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Abstract. Slacks-based measure (SBM) (Tone (2001), Pastor et al. (1999)) has been 

widely utilized as a representative non-radial DEA model. However, this model, called 

SBM-Min here, evaluates the efficiency of an inefficient DMU referring to the furthest 

frontier point within a range. In contrast, the SBM-Max model looks for the nearest 

frontier point and hence its score is generally greater than the SBM-Min score. The 

Super-SBM model (Tone (2002)) evaluates the efficiency of an efficient DMU referring 

to the nearest point on the frontier except itself. We can foresee a close connection 

between SBM-Max and Super-SBM models, because the motivations behind the two 

models are same. In this paper we demonstrate this consistency using a real dataset. 

 

Keywords: Data Envelopment Analysis, Slacks-based Measure, SBM-Max, 

Super-SBM 

 

1. Introduction  

There are two types of models in DEA (Data Envelopment Analysis); radial and 

non-radial. Radial models are represented by the CCR (Charnes-Cooper-Rhodes) model 

(Charnes et al. (1978)). Basically they deal with proportional changes of inputs or 

outputs. As such, the CCR score reflects the proportional maximum input (output) 

reduction (expansion) rate which is common to all inputs (outputs). However, in real 

world businesses, not all inputs (outputs) behave in the proportional way. For example, 

if we employ labor, materials and capital as inputs, some of them are substitutional and 

do not change proportionally. Another shortcoming of the radial models is the neglect of 

slacks in reporting the efficiency score. In many cases, we find a lot of remaining 

non-radial slacks. So, if these slacks have an important role in evaluating managerial 

efficiency, the radial approaches may mislead the decision when we utilize the 

efficiency score as the only index for evaluating performance of DMUs. 
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  In contrast, the non-radial SBM models put aside the assumption of proportionate 

changes in inputs and outputs, and deal with slacks directly. This may discard varying 

proportions of original inputs and outputs. The SBM models are designed to meet the 

following two conditions. 

(1) Units invariant: The measure should be invariant with respect to the units of data 

(2) Monotone: The measure should be monotone decreasing in each slack in input 

and output. 

The original SBM (SBM-Min) model evaluates efficiency of DMUs referring to the 

furthest frontier point within a range. This results in the worst score for the objective 

DMU and the projection may go to a remote point on the efficient frontier which may 

be inappropriate as the reference.  

 

Figure 1: Comparisons of SBM-Min, CCR and SBM-Max models 

 

We depict the relationship among the ordinary SBM (SBM-Min), CCR and 

SBM-Max models by Fig. 1. Inefficient DMU P’s projections are Q, R and S 

respectively by SBM-Min, CCR and SBM-Max. Mathematically, finding S belongs to a 

NP-hard problem, because it is a maximization problem of a convex function over a 

non-convex region. However, the projected point S indicates that we can attain an 

efficient status with less input reductions and less output expansions than the ordinary 

SBM (Min) models. We can say that the projection by the SBM-Max model represents a 

practical “Kaizen” (improvement) by DEA. 

The rest of this paper is organized as follows. Section 2 introduces the ordinary 

SBM-Min model briefly. Section 3 presents the SBM-Max model, while Section 4 

describes the Super-SBM model. A numerical example is reported in Section 5. Section 

6 concludes this paper. Although we present the model in non-oriented model, we can 

treat input- and output-oriented model as well. As to returns-to-scale characteristics, we 
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present the constant returns-to-scale (CRS) case. However we can deal with the variable 

returns-to-scale (VRS) model as well. 

  

2. The SBM-Min Model 

The SBM model was introduced by Tone (2001) (see also Pastor et al. (1999)). It has 

three variations, i.e. input-, output- and non-oriented. The non-oriented model indicates 

both input- and output-oriented.  

Let the set of DMUs be  1,2, ,J n , each DMU having m inputs and s outputs. We 

denote the vectors of inputs and outputs for DMUj by 1 2( , , , )T
j j j mjx x xx and 

1 2( , , , )T
j j j sjy y yy , respectively. We define input and output matrices X and Y by 

1 2 1 2( , , , ) and ( , , , )m n s n
n nR R    X x x x Y y y y .                   (1) 

We assume that all data are positive i.e. and . X 0 Y 0  

2.1 Production Possibility Set 

The production possibility set is defined using the non-negative combination of the 

DMUs in the set J as: 

1 1
( , ) , , .

n n

j j j j
j j

P  
 

 
     
 

 x y x x 0 y y λ 0                            (2) 

 1 2, , ,
T

n  λ is called the intensity vector. 

The inequalities in (2) can be transformed into equalities by introducing slacks as 

follows: 

1

1

, ,

n

j j
j

n

j j
j


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







 
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x x s
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s 0 s 0

                                     (3) 

where 1 2 1 2( , , , ) and ( , , , )T m T s
m ss s s R s s s R          s s are respectively called input and 

output slacks. 

 

2.2 Non-oriented SBM 

Non-oriented or both-oriented SBM efficiency 
min( , )o o x y is defined by  
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[Definition 1] (SBM-efficient) A DMU ( , )o o o x y
 
is called SBM-efficient if 

min( , ) 1o o x y holds. 

This means  s 0 and * s 0 , i.e. all input and output slacks are zero.  

[SBM-Min] can be transformed into a linear program using the Charnes-Cooper 

transformation as follows: 

*
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Let an optimal solution be 
* * * * *( , , , , )t  

Λ S S . Then, we have an optimal solution 

of [SBM-Min] as defined by 

min * * * * * * * * * *( , ) , / , / , / .o o t t t        x y λ Λ s S s S           (6) 

 

3. The Frontier of Production Possibility Set and the SBM-Max Model 

We define the frontier F of the production possibility set P as follows: 
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  
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such that
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                          (7) 

In Figure 1, the set of line segments (AB, BC and CD) is the frontier which is 

non-convex.  

For an inefficient DMU ( , )o ox y , we define the SBM-Max score as follows: 
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                        (8) 

Referring these variations, several authors published new solution methods. Among 

them, we introduce three papers.  

Fukuyama et al. (2014) developed a least distance efficiency measure with the 

strong/weak monotonicity of the ratio form measure under several norms including 

1-norm, 2-norm and ∞-norm. This model utilizes mixed-integer linear programming 

(MILP) to identify efficiency frontiers and hence a computational difficulty arises for 

large-scale problems. 

Hadi-Vencheh et al. (2015) developed a new SBM model to find the nearest point on 

the efficient frontiers. They utilize the multiplier form model to find all supporting 

hyperplanes. It also utilizes software which uses fractional coefficients (high precision 

arithmetic) to avoid loss data. Hence, computational time increases for large-scale 

problems. 

 Tone (2016) proposed a scheme for solving the SBM-Max problem. This method 

requires a limited number of additional linear program solutions for each inefficient 

DMU and needs no mixed-integer linear program code. Although the point thus 

obtained is not always the nearest point and does not always satisfy Pareto-Koopmans 

efficiency condition, it is acceptable for practical purpose for solving large scale 

problems and from the point of computational loads. We utilized this model for solving 

the numerical data in Section 5. 
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4. The Super-SBM Model 

The SBM-Max model aims at getting to the nearest point on the efficient frontiers. This 

concept is in line with the super-efficiency SBM model (Tone (2002)) which solves the 

following program for an efficient DMU  ,o ox y to mesure the minimum ratio-scale 

distance from the efficient frontier excluding the DMU  ,o ox y . 

1
*
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         , , .   λ 0 s 0 s 0

                             (9) 

 

We can solve the super-efficiency SBM model by applying LP code just once, 

because this problem belongs to a convex programming, i.e., minimization of a convex 

function over a convex region. However, SBM-Max problem cannot be solved in this 

manner, because it is a maximization of the objective function over a non-convex region. 

See Fig. 2 where the efficient B is projected to E on the frontier AC with the minimum 

distance. 

 

Figure 2: Super-SBM for B 
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5.  A Numerical Example 

We compare the two approaches, i.e. (SBM-Min + Super-SBM) and (SBM-Max + 

Super-SBM), using the data of Japanese municipal hospitals. 

5.1 Data 

The data were collected from the Annual Databook of Local Public Enterprise published 

by the Ministry of Internal Affairs and Communications Japanese Government, 2005. 

(a) Number of DMUs: 700 hospitals (n = 700). 

(b) Number of inputs: 5. (1) No. of beds (Bed), (2) Expenses for outsourcing 

(Outsource), (3) No. of doctors (Doctor), (4) No. of nurses (Nurse) and (5) Expenses 

for other medical materials (Material). (m = 5) 

(c) Number of outputs: 4. (1) Revenue from operation per day (Operation), (2) Revenue 

from first consultation per day (1st time), (3) Revenue from return to clinic per day 

(Follow-up) and (4) Revenue from hospitalization per day (Hotel). (s = 4) 

Table 1 exhibits statistics of the dataset. 

Table 1: Statistics of dataset (n = 700) 

  Bed Outsource Doctor Nurse Material Operation 1st time Follow-up Hotel 

Max 1025 2231247 215.562 955.464 2842350 17341140 1432079 3359160 15445104 

Min 25 7767 0.98 11 9197 8979 2706 13636 109650 

Average 249.407 300585 32.0519 170.352 469790 2029403 206916 405837 3155864 

SD 181.11 310373 31.967 140.106 557030 2322876 206375 306298 2824856 

5.2 Model and Method 

We applied SBM-Max and SBM-Min models coupled with Super-SBM model, in non-oriented case 

under the constant-returns-to-scale assumption. For SBM-Max, we employed the method developed 

in Tone (2016).  

5.3 SBM scores 

The SBM model found that 66 hospitals among 700 are efficient. Table 2 compares two 

scores, one SBM-Max coupled with Super-SBM and the other SBM-Min coupled with 

Super-SBM..  

Table 2: Comparisons of two scores 

 

SBM-Max 

+ Super-SBM 

SBM-Min 

+ Super-SBM 

Average 0.7935 0.4572 

Max 1.4468 1.4468 

Min 0.1023 0.0118 

St Dev 0.1444 0.2445 
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Fig. 3 (SBM-Max + Super-SBM) and Fig. 4 (SBM-Min + Super-SBM) exhibit 

respectively scores of 700 hospitals in ascending order where we can observe big 

differences. The former shows a smooth transit from inefficient to efficient, while the 

latter exhibits a non-smooth transit. We can foresee a close connection between 

SBM-Max and Super-SBM models, because the motivations behind the two models 

are same. 

 

 

Figure 3: SBM-Max + Super-SBM 
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Figure 4: SBM-Min + Super-SBM 

 

6. Conclusions 

In this paper, we have compared the SBM-Max and SBM-Min models connected with 

the Super-SBM model. The finding indicates that the SBM-Max model is smoothly 

connected with the Super-SBM model, although the former needs 13 times of 

computation time than the latter in our case (we utilized DEA-Solver Pro: Saitech-Inc).  

If one wishes the worst case analysis, the SBM-Min model is the choice. In contrast, 

if improvement to efficient status is the main concern, the SBM-Max model is qualified 

better. Inefficient DMUs can be improved to the efficient status with less input- 

reductions and less output-enlargement. Thus, the SBM-Max model proposes an 

efficient Kaizen (improvement) tool by DEA.  
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