-

TRC and D-TRC exclude 29 DMUs that have full efficiency 

scores of unity. In addition, while D-TRC/SW does not 

exclude them, it uses bootstrapped bias-corrected scores 

whose values are not only different from the standard ones but 

also differ from unity. 

McDonald (2009) argues that the idea of efficiency scores 

as estimates of “true” scores, as suggested by Simar and 

Wilson (2007), “would lead to considerable complexity and 

perhaps only minor changes in inference.” Qualitatively, his 

argument seems to apply to our cases. All the estimation 

methods, including OLS, show that larger population, smaller 

surface area, lower FCI, and non-receipt of LAT grants would 

increase the efficiency, whereas the others do not affect the 

efficiency. Quantitatively, however, the results are somewhat 

different. In particular, the effects of population, FCI, and LAT 

receipt differ with the truncation regressions, although the 

effect of surface area does not change much. 

 

Table 1: Estimation results 

Dependent variable Efficiency score (EVRS) Distance function (1/EVRS) 

Models E-OLS E-Tobit E-FR E-TC D-OLS D-Tobit D-TC D-TC/SW 

ln(population) 
  .075***   .078***   .075***   .061***  .269***  .294***  .368***  .362*** 

(.014) (.014) (.014) (.011) (.062) (.067) (.104) (.113) 

ln(area) 
 .027***  .028***  .027***  .026***   .143***   .149***   .229***   .246*** 

(.009) (.009) (.009) (.007) (.043) (.046) (.071) (.083) 

Fiscal capacity index (FCI) 
 .264***  .270***  .263***  .246***  1.267***  1.320***  1.929***  2.070*** 

(.056) (.057) (.056) (.043) (.294) (.301) (.448) (.501) 

Obligatory expense ratio (OER) 
.143 .149 .143 .109 1.168 1.222 1.751 1.967 

(.166) (.173) (.170) (.145) (.947) (.979) (1.431) (1.659) 

LAT receipt 
 .140***  .145***  .140***  .108***  .561**  .602**  .750*  1.000** 

(.049) (.051) (.049) (.064) (.274) (.285) (.436) (.506) 

Caseload growth 
.021 .016 .022 .064 .046 .082 .082 .098 
(.095) (.099) (.096) (.088) (.472) (.491) (.691) (.794) 

Constant 
.075 .099 

 
.039 4.538***   4.729***   4.852***  4.904*** 

(.171) (.181) (.158) (.895) (.949) (1.438) (1.609) 

Notes: (1) The sample sizes are 658 for E-OLS, E-Tobit, E-FR, D-OLS, and D-Tobit. (2) Truncation regressions (E-TRC and D-TRC) exclude 
DMUs with EVRS (1/ EVRS) = 1, trimming the sample size down to 629. (3) ***, **, and * indicate p  .01, .01 < p  .05, and .05 < p  .10 
respectively. (4) Bootstrapped standard errors are in parentheses (3,000 replications). (5) D-TC/SW utilizes the r-DEA package (Simm and 
Besstremyannaya 2015) to obtain the bootstrapped bias-corrected efficiency scores as suggested by Simar and Wilson (2007) with 200 
replications, and then uses these scores for the bootstrapped truncated regression with 3,000 replications. (6) E-FR lists the marginal effects 
evaluated at the sample averages. 

 

 

4.  QUANTILE REGRESSIONS ANALYSIS 

4.1. Different Responses along the Quantiles of Efficiency 

All the preceding models, except the FR model, assumed that 

the marginal effects of the external factors on efficiency are 

constant on average. Such effects may plausibly differ among 

DMUs with different levels of efficiency. This section 

therefore conducts the 2SR using quantile regression (QR) to 

address the possible different responses of the efficiency 

scores to the external factors. 

With QR, we can estimate the responses of the efficiency 
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score to changes in the external factors across the conditional 

quantiles of the former. For the QR analysis, we first define a 

conditional quantile function of E as Q(Ei | zi)  F1( | zi), 

where F(| zi) is a c.d.f. of E at quantile , conditioned on a 

given set of external factors zi. We then specify a linear 

regression model as E = z + u, where  is a vector of 

coefficients that vary across quartiles, and ui is the error term. 

The QR estimator for  is a sample analogue of b  argmimb 

E{(E = zb)}, where  is the check function defined as   

1[E  zb > 0] | E  zb | + 1[E  zb  0](1  )| E  zb |. 

This scheme results in a minimand that selects conditional 

quantiles. 

We use the super-efficiency score as the dependent variable. 

The super efficiency score of a given DMU, K, is obtained by 

gauging it against another efficiency frontier calculated with a 

group of DMUs that excludes K (cf. Bogetoft and Otto 2011). 

It equals the standard efficiency score for DMUs that are off 

the frontier, and takes on a value more than unity for DMUs 

that are on the frontier. Since the score can take on a value 

exceeding unity, it is convenient for us to use them as the 

dependent variable of our QR model. Notice, however, we 

may not be able to calculate the super-efficiency scores for all 

DMUs. As we could not obtain the score for one DMU, the 

sample size for the second-stage QR is 657. 

 

4.2. Results 

Table 2 lists the results of the QRs at the 0.15, 0.25, 0.50, 

0.75, and 0.85 quantiles. As a benchmark, we list the OLS 

estimates obtained with super-efficiency scores. The results of 

the OLS model show that the directional impacts of the 

external factors are qualitatively the same as those of the E-

OLS model in Table 1. However, their magnitudes (in 

absolute value) are larger, reflecting the changes in the 

efficiency scores from unity for the DMUs on the frontier. The 

coefficient estimates for the five quantiles are indeed different 

from those of the OLS models. In addition, their coefficient 

values vary across the quantiles. To better understand the 

changes in coefficients across quantiles, Figure 2 plots the 

coefficient estimates at eighteen quantiles (.05, .10, …, .90, 

and .95) along with their 95% confidence intervals. In general, 

the effects tend to increase in absolute value toward the upper 

quantiles if they are largely statistically significant (population, 

surface area, FCI, and LAT), while they seem change 

relatively little if the effects are not statistically significant 

(OER and caseload growth). These findings suggest that the 

impacts on efficiency are larger for those municipalities 

located closer to the edge of the frontier. 

 

5. CONCLUDING REMARKS 

In this study, we obtained the Farrell scores of input-

oriented efficiency for municipal PA programs in Japan and 

explored the effects of a set of external factors on the 

efficiency scores. We showed that the efficiency varies across 

municipalities, implying a large potential for efficiency 

improvement. Nonetheless, such disparities may be due to the 

variations in external factors that municipalities cannot control. 

Employing the 2SR analysis with a variety of estimators, we 

then examined how a set of external factors would affect the 

efficiency. Our results indicated that surface area, fiscal 

capacity, and receipt of LAT grants decreased the efficiency, 

while population improved it. Furthermore, a QR analysis 

with super-efficiency scores showed that the marginal effects 

of the external factors on the efficiency would become larger 

in absolute value for the upper quantiles of the efficiency 

scores. This then may imply that when we compare efficiency 

scores among DMUs, we should adjust the scores, taking 

account of their effects across the quantiles of the efficiency 

scores. While there is a large body of literature on the 

adjustment of the efficiency scores to variations in external 

factors (e.g., Cordero et al. 2009), to the best of our knowledge, 

no study explicitly allows for such differentiated effects across 

quantiles. Our next task then would be to elaborate further on 

the QR approach in a 2SR analysis and possibly construct 

adjusted efficiency scores that allow for such quantile effects. 
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Table 2: Estimation results 

 OLS 
Quantile 

.15 .25 .50 .75 .85 

ln(population) 
.098*** .022   .047***   .055***   .083***   .122*** 
(.021) (.017) (.018) (.016) (.017) (.022) 

ln(area) 
.041*** −.017** −.030***  −.028*** −.025  −.046*** 
(.013) (.009) (.010) (.010) (.016) (.016) 

Fiscal capacity index (FCI) 
.361*** −.157*** −.268***  −.194***  −.285***  −.477*** 
(.090) (.052) (.066) (.061) (.082) (.100) 

Obligatory expense ratio (OER) 
.242 .349* .313* .026 .342 .053 
(.251) (.172) (.176) (.198) (.264) (.375) 

LAT receipt 
.161*** −.065 −.097** −.099  −.256***  −.274*** 
(.055) (.042) (.043) (.075) (.097) (.095) 

Caseload growth 
.037 −.039 −.083 −.076 −.064 .265 
(.104) (.155) (.082) (.089) (.160) (.185) 

Constant 
.252 .010 −.040 .164 −.144 −.014 
(.295) (.230) (.237) (.230) (.246) (.321) 

Notes: (1) Sample size is 658. (2) Standard errors are bootstrapped with 3000 replications. (3) ***, **, and * indicate p  .01, .01 < p  .05, 
and .05 < p  .10 respectively. 

 

 

Figure 2 Distributions of efficient scores 

Panel A: Population 
 

Panel B: Surface area 
 

Panel C: Fiscal capacity index 
 

Panel D: Obligatory expense ratio 
 

Panel E: LAT receipt 
 

Panel F: Caseload growth 
 

Notes: (1) Solid lines in panels connect the QR coefficient estimates at eighteen quantiles (0.05, 0.10, …, 0.90, and 0.95). (2) The dotted lines show 95% confidence 

intervals of the QR estimates. 
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