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Abstract

This paper examines efficient risk sharing under limited commitment and search

frictions. The model features a social planner and a continuum of risk-averse

workers, where the planner is able to provide consumption only to workers matched

with the planner and faces an aggregate resource constraint, while workers can walk

away from the match in any period and search for a new match. The formation of

new matches and the exogenous destruction of existing ones substantially expand

the set of feasible stationary allocations, providing a role for the social welfare

function. In the benchmark case of the Benthamite social welfare function, we

find that the efficient stationary allocation exhibits novel consumption dynamics:

Consumption begins at a relatively low level, converges toward a certain level when

the participation constraint is slack, and jumps up when it binds. We then explore

the role of limited commitment in generating such rich consumption dynamics.
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1 Introduction

This paper examines efficient risk sharing under limited commitment and search fric-

tions. The model involves a benevolent social planner who provides consumption to a

continuum of risk-averse workers. To provide consumption to a worker, the planner must

first employ or, equivalently, form a match with the worker through a frictional matching

process. Every period, a match yields an output that is subject to idiosyncratic shocks.

The planner must finance consumption to employed workers as well as the cost of creating

vacancies with the output from all the matches. In any period, an employed worker has

the option to leave the match with a fraction of the current output and to enter the pool

of unemployment. An employed worker also becomes unemployed when the match is

hit by an exogenous separation shock. In either case of match termination, the worker’s

past employment history is wiped out, and the worker seeks to be employed again. The

main contribution of our paper is to show that the efficient stationary allocation in such

an environment exhibits completely different consumption dynamics from the standard

limited commitment literature.

Our paper belongs to the dynamic contracting literature that examines efficient risk

sharing between a single principal and many agents. In particular, the environment

of the model builds on the work of Krueger (2000), who adopts a limited commitment

version of Atkeson and Lucas’s (1992, 1995) model of private information and examines

an efficient stationary allocation in an economy populated by a continuum of consumers

who face idiosyncratic income risk. However, while, in Krueger (2000), the relationship

between planner and consumers is automatically formed and never terminates in any

efficient allocation, in the present paper, the relationship is formed through a frictional

matching process and is subject to exogenous separation shocks, in a spirit similar to that

of the Mortensen–Pissarides model.1 This extension has two important consequences.

First, the extension enriches the contracting problem by endogenizing the agents’ value

of the outside option. In Krueger (2000), the outside option of an agent is autarky, over

which the planner has no influence. In contrast, in our paper, a worker can seek a new

match after leaving the current one and, as a result, the planner’s choice of consumption

affects, in any stationary allocation, not only the workers’ value in the current match, but

also the worker’s value of the outside option through consumption in future matches.

Second, the extension substantially enlarges the set of (incentive- and resource-) feasi-

ble stationary allocations, and consequently extends the scope of welfare analysis. That

is, when the principal–agent relationship is, as in Atkeson and Lucas (1995) and Krueger

1See, e.g., Mortensen and Pissarides (1994) and Pissarides (2000).
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(2000), neither destroyed exogenously nor terminated optimally by the principal, station-

arity is a rather strong requirement such that the Pareto criterion suffices to pin down the

efficient allocation.2 The situation changes dramatically once the creation and destruc-

tion of the relationship are introduced. To see the intuition, consider an allocation in

which the consumption of all agents grows at a constant positive rate in the course of the

principal–agent relationship. Clearly, such an allocation can never be stationary when

the relationship is permanent. However, that does not apply when the relationship is

continuously terminated and recreated; indeed, in our environment, any time-invariant al-

location choice of the planner is consistent with stationarity, if not incentive and resource

feasibility. Consequently, our model exhibits a continuum of Pareto-efficient feasible

stationary allocations. This enables us to discuss how efficiency depends on the social

welfare function or, equivalently, the type of social planner.

As a benchmark case, we assume a Benthamite social planner who maximizes the

sum of individual welfare or, equivalently, the expected discounted lifetime utility of all

workers in the steady state. We then examine the corresponding efficient allocation and

show that the consumption of employed workers features rich dynamics, which is novel

in the limited commitment literature. That is, consumption is relatively low for newly

employed workers. In subsequent periods, consumption moves toward a certain level until

the participation constraint binds. When the participation constraint binds, consumption

jumps up, and then evolves toward this level of consumption again.

As an extension, we consider a Rawlsian social planner who maximizes the welfare of

the least well-off workers in the steady state. We show that the consumption dynamics

differ completely from the benchmark case. This time, consumption is relatively high

for newly employed workers and then falls whenever the participation constraint is slack.

Such a downward trend in consumption resembles the consumption dynamics in Atkeson

and Lucas (1995) and Krueger (2000).

To highlight the impact of limited commitment, we then explore the consumption

dynamics under full commitment. We find that, under full commitment, the Benthamite

planner equalizes the consumption of all employed workers. In contrast, the Rawlsian

planner allows consumption to fall throughout the employment relationship. These results

indicate that limited commitment is the source of inequality among employed workers

under the Benthamite planner, while consumption inequality persists regardless of the

workers’ commitment ability under the Rawlsian planner.

In addition to the studies mentioned above, the present paper is particularly related to

2An efficient allocation is not necessarily unique in Atkeson and Lucas (1995) and Krueger (2000),
but all efficient allocations share similar qualitative features.
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two studies that endogenize outside option values in a limited commitment environment.

Krueger and Uhlig (2006) examine risk sharing when agents are able to enter a new con-

tract with competing principals after reneging on the original contract. Rudanko (2009)

explores labor market dynamics using a model that incorporates the limited commitment

environment into a competitive search model à la Moen (1997). However, these studies

are concerned with market equilibrium and thus do not analyze efficient risk sharing under

different social welfare functions. Moreover, these studies do not impose an aggregate

resource constraint as does our paper.3

In terms of methodology, we differ substantially from the work of Krueger (2000) and

most of the dynamic contracting literature in that we do not use the recursive formulation

of the problem. This is because, in our environment, the endogenous outside option values

do not allow us to readily formulate the planner’s problem in a recursive fashion. We

resort instead to a variational argument using the sequential formulation of the problem

and obtain the conditions that characterize the efficient allocation.

2 Model

2.1 Environment

Time is discrete, and there is a single perishable consumption good. The economy is

populated by a continuum of infinitely-lived workers (or agents) of mass one. Workers

have a period utility function U (c), where c ≥ 0 denotes consumption, and discount the

future with β ∈ (0, 1). The utility function U is twice continuously differentiable with

U ′ > 0 and U ′′ < 0.

Throughout, the analysis focuses on the stationary (or, equivalently, steady-state)

allocation. There is a benevolent social planner who aims to maximize social welfare, to

be defined in Section 2.5. The planner employs workers and provides consumption during

employment. Due to search frictions, the planner must post vacancies to employ, or to

form matches with, workers. The flow cost of posting a vacancy is k > 0. The number

of matches formed each period is M (u, v), where u is the number of unemployed workers,

and v is the number of vacancies posted by the planner. The matching function M (u, v)

is such that M (0, v) = M (u, 0) = 0, increasing4 in both arguments, concave, twice

continuously differentiable, and exhibits constant returns to scale. The probability that

3Since Krueger and Uhlig (2006) allow the principal to consume a negative amount, their feasibility
constraint has a completely distinct role from that in the present paper (or that in Atkeson and Lucas
(1995) and Krueger (2000)).

4Throughout, increasing implies strictly increasing, and decreasing implies strictly decreasing.
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each vacancy is matched with an unemployed worker is M (u, v) /v = M (θ−1, 1) ≡ q (θ),

where θ ≡ v/u is market tightness. Similarly, the probability that an unemployed worker

is matched with a vacancy is M (u, v) /u =M (1, θ) ≡ p (θ) = θq (θ).5

The flow output of a match is y ∈ Y = {ȳ1, ȳ2, . . . , ȳN}, ȳ1 < ȳ2 < . . . < ȳN ,

where y is idiosyncratic to each match. Let yt denote output in the t-th period of a

match, and yt = (y1, y2, . . . , yt) be the history of output up to the t-th period. Output yt

follows a first-order Markov process, and the initial output y1 is drawn from the stationary

distribution for yt. Below, let π (yt) denote the unconditional probability of history yt

occurring.

Each period, the planner provides consumption to the employed worker, which may

depend on the history of output in the current match but not on past employment status.6

Thus, consumption in a match following history yt is ct (y
t) ≥ 0. While unemployed,

workers consume home production b ∈ (0, ȳ1). To focus on the risk-sharing implication

of introducing search frictions, we preclude the provision of unemployment benefits.

Workers lack the ability to commit to stay in a match, such that, in any period, an

employed worker can take away a fraction of the current output, become unemployed, and

search for a new match. That is, if, in period t, a worker exits a match whose current

output is yt, the worker’s consumption in period t is

ĉ (yt) ≡ ρyt + (1− ρ) b (1)

for some constant ρ ∈ [0, 1].7 Since yt > b, ĉ (yt) ≥ b with equality if and only if ρ = 0.

Each period, with probability s ∈ (0, 1), a match is hit by a separation shock; the

match is then terminated exogenously and the worker becomes unemployed. In an effi-

cient stationary allocation described below, separation occurs only exogenously because,

given ȳ1 > b, it is never optimal for the planner to terminate a match.

5In discrete time models, it sometimes becomes necessary to truncate the matching function to avoid
the probabilities p (θ) and q (θ) from exceeding one. We abstract from this issue by assuming that the
model parameters are such that the efficient allocation is the interior optimum of the planner’s problem.

6This formulation rules out the possibility of penalizing a worker who voluntarily left a previous match.
We impose this restriction because, in reality, workers are generally not penalized for quitting firms.

7In models of limited commitment, y is typically an agent’s endowment, so the natural assumption is
that the agent consumes y in the period of walking away from the principal (ρ = 1). In labor search
and matching models, it is more natural for a worker to exit the match before producing output y and
consume b (ρ = 0). The formulation here nests both these assumptions as special cases.
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2.2 Worker’s Value Functions

Let V u be the worker’s value of being unemployed, and V e
t (yt) be the worker’s value

of being employed in a match with history yt. Note that V u is common to all unemployed

workers, because past employment status does not affect consumption in future matches.

Then, V u is expressed as

V u = U (b) + βp (θ) (1− s)
∑

y1

π
(

y1
)

V e
1

(

y1
)

+ β [1− p (θ) (1− s)]V u. (2)

In (2), the first term is the current utility from home production. The next period,

an unemployed worker finds a match with probability p (θ) and does not face exogenous

separation with probability 1 − s. The worker then receives the value of employment

V e
1 , which depends on y1 = y1. With probability 1 − p (θ) (1− s), the worker remains

unemployed and receives V u. We can also express V u using the sequence of consumption

{ct (y
t)}

∞
t=1 as

V u = U (b) + βp (θ)
∞
∑

t=1

βt−1 (1− s)t−1



(1− s)
∑

yt

π
(

yt
)

U
(

ct
(

yt
))

+ sV u



 (3)

+ β (1− p (θ)) V u.

Using V u, we can express V e
t (yt) as8

V e
t

(

yt
)

= U
(

ct
(

yt
))

+ β



(1− s)
∑

yt+1|yt

π (yt+1)

π (yt)
V e
t+1

(

yt+1
)

+ sV u



 , (4)

which can be iterated forward to yield

V e
t

(

yt
)

= U
(

ct
(

yt
))

+

∞
∑

τ=1

βτ (1− s)τ
∑

yt+τ |yt

π (yt+τ )

π (yt)
U
(

ct+τ

(

yt+τ
))

+
βs

1− β (1− s)
V u.

(5)

Let us now consider the worker’s value of the outside option, V o. Upon exiting the

match, the worker consumes ĉ (yt) = ρyt + (1− ρ) b in the current period and becomes

unemployed. Thus, V o depends on the current output yt but not on the entire history

yt, and it can be expressed as

V o (yt) = U (ĉ (yt))− U (b) + V u. (6)

8 Throughout, yt+τ |yt, τ ≥ 0, denotes any history ỹt+τ such that ỹt = yt.
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Note that V o (yt) ≥ V u since ĉ (yt) ≥ b, and that V o rises one to one with V u.

2.3 Excess Demand Function

For any allocation x = (θ, {ct (y
t)}

∞
t=1) ∈ D ≡ R∞

+ ,9 the excess demand for resources

is given by

ED = kθu−
∞
∑

t=1

∑

yt

et
(

yt
) (

yt − ct
(

yt
))

. (7)

The first term on the right-hand side (RHS), kθu = kv, is the aggregate vacancy cost.

The second term is the sum of the match output net of consumption of workers. Here,

et
(

yt
)

= up (θ) (1− s)t π
(

yt
)

(8)

denotes the measure of workers employed in a match with history yt.

Stationarity requires the number of workers exiting the pool of unemployment,

up (θ) (1− s), to be equal to the number of those entering it, (1− u) s; hence

u =
s

s + p (θ) (1− s)
. (9)

2.4 Incentive Feasibility and Resource Feasibility

Let us now turn to the two constraints faced by the planner. The first is the partici-

pation constraint,

V e
t

(

yt
)

≥ V o (yt) , ∀y
t, (10)

which implies that at any history, the worker’s value of staying in a match must weakly

exceed the value of the outside option. The second is the resource constraint, ED ≤ 0,

or

kθu−
∞
∑

t=1

∑

yt

et
(

yt
) (

yt − ct
(

yt
))

≤ 0. (11)

An allocation is incentive feasible if it satisfies the participation constraint, resource

feasible if it satisfies the resource constraint, and feasible if it is both incentive and resource

feasible. An efficient allocation is a feasible allocation that maximizes social welfare.

In the problems we consider, it can be shown that the planner uses up all available

9Throughout, x denotes an infinite dimensional allocation vector
(

θ, {ct (y
t)}

∞

t=1

)

. Similarly, x′ de-

notes an allocation vector
(

θ′, {c′t (y
t)}

∞

t=1

)

.
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resources and thus (11) holds with equality.10 Dividing the expression by θu, we obtain

k = q (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
) (

yt − ct
(

yt
))

. (12)

For later use, note that (12), p (θ) = θq (θ), and θp′ (θ) /p (θ) = 1 + θq′ (θ) /q (θ) yield

k − p′ (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
) (

yt − ct
(

yt
))

= −k
θq′ (θ)

q (θ)
. (13)

2.5 Social Welfare Function

As a benchmark case, we consider a Benthamite planner who maximizes the sum of

the welfare of all workers in the steady state. More precisely, the planner maximizes the

social welfare function

V B ≡ uV u +
∞
∑

t=1

∑

yt

et
(

yt
)

V e
t

(

yt
)

(14)

by choosing an allocation x = (θ, {ct (y
t)}

∞
t=1) subject to the participation constraint, (10),

and the resource constraint, (11). In other words, the planner maximizes V B by choosing

x ∈ D′, where D′ ⊂ D is the set of feasible allocations.11 In much of the analysis, we

resort to the following sequential form of V B, whose derivation is shown in Appendix A:

V B =
1

1− β
u



U (b) + p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

U
(

ct
(

yt
))



 . (15)

In the next section, we discuss the properties of the Benthamite efficient allocation,

which is the constrained efficient allocation chosen by the Benthamite planner.

3 Benthamite Efficient Allocation

3.1 Efficiency Conditions

A popular approach for analyzing dynamic contracting problems is to formulate re-

cursive problems by using, for example, promised utilities or Pareto weights as state

10Lemma A2 in Appendix B, which collects lemmas that hold for general social welfare functions,
proves this result.

11Throughout, we let ⊂ denote a proper subset.
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variables.12 However, in our environment, complications arise from the fact that the

value of the worker’s outside option is endogenous, making this approach not readily

applicable.13 Instead, our approach is to resort to a variational argument using the se-

quential formulation of the problem; we take a candidate optimal allocation and derive

conditions that must hold to rule out welfare-improving perturbations.

The discussions below require the introduction of some notations and definitions. Let

(yt, yt+1) denote the continuation history of yt in which output in the t + 1-th period is

yt+1. Let cb (yt) be the value of optimal consumption at yt when V e
t (yt) = V o (yt), and

let λt (y
t) be defined by

λt
(

yt
)

≡ 1/U ′
(

ct
(

yt
))

. (16)

Unless otherwise noted, cost implies the expected resource cost, evaluated using the

planner’s subjective prices. The direct cost of V e
t (yt) implies the cost of providing V e

t (yt)

to a single worker with history yt, taking V u as given. Similarly, the direct cost of V u

refers to the cost of providing V u to a single unemployed worker, taking V u in future

periods as given. The direct marginal cost of V e
t (yt) is the increase in the direct cost

of V e
t (yt) as V e

t (yt) is raised by one infinitesimal unit, which ignores the indirect costs

and benefits arising from the effect of the change in V e
t (yt) on V u and V e

τ (yτ ), yτ 6= yt.

The direct marginal cost of V u is defined similarly. The shadow cost of the participation

constraint at (yt, yt+1) is the additional cost required to satisfy the participation constraint

at (yt, yt+1) as this constraint is tightened by one infinitesimal unit, when there is a single

worker with history (yt, yt+1). These three types of costs are proportional to the relevant

population of workers and, therefore, for example, the descriptions above hold when “a

single worker” is replaced by “measure one of workers”. Finally, the marginal cost of V B

is the additional cost required to increase social welfare V B by one infinitesimal unit.

We are now ready to present Proposition 1, which summarizes the conditions that

characterize the Benthamite efficient allocation.14

12See, e.g., Abreu, Pearce, and Stacchetti (1986, 1990) and Marcet and Marimon (1994).
13Another potential approach, which is to set up the Lagrangian from the planner’s sequential

problem and to take the first-order conditions, faces two challenges. First, the sequential problem is an
infinite-dimensional problem, in which case the Lagrangian may not be expressed as a sum of an infinite
series (see Dechert (1982) and Rustichini (1998)). Second, first-order conditions are not sufficient for an
optimum, because of the non-convexity of the problem due to endogenously determined outside option
values; moreover, the infinite-dimensionality of the problem makes it difficult to show that a constraint
qualification is satisfied or, equivalently, that first-order conditions are necessary for an optimum. The
conditions obtained from this approach, however, do coincide with those in Propositions 1 and 3 below.

14The proofs of all the propositions are given in Appendix C.
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Proposition 1 The Benthamite efficient allocation exists and satisfies

λt+1

(

yt, yt+1

)

= α + βλt
(

yt
)

+ ψt+1

(

yt, yt+1

)

, (17)

λ1
(

y1
)

= α + βγ + ψ1

(

y1
)

, (18)

−ku
θq′ (θ)

q (θ)
=γuβp′ (θ) (1− s)





∑

y1

π
(

y1
)

V e
1

(

y1
)

− V u





+ αup′ (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)

− αu (1− u)
p′ (θ)

p (θ)



V u + p (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)



 , (19)

γu [(1− β) + β (1− s) p (θ)] = αu+
∞
∑

t=1

∑

yt

et
(

yt
) (

βsλt
(

yt
)

− ψt

(

yt
))

. (20)

Here, α > 0 is the marginal cost of V B, while λt (y
t) > 0 and γ > 0 are the direct marginal

costs of V e
t (yt) and V u, respectively, and ψt (y

t) ≥ 0, defined by

ψt+1

(

yt, yt+1

)

≡ max

{

0,
1

U ′ (cb (yt+1))
− α− βλt

(

yt
)

}

, (21)

ψ1

(

y1
)

≡ max

{

0,
1

U ′ (cb (y1))
− α− βγ

}

, (22)

is the shadow cost of the participation constraint at yt, for the Benthamite planner. Fur-

ther, γ ≤ α/ (1− β), with strict inequality if there is any binding participation constraint.

Let us now explain these conditions. First, (17) can be seen as the optimality

condition for V e
t+1 (y

t, yt+1), given V e
t (yt). To see this, suppose the planner raises

V e
t+1 (y

t, yt+1) by one infinitesimal unit for a measure et+1 (y
t, yt+1) of workers with history

(yt, yt+1), keeping V
e
t (yt) unchanged. Then, social welfare V B rises by et+1 (y

t, yt+1) units,

whose value in resource units is αet+1 (y
t, yt+1). Further, while the planner incurs cost

et+1 (y
t, yt+1) λt+1 (y

t, yt+1) from raising V e
t+1 (y

t, yt+1), the rise in V
e
t+1 (y

t, yt+1) reduces the

cost of providing the same V e
t (yt) as before by et (y

t)β (1− s) (πt+1 (y
t, yt+1) /πt (y

t))λt (y
t),

as can be seen from (4). When the participation constraint is slack at (yt, yt+1), such a

perturbation as well as the reverse perturbation are both incentive feasible. Thus, the

10



net gain from such a perturbation must be zero, or

et+1

(

yt, yt+1

)

λt+1

(

yt, yt+1

)

= αet+1

(

yt, yt+1

)

+ et
(

yt
)

β (1− s)
πt+1 (y

t, yt+1)

πt (yt)
λt

(

yt
)

,

(23)

which agrees with the condition obtained by setting ψt+1 (y
t, yt+1) = 0 in (17). When the

participation constraint binds at (yt, yt+1), (17) and (21) yield λt+1 (y
t, yt+1) = 1/U ′

(

cb (yt+1)
)

,

consistently with V e
t+1 (y

t, yt+1) = V o (yt+1). The argument for (18) is similar.

Next, (19) is the optimality condition for θ. The left-hand side (LHS) shows the

effect of a marginal increase in θ on the excess demand.15 On the RHS, the first line, as

can be observed from (2), shows the benefit of an increase in V u from the increase in θ,

taking future V u and all V e
1 (y1) as given, converted into resource units by multiplying by

γ. The second and third lines represent, as seen from (8), (9), and (14), the impact of

an increase in θ on V B, taking V u and all V e
t (yt) as given, measured in resource units.

At the optimum, these effects must be equalized as in (19).

Finally, (20) is the optimality condition for V u, which ensures that, in the efficient

allocation, there is no net gain from perturbing V u. Here, the LHS shows the effect of a

marginal increase in V u on the cost of providing V u to a measure u of unemployed workers,

taking into account the effect of the change in V u in future periods on the current V u.

On the RHS, the first term is the direct impact of an increase in V u on V B, measured

in resource units. The second term shows the effects on the cost of providing V e
t (yt)

and on the shadow cost of the participation constraint at yt, summed over the relevant

population of workers.

3.2 Consumption Dynamics

We now use the efficiency conditions to characterize the consumption dynamics.

Proposition 2 Let c∞ be defined by U ′ (c∞) = (1− β) /α, and assume that the partici-

pation constraint binds at some yt. In the Benthamite efficient allocation, (i) for some

c̄1 > 0, c1 (y
1) = c̄1 < c∞ for all y1 at which the participation constraint is slack, (ii) if the

participation constraint is slack at (yt, yt+1), then 1/U ′ (ct+1 (y
t, yt+1)) = α+β/U ′ (ct (y

t))

such that ct+1 (y
t, yt+1) ∈ (ct (y

t) , c∞) for ct (y
t) < c∞ and ct+1 (y

t, yt+1) ∈ (c∞, ct (y
t)) for

ct (y
t) > c∞, and (iii) there is at least one ȳn ∈ Y such that cb (ȳn) > c∞.

15To see this, differentiate (7) with respect to θ, taking {ct (y
t)}

∞

t=1 as given. The terms capturing the
effects of the change in θ on the excess demand, which work through the change in u, cancel out given
(12). Using (13), we obtain the LHS of (19).
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Let us explain Proposition 2. First, for all y1 at which the participation constraint

is slack, initial consumption equals some c̄1, which is a relatively low value. Second,

whenever the participation constraint is slack, consumption converges toward some c∞;

thus, consumption rises if it was previously below c∞, and falls otherwise. Third, when

the participation constraint binds, consumption jumps up; moreover, there exists at least

one output realization such that the resulting consumption exceeds c∞. Following such

output realization, consumption remains above c∞ throughout the employment spell.

As shown above, the Benthamite efficient allocation exhibits rich consumption dy-

namics, which, to the best of our knowledge, is a novel result in the limited commitment

literature. In particular, the increasing consumption profile at the early stages of a

match contrasts with the downward drift in consumption observed in Krueger (2000).

This difference arises because, in our environment, the workers’ outside option values are

endogenous, which generates benefits from relaxing the participation constraint by low-

ering c̄1 and thus V u. We discuss in more detail the impact of limited commitment on

consumption dynamics in Section 4.3.

4 Discussion

4.1 Rawlsian Efficient Allocation

As an extension, we now consider the Rawlsian efficient allocation chosen by the

Rawlsian planner, who maximizes the welfare of the least well-off agents based on the

difference principle (Rawls, 1971). Then, the social welfare function is

V R ≡ V u, (24)

since the participation constraint (10) and V o (yt) ≥ V u imply that unemployed workers

are the least well off.16 As in the baseline case, we often use the sequential form of

V R = V u, given by (3) or the expression below, whose derivation is given in Appendix A:

V R = V u =
1

(1− β)
[

1 + βp(θ)(1−s)
1−β+βs

]



U (b) + p (θ)

∞
∑

t=1

βt (1− s)t
∑

yt

π
(

yt
)

U
(

ct
(

yt
))



 .

(25)

16Our mathematical formulation of the Rawlsian efficient allocation has some similarities with that of
Grout (1977), who proposes a Rawlsian intertemporal consumption rule in an overlapping-generations
framework. Under this rule, each generation maximizes utility subject to the constraint that all sub-
sequent generations are at least as well off as the current generation, which amounts to maximizing the
minimum of the utility of current and future generations.
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Besides Rawlsian ethics, this social welfare function is also motivated by the approach

from the search and matching literature; in the standard Mortensen-Pissarides model,

the efficient allocation is usually assumed to be the allocation that maximizes the dis-

counted present value of the aggregate output net of vacancy costs, which turns out to

also maximize the value of unemployed workers.17

Proposition 3 summarizes the efficiency conditions in this case.

Proposition 3 The Rawlsian efficient allocation exists and satisfies

λt+1

(

yt, yt+1

)

= βλt
(

yt
)

+ ψt+1

(

yt, yt+1

)

, (26)

λ1
(

y1
)

= βγ + ψ1

(

y1
)

, (27)

−ku
θq′ (θ)

q (θ)
= γuβp′ (θ) (1− s)





∑

y1

π
(

y1
)

V e
1

(

y1
)

− V u



 . (28)

Here, λt (y
t) > 0 and γ > 0 are the direct marginal costs of V e

t (yt) and V u, respectively,

and ψt (y
t) ≥ 0, defined by

ψt+1

(

yt, yt+1

)

≡ max

{

0,
1

U ′ (cb (yt+1))
− βλt

(

yt
)

}

, (29)

ψ1

(

y1
)

≡ max

{

0,
1

U ′ (cb (y1))
− βγ

}

, (30)

is the shadow cost of the participation constraint at yt, for the Rawlsian planner.

Let us again explain these conditions. As for (17), (26) can be understood as the

optimality condition for V e
t+1 (y

t, yt+1), given V e
t (yt). Unlike in the benchmark case,

however, if V e
t+1 (y

t, yt+1) is increased by one infinitesimal unit for all workers with history

(yt, yt+1) while V
e
t (yt) is kept unchanged, there is no direct impact on social welfare V R.

Thus, the condition corresponding to (23) is

et+1

(

yt, yt+1

)

λt+1

(

yt, yt+1

)

= et
(

yt
)

β (1− s)
πt+1 (y

t, yt+1)

πt (yt)
λt

(

yt
)

, (31)

which agrees with the condition obtained by setting ψt+1 (y
t, yt+1) = 0 in (26). The

argument for (27) is similar.

17See Pissarides (2000), Chapter 4. There is yet another interpretation for this social welfare function.
It is straightforward to introduce entry and exit by assuming that workers die with a constant probability
and are replaced by new-born workers who enter the labor market as unemployed workers. In such an
extended model, maximizing V u is equivalent to maximizing the ex ante welfare of new-born workers.
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Finally, (28) is the optimality condition for θ. Note that in (28), the terms that

appear on the second and third lines on the RHS of (19) are absent because, this time,

an increase in θ has no direct impact on V R.18

Proposition 4 describes the consumption dynamics in the Rawlsian efficient allocation.

Proposition 4 In the Rawlsian efficient allocation, (i) for some c̃1 > 0, c1 (y
1) = c̃1

for all y1 at which the participation constraint is slack, (ii) if the participation con-

straint is slack at (yt, yt+1), then U ′ (ct (y
t)) = βU ′ (ct+1 (y

t, yt+1)) such that ct (y
t) >

ct+1 (y
t, yt+1), and (iii) if the participation constraint binds at (yt, yt+1), then U

′ (ct (y
t)) >

βU ′ (ct+1 (y
t, yt+1)).

In the Rawlsian efficient allocation, c1 (y
1) is equalized across all y1 at which the

participation constraint is slack, just as for the benchmark Benthamite case. Unlike the

benchmark case, however, consumption is relatively high at the beginning of the match

and falls in subsequent periods whenever the participation constraint is slack. Such

consumption dynamics are similar to those in Krueger (2000), which implies that in the

Rawlsian case, the fact that the workers’ outside option values are endogenous does not

qualitatively affect the consumption profile. We explain the reason in Section 4.3.

4.2 Examples: Constant Relative Risk Aversion Utility and

Two Values of Output

To illustrate the consumption dynamics in the Benthamite and Rawlsian efficient al-

locations, Figures 1 and 2 plot the typical paths of (logged) consumption in a match,

assuming U (c) = c1−σ/ (1− σ), σ > 0, and two values for match output, y1 and y2.
19

In the Benthamite efficient allocation, 1/U ′ (ct+1 (y
t, yt+1)) = α + β/U ′ (ct (y

t)) in

Proposition 2(ii) yields

ct+1 (y
t, yt+1)

ct (yt)
=

[

α
1

(ct (yt))
1

σ

+ β

]
1

σ

. (32)

Thus, as shown in Figure 1, the consumption growth rate when the participation con-

straint is slack is decreasing in the previous consumption and is positive (negative) when

consumption is previously below (above) c∞ = [α/ (1− β)]
1

σ .

18The counterpart to (20) exists also for the Rawlsian efficient allocation. However, this time, the
condition is not necessary to pin down the efficient allocation; rather, it determines the value of α, given
the efficient allocation.

19In Figures 1 and 2, “PC” refers to the participation constraint.
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In the Rawlsian efficient allocation, U ′ (ct (y
t)) = βU ′ (ct+1 (y

t, yt+1)) in Proposition

4(ii) yields
ct+1 (y

t, yt+1)

ct (yt)
= β

1

σ < 1. (33)

Thus, consumption grows at a constant negative rate β
1

σ − 1 when the participation

constraint is slack, which corresponds to downward sloping line segments in Figure 2.

4.3 Limited Commitment and the Drift in Consumption

To highlight the impact of limited commitment on consumption dynamics, we now

consider the situation in which workers are able to fully commit to stay in a match except

in the case of exogenous separation.

Let us begin with the benchmark Benthamite case. Substituting (17) and (18) into

(20) yields

γ +
p (θ)

1− β (1− s) (1− p (θ))

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

ψt

(

yt
)

=
α

1− β
. (34)

Under full commitment, ψt (y
t) = 0 for all yt. Thus, (34) implies γ = α/ (1− β); but

then, (17) and (18) imply λt (y
t) = α/ (1− β) for all yt, such that ct (y

t) is the same

for all yt.20 The intuition is straightforward: if there is no commitment problem, the

Benthamite planner simply equates the marginal utility of consumption of all employed

workers, which implies a flat consumption path for each worker.

A typical result in the one-sided limited commitment literature is that whenever the

agent’s participation constraint is slack, the agent’s marginal utility of consumption grows

at a constant rate.21 Since this growth rate is determined solely by the relative size of

the discount factor of the principal and the agent, it applies also under full commitment.

Our results above indicate that such a typical result in the literature no longer applies

in our environment. That is, in the Benthamite case, limited commitment generates

the drift in consumption when the participation constraint is slack, not just the jump in

consumption when the participation constraint binds.

Let us now consider what happens in the Rawlsian case under full commitment.22

20While this ct (y
t) satisfies U ′ (ct (y

t)) = (1− β) /α, in general, it does not equal c∞ in the limited
commitment case, since α is an endogenous variable.

21See, e.g., Krueger and Uhlig (2006). When the utility function exhibits constant relative risk aversion
in consumption, this implies a constant consumption growth rate.

22Under full commitment, calling a planner who maximizes V R = V u as Rawlsian is somewhat mis-
leading because, in the absence of the participation constraint, the unemployed workers need not be the
least well-off agents. This observation, however, is inessential to our argument that limited commitment
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This time, if ψt (y
t) = 0 for all yt, then (26) and (27) imply λt (y

t) = βtγ for all yt. Thus,

consumption is common across y1 and then falls over time, such that the marginal utility

of consumption grows at rate β−1 − 1 < 0. Such a fall in consumption is the same as

when the participation constraint is slack under limited commitment. Therefore, in the

Rawlsian case, limited commitment plays no role in generating the drift in consumption;

the planner chooses to front-load the consumption of workers because, given that workers

discount the future, this is the least costly way to provide a given level of utility.

It is worthwhile explaining why limited commitment generates the drift in consumption

in the Benthamite case but not in the Rawlsian case. The difference arises because, under

limited commitment, the Benthamite planner has an incentive to lower V u relative to the

full commitment case; this is achieved by lowering V e
1 (y1) and, therefore, c1 (y

1) for y1 at

which the participation constraint is slack. The resulting relaxation of the participation

constraint improves efficiency and raises V B. The Rawlsian planner, however, does not

reap the benefit of lowering V u to relax the participation constraint, since the objective

function V R is V u itself.

We conclude this section by noting that the consumption dynamics described above

also have implications on inequality among employed workers. Under the Benthamite

planner, consumption inequality arises precisely because of limited commitment. It is

easily observed that such inequality in consumption translates into inequality in welfare.

In contrast, somewhat paradoxically, inequalities in consumption and welfare exist under

the Rawlsian planner irrespective of the presence of the commitment problem.

4.4 Decentralization

Krueger (2000) discusses how, through an argument similar to that of Atkeson and

Lucas (1992, 1995), the efficient allocation under limited commitment can be decentralized

as an equilibrium. The idea is to consider financial intermediaries who compete in

providing long-term insurance contracts to clients. These financial intermediaries freely

borrow or lend the consumption good with other intermediaries at a gross interest rate

R, and R adjusts to clear this consumption loan market.

We now explore the possibility of extending the argument above to decentralize the

efficient allocation in our environment. Consider the following market economy. Finan-

cial intermediaries freely trade the good with other intermediaries at a gross interest rate

R, and post vacancies in the labor market by paying the flow cost k per vacancy. When

a financial intermediary and a worker are matched and are not immediately hit by an

exogenous separation shock, they negotiate, before the realization of y1, on the worker’s

is not the source of the declining consumption path in the Rawlsian efficient allocation.
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expected value of being newly employed, V̄ e
1 . The value of V̄ e

1 is determined according

to Nash bargaining, where η ∈ (0, 1) is the worker’s bargaining power. During the entire

course of the match, the financial intermediary receives output and provides consumption

to the worker in a way consistent with V̄ e
1 . In any period, the worker can walk away

from the match with a fraction of the current output and become unemployed with a

blank employment history, just as in the planner’s problem. In equilibrium, the expected

profit from posting a vacancy is zero, and R equals the value that clears the consumption

loan market. This setup can be considered a hybrid of the setups of Krueger (2000) and

Rudanko (2009).23

Note that for any R > (1− s)−1,24 the financial intermediary’s optimal contracting

problem, which is to maximize the expected profit from a contract, given initial output

y1 and the value promised to the worker V1 (y
1), can be analyzed using the standard

recursive approach. In particular, the worker’s marginal utility of consumption grows

at rate (βR)−1 − 1 whenever the participation constraint is slack. Clearly, no value of

R generates the rich consumption dynamics of the Benthamite case, so the Benthamite

efficient allocation cannot be obtained as an equilibrium of this market economy.

Decentralization of the Rawlsian efficient allocation appears more promising, given its

simple consumption dynamics. This turns out to be the case, as shown below.

Proposition 5 If the Rawlsian efficient allocation satisfies −θq′ (θ) /q (θ) = η, it can be

supported as an equilibrium of the market economy described above; in this equilibrium,

the gross interest rate R = 1.

The condition −θq′ (θ) /q (θ) = η in Proposition 5 is the Hosios (1990) condition,

which ensures the efficiency of equilibrium in a wide range of Mortensen–Pissarides-type

models.25 This condition turns out to play a critical role in the decentralization of the

efficient allocation in our environment as well.

23Rudanko (2009) presents a directed search model in which financial intermediaries post long-term con-
tracts and shows that, under the Hosios (1990) condition, the model is equivalent to a random matching
model in which the worker’s expected value of being newly employed is determined by Nash bargaining.
If we fix R and do not require market clearing in the consumption loan market, the market economy
described here becomes similar to that of Rudanko (2009). It may thus be possible to decentralize the
efficient allocation in our environment using the directed search framework, but here we present a model
with random matching and Nash bargaining, which is easier to describe.

24When there is no exogenous destruction of the principal–agent relationship, as in Krueger (2000),
R > 1 is necessary to make the problem well defined. Note that since goods are perishable, negative
interest rates (R < 1) are not inconsistent with equilibrium; Huggett (1993)’s model of self-insurance,
which features a similar consumption loan market as the one here, exhibits negative interest rates under
some parameters.

25As is well known, with a Cobb–Douglas matching function M (u, v) = µuκv1−κ, this condition
becomes κ = η, which is independent of θ.
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5 Conclusion

In this paper, we examine efficient risk sharing in an environment featuring lim-

ited commitment and search frictions. Introducing the creation and destruction of the

principal–agent relationship drastically changes the model’s properties, and enables richer

welfare analysis by providing room to introduce various social welfare functions. Most

notably, we find striking consumption dynamics in the Benthamite case, summarized as

follows.

Consumption in a match is initially low and then rises toward a certain level, c∞, until

the participation constraint binds for the first time. When the participation constraint

binds, consumption jumps up; the resulting consumption level may exceed c∞, in which

case consumption subsequently falls toward c∞ so long as the participation constraint is

slack. After a sufficiently long employment spell, consumption exceeds c∞ with probability

one. Such a consumption dynamics contrasts starkly with the dynamics observed in

Krueger (2000) and Atkeson and Lucas (1995).

While we introduce search frictions into a model of limited commitment, it would

also be interesting to introduce search frictions into a model of private information. A

variant of the variational approach adopted in this paper could also be useful in such an

environment. We leave such analyses to future research.
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Appendix A: Sequential Forms of V B and V R

Appendix A derives the sequential expressions for V B and V R, given by (15) and (25),

respectively.

To obtain (15), note from (2) and (4) that

V u + p (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)

= U (b) + βp (θ) (1− s)
∑

y1

π
(

y1
)

V e
1

(

y1
)

+ β [1− p (θ) (1− s)]V u

+ p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)



U
(

ct
(

yt
))

+ β (1− s)
∑

yt+1|yt

π (yt+1)

π (yt)
V e
t+1

(

yt+1
)

+ βsV u





= U (b) + p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

U
(

ct
(

yt
))

+ βp (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)

+ β [1− p (θ) (1− s)]V u + βp (θ) (1− s) V u.

Rearranging and dividing by 1− β, we obtain

V u + p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)

=
1

1− β



U (b) + p (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

U
(

ct
(

yt
))



 , (35)

which yields (15).

To obtain (25), rearrange (3) as

[

1 +
βp (θ) (1− s)

1− β + βs

]

(1− β)V u = U (b) + p (θ)

∞
∑

t=1

βt (1− s)t
∑

yt

π
(

yt
)

U
(

ct
(

yt
))

. (36)

Then, (25) follows immediately from (36).
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Appendix B: Lemmas Relevant for Both Cases

Appendix B collects lemmas that hold for the benchmark Benthamite efficient alloca-

tion, as well as for the Rawlsian efficient allocation discussed in Section 4. These lemmas

will be used in the proofs of the propositions in Appendix C.

In what follows, let dct (y
t) denote an infinitesimal perturbation in ct (y

t) and similarly

for dθ. Further, let dD : D × D → R+ be the distance function on D, where, for any

x, x′ ∈ D,

dD (x, x′) = max

{

|θ − θ′| , sup
yt

∥

∥ct
(

yt
)

− c′t
(

yt
)∥

∥

}

. (37)

Then, from (5), (7), (15), and (25), clearly ED, V e
t (yt), V B, and V R = V u are continuous

functions from a metric space (D, dD) to R. Thus, the changes in these variables from

an infinitesimal perturbation, denoted, for example, as d (ED), are also infinitesimal.

Lemma A1 confirms a standard result in the literature.26

Lemma A1 Let {Rt (y
t)}

∞
t=1 be the sequence of history-contingent intertemporal relative

prices, and recursively define R̃t+1 (y
t, yt+1) = R̃t (y

t)Rt (y
t), where, for all y1, R̃1 (y

1) =

R for some R > (1− s)−1. Consider a component planner who takes V u and {Rt (y
t)}

∞
t=1

as given and chooses {ct+τ (y
t+τ)}

∞
τ=0 to minimize the expected resource cost Q (V e

t (yt) ; yt) =
∑∞

τ=0 (1− s)τ
∑

yt+τ |yt
R̃t(yt)

R̃t+τ (yt+τ )

π(yt+τ)
π(yt)

ct+τ (y
t+τ ) of providing V e

t (yt) to a single worker

with history yt. Then, for any yt, Q (V e
t (yt) ; yt) is increasing and strictly convex in

V e
t (yt) and, if {ct+τ (y

t+τ )}
∞
τ=0 achieves Q (V e

t (yt) ; yt), Q′ (V e
t (yt) ; yt) = 1/U ′ (ct (y

t)).

Proof. Take any yt. That Q (V e
t (yt) ; yt) is increasing in V e

t (yt) is immediate. To

show that Q
(

V̂ e
t (yt) ; yt

)

is strictly convex in V e
t (yt), suppose {ct+τ (y

t+τ )}
∞
τ=0 achieves

Q (V e
t (yt) ; yt), and {ĉt+τ (y

t+τ )}
∞
τ=0 achieves Q

(

V̂ e
t (yt) ; yt

)

. Noting (5), the participa-

tion constraint implies that, at any yt+τ ,

∞
∑

τ ′=0

[β (1− s)]τ
′

∑

yt+τ+τ ′ |yt+τ

π
(

yt+τ+τ ′
)

π (yt+τ )
U
(

ct+τ+τ ′

(

yt+τ+τ ′
))

+
βs

1− β (1− s)
V u ≥ V o (yt+τ ) ,

(38)
∞
∑

τ ′=0

[β (1− s)]τ
′

∑

yt+τ+τ ′ |yt+τ

π
(

yt+τ+τ ′
)

π (yt+τ )
U
(

ĉt+τ+τ ′

(

yt+τ+τ ′
))

+
βs

1− β (1− s)
V u ≥ V o (yt+τ ) ,

(39)

26Below, we suppress the dependence of Q on V u and {Rt (y
t)}

∞

t=1 to avoid notational clutter.
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where V u and thus also V o (yt+τ ) are given.

Now, take any λ ∈ (0, 1), and let V λ,e
t (yt) ≡ (1− λ) V e

t (yt)+λV̂ e
t (yt) and cλt+τ (y

t+τ ) ≡

(1− λ) ct+τ (y
t+τ )+λĉt+τ (y

t+τ ). From the strict concavity of U ,
{

cλt+τ (y
t+τ )

}∞

τ=0
provides

the worker strictly greater value than V λ,e
t (yt); further, from (38) and (39),

∞
∑

τ ′=0

[β (1− s)]τ
′

∑

yt+τ+τ ′ |yt+τ

π
(

yt+τ+τ ′
)

π (yt+τ )
U
(

cλt+τ+τ ′

(

yt+τ+τ ′
))

+
βs

1− β (1− s)
V u > V o (yt+τ ) ,

(40)

which implies that
{

cλt+τ (y
t+τ)

}∞

τ=0
makes the participation constraint slack at any yt+τ .

Thus, the planner can provide V λ,e
t (yt) with fewer resources than

{

cλt+τ (y
t+τ )

}∞

τ=0
, which

implies

Q
(

V λ,e
t

(

yt
)

; yt
)

<
∞
∑

τ=0

(1− s)τ
∑

yt+τ |yt

R̃t (y
t)

R̃t+τ (yt+τ )

π (yt+τ )

π (yt)
cλt+τ

(

yt+τ
)

= (1− λ)Q
(

V e
t

(

yt
)

; yt
)

+ λQ
(

V̂ e
t

(

yt
)

; yt
)

,

where the equality follows from the definitions of {ct+τ (y
t+τ)}

∞
τ=0, {ĉt+τ (y

t+τ)}
∞
τ=0, and

{

cλt+τ (y
t+τ )

}∞

τ=0
. Therefore, Q is strictly convex.

To show that Q′ (V e
t (yt) ; yt) = 1/U ′ (ct (y

t)),27 take ǫ > 0 sufficiently small such that

there exist c−,c+ ∈ (0,∞) satisfying U (c−) = U (ct (y
t))− ǫ and U (c+) = U (ct (y

t)) + ǫ.

Then, {c−, ct+τ (y
t+τ )}

∞
τ=1 is an incentive-feasible but not necessarily optimal allocation

that provides V e
t (yt)− ǫ, while {c+, ct+τ (y

t+τ )}
∞
τ=1 is an incentive-feasible but not neces-

sarily optimal allocation that provides V e
t (yt) + ǫ, and thus

Q
(

V e
t

(

yt
)

+ ǫ; yt
)

−Q
(

V e
t

(

yt
)

; yt
)

≤ c+ − ct
(

yt
)

, (41)

Q
(

V e
t

(

yt
)

; yt
)

−Q
(

V e
t

(

yt
)

− ǫ; yt
)

≥ ct
(

yt
)

− c−. (42)

Further, Q (V e
t (yt) ; yt) < (1/2)Q (V e

t (yt)− ǫ; yt)+(1/2)Q (V e
t (yt) + ǫ; yt) from the strict

convexity of Q, and thus

Q (V e
t (yt) + ǫ; yt)−Q (V e

t (yt) ; yt)

ǫ
>
Q (V e

t (yt) ; yt)−Q (V e
t (yt)− ǫ; yt)

ǫ
. (43)

27This part of the proof builds on the argument in Oyama (2013).
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From (41)–(43),

c+ − ct (y
t)

ǫ
≥
Q (V e

t (yt) + ǫ; yt)−Q (V e
t (yt) ; yt)

ǫ

>
Q (V e

t (yt) ; yt)−Q (V e
t (yt)− ǫ; yt)

ǫ

≥
ct (y

t)− c−
ǫ

.

Noting dc−/dǫ = −1/U ′ (c−) and dc+/dǫ = 1/U ′ (c+) and invoking the l’Hopital’s rule,

limǫ→0 (c+ − ct (y
t)) /ǫ = limǫ→0 (dc+/dǫ) = 1/U ′ (ct (y

t)), and limǫ→0 (ct (y
t)− c−) /ǫ =

− limǫ→0 (dc−/dǫ) = 1/U ′ (ct (y
t)). The squeeze theorem thus implies Q is differentiable

at V e
t (yt) and Q′ (V e

t (yt) ; yt) = 1/U ′ (ct (y
t)) and, since this result holds for any V e

t (yt),

the claim follows.

Lemma A2 states that the resource constraint always binds in the planner’s problems

we analyze. This result is not obvious, since distributing extra resources may, by raising

the outside option values, lead to the violation of the participation constraints. As proved

below, however, there are always incentive-feasible ways to distribute extra resources.

Lemma A2 In both the Benthamite and Rawlsian efficient allocations, ED = 0.

Proof. Suppose ED < 0 for an efficient allocation x. Perturb x by dct (y
t) =

∆/U ′ (ct (y
t)) > 0 for all yt. Clearly, the perturbed allocation satisfies the resource

constraint since dct (y
t) is infinitesimal and, for all yt, raises V e

t (yt) by an equal amount,

which we denote by dV e. Thus, from (2) and (4),

dV u = βp (θ) (1− s) dV e + β [1− p (θ) (1− s)] dV u, (44)

dV e = ∆+ β (1− s) dV e + βsdV u. (45)

Subtracting (44) from (45), we obtain

dV e − dV u = ∆+ β (1− s) (1− p (θ)) (dV e − dV u)

=
1

1− β (1− s) (1− p (θ))
∆

> 0

hence, dV e > dV u. Therefore, the perturbation raises, for all yt, V e
t (yt) by more than V u

(and thus V o); hence, it does not violate any participation constraint. Further, since the

perturbation raises consumption for all employed workers without altering θ, it increases
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the value of any social welfare function that respects the Pareto principle, including V B

and V R. This contradicts the fact that x is an efficient allocation, so ED = 0.

An immediate corollary of Lemma A2 is that if x is the Benthamite (Rawlsian) efficient

allocation, then there cannot be a feasible allocation x′ that achieves the same V B (V R) as

x with ED < 0. Such an x′ would also be an efficient allocation, contradicting Lemma A2.

Lemma A3 states how, given an incentive-feasible allocation, a new incentive-feasible

allocation can be obtained by perturbing consumption at some history yτ and (yτ , yτ+1).

Lemma A3 Let x be an incentive-feasible allocation. Take any history yτ and (yτ , yτ+1),

and perturb x by (dcτ (y
τ) , dcτ+1 (y

τ , yτ+1)), keeping V u unchanged. In the perturbed

allocation, the participation constraint holds at all histories, except possibly at (yτ , yτ+1);

further, if the participation constraint is initially slack at (yτ , yτ+1), or if dcτ+1 (y
τ , yτ+1) >

0, the participation constraint holds at all histories.

Proof. Let x and (dcτ (y
τ) , dcτ+1 (y

τ , yτ+1)) be as specified. Then, from (3),

0 = dV u

= p (θ) [βτ (1− s)τ π (yτ)U ′ (cτ (y
τ)) dcτ (y

τ) (46)

+βτ+1 (1− s)τ+1 π (yτ , yτ+1)U
′ (cτ+1 (y

τ , yτ+1)) dcτ+1 (y
τ , yτ+1)

]

and thus dcτ (y
τ) and dcτ+1 (y

τ , yτ+1) satisfy

dcτ (y
τ) = −β (1− s)

π (yτ , yτ+1)

π (yτ )

U ′ (cτ+1 (y
τ , yτ+1))

U ′ (cτ (yτ ))
dcτ+1 (y

τ , yτ+1) . (47)

Since V u is unchanged in the perturbed allocation, (6) implies that neither is V o (yt)

for any yt ∈ Y . Let us now consider how the perturbation affects V e
t (yt) for different

yt. First, from (5) and (47), V e
τ (yτ) is unchanged so the participation constraint still

holds at yτ , and the same applies to any history preceding yτ . Next, this perturbation

raises V e
τ+1 (y

τ , yτ+1) by U
′ (cτ+1 (y

τ , yτ+1)) dcτ+1 (y
τ , yτ+1), whose sign coincides with that

of dcτ+1 (y
τ , yτ+1). Thus, if dcτ+1 (y

τ , yτ+1) > 0, the participation constraint still holds at

(yτ , yτ+1). In contrast, if dcτ+1 (y
τ , yτ+1)< 0, the participation constraint can be violated

at (yτ , yτ+1); however, if the participation constraint is initially slack at (yτ , yτ+1), then

it remains thus for infinitesimal dcτ+1 (y
τ , yτ+1). Finally, at all other history yt, V e

t (yt)

remains constant given that V u is unchanged, so the participation constraint continues

to hold.
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Appendix C: Proofs of Propositions

Appendix C provides the proofs of all the propositions.

Proof of Proposition1

The proof proceeds through a series of lemmas. For now, we take as given the existence

of the Benthamite efficient allocation and provide its proof in Lemma A9.

Lemma A4 characterizes the efficient consumption path when the participation con-

straint is slack.

Lemma A4 In the Benthamite efficient allocation, for any history yτ and (yτ , yτ+1)

such that the participation constraint is slack at (yτ , yτ+1), 1/U
′ (cτ+1 (y

τ , yτ+1)) = α +

β/U ′ (cτ (y
τ)), where α > 0 is the marginal cost of V B.

Proof. Let x be the Benthamite efficient allocation. Take any (yτ , yτ+1) at which

the participation constraint is slack, and perturb x by (dcτ (y
τ) , dcτ+1 (y

τ , yτ+1)) while

satisfying (47) or, equivalently, keeping V u unchanged. Then, from Lemma A3, the

perturbed allocation is incentive feasible.

From (7), (15), and (47), we obtain

d (ED) =

(

1− β
U ′ (cτ+1 (y

τ , yτ+1))

U ′ (cτ (yτ))

)

eτ+1 (y
τ , yτ+1) dcτ+1 (y

τ , yτ+1) , (48)

dV B = U ′ (cτ+1 (y
τ , yτ+1)) eτ+1 (y

τ , yτ+1) dcτ+1 (y
τ , yτ+1) . (49)

Dividing (48) by (49) reveals that the planner’s marginal cost of increasing V B through

this particular perturbation is

α̂ (yτ , yτ+1) ≡
1

U ′ (cτ+1 (yτ , yτ+1))
− β

1

U ′ (cτ (yτ))
. (50)

Let α > 0 be the marginal cost of V B. Clearly α̂ (yτ , yτ+1) ≥ α, because, in in-

creasing V B, the planner can do no worse than the perturbation above. Further, if

α̂ (yτ , yτ+1) > α, then the marginal cost reduction from decreasing V B through the reverse

perturbation (−dcτ (y
τ) ,−dcτ+1 (y

τ , yτ+1)) exceeds α. Then, combining the perturbation

(−dcτ (y
τ) ,−dcτ+1 (y

τ , yτ+1)) and the perturbation that increases V B with marginal cost

α yields a feasible allocation that achieves the same V B as x with ED < 0. This

contradicts the fact that x is the Benthamite efficient allocation, so α̂ (yτ , yτ+1) = α and

1

U ′ (cτ+1 (yτ , yτ+1))
= α + β

1

U ′ (cτ (yτ ))
, (51)
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as was to be shown.

Lemma A5 provides the economic interpretation of λt (y
t).

Lemma A5 The direct marginal cost of V e
t (yt) for the Benthamite planner is increasing

in V e
t (yt) and equals λt (y

t) = 1/U ′ (ct (y
t)).

Proof. Recall the component planner in Lemma A1, who takes V u and {Rt (y
t)}

∞
t=1 as

given and minimizes the expected resource cost of providing V e
t (yt) to a single worker

with history yt. The first-order conditions imply that such a component planner sets

U ′ (ct (y
t)) = βRt (y

t)U ′ (ct+1 (y
t, yt+1)) when the participation constraint is slack at

(yt, yt+1), and V
e
t+1 (y

t, yt+1) = V o (yt+1) otherwise. This result and Lemma A4 imply that

the consumption profile chosen by the Benthamite planner to provide {V e
t (yt)}

∞
t=1, given

V u, will also be chosen by relevant component planners who faceRt (y
t) = αU ′ (ct (y

t)) /β+

1 for all yt. This, in turn, implies that the Benthamite planner values any {ct (y
t)}

∞
t=1 using

prices {Rt (y
t)}

∞
t=1, where Rt (y

t) = αU ′ (ct (y
t)) /β+1 for all yt. By definition, the direct

cost of V e
t (yt) for the Benthamite planner is the minimized expected value, computed

using such {Rt (y
t)}

∞
t=1 and taking V u as given, of the consumption profile that provides

V e
t (yt) to a single worker with history yt; thus, it coincides with cost Q (V e

t (yt) ; yt) for

the component planner who faces the same {Rt (y
t)}

∞
t=1. The claim thus follows from

Lemma A1.

The proof above reveals that the Benthamite planner’s expected resource cost of pro-

viding any V e
t (yt), taking V u as given, to M workers is simply M times that for a single

worker. Thus, as a normalization, we consider a single worker (or a measure one of

workers) in defining the direct cost and direct marginal cost of V e
t (yt).

Lemma A6 confirms the standard result in the limited commitment literature, namely,

that a binding participation constraint raises consumption. Lemma A6 also shows that

initial consumption is equalized across states in which the participation constraint is slack.

Lemma A6 In the Benthamite efficient allocation, (i) for any history (yτ , yτ+1) and

(yτ , ŷτ+1) such that the participation constraint is slack at (yτ , yτ+1) and binds at (y
τ , ŷτ+1),

cτ+1 (y
τ , yτ+1) < cτ+1 (y

τ , ŷτ+1) and (ii) for any history y1 and ŷ1 such that the partic-

ipation constraint is slack at y1 and binds at ŷ1, c1 (y
1) = c̄1 < c1 (ŷ

1), where c̄1 > 0
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satisfies

− ku
θq′ (θ)

q (θ)
=

1

β

(

1

U ′ (c̄1)
− α

)

uβp′ (θ) (1− s)





∑

y1

π
(

y1
)

V e
1

(

y1
)

− V u



 (52)

+ αup′ (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)

− αu (1− u)
p′ (θ)

p (θ)



V u + p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)



 .

Proof. Let x be the Benthamite efficient allocation. To prove that consumption is

greater under a binding participation constraint ((i) and the inequality part of (ii)), note

that when the participation constraint binds at yt, the planner sets V e
t (yt) = V o (yt),

which exceeds the value chosen in the absence of a binding participation constraint. The

proof is then immediate from Lemma A5.

To prove that consumption is equalized across y1 at which the participation constraint

is slack (the part c1 (y
1) = c̄1 of (ii)), take any y1 and ŷ1 at which the participation

constraint is slack, and perturb x by (dc1 (y
1) , dc1 (ŷ

1)), keeping V u unchanged. Clearly,

the perturbed allocation is incentive feasible. From (3), (8), and dV u = 0, we obtain

−e1
(

y1
)

U ′
(

c1
(

y1
))

dc1
(

y1
)

= e1
(

ŷ1
)

U ′
(

c1
(

ŷ1
))

dc1
(

ŷ1
)

, (53)

which implies dV B = 0 from (15). On the other hand, (7) and (53) imply

d (ED) = e1
(

y1
)

dc1
(

y1
)

+ e1
(

ŷ1
)

dc1
(

ŷ1
)

= e1
(

y1
)

(

1−
U ′ (c1 (y

1))

U ′ (c1 (ŷ1))

)

dc1
(

y1
)

. (54)

Note from (54) that unless c1 (y
1) = c1 (ŷ

1), dc1 (y
1) can be set positive or negative to

yield d (ED) < 0, resulting in a feasible allocation that achieves the same V B as x with

ED < 0. This contradicts the fact that x is the Benthamite efficient allocation, hence,

c1 (y
1) = c1 (ŷ

1) = c̄1 for some c̄1.

To prove that c̄1 satisfies (52), take any y1 = y1 = ȳm and (y1, y2) at which the

participation constraint is slack28, and perturb x by (dc1 (y
1) , dc2 (y

1, y2) , dθ), keeping

V u and ED unchanged. Clearly, the perturbed allocation is feasible for infinitesimal

28If the participation constraint is slack at some y1 = y1 = ȳm, it is again slack at some
(

y1, y2
)

, as

explained below. As we show in Lemma A7 below, U ′
(

c1
(

y1
))

≥ (1− β) /α. Thus, given Lemma

A4, c2
(

y1, y2
)

≥ c1
(

y1
)

for
(

y1, y2
)

at which the participation constraint is slack. Therefore, the

participation constraint is slack, for example, at
(

y1, y2
)

= (ȳm, ȳm).
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(dc1 (y
1) , dc2 (y

1, y2) , dθ), so the efficiency of x requires the change in V B to be zero.

The proof proceeds by obtaining the expression for this condition.

From (15) and dV B = 0, we obtain, after using (8) and multiplying by 1− β,

0 = e1
(

y1
)

U ′
(

c1
(

y1
))

dc1
(

y1
)

+ e2
(

y1, y2
)

U ′
(

c2
(

y1, y2
))

dc2
(

y1, y2
)

(55)

+ up′ (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

U
(

ct
(

yt
))

dθ

− u (1− u)
p′ (θ)

p (θ)



U (b) + p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

U
(

ct
(

yt
))



 dθ,

where the third line on the RHS uses

∂u (θ, s)

dθ
= −

sp′ (θ) (1− s)

[s+ p (θ) (1− s)]2
= −u (1− u)

p′ (θ)

p (θ)
, (56)

which follows from (9). Let us now express dc1 (y
1) and dc2 (y

1, y2) in (55) using dθ.

From (3) and dV u = 0, we have

0 = βp (θ) (1− s)π
(

y1
)

U ′
(

c1
(

y1
))

dc1
(

y1
)

+ β2p (θ) (1− s)2 π
(

y1, y2
)

U ′
(

c2
(

y1, y2
))

dc2
(

y1, y2
)

− βV up′ (θ) dθ

+ βp′ (θ)

∞
∑

t=1

βt−1 (1− s)t−1



(1− s)
∑

yt

π
(

yt
)

U
(

ct
(

yt
))

+ sV u



 dθ,

which, by multiplying by u and rearranging using (3) and (8), becomes

βe1
(

y1
)

U ′
(

c1
(

y1
))

dc1
(

y1
)

+ β2e2
(

y1, y2
)

U ′
(

c2
(

y1, y2
))

dc2
(

y1, y2
)

= −u
p′ (θ)

p (θ)
[(1− β)V u − U (b)] dθ. (57)

From (7) and d (ED) = 0, we have

0 = e1
(

y1
)

dc1
(

y1
)

+ e2
(

y1, y2
)

dc2
(

y1, y2
)

(58)

+ u



k − p′ (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
) (

yt − ct
(

yt
))



 dθ,
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which, using (13), becomes

dc1
(

y1
)

=
ku θq′(θ)

q(θ)

e1 (y1)
dθ −

e2 (y
1, y2)

e1 (y1)
dc2

(

y1, y2
)

. (59)

From (57) and (59), we obtain

dc1
(

y1
)

= −u
β2U ′ (c2 (y

1, y2)) k
θq′(θ)
q(θ)

+ p′(θ)
p(θ)

[(1− β)V u − U (b)]

βe1 (y1) (U ′ (c1 (y1))− βU ′ (c2 (y1, y2)))
dθ, (60)

dc2
(

y1, y2
)

= u
βU ′ (c1 (y

1)) k θq′(θ)
q(θ)

+ p′(θ)
p(θ)

[(1− β) V u − U (b)]

βe2 (y1, y2) (U ′ (c1 (y1))− βU ′ (c2 (y1, y2)))
dθ. (61)

Further, rewriting (14) as

V B = u



V u + p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)



 (62)

and combining with (15) yields

p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

U
(

ct
(

yt
))

= (1− β) V u − U (b) + (1− β) p (θ)
∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)

. (63)

Substituting (60) and (61) into (55) and using (63), we obtain

0 =
U ′ (c1 (y

1))U ′ (c2 (y
1, y2))

U ′ (c1 (y1))− βU ′ (c2 (y1, y2))
ku
θq′ (θ)

q (θ)
dθ (64)

+
1

1− β
u

(

1 +
1

β

U ′ (c2 (y
1, y2))− U ′ (c1 (y

1))

U ′ (c1 (y1))− βU ′ (c2 (y1, y2))

)

p′ (θ)

p (θ)
[(1− β) V u − U (b)] dθ

+ up′ (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)

dθ

− u (1− u)
p′ (θ)

p (θ)



V u + p (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

V e
t

(

yt
)



 dθ.

The participation constraint is slack at (y1, y2) by assumption, so (51) holds with c1 (y
1)
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and c2 (y
1, y2) replacing cτ (y

τ ) and cτ+1 (y
τ , yτ+1), respectively. Thus,

U ′ (c1 (y
1))U ′ (c2 (y

1, y2))

U ′ (c1 (y1))− βU ′ (c2 (y1, y2))
=

1
1

U ′(c2(y1,y2))
− β

U ′(c1(y1))

= α−1, (65)

U ′ (c2 (y
1, y2))− U ′ (c1 (y

1))

U ′ (c1 (y1))− βU ′ (c2 (y1, y2))
=

1
U ′(c1(y1))

− 1
U ′(c2(y1,y2))

1
U ′(c2(y1,y2))

− β
U ′(c1(y1))

=
1− β

αU ′ (c1 (y1))
− 1. (66)

Substituting (65) and (66) into (64), setting c1 (y
1) = c̄1, noting (2), and rearranging

terms yields (52).

Lemma A7 links c̄1 with the direct marginal cost of V u.

Lemma A7 Let γ > 0 be the direct marginal cost of V u for the Benthamite planner.

Then, (i) γ = (1/U ′ (c̄1)− α) /β, (ii) γ ≤ α/ (1− β), with strict inequality if there is any

binding participation constraint.

Proof. Let x be the Benthamite efficient allocation, and let γ > 0 be the direct marginal

cost of V u for the Benthamite planner. To prove (i), take any y1 at which the partici-

pation constraint is slack, and perturb x by dV e
1 (y1) 6= 0 while keeping V u unchanged.

Since the direct marginal cost of V e
1 (y1) is λ1 (y

1), the planner’s cost of providing V e
1 (y1)

to measure e1 (y
1) of workers with history y1 rises by e1 (y

1) λ1 (y
1) dV e

1 (y1). As observed

from (14), however, the perturbation directly raises V B by e1 (y
1) dV e

1 (y1), whose value

in resource units is αe1 (y
1) dV e

1 (y1). Also, as observed from (2), the rise in V e
1 (y1)

increases, taking V u in future periods as given, V u by βp (θ) (1− s)π1 (y
1) dV e

1 (y1);

hence, the cost of providing the same V u as before to measure u of agents falls by

γuβp (θ) (1− s)π1 (y
1) dV e

1 (y1) = γβe1 (y
1) dV e

1 (y1). Since the participation constraint

is slack at y1, both positive and negative dV e
1 (y1) are consistent with incentive feasibility;

thus, net gains from such a perturbation must be zero, or

e1
(

y1
)

λ1
(

y1
)

dV e
1

(

y1
)

= αe1
(

y1
)

dV e
1

(

y1
)

+ γβe1
(

y1
)

dV e
1

(

y1
)

. (67)

Dividing by dV e
1 (y1) and noting λ1 (y

1) = 1/U ′ (c̄1) yields γ = (1/U ′ (c̄1)− α) /β.

To prove (ii), again take any y1 at which the participation constraint is slack, and per-

turb x by (dc1 (y
1) , dc2 (y

1, y2)), where the perturbation sustains ED = 0 and dc2 (y
1, y2) >

0. From (7) and d (ED) = 0, we have

dc1
(

y1
)

= −
e2 (y

1, y2)

e1 (y1)
dc2

(

y1, y2
)

= − (1− s)
π (y1, y2)

π (y1)
dc2

(

y1, y2
)

. (68)
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To see that the perturbed allocation is incentive feasible, note from (25) that the

perturbation raises V u by

dV u

=
p (θ)

(1− β)
[

1 + βp(θ)(1−s)
1−β+βs

]β (1− s) π
(

y1
)

U ′
(

c1
(

y1
))

dc1
(

y1
)

+
p (θ)

(1− β)
[

1 + βp(θ)(1−s)
1−β+βs

]β2 (1− s)2 π
(

y1, y2
)

U ′
(

c2
(

y1, y2
))

dc2
(

y1, y2
)

= −
p (θ)

(1− β)
[

1 + βp(θ)(1−s)
1−β+βs

]β (1− s)2 π
(

y1, y2
) (

U ′
(

c1
(

y1
))

− βU ′
(

c2
(

y1, y2
)))

dc2
(

y1, y2
)

,

where the second equality uses (68). Since U ′ (c1 (y
1)) > βU ′ (c2 (y

1, y2)) from Lemmas

A4 and A6, and since dc2 (y
1, y2) > 0 by assumption, dV u < 0. Further, (5) implies that

for all yt except this particular y1, V e
t (yt) falls by βs/ (1− β + βs) < 1 times the fall in

V u; thus, V e
t (yt) falls by less than V o, so the participation constraint still holds. The

participation constraint also holds at (y1, y2), at which current consumption is increased.

Finally, the participation constraint is initially slack at y1, so it remains thus for an

infinitesimal perturbation.

Thus, the perturbed allocation is feasible since it sustains ED = 0 and is incentive

feasible. Therefore, the efficiency of x requires the change in V B to be such that dV B ≤ 0.

From (35) and (68), we obtain

dV B =
1

1− β

(

e1
(

y1
)

U ′
(

c1
(

y1
))

dc1
(

y1
)

+ e2
(

y1, y2
)

U ′
(

c2
(

y1, y2
))

dc2
(

y1, y2
))

= −
1

1 − β
e2

(

y1, y2
) (

U ′
(

c1
(

y1
))

− U ′
(

c2
(

y1, y2
)))

dc2
(

y1, y2
)

. (69)

Since dV B ≤ 0 and dc2 (y
1, y2) > 0, we have U ′ (c1 (y

1)) ≥ U ′ (c2 (y
1, y2)). In particular, if

we take (y1, y2) at which the participation constraint is slack, (51) holds with c1 (y
1) = c̄1

and c2 (y
1, y2) replacing cτ (y

τ ) and cτ+1 (y
τ , yτ+1), respectively. Therefore,

α + β
1

U ′ (c1 (y1))
=

1

U ′ (c2 (y1, y2))
≥

1

U ′ (c1 (y1))
, (70)

hence 1/U ′ (c1 (y
1)) = 1/U ′ (c̄1) ≤ α/ (1− β), and thus γ = (1/U ′ (c̄1)− α) /β ≤ α/ (1− β).

Finally, suppose the participation constraint binds at some yt. Then, if dV B = 0, the

perturbation sustains ED = 0 and keeps V B unchanged, while lowering V u and thus V o.

The resulting relaxation of the participation constraint enables achieving a greater value
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of V B; this contradicts the fact that x is the Benthamite efficient allocation, so dV B < 0.

Thus, U ′ (c1 (y
1)) > U ′ (c2 (y

1, y2)), such that the inequality in (70) becomes strict; hence,

γ < α/ (1− β).

Lemma A8 Let ψt (y
t) be as defined by (21) and (22). Then, ψt (y

t) equals the shadow

cost of the participation constraint at yt for the Benthamite planner.

Proof. Note from (21) that ψt+1 (y
t, yt+1) is positive if the participation constraint binds

at yt and zero otherwise. Now, if the participation constraint at (yt, yt+1) is slack, its

shadow cost is zero. If it binds, its shadow cost is 1/U ′
(

cb (yt+1)
)

− (α + βλt (y
t)).

To see this, note that as the binding participation constraint at (yt, yt+1) is tightened

by one infinitesimal unit, V e
t+1 (y

t, yt+1) must be increased by one infinitesimal unit.

Thus, the shadow cost rises one to one with 1/U ′
(

cb (yt+1)
)

, the direct marginal cost

of V e
t+1 (y

t, yt+1) = V o (yt+1), and vanishes as α + βλt (y
t) approaches 1/U ′

(

cb (yt+1)
)

,

where the participation constraint turns slack. This proves the claim for ψt+1 (y
t, yt+1),

and a similar argument proves the claim for ψ1 (y
1).

We now prove the existence of the Benthamite efficient allocation by invoking the

Weierstrass theorem. Given the aggregate resource constraint, supx∈D′ V B is clearly

finite, while it is not immediate that maxx∈D′ V B is well defined. The challenge here lies

in showing the compactness of the set of feasible allocations, which is infinite dimensional.

We achieve this by using the consumption rule above to restrict attention to a subset of

feasible allocations, which is shown to have a homeomorphism to a finite-dimensional set.

Lemma A9 The Benthamite efficient allocation exists.

Proof. Let D
′′

⊂ D
′

be the set of feasible allocations x = (θ, {ct (y
t)}

∞
t=1) such that,

for some ĉ1 ∈ C ≡ [c∗, c̄∗] ⊂ (0,∞), c (ȳn) ∈ C, n = 1, 2, . . . , N , and α̂ ∈ [α∗, ᾱ∗], (i)

θ ∈
[

θ, θ̄
]

⊂ (0,∞), (ii) c1 (y
1) = max {ĉ1, c (y1)} for all y1 = y1, and (iii) ct+1 (y

t, yt+1) =

max
{

(U ′)−1
(

1
α̂+β/U ′(ct(yt))

)

, c (yt+1)
}

for all (yt, yt+1). Here, θ (θ̄) is a sufficiently small

(large) constant such that the Benthamite planner never optimally chooses θ < θ (θ > θ̄)

and similarly for c∗ (c̄∗), while α∗ ≡ 1/U ′ (c∗)− β/U ′ (c̄∗) and ᾱ∗ ≡ (1− β) /U ′ (c̄∗).29

In words, D′′ is a set of feasible allocations with consumption rules that are compatible

with those described in Lemmas A4–A6. Thus, if the Benthamite efficient allocation

29The restriction α̂ ≥ α∗ does not bind because, for any α̂ < α∗ and ct (y
t) ≤ c̄∗, we have

(U ′)
−1

(

1
α̂+β/U ′(ct(yt))

)

≤ c∗ ≤ c (yt+1) and thus ct+1 (y
t, yt+1) = c (yt+1), just as for α̂ = α∗. In

contrast, α̂ ≤ ᾱ∗ implies that if ct (y
t) ≤ c̄∗, then (U ′)−1

(

1
α̂+β/U ′(ct(yt))

)

≤ c̄∗ and thus ensures that

consumption never exceeds c̄∗; this is also not a binding restriction if c̄∗ is set sufficiently large.
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exists, it must belong to D′′. Importantly, despite being infinite dimensional, allocations

in D′′ can be characterized by a finite number of variables,
(

θ, ĉ1, α̂, {c (ȳn)}
N
n=1

)

. To see

that D′′ is nonempty, consider allocations in which ct (y
t) = b for all yt. Such allocations

satisfy conditions (ii) and (iii) above for ĉ1 = b, c (ȳn) = b, n ∈ {1, 2, . . . , N}, and α̂ =

(1− β) /U ′ (b), and are incentive feasible since they yield V e
t (yt) = V u = U (b) / (1− β)

for any yt. Further, given ȳn > b for all ȳn ∈ Y , such allocations with sufficiently small

θ satisfy (11) and are thus also resource feasible; hence, D′′ is nonempty.

Below, we first prove that V B attains its maximum in D′′ by establishing the com-

pactness of (D′′, dD′′). For any c ∈ C, let G (c) ≡ 1/U ′ (c) and g (c) ≡ G′ (c). Further,

let g ≡ minc∈C g (c) and ḡ ≡ maxc∈C g (c). Clearly, 0 < g < ḡ < ∞. Then, for any

c, c′ ∈ C, the intermediate value theorem implies

G (c)−G (c′) = g
(

cλ
)

(c− c′) (71)

for some cλ between c and c′, and thus

g |c− c′| ≤ |G (c)−G (c′)| ≤ ḡ |c− c′| . (72)

Now, define f : D′′ → RN+3 by f (x) =
(

θ, ĉ1, α̂, {c (ȳn)}
N
n=1

)

for x ∈ D′′, where,

for any x ∈ D′′ in which consumption is constant at some c, c (ȳn) ≡ c for all n ∈

{1, 2, . . . , N}.30 Further, let D̃′′ ≡ f (D′′) ⊂ RN+3. Now, define dD′′ : D′′ ×D′′ → R+ by

dD′′ (x, x′) = max

{

|θ − θ′| , sup
yt

∥

∥ct
(

yt
)

− c′t
(

yt
)∥

∥

}

(73)

for x and x′ in D′′, and dD̃′′ : D̃′′ × D̃′′ → R+ by

dD̃′′ (z, z′) = max

{

|θ − θ′| , |ĉ1 − ĉ′1| , [(1− β) ḡ]−1 |α̂− α̂′| , max
n∈{1,2,...,N}

|c (ȳn)− c′ (ȳn)|

}

(74)

for z =
(

θ, ĉ1, α̂, {c (ȳn)}
N
n=1

)

and z′ =
(

θ′, ĉ′1, α̂
′, {c′ (ȳn)}

N
n=1

)

in D̃′′. Then, dD′′ and dD̃′′

are distance functions in D′′ and D̃′′, respectively.

Clearly, f is a continuous function from a metric space (D′′, dD′′) to
(

D̃′′, dD̃′′

)

; further,

f is a bijection between D′′ to D̃′′, so f−1 exists. As shown below, f−1 is also a continuous

30For x ∈ D′′ in which consumption is constant at some c, {c (ȳn)}
N
n=1 is not uniquely identified from

condition (iii) above, since any {c (ȳn)}
N
n=1 with c (ȳn) ≤ c, n ∈ {1, 2, . . . , N}, is consistent with (iii).

The assumption here on {c (ȳn)}
N
n=1 is made simply to ensure that f is a function, not a correspondence,

even in such a case.
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function from
(

D̃′′, dD̃′′

)

to (D′′, dD′′). Take any ǫ > 0. Then, take z, z′ ∈ D̃′′ such that

dD̃′′ (z, z′) < δ ≡
(

g/ḡ
)

ǫ, which implies |θ − θ′| < δ, |ĉ1 − ĉ′1| < δ, |α̂− α̂′| < (1− β) ḡδ,

and |c (ȳn)− c′ (ȳn)| < δ, n ∈ {1, 2, . . . , N}. The last inequality and (72) then imply

|G (c (ȳn))−G (c′ (ȳn))| < ḡδ, n ∈ {1, 2, . . . , N} . (75)

Now, let x ≡ f−1 (z) and x′ ≡ f−1 (z′). Since |θ − θ′| < δ < ǫ, if we can show

|ct (y
t)− c′t (y

t)| < ǫ for all yt, then dD′′ (x, x′) < ǫ and thus f−1 is continuous. We show

this by induction. First, for any y1,

c1
(

y1
)

− c′1
(

y1
)

= max {ĉ1, c (y1)} −max {ĉ′1, c
′ (y1)}

≤ max {ĉ1 − ĉ′1, c (y1)− c′ (y1)}

< δ.

By symmetry, c′1 (y
1) − c1 (y

1) < δ, so |c1 (y
1)− c′1 (y

1)| < δ. Therefore, (72) implies

|G (c1 (y
1))−G (c′1 (y

1))| < ḡδ.

Next, take any yt, and suppose |G (ct (y
t))−G (c′t (y

t))| < ḡδ. Let

ĉt+1 ≡ (U ′)−1
(

1
α̂+β/U ′(ct(yt))

)

and ĉ′t+1 ≡ (U ′)−1
(

1
α̂′+β/U ′(c′

t
(yt))

)

. Then, ct+1 (y
t, yt+1) =

max {ĉt+1, c (yt+1)} and c′t+1 (y
t, yt+1) = max

{

ĉ′t+1, c
′ (yt+1)

}

for any yt+1 ∈ Y . Since

G is an increasing function, these expressions can be rewritten as G (ct+1 (y
t, yt+1)) =

max {G (ĉt+1) , G (c (yt+1))} and G
(

c′t+1 (y
t, yt+1)

)

= max
{

G
(

ĉ′t+1

)

, G (c′ (yt+1))
}

. Thus,

G
(

ct+1

(

yt, yt+1

))

−G
(

c′t+1

(

yt, yt+1

))

= max {G (ĉt+1) , G (c (yt+1))} −max
{

G
(

ĉ′t+1

)

, G (c′ (yt+1))
}

≤ max
{

G (ĉt+1)−G
(

ĉ′t+1

)

, G (c (yt+1)−G (c′ (yt+1)))
}

< ḡδ.

Here, the last inequality follows since the definitions of ĉt+1 and ĉ
′
t+1 imply G (ĉt+1) = α̂+

βG (ct (y
t)) and G

(

ĉ′t+1

)

= α̂′ + βG (c′t (y
t)), which, combined with |α̂− α̂′| < (1− β) ḡδ

and |G (ct (y
t))−G (c′t (y

t))| ≤ ḡδ, yield

G (ĉt+1)−G
(

ĉ′t+1

)

= α̂− α̂′ + β
(

G
(

ct
(

yt
))

−G
(

c′t
(

yt
)))

< (1− β) ḡδ + βḡδ = ḡδ,

while (75) implies |G (c (yt+1)−G (c′ (yt+1)))| < ḡδ. By symmetry, G
(

c′t+1 (y
t, yt+1)

)

−

G (ct+1 (y
t, yt+1)) < ḡδ and thus

∣

∣G (ct+1 (y
t, yt+1))−G

(

c′t+1 (y
t, yt+1)

)∣

∣ < ḡδ.
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Therefore, by induction, |G (ct (y
t))−G (c′t (y

t))| < ḡδ for any yt. Combining this

result with the first inequality in (72) yields

∣

∣ct
(

yt
)

− c′t
(

yt
)∣

∣ <
ḡ

g
δ = ǫ, ∀yt.

Thus, dD′′ (x, x′) < ǫ for any z, z′ ∈ D̃′′ with dD̃′′ (z, z′) < δ =
(

g/ḡ
)

ǫ, so f−1 is continuous.

Now,
(

D̃′′, dD̃′′

)

is bounded by assumption and is also closed, as explained below.

Take any convergent sequence {xk}
∞
k=1 such that xk ∈ D′′ for all k, and suppose x∞ /∈

D′′. Then, x∞ must violate at least one of the participation constraints or the resource

constraint, because as a limit of {xk}
∞
k=1, x∞ clearly satisfies conditions (i)–(iii) above.

However, since the expressions in these constraints are continuous functions from (D′′, dD′′)

to R,31 the constraint violated at x∞ must also be violated at xk for k sufficiently large.

This contradicts xk ∈ D′′, so x∞ ∈ D′′ and thus D′′ is closed. Then, since f−1 is

continuous, D̃′′ = f (D′′) is also closed. Therefore,
(

D̃′′, dD̃′′

)

is compact, because it is

closed and bounded and is a subset of RN+3 equipped with a metric corresponding to

dD̃′′. Then, (D′′, dD′′) is also compact since f−1 is continuous and D′′ = f−1
(

D̃′′
)

.32

Therefore, since V B is a continuous function from (D′′, dD′′) to R,33 the Weierstrass

theorem implies that V B attains its maximum inD′′. It remains to show that maxx∈D′′ V B =

supx∈D′ V B, which in turn implies that maxx∈D′ V B exists and equals maxx∈D′′ V B. To

see this, suppose ε ≡
(

supx∈D′ V B −maxx∈D′′ V B
)

/2 > 0, and let εm ≡ ε/ (m+ 1),

m = 1, 2, . . .. From the definition of the supremum, for each m, there exists some

xm ∈ D′ that provides the value of V B, denoted as V B
m , with V B

m > supx∈D′ V B − εm.

In fact, xm ∈ D′/D′′, since V B
m > maxx∈D′′ V B by construction. Now, for any alloca-

tion in D′/D′′, the Benthamite planner can provide the same V B with fewer resources

by resorting to the perturbations discussed in the proof of Lemmas A4 and A6. As m

increases and εm approaches zero, such resources savings from perturbations must also

approach zero, because otherwise the planner could use those saved resources to increase

V B
m by more than εm and thus provide V B that exceeds supx∈D′ V B. This requires, for

sufficiently large m, that xm become arbitrarily close to some x̂m ∈ D′′. The continuity

of V B then implies that, for sufficiently large m, V B
m must also become arbitrarily close

to V̂ B
m , the value of V B achieved by x̂m. In particular, V̂ B

m > V B
m − ε, hence combined

31To elaborate, the expressions in these constraints are clearly continuous functions from (D, dD) to
R. Also, since D′′ ⊆ D and dD′′ (x, x′) = dD (x, x′) for all x, x′ ∈ D′′, (D′′, dD′′) is a metric subspace of
(D, dD) (and, viewed as a topological space, (D′′, dD′′) is a topological subspace of (D, dD)). Thus, the
restrictions of these expressions to (D′′, dD′′) are also continuous (see Munkres (2000), Theorem 18.2(d)).

32Note that the preimage of a continuous function on a closed set is closed, and the image of a continuous
function of a compact set is compact (see Rudin (1976), Corollary to Theorem 4.8, and Theorem 4.14).

33The argument is similar to that in footnote 31.
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with V B
m > supx∈D′ V B − εm and ε > εm, we have

V̂ B
m > sup

x∈D′

V B − (εm + ε) > sup
x∈D′

V B − 2ε = max
x∈D′′

V B, (76)

which is a contradiction since x̂m ∈ D′′. Therefore, ε = 0 and thus maxx∈D′′ V B =

maxx∈D′ V B = supx∈D′ V B, and the maximizer of V B in D′′, whose existence is proved

above, is the Benthamite efficient allocation.

Proposition 1 is proved by combining the results above. Let x be the Benthamite

efficient allocation. To show (17), take any yt and (yt, yt+1). If the participation con-

straint is slack at (yt, yt+1), then Lemma A4 and (16) imply λt+1 (y
t, yt+1) = α+ βλt (y

t).

If the participation constraint binds at (yt, yt+1), then ct+1 (y
t, yt+1) = cb (yt+1), hence

λt+1 (y
t, yt+1) = 1/U ′

(

cb (yt+1)
)

. Combining these results with Lemma A6 and noting

(21) yields (17). Similarly, combining Lemmas A6 and A7 and noting (22) yields (18).

Next, (19) follows from (52) by noting γ = (1/U ′ (c̄1)− α) /β from Lemma A7.

To obtain (20), perturb x by dV u 6= 0 while keeping V e
t (yt) unchanged for all yt.

From (2), note that the change in V u from a given change in some V e
1 (y1), which

takes into account the effect of the change in V u in future periods on the current V u,

is 1/ [(1− β) + βp (θ) (1− s)] times that when the values of V u in future periods are

taken as given. Accordingly, the increase in the planner’s cost of providing V u to a

measure u of unemployed workers, which takes into account the effect of the change in

V u in future periods, is uγ [1− β + βp (θ) (1− s)] dV u. On the other hand, the increase

in V u by dV u directly raises V B by udV u, whose value in terms of resources is αudV u.

Further, as seen from (4), the increase in V u raises each V e
t (yt) by βsdV u; thus, the cost

of providing the same V e
t (yt) as before to a measure et (y

t) of workers with history yt falls

by et (y
t)βsλt (y

t) dV u. Finally, the increase in V u tightens the participation constraint

at each yt by dV u, whose cost is et (y
t)ψt (y

t) dV u. Since dV u can be made positive or

negative, the efficiency of x requires the net gain from such a perturbation to be zero, or

uγ [1− β + βp (θ) (1− s)] dV u = αudV u+

∞
∑

t=1

∑

yt

et
(

yt
) (

βsλt
(

yt
)

− ψt

(

yt
))

dV u. (77)

Dividing (77) by dV u yields (20).

Finally, that α, λt (y
t), γ, and ψt (y

t) have the properties described in Proposition 1

is shown in Lemmas A4, A5, A7, and A8. �
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Proof of Proposition 2

To prove (i), note from Lemma A6 that for all y1 at which the participation constraint

is slack, c1 (y
1) = c̄1 for some c̄1. Moreover, by assumption, the participation constraint

binds at some yt, so, from Lemma A7, γ < α/ (1− β). Therefore, λ1 (y
1) = α + βγ <

α/ (1− β) = 1/U ′ (c∞) and thus c̄1 < c∞.

To prove (ii), suppose the participation constraint is slack at (yτ , yτ+1). From Lemma

A4, (51) holds and thus noting 1/U ′ (c∞) = α/ (1− β), it follows that if cτ (y
τ) < c∞, then

cτ+1 (y
τ , yτ+1) ∈ (cτ (y

τ) , c∞) whereas if cτ (y
τ) > c∞, then cτ+1 (y

τ , yτ+1) ∈ (c∞, cτ (y
τ)).

To prove (iii), combine (17) and (18) to obtain

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

λt
(

yt
)

=
1

1− β (1− s)





1− s

s
α + (1− s) γβ +

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
)

ψt

(

yt
)



 . (78)

Substituting (78) into (20) yields

uγ +

∞
∑

t=1

∑

yt

et
(

yt
)

λt
(

yt
)

=
α

1− β
. (79)

Since γ < α/ (1− β) and u +
∑∞

t=1

∑

yt et (y
t) = 1, (79) requires λt (y

t) > α/ (1− β)

and thus ct (y
t) > c∞ for some yt. From (i) and (ii), however, until the participation

constraint binds for the first time, ct (y
t) < c∞ and thus λt (y

t) < 1/U ′ (c∞) = α/ (1− β).

Therefore, there must be at least one state ȳn ∈ Y for which a binding participation

constraint raises consumption above c∞, or cb (ȳn) > c∞. �

Proof of Proposition 3

The proof is simpler than for Proposition 1 because, given V R = V u, we have one

fewer variable for which to examine the effect of a given perturbation. The proof proceeds

through Lemmas A10–A15, which parallel Lemmas A4–A9.

Lemma A10 In the Rawlsian efficient allocation, U ′ (cτ (y
τ )) = βU ′ (cτ+1 (y

τ , yτ+1)) for

any history yτ and (yτ , yτ+1) such that the participation constraint is slack at (yτ , yτ+1).

Proof. Let x be the Rawlsian efficient allocation. Take any (yτ , yτ+1), and perturb x

by (dcτ (y
τ ) , dcτ+1 (y

τ , yτ+1)), keeping V
u unchanged. If the participation constraint is
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initially slack at (yτ , yτ+1), then from Lemma A3, the perturbed allocation is incentive

feasible. Then, the perturbation above must sustain ED = 0. This is because if

ED < 0, the perturbed allocation is feasible and achieves the same V R = V u as x; hence,

it is also a Rawlsian efficient allocation, contradicting Lemma A2. If ED > 0, a similar

contradiction follows by perturbing x by (−dcτ (y
τ ) ,−dcτ+1 (y

τ , yτ+1)). From (7),

d (ED) = eτ (y
τ) dcτ (y

τ) + eτ+1 (y
τ , yτ+1) dcτ+1 (y

τ , yτ+1) , (80)

so letting d (ED) = 0 and using (47) and eτ+1 (y
τ , yτ+1) = eτ (y

τ) (1− s) π (yτ , yτ+1) /π (y
τ),

(

1− β
U ′ (cτ+1 (y

τ , yτ+1))

U ′ (cτ (yτ))

)

eτ+1 (y
τ , yτ+1) dcτ+1 (y

τ , yτ+1) = 0. (81)

Therefore, U ′ (cτ (y
τ)) = βU ′ (cτ+1 (y

τ , yτ+1)), as was to be shown.

Lemma A11 The direct marginal cost of V e
t (yt) for the Rawlsian planner is increasing

in V e
t (yt) and equals λt (y

t) = 1/U ′ (ct (y
t)).

Proof. The proof follows by proceeding as in Lemma A5, and noting from Lemma A10

that the consumption profile chosen by the Rawlsian planner to provide V e
t (yt), given V u,

will also be chosen by the relevant component planner who faces Rt (y
t) = 1 for all yt.

Lemma A12 In the Rawlsian efficient allocation, the conclusions of Lemma A6 hold,

with c̄1 replaced by some c̃1 and (52) replaced by

−ku
θq′ (θ)

q (θ)
= u

1

βU ′ (c̃1)
βp′ (θ) (1− s)





∑

y1

π
(

y1
)

V e
1

(

y1
)

− V u



 . (82)

Proof. That consumption is greater under a binding participation constraint follows by

arguing as in the proof of Lemma A6 and noting Lemma A11.

That consumption equals c̃1 for all y1 at which the participation constraint is slack

also follows from a similar argument as in the proof of Lemma A6.

To prove that c̃1 satisfies (82), let x be the Rawlsian efficient allocation. Take any

y1 such that the participation constraint is slack, and perturb x by (dθ, dc1 (y
1)), keeping
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V u unchanged. From (3),

0 = dV u

= βp′ (θ)
∞
∑

t=1

βt−1 (1− s)t−1



(1− s)
∑

yt

π
(

yt
)

U
(

ct
(

yt
))

+ sV u



 dθ (83)

+ βp (θ) (1− s)π
(

y1
)

U ′
(

c1
(

y1
))

dc1
(

y1
)

− βV up′ (θ) dθ,

so using (3) and cancelling out terms,

βp (θ) (1− s)π
(

y1
)

U ′
(

c1
(

y1
))

dc1
(

y1
)

= −
p′ (θ)

p (θ)
[(1− β)V u − U (b)] dθ. (84)

Since V u is unchanged in the perturbed allocation, neither is V o (yt) for any yt ∈ Y .

From (5), for all yt except this y1, clearly V e
t (yt) is unchanged, so the participation

constraint still holds. On the other hand, V e
1 (y1) rises by U ′ (c1 (y

1)) dc1 (y
1), which is

negative if dc1 (y
1)< 0; however, since the participation constraint is initially slack at y1,

it remains thus for an infinitesimal dc1 (y
1).

Then, from a similar argument as in the proof of Lemma A10, the perturbation above

must sustain ED = 0. From (7),

d (ED) = u



k − p′ (θ)

∞
∑

t=1

(1− s)t
∑

yt

π
(

yt
) (

yt − ct
(

yt
))



 dθ + e
(

y1
)

dc1
(

y1
)

= −u
θq′ (θ)

q (θ)
kdθ − u

1

βU ′ (c1 (y1))
βp′ (θ) (1− s)





∑

y1

π
(

y1
)

V e
1

(

y1
)

− V u



 dθ,

where the second equality uses (2), (13), and (84). Imposing d (ED) = 0 and setting

c1 (y
1) = c̃1 yields (82).

Lemma A13 Let γ > 0 be the direct marginal cost of V u for the Rawlsian planner.

Then, γ = 1/ (βU ′ (c̃1)).

Proof. The proof follows by proceeding as in the proof of Lemma A7(i) and noting that,

since an increase in V e
t (yt) has no direct impact on V R = V u, (67) is replaced by

e1
(

y1
)

λ1
(

y1
)

dV e
1

(

y1
)

= γβe1
(

y1
)

dV e
1

(

y1
)

. (85)

Dividing by dV e
1 (y1) and noting λ1 (y

1) = 1/U ′ (c̃1) yields γ = 1/ (βU ′ (c̃1)).
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Lemma A14 Let ψt (y
t) be as defined by (29) and (30). Then, ψt (y

t) equals the shadow

cost of the participation constraint at yt for the Rawlsian planner.

Proof. The proof follows by replacing (21) with (29) and α + βλt (y
t) with βλt (y

t) in

the proof of Proposition A8.

Lemma A15 The Rawlsian efficient allocation exists.

Proof. The proof follows from a similar argument as for Lemma A9, with α̂ set to 0.

Proposition 3 is proved by combining the results above. Let x be the Rawlsian efficient

allocation. Take any yt and (yt, yt+1). If the participation constraint is slack at (yt, yt+1),

then Lemma A10 and (16) imply λt+1 (y
t, yτ+1) = βλt (y

t). If the participation constraint

binds at (yt, yt+1), then ct+1 (y
t, yτ+1) = cb (yt+1), hence λt+1 (y

t, yτ+1) = 1/U ′
(

cb (yt+1)
)

.

Combining these results with Lemma A12 and noting (29) yields (26). Similarly, com-

bining Lemmas A12 and A13 and noting (30) yields (27).

Next, (28) follows from (82) by noting γ = 1/ (βU ′ (c̃1)) from Lemma A13.

Finally, that λt (y
t), γ, and ψt (y

t) have the properties described in Proposition 3 is

shown in Lemmas A11, A13, and A14. �

Proof of Proposition 4

The proof follows immediately from Lemmas A10 and A12. �

Proof of Proposition 5

Assume the market economy described in the main text. Let (V u, θ) be as in the

Rawlsian efficient allocation, and let R = 1. We proceed in three steps and show that

the Rawlsian efficient allocation is consistent with market equilibrium.

Step 1 is to show that if, for all y1, the values of V1 (y
1) in the market economy coincide

with those in the Rawlsian efficient allocation, then so will the consumption profile. This

is seen by noting that the optimal contracting problem of the financial intermediary where

R = 1 is equivalent to the problem of the component planner in Lemma A1 where Rt (y
t) =

1 for all yt. Thus, from the argument in the proof of Lemma A11, if financial intermedi-

aries are to provide the same V1 (y
1) as in the Rawlsian efficient allocation, they will choose

the same consumption profile as the Rawlsian planner does. This completes Step 1.

Step 2 is to show that if V̄ e
1 , the worker’s expected value of being newly employed be-

fore observing y1, in the market economy equals the corresponding value in the Rawlsian

efficient allocation, then so does V1 (y
1) for all y1. To see this, let Π (Vt (y

t) ; yt) be the
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expected continuation profit for the financial intermediary in a match with the current

promised utility Vt (y
t) and history yt. From the argument in Step 1, Π (Vt (y

t) ; yt) =

Φ (yt) − Q (Vt (y
t) ; yt), where Φ (yt), the expected output from the match, is exoge-

nously given, and Q is the component planner’s cost function. Thus, from Lemma

A1, Π (Vt (y
t) ; yt) is decreasing, strictly concave, and Π′ (Vt (y

t) ; yt) = −1/U ′ (ct (y
t)).

Now, note that given any V̄ e
1 , the financial intermediary’s expected profit from a new

match before observing y1 is given by

Π̄
(

V̄ e
1

)

= max
{V1(y1)}

∑

y1

π
(

y1
)

Π
(

V1
(

y1
)

; y1
)

(86)

s.t.
∑

y1

π
(

y1
)

V1
(

y1
)

≥ V̄ e
1 , (87)

V1
(

y1
)

≥ V o (y1) , ∀y
1 = y1 ∈ Y. (88)

The first-order and envelope conditions imply Π̄′
(

V̄ e
1

)

= Π′ (V1 (y
1) ; y1) = −1/U ′ (c1 (y

1))

for any y1 at which the participation constraint (88) is slack, hence V1 (y
1) leads to the

same consumption across such y1, while V1 (y
1) = V o (y1) for y

1 at which (88) binds. If

V̄ e
1 is set to the value in the Rawlsian efficient allocation, such choices of V1 (y

1) clearly co-

incide with those of the Rawlsian planner in Propositions 3 and 4. This completes Step 2.

Step 3 is to show that the Rawlsian efficient allocation is consistent with the three

equilibrium conditions. First, the Nash bargaining problem is given by

max
V̄ e

1

(

V̄ e
1 − V u

)η (
Π̄
(

V̄ e
1

))1−η

s.t. V̄ e
1 ≥ V u, Π̄

(

V̄ e
1

)

≥ 0, (89)

hence taking the first-order condition yields the Nash bargaining condition,

η

1− η
Π̄
(

V̄ e
1

)

= −Π̄′
(

V̄ e
1

) (

V̄ e
1 − V u

)

. (90)

Second, given R = 1, the zero-profit condition for posting a vacancy is given by34

k = q (θ) (1− s) Π̄
(

V̄ e
1

)

. (91)

Third, the consumption loan market clearing condition is such that the demand for loans

34For a general R, the zero-profit condition for posting a vacancy is expressed as k =
(1/R) q (θ) (1− s) Π̄

(

V̄ e
1

)

= q (θ)
∑∞

t=1 [(1− s) /R]
t ∑

yt π (yt) (yt − ct (y
t)). Note that this condition

coincides with the consumption loan market clearing condition below if and only if R = 1.
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to finance the vacancy cost, kv, equals the supply of loans from existing matches, or

kv =

∞
∑

t=1

∑

yt

et
(

yt
) (

yt − ct
(

yt
))

. (92)

Henceforth, let V̄ e
1 be as in the Rawlsian efficient allocation. Given R = 1, the results

in Steps 1 and 2 imply

Π̄
(

V̄ e
1

)

=

∞
∑

t=1

(1− s)t−1
∑

yt

π
(

yt
) (

yt − ct
(

yt
))

, (93)

V̄ e
1 =

∑

y1

π
(

y1
)

V e
1

(

y1
)

, (94)

where {ct (y
t)}

∞
t=1 and V e

1 (y1) are as in the Rawlsian efficient allocation, and

Π̄′
(

V̄ e
1

)

= −
1

U ′ (c̃1)
= −βγ, (95)

where c̃1 and γ are as defined in Lemmas A12 and A13. Further, since η = −θq′ (θ) /q (θ)

by assumption and since p (θ) = θq (θ) implies p′ (θ) = q (θ) + θq′ (θ),

η

1− η
= −

θq′ (θ)

q (θ) + θq′ (θ)
= −

θq′ (θ)

p′ (θ)
. (96)

Using (93)–(96), we can rewrite the Nash bargaining condition (90) as

−
θq′ (θ)

p′ (θ)

∞
∑

t=1

(1− s)t−1
∑

yt

π
(

yt
) (

yt − ct
(

yt
))

= βγ





∑

y1

π
(

y1
)

V e
1

(

y1
)

− V u



 . (97)

Since the Rawlsian efficient allocation satisfies (12) and (28), it satisfies (97) and is thus

consistent with the Nash bargaining condition. Further, substituting for Π̄
(

V̄ e
1

)

in (91)

from (93) and noting v = θu in (92) reveals that both the zero-profit and the market

clearing conditions are implied by (12) and are thus satisfied by the Rawlsian efficient

allocation. This concludes Step 3.

Steps 1 to 3 establish that the Rawlsian efficient allocation is supported as a market

equilibrium in which R = 1. �
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