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ABSTRACT 

This study analyzes how changes in overall wage inequality and gender-specific factors affected the 

gender wage gap in Chinese and Indian urban labor markets in the 1990s and 2000s. Analysis of 

micro data present that contrasting evolutionary patterns in gender wage gap emerged over the period, 

showing a widened wage gap in China but a dramatically reduced gap in India. In both countries, 

female workers’ increased skill levels contributed to reducing the gender wage gap. However, 

increases in observed prices of education and experience worked unfavorably for high-skilled 

women, counterbalancing their improvement in labor market qualifications. Decomposition analyses 

show that China’s widened gap was attributable to gender-specific factors such as deteriorated 

observable and unobservable labor market qualifications and increased discrimination, especially 

against low- and middle-skilled female workers. For India, gender-specific factors and relatively 

high wage gains of low- and middle-skilled workers reduced the male–female wage gap. 

JEL Code: J21, J24, J31 

Key words: gender earning differential; wage inequality, skill premium, China, India 
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I. Introduction  

 

Labor markets in the People’s Republic of China (China) and India—two of the world’s 

demographic giants—experienced dramatic changes over the past two decades. In the 1990s and 

2000s, the urban labor markets of both countries experienced significant increases in wage inequality 

and skill premium. Increased wage inequality is found to work against gender wage differentials in 

developed countries as female workers on average have lower level of skills than their male 

counterparts (Blau and Kahn 1997). Similarly, increasing wage inequality found in the two large 

developing countries can also aggravate the position of women in their labor markets. This paper 

makes contribution to existing literature by analyzing the effect of overall wage structure and 

unobserved characteristics on gender wage differentials in these countries.   

  A substantial body of literature has analyzed wage inequality and skill premium in labor 

markets in China and India. In China, returns to schooling were very low compared to other 

developing countries until the mid-1990s. Fleisher and Wang (2003) attributed the low private 

education returns to labor-market monopsony in rural areas of China. Restriction on worker mobility 

combined with monopsony in rural areas compressed the skill premium by limiting opportunities for 

skilled labor.  

Since the mid-1990s, however, wages in China have increased significantly for each 

additional year of schooling (Fang et al. 2012). Empirical studies based on micro data from the China 

Urban Household Survey and the Chinese Household Income Project Series (CHIPS) have found 

that rates of return to education in China were at high levels, comparable to those in most 

industrialized economies, and have increased over time (Ding et al. 2012; Li and Ding 2003; Zhang 

et al. 2005).  

Rising education returns in China, beginning in the mid-1980s, have been partly attributed 

to the liberalization of labor markets and wage setting, particularly in urban areas (Zhang et al. 2005). 

Market-oriented reforms in China caused an upward shift in the demand for skilled workers and 
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thereby increased the skill premium for educated workers (Meng 2012; Knight and Song 2003). 

Foreign-owned firms in China (Xu and Li, 2008) and trade liberalization (Han et al. 2012) are also 

found to be driving forces behind the rising skill demand in China.  

In India, there has been a steady increase in the skill premium and wage inequality since the 

early 1980s (Kijima 2006), with rising demand for skilled male workers (Chamarbagwala 2006). 

Some studies point out that skill-biased technological changes in India have caused increasing 

returns to skills (Berman et al. 2005; Kijima 2006). According to Mehta and Hasan (2012), the 

increase in wage inequality between 1993 and 2004 was largely attributable to changes in industry 

wages and skill premiums.  

Using the 2005 India Human Development Survey (a nationally representative survey), 

Agrawal (2012) showed that private returns increased with the level of education in India due to an 

increasing demand for skilled workers and a limited supply of employable graduates. In India, 

graduates from quality colleges and universities can be hired by global firms and foreign enterprises, 

as well as call centers that provide significantly higher salaries than small-sized, domestic firms.  

On the other hand, Shastry (2012) suggested that globalization measured as costs of learning English 

across Indian districts increases education of workers and thereby mitigate the increase in wage 

inequality.  

There are a growing number of empirical studies on the gender earnings differential in each 

country, but they do not reach clear consensus. The increase in education and skill among female 

workers could narrow the gender wage differential. According to Gustafsson and Li (2000), the 

gender wage gap in urban China was relatively small, but increased between 1988 and 1995 as a 

result of the deterioration of wages paid to female workers with limited experience and skill.  

A more recent study by Zhang et al. (2008) found that the same trend continued across the 

earnings distribution, at least until 2001, but the gap widened greatly at the upper end of the 

distribution during the years 2001–2004. They argued that the widening of the urban gender wage 

gap over this period reflected rapid increases in returns to both observed and unobserved skills in 
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China, which worked more favorably for men’s higher skill levels. In the same period, the 

employment rates declined more sharply for females than for males as more low-skilled women than 

low-skilled men exited the labor force. Fang et al. (2012) also found a striking gender disparity in 

returns to education, with the returns for each additional year of schooling for males being higher 

than for females from 1997–2006. 

Gender differences in wage are quite pervasive in India. Women wage workers work fewer 

days per year, and are paid considerably less than men across educational levels (except those who 

are in urban areas and have completed a secondary level education), in both rural and urban areas 

(Desai et al. 2010). Bhalla and Kaur (2011) suggest that gender wage differences in India are partly 

due to gender differences in education and work experience. On average, female workers are less 

educated than males and less experienced, which is partly due to childbearing.  

Chamarbagwala (2006) argued that during the 1980s and 1990s, despite a considerable 

widening of the skill–wage gap, the gender wage differential narrowed significantly among high 

school and college graduates, suggesting increased demand for skilled workers and especially for 

skilled women contributed significantly to the decline in gender disparity. Menon and Rodgers (2008) 

analyzed household data from India over the years 1983–2004 and suggested that India’s trade 

liberalization increased women’s relative wages and employment as increased competition, caused 

by trade, diminished discrimination against female workers. 

Using micro data, this paper focuses on analyzing changes in wage inequality and gender 

earnings differentials in China and India during the 1990s and 2000s. We find significant increases in 

wage inequality and skill premium in urban areas of China as well as India. We also observe 

significant gender earning differentials in both countries throughout the period. Interestingly, the 

gender wage gap evolved very differently in each country, as it increased in China while improving 

in India.1 Although there is ample literature on the labor markets and wage structures in these 

                                                   
1 The gender wage gap further decreased in rural India and pertinent analyses are in the appendix. We do not have 

good quality data for rural China.   
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economies, as far as we are aware no paper has explicitly focused on comparing these two countries, 

especially on the striking differences in the evolution of their respective gender wage gaps.2 An 

important issue is to analyze the role of wage structure and skill premium in influencing the gender 

wage gap. Since an increasing skill premium tends to widen the gender wage differential if females, 

on average, have lower skill levels and less experience, the trend in decreasing gender wage 

differentials in India is more surprising and needs a more thorough analysis.  

Women’s education and experience levels have steadily increased over the last two decades, 

contributing to a declining gender wage gap in both the Chinese and Indian economies. However, 

increasing skill premium can negatively affect women since they are relatively less skilled and 

experienced. If the price of observed and unobserved skills increases, it not only affects overall wage 

inequality, but also widens the gender wage differential by punishing relatively unskilled female 

workers. Also, changes in unobserved qualification or discrimination can play a major role in gender 

wage gap over time. 

 Blau and Kahn (1997), employing a technique developed by Juhn et al. (1991), found that 

American women had to counterbalance this unfavorable change in wage structure by improving 

their own human capital. They described this as “swimming upstream” and pointed out that the 

gender wage gap depended on overall wage structure as well as gender-specific factors. We 

implement the same technique to disaggregate the gender wage gap into gender-specific factors and 

general wage structure factors and assess the relationship between overall wage inequality and 

gender wage differentials, comparing China and India.  

 The remainder of this paper is organized with Section 2 describing our micro data sources 

and presenting an overview of recent trends in wage structure and gender wage differentials in China 

and India. In Section 3, we examine whether change in supply and demand of labor inputs in 

different categories can explain change in the gender gap over two decades by utilizing the 

                                                   
2 Most existing studies are focused on the United States and find significant convergence in earnings between men 

and women in recent decades, although there still remains a gender pay gap based on occupation, employment 

status, and lifetime labor force experience. See Goldin (2014) and studies mentioned therein. 
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methodology of Katz and Murphy (1992). Section 4 adopts the methodology of Juhn et al. (1991) 

and Blau and Kahn (1997) to decompose changes in the overall gender wage gap and explore the 

differences in the Chinese and Indian labor markets. Section 5 uses the same methodology to further 

examine changes in the gender wage gap by skill level and concluding remarks follow in Section 6. 

 

II. Data Overview and Recent Trends in Wage Structure and Gender Wage 

Differentials 

 

A. Trends in Wage Inequality and Skill Premium 

 

1. Data Descriptions  

An examination of the evolution of the wage structure and its relationship with skill level 

requires good quality micro data with detailed information on workers’ wage and skill levels. 

Availability of longitudinal data that is consistent over time is crucial in order to determine whether 

the changes in wage structure are a secular trend and not caused by temporary shocks in the 

economy.  

For India, we use the National Sample Survey’s (NSS) Employment and Unemployment 

data, which is considered to be reliable and consistent over time. To examine long-run wage trends 

by worker skill level, the dataset covers five waves of the survey (1987–1988, 1993–1994, 1999–

2000, 2005–2006, and 2009–2010). Each wave has more than 100,000 observations and contains 

both employed workers in the formal sector and self-employed or unpaid workers in the informal 

sector.  

For China, four rounds (1988, 1995, 2002, and 2009) of the CHIPS datasets are analyzed, 

focusing on urban areas. These datasets contain labor force information over a large, nationally 

representative sample of around 60,000 to 80,000 individuals, covering more than 16 provinces in 

the major regions of China. Each wave of CHIPS data has a different sample of provinces. To 
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maximize consistency of data over time, we only use a set of provinces that are included in all four 

waves of the data set.3  

Throughout our analyses, we focus on the urban areas of the two countries in order to 

achieve a direct comparison.4 We exclude the rural area of China, as more than 90 percent of 

observations do not report their wage information. We restrict the sample to full-time workers aged 

18–60 years. In the CHIPS dataset, we identify full-time workers as people who have worked for 

more than 170 hours per month in their primary job.5 In India, we apply a more restrictive criterion 

as the NSS data set has more information about workers, and define a full-time worker as a person 

who works more than five days per week without holding a second job. We exclude workers who are 

self-employed or engaged in unpaid family business and also exclude individuals with reported 

wages of zero despite their full-time paid working status. We use real weekly earnings from the 

primary job for NSS data and monthly earnings from the primary job for CHIPS data to avoid 

measurement errors from computing hourly wage.6  

One caveat of using standard labor force data is that we cannot identify exact years of 

experience for female workers. Women tend to have career interruptions in their lifetimes, making it 

difficult to measure years of experience accurately. However, our results are robust by using different 

measures of experience7, indicating that measuring experience would not affect analyses in any 

specific direction.  

 

2.  Trends in Skill Premium and Wage Inequality 

Using our micro data, indicators for wage inequality, skill premium, and gender wage 

differentials are constructed. As change in returns to skill is a key factor in understanding the 

                                                   
3 The common set includes the following five provinces: Jiangsu, Anhui, Henan, Hubei, and Guangdong.  

4 We perform the analyses using the sample of rural India and report the results in the appendix.  

5 The 170 hours identified is approximately equal to total working hours when an individual works 8 hours a day 

for 21 days per month. Indeed, many observations report 170 hours for monthly working hours in the survey.  
6 NSS data contain only information about whether workers worked half day or whole day.  
7 Our results use the conventional measure of experience (age minus years of schooling minus 6). In some waves, 

the data sets include self-reported experience. When self-reported experience is used, our results are quite robust. 
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structure of wage and its effect on gender inequality, the evolution of wage inequality is investigated 

by skill group, with the source of change in the skill premium being identified.  

<Figure 1, A& B Here> 

The period of rapid development in China and India is characterized by increasing wage 

inequality. As shown in Figure 1.A, average real wages in urban China increased at an accelerated 

pace over 1988–2009, especially 2002–2009. Economic growth was of greatest benefit to the skilled 

group, proxied here by the 90th percentile. Among the median group (50th percentile) real wages 

rose, albeit less rapidly than that of the skilled group. The unskilled group (10th percentile) gained 

the least benefit from economic growth over the same period.  

Average real wages and wage inequality in urban India also rose over the period 1988–2010. 

Figure 1.B shows average real wages in urban India continued to rise over 1988–2010, although they 

grew at slower rates than in urban China. Unlike in China, the median group (the 50th percentile) 

gained the least benefit from economic growth. Meanwhile the gap in real wages among the skilled 

and unskilled groups (proxied here by the 90th and the 10th percentiles) increased significantly.  

In urban China, we assess recent changes in the skill premium by classifying workers into 

four categories. Figure 2.A shows that most skill premiums increased except the premium for 

workers who graduated senior high school relative to workers whose educational attainment is lower 

than primary school. It is important to note that the premium for college graduates increased sharply 

during the period 1995–2002. These trends imply that an increase in the skill premium can be a 

significant source of rising wage inequality in China. In urban India, skill premiums for secondary 

and college graduates were kept quite high throughout the period, compared to those in China 

(Figures 2.A and 2.B), which may reflect the conditions in the supply of and demand for skilled labor. 

The premium for workers having a college degree over those with lower education increased 

significantly.  

<Figure 2, A& B Here> 
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Many factors other than changes in the skill premium can also contribute to increasing wage 

inequality, so we examine whether the inequality level in unobserved characteristics also changes 

over time. Log real wage is regressed on experience and its square and on education (i.e., years of 

schooling). The residual from this regression captures the dispersion in wages within each 

demographic group. The difference in the log wages of those at the 90th and 10th percentiles in the 

wage distribution is then calculated. 

<Figure 3, A& B Here> 

Figure 3.A shows that residual wage differentials increased for both male and female 

workers in urban China from 1988 to 2009. Not only has overall wage inequality expanded but 

within-group wage inequality also increased at the same time, except for females, during the period 

from 2002 to 2009. The rise of within-group wage inequality implies that low-skilled workers within 

each category benefited less than the high-skilled ones.  

Figure 3.B shows steady increases in residual wage differentials for both male and female 

workers in urban India. The within-group wage inequality for males increased more rapidly than that 

for females over the period. While the gap had reduced over time, the wage differentials for males 

remained below that for female workers in 2009.  

 

B.  Trends in Gender Wage Differentials 

 

1. Trends in Gender Wage Differentials  

Table 1 shows trends in male and female wages for the past two decades in urban labor 

markets of China and India. In China, women’s relative wages deteriorated during its fast economic 

development, with the average wage for females decreasing from about 85 percent in 1988 to about 

72 percent of the average male wage in 2009. The male–female differential of the log average real 

wage almost doubled from 0.163 in 1988 to 0.298 in 2009. We also calculate the relative position of 
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females in the male wage distribution. The mean female percentile in the male wage distribution 

deteriorated from 42.2 in 1988 to 38.1 in 2009.  

<Table 1 Here> 

On the contrary, in India, the average real wage for females increased from 68 percent in 

1988 to about 82 percent of the average male wage in 2010. The differential of the log real wage 

dropped from 0.590 in 1988 to 0.382 in 2010. The mean female percentile in the male wage 

distribution was only 32.8 in 1988 but rose to 39.5 in 2010. All these indicators show that the gender 

wage differential decreased sharply over the two decades in India. While the magnitude of the gender 

wage gap remains large both in China and India, recent movement of the gap in each country shows 

a sharp contrast.  

<Figure 4, A& B Here> 

We also examine whether the change in the gender wage gap is universal across wage 

distribution. Figure 4.A shows that in urban China, the gender gap in log monthly earnings increased 

in all selected percentiles of wage distribution. The magnitude of increase was large, particularly 

among the top percentile (high-skilled) groups. In contrast, the gender gap in the log weekly earnings 

declined in all selected percentiles of wage distribution in India. The magnitude of decline was 

particularly large in the middle percentiles and small at the top percentile. 

 

2. Labor Force Composition and Gender Wage Gap  

 Change in the labor force composition of female workers can influence the estimated gender 

wage gap. If more educated women are likely to stay in the labor force over time, the magnitude of 

the gender gap would be underestimated. On the other hand, if labor force participation of women 

starts from the most educated women and then expands to less educated women, widening of the 

gender wage gap would be overestimated due to the change in the labor force composition.  

<Figure 5, A& B Here> 
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 Figure 5.A shows that the female labor participation rate sharply declined in urban China 

over two decades; this change in labor force composition may affect the gender wage gap. In India, 

the overall labor force participation rate of female workers hovered at around 20 percent over the 

period (Figure 5.B). India’s female labor force participation rate ranks among the lowest in the 

world.8 While the labor participation rate remained relatively stable over time, composition of the 

female labor force changed significantly over two decades; the share of skilled women increased 

while that of the least skilled women declined at the same time. 

 To acquire a selection-corrected gender wage gap, we adopt techniques such as Heckman’s 

(1979) two-step estimation and selectivity corrected estimation according to probability of being in 

the labor force. Our results show that changes in labor force composition of women did not 

significantly affect the secular trends of the gender wage gap.   

 First, we apply Heckman’s two-step estimation. Our sample consists of full-time workers 

between ages 18 and 60. We classify all persons as either working full-time or not. Using all 

prime-age women in our labor force surveys, we estimate the following first step equation: 

 

(1)    𝑃𝑡(𝑧) = 𝑃𝑟𝑜𝑏(𝐿 = 1|𝑧, 𝑔 = 1) = Φ(𝑍δ𝑡)   

 

where 𝑃𝑡(𝑧) indicates the probability of being in the labor force and g is a dummy variable 

indicating women. Z includes years of education, years of experience, and our instrumental variables. 

The set of instrumental variables includes number of children aged 0–6, number of minor children, 

and marital status. We assume that 𝑃𝑡(𝑧) is 1 for men.  

 In the second stage, we include the inverse Mills ratio in the regression to control for 

selection into the labor force:  

  

(2)     𝑤𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑡 + 𝑔𝑖𝑟𝑡 + 𝑔𝑖𝜃𝑡𝜆(𝑍𝑖𝑡𝛿𝑡) + 𝑢𝑖𝑡   

                                                   
8 See Pande (2015) for an analysis of India’s female labor force participation. 



13 

 

 

where 𝑤𝑖𝑡 denotes log wage and 𝜆(𝑍𝑖𝑡𝛿𝑡) 𝑡ℎ𝑒 inverse Mills ratio. In this equation, 𝑔𝑖𝑟𝑡 captures 

the selection-corrected gender wage gap.  

<Table 2 Here> 

 Table 2 demonstrates estimates of the gender wage gap based on ordinary least squares 

(OLS) and two-step estimation techniques. It shows that OLS and two-step estimates are not so 

different in urban China, indicating that selection is not a major driving force of the gender wage gap. 

In urban India, the results show that there is a sizable negative effect to selection into the labor 

market. The selection-corrected gender wage gap is much smaller than that of OLS; however, it still 

shows declining trends over two decades. 

 We adopt alternative specifications to correct for the selection of working women and 

further examine the robustness of the estimated change of the gender wage gap. As discussed earlier, 

change in the selection into the workforce can bias our estimated gender wage gap. First, we estimate 

probability to work for women by year and area. In China, the labor force composition sharply 

increased; therefore, we eliminate a set of women who are the least likely to work so that we can 

have a common set of women in our sample across years. In India, labor force participation did not 

change much over the two decades. However, there was compositional change; less-skilled women 

dropped out of the workforce while higher-skilled women entered the labor market. Therefore, we 

again exclude women with the lowest probability to remain in the labor force. 

 Second, we take into account the potential effect of women’s marital status on their labor 

force participation decision. If more women delay marriage to receive different treatment in the labor 

market, change in the composition of the women’s labor force by marital status may drive the gender 

wage gap regardless of other factors. Therefore, we exclude non-married women as well as women 

with low probability to remain in the market.  

<Table 3 Here> 
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 Table 3 shows that even after excluding women with a low probability to work in the labor 

force, the gender wage gap increased in urban China while it declined in India. Not only the direction 

of change in the gender gap, but also the magnitude of the estimated gender wage gap is quite similar 

with what was estimated using the simple OLS technique. In India, the magnitude of decrease in the 

gender wage gap is smaller when we include only married women in our sample, implying that much 

of the gender wage gap decrease was driven among young, unmarried women in the labor force. In 

sum, the experiments in this section show that there is an increasing gender wage gap in China and a 

decreasing gender wage gap in India, even after labor force selection is controlled.  

 

III. Supply–Demand Analyses of Two Labor Markets 

 

A. Data Construction and Empirical Strategy 

 In this section, we examine whether change in relative supply and demand of labor inputs 

can explain change in the skill premium and gender wage differential in China and India. We utilize 

the methodology of Katz and Murphy (1992) to analyze the changes in relative wages and relative 

supplies of the two countries. Katz and Murphy (1992) use a simple supply–demand framework to 

explain changes in the wage structure of the United States in the 1980s. 

 We construct two samples: a wage sample and a count sample. The wage sample includes 

full-time workers who are reported to work more than 170 hours per month at their main job in 

China or five days per week in India. The count sample is constructed to calculate the measure of 

relative labor supply in urban areas of China and India. The count sample uses all workers whose 

wages and education levels could be identified.  

 To examine the movement of relative supply and relative wage of various demographic 

groups, both count sample and wage sample are divided into 32 categories by workers' gender, 

education level, and experience level. The fixed weight of the average employment share for 32 cells 

among all workers during the entire sample period is used to construct aggregate measures in the 
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wage sample, while the count sample uses the fixed weight of the average relative wage for 32 cells. 

 

B. Results from China 

 Table 4 shows changes in relative wages across different demographic groups from 1988 to 

2009 and two sub-periods, 1988–2002, and 2002–2009. Overall, relative wages showed a sharp 

increase during the period, reflecting fast economic growth. Both male and female workers acquired 

higher wages; however, male workers gained more than female workers. 

<Table 4 Here> 

 Over the two decades analyzed, more educated workers gained the most among both 

females and males. The period 2002–2009 was an exception, where female workers with high school 

degrees gained the least while female workers with elementary school educations gained the most. 

Less experienced workers also gained the most, which reflects that many of these young workers had 

higher educational achievement.  

<Table 5 Here> 

 Can change in the relative supply of workers in different education categories explain 

changes in skill premium trends by gender? Tables 4 and 5 show that relative supply alone cannot 

fully explain change in relative wage. The relative supply of workers with college degrees increased 

the most throughout the sample period; however, their relative wages increased the most at the same 

time. It indicates that there was a demand shift toward more educated workers, both female and male. 

The relative supply of less experienced workers decreased from 1988 to 2002, which partly explains 

an increase in premium for younger workers at the same time. However, the supply of less 

experienced workers as well as their wages increased sharply from 2002 to 2009, implying there was 

also growing demand for younger workers.  

 What about gender differences in wage gain? Female workers’ wage gains were generally 

smaller than that of male workers across all education levels over the two decades except for 
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elementary and junior secondary education in the 2002–2009 period (Table 4). On the other hand, 

relative supply of workers with college degrees increased more sharply among female workers than 

male workers, which may explain why relative wage gains of female workers with college degrees is 

smaller than that of male workers with college degrees. However, for other groups of workers, 

relative supply changes cannot explain the movement of relative wages. For example, despite the fact 

that relative supply of low-educated workers decreased by a greater magnitude among female 

workers than male workers, relative wage gains were even smaller for females than that of their male 

counterparts in 1988–2002. This may indicate a demand shift from less educated workers toward 

more educated workers was more prominent for female workers than males.  

 The movements in relative wage and relative supply show that there were demand shifts 

toward more skilled, younger workers. However, the differentials in the magnitude of change by 

gender cannot be explained simply by gender differential in relative supply and demand shifts. Some 

other factors can also affect male and female workers in different ways.  

 

C. Results from India 

Table 6 shows changes in real wages of Indian workers across different demographic groups 

for periods 1988–2000, 200–2005, and 2002–2009. There was an increasing trend in real wages over 

two decades, but the magnitude of increase is much smaller than that in China. However, in India, 

the increase in real wages was greater among female workers than male workers, especially from 

2005 to 2010.  

<Table 6 Here> 

Similar to China, workers with university degrees or above gained the most among females 

and males over the overall period. The next group to benefit the most was the least educated group, 

including workers without literacy. Less experienced and younger workers gained the most, possibly 

due to their higher education levels.  
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Table 7 shows that there was a sharp decrease in the number of least educated workers 

implying that decline of relative supply can explain an increase in their wages. However, as relative 

supply of college-educated workers increased sharply over two decades, an increase in their 

education premium suggests demand shifted more favorably to this group. Hence, the overall pattern 

of relative wage changes seems to support relative supply changes and demand shifts toward more 

educated workers.  

<Table 7 Here> 

However, gender differences in wage gain suggest that factors aside from simple demand 

and supply changes were working in the Indian labor market. While relative supply of 

college-educated workers increased more rapidly among female workers than male workers, their 

relative wages increased by almost the same magnitude. Among the workers with primary educations 

or lower, the decrease in relative supply of male workers was much greater than that of female 

workers. However, female workers experienced greater increases in their relative wages.  

The evolution of relative wage and relative supply show that there were demand shifts 

toward more educated workers in urban India. In addition, the least skilled group experienced a 

sizable increase in their wages with a sharp decline in their relative supply. However, some 

gender-specific factors other than relative supply and demand changes can influence gender wage 

differentials.  

 

IV. Decomposition of the Gender Wage Gap 

 

A. Model Specification and Implementation 

In order to analyze change in the gender wage gap in the United States, Blau and Kahn 

(1997) adopt the technique developed by Juhn et al. (1991) in their analysis of the trends in the U.S. 

black–white wage differential. We use the same technique to decompose change in the gender wage 
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gap into the components explained by gender-specific factors and overall wage inequality. Assume 

the following male wage equation: 

 

(3)    𝑌𝑖𝑡 = 𝑋𝑖𝑡𝐵𝑡 + 𝜎𝑡𝜃𝑖𝑡  

 

where i indicates each male worker and t denotes year. 𝑌𝑖𝑡 denotes the log of wages while 𝑋𝑖𝑡 

indicates observable variables and 𝐵𝑡 indicates a vector of coefficients. 𝜎𝑡 indicates the level of 

male residual wage inequality while 𝜃𝑖𝑡 is standardized residual. The male–female log wage gap for 

year t is defined as: 

 

(4)    𝐷𝑡 ≡ 𝑌𝑚𝑡 − 𝑌𝑓𝑡 = ∆𝑋𝑡𝐵𝑡 + 𝜎𝑡∆𝜃𝑡  

 

where subscripts m and f denote male and female averages respectively and prefix ∆ denotes 

average male–female differences for the variables immediately following. Equation (4) shows the 

gender wage differential can be decomposed into two parts: difference in observed labor market 

qualifications (𝑋𝑡) weighted by their market prices (𝐵𝑡) and difference in the relative position in 

residual (𝜃𝑡 ) inflated by overall wage dispersion (𝜎𝑡).  

The change in the gender wage gap between two time points—year 0 and year 1—can then 

be decomposed as follows: 

 

(5)    𝐷1 − 𝐷0 = (∆𝑋1 − ∆𝑋0)𝐵1 + ∆𝑋0(𝐵1 − 𝐵0) + (∆𝜃1 − ∆𝜃0)𝜎1 + ∆𝜃0(𝜎1 − 𝜎0)   

 

 Now we have four components explaining the change in the gender wage differential. The 

first term represents a portion contributed by change in observed measures; specifically, it reflects 

the contribution of changing male–female differences in observed labor market qualifications such as 

education and job experience. The second term reflects the effect of changing prices of observed 
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labor market qualifications for males.  

 The third term is defined as gap effect and measures the effect of changing differences in the 

relative wage position of male and female after controlling for observed qualifications. If male wage 

inequality does not change, this term only shows the change in the percentile rankings of female 

wage residuals. For example, discrimination against women or lack of unobserved skills in female 

workers relative to males would change female workers’ position unfavorably in the residual 

distribution. This change in position would be captured by the gap effect. Finally, the fourth term 

measures change in the prices of unobserved characteristics. When this term gets larger, being in 

relatively low position in the residual distribution receives more punishment than before, thereby 

widening the gender gap if on average female workers’ position is relatively low in residual 

distribution.  

 The first and third terms measure the portion of the gender wage gap due to gender-specific 

factors such as labor market qualification or relative position in the residual distribution, while the 

second and fourth terms measure the portion due to change in overall wage structure.  

 We employ the human capital model and full model to estimate wage equality. Human 

capital model specification employs the education and experience variables of each worker. Full 

model specification adds one-digit industry and occupation codes, and regions.9 Thus, the full model 

investigates whether specific occupations, industries, and regions are driving the changes in the 

decomposition results. For instance, there can be entry barriers for women in certain industries or 

occupations.  

 To acquire the change in the observed qualifications, we estimate wage regression using 

male samples in year 1. Then, using estimated coefficients, we calculate estimated wages of female 

workers in year 1. We also calculate imputed wages of female workers and male workers in year 0. 

The first term is then calculated as the gender difference in average predicted wage of year 1 minus 

                                                   
9 In urban India, we add three occupational categories in the regression. We do not include occupation codes for 

China because of many missing values in earlier data sets. The regression controls province fixed effects in China 

and state fixed effects in India. 
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gender difference in average imputed wage of year 0.   

 The second term measures the effect of change in price on observed characteristics. We 

estimate wage regression using male workers in year 0 and the calculated predicted wage of males 

and females in year 0. Then, we calculate the second term as the difference in gender gap in the 

average of imputed wage of year 0 and the average of predicted wage of year 0.  

 To acquire the gap effect and change in unobserved characteristics, we run wage regression 

of male workers in year 0 and acquired female workers’ position in male workers’ residual 

distribution. Using the position of those female workers, we calculate the imputed residual of female 

workers in year 1. The gap effect is calculated as the difference between the average of the actual 

residual of female workers in year 1 and their imputed residual of year 1. This term captures change 

in relative position of female workers in residual distribution. 

 Finally, we calculate the fourth term as the difference between the imputed residual of 

female workers in year 1 and average residual of female workers in year 0. The term captures change 

in dispersion of unobserved characteristics where the female workers’ relative position is unchanged.  

 

B. Estimation Results of the Human Capital Model   

 Table 8 summarizes the decomposition results of the gender wage gap in urban China and 

urban India using the human capital model. 

 In Column 1, the mean value of female residual from male wage regression, which 

contains unobserved parts of the wage gap, more than doubled from 1988 to 2009 in urban China. 

The residual term represents unobserved characteristics and discrimination that cannot be explained 

by controlled explanatory variables. The mean female residual percentile decreased from 45.5 in 

1988 to 38.5 in 2009 in the human capital model. Estimation results consistently show that an 

unexplained gender gap widened in China over the period.  

<Table 8 Here> 
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 Table 8, Column 1, Panel B shows how unexplained and explained characteristics 

contributed to the increasing gender wage gap in urban China over two decades. Presented as a log 

monthly wage, the gender wage gap increased by 0.135 log points over the period.10 Increased 

educational attainment of female workers contributed to reducing the gender wage gap, but its effect 

was dominated by the opposite price effect of education. The observed price effect is positive, 

indicating that the prices of education and experience changed to the direction of expanding the 

male–female wage differential.  

 Unexplained characteristics drove most of the change in the Chinese gender wage gap. The 

gap effect is significant, amounting to 0.239. Thus, women’s position in residual distribution was 

aggravated significantly over the period, which is attributable to either deterioration in unobservable 

qualifications of female workers or an increase in discrimination against female workers.  

 The fourth term captures wage inequality based on the change in the dispersion of 

unobserved characteristics, interacting with female workers’ relatively unfavorable position in the 

distribution in the initial year. The estimate of the fourth term is positive, representing that the 

penalty for being in a relatively unfavorable position decreased over time.  

The estimated positive third term implies that female workers received more discrimination 

and found themselves in a more unfavorable position in the residual distribution over time. At the 

same time, however, according to the estimated fourth term, the wage gap between each position 

became smaller than before, thereby eventually contributing to a narrow wage gap between female 

and male workers. 

 Column 2 of Table 8 summarizes the decomposition of the 1988–2010 gender wage gap 

using the human capital model in urban India. It shows that the mean value of female residual from 

the male wage equation slightly declined over time. The mean of female residual percentile also rose 

                                                   
10 Decomposition results by period show a sizable gender wage gap in both the 1990s and the 2000s, but the effect 
of an educational gap becomes smaller in the 2000s. This implies that the effects of unobserved skills dominating 

that of observed skills became more important for the gender wage gap evolution. The estimation results by period 

are available upon request. 
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from 30.2 in 1988 to 35.8 in 2010 over time. Hence, in contrast to China, an unexplained gender gap 

declined in India over the same period. 

Panel B of Table 8 shows that the gender wage gap reduced by 0.208 log points in India, 

with further decomposition results showing the factors responsible for this sharp decrease. Increased 

human capital of female workers contributed significantly to the decline of the gender wage gap over 

time, amounting to about 30 percent of the total gender gap reduction in urban India.  

The estimated observed price effect is negative, indicating that the prices of skill and 

experience changed to the direction of reducing the male–female wage differential. As earlier figures 

indicate, the premium for high-skilled workers increased. However, the low-skilled group gained 

more than the medium-skilled. Since female workers are more likely than males to be in the least 

skilled group, the wage gain of the low-skilled group contributed to the reduction of the gender wage 

differential.  

 The estimated gap effect is large and negative, indicating that women’s position in residual 

distribution improved over the period. It could reflect improvement in unobservable qualifications of 

female workers or a decrease in discrimination against female workers, especially those who 

participated in urban labor markets. The estimated negative fourth term also indicates that as the 

penalty for being in a relatively unfavorable position becomes smaller, the gender wage gap narrows. 

 On the whole, our decomposition results show that the difference in the movements of the 

gender wage gaps in China and India comes from the difference in evolution of wage structures and 

relative positions of female workers in the residual distributions of both countries. In both China and 

India, female workers are catching up to their male counterparts by obtaining more education and 

work experience.  

 However, in urban China, the relative position of female workers deteriorated, implying that 

they need further training in unobserved skills or need more bargaining power to prevent 

discrimination in the labor market. In India, on the other hand, wage inequality in the lower half of 

the distribution decreased and thereby contributed to narrowing the gender wage gap. Catching up of 
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human capital, fast improvement of wages for low-skilled workers, and declining discrimination 

were important determinants in the declining gender wage gap.  

 

C. Estimation Results of the Full Model 

 Table 9 presents the estimation results of the full model. In urban China, there was a sizable 

gap effect when we estimated the human capital model. The estimation of the full model, which 

considers industry and province fixed effects, demonstrates that the magnitude of the gap effect 

reduces to about a half of that under the human capital model, but remains positive and sizable. It 

implies that unobserved skills of female workers within narrowly defined demographic groups 

deteriorated over the period. For example, among college graduates, female workers may have 

obtained lower-quality education and skills training that are not well matched with their jobs. 

Alternatively, female workers had lower bargaining power in the labor markets compared to their 

male counterparts over time. More detailed micro data of the Chinese labor market would help 

analyze these conjectures in the future.  

<Table 9 Here> 

 In urban India, the estimation results of the full model confirm the main results of the human capital 

model. The gender-specific factors such as women’s improvement in skill, experience, and 

affiliated industry explain most of the reduction in the gender gap over the period. Further, observed 

price effect was favorable to female workers. Its contribution to the reduction of overall wage 

inequality becomes much larger in the full model because wage differentials by occupation, industry, 

and state fixed-effects constituted a great part of observed price effect. 

 The size of the gap effect in India was significantly smaller compared to the estimate in the 

human capital model. It suggests that relative improvement in women’s position in residual 

distribution was mainly caused by the inflow of female workers into better-treated industries, 

occupations, or regions. On the other hand, the effect of unobserved prices does not show much 
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difference from those estimates in the human capital model.  

 

V. Gender Wage Differential and Skill Level 

 

A. Motivation 

 In analyzing gender wage gap trends by skill group, most of the increase in wage inequality 

came from demand for more skilled workers in both countries. As both labor markets have common 

trends for skilled workers, examination of the gender wage gap by skill level can give us insights into 

common factors behind both markets.  

In addition, the labor market for skilled workers has its own importance worthy of analysis. 

If the overall wage structure effect becomes unfavorable for high-skilled women, it implies the gap 

between women and men widens as women improve their human capital and move up in the wage 

distribution. As more women acquire higher education, it may be more difficult for them to become 

equal to their male partners.  

 We estimate wage equations using the full model for a sample of pooled male workers in 

1988 and 2010 (2009 for China). Under the assumption that predicted wage from these estimations 

reflects labor market skill, we then divide men and women by gender into three skill categories in 

each year based on the percentile of predicted wages: 0–30, 30–70, and 30–100. Therefore, the 

concept of skill is relative and determined within year and by gender.  

  

B. Estimation Results  

 Table 10 demonstrates decomposition of the gender wage differential by workers’ skill level 

in urban China. Panel A shows that real wages of both male and female workers increased 

significantly for all skill levels. Over the two decades, rapid wage increase occurred with expansion 

of the gender wage gap. Mean female residual from male wage regression also decreased in all skill 

levels, implying that unobserved qualifications or wage structure contributed to increasing the gender 
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wage gap.  

<Table 10 Here> 

 Panel B of Table 10 describes differences of each factor affecting gender wage differentials 

across skill groups. There are some notable differences across skill groups. Increase in wage 

inequality worked especially against high-skilled women even though they tried hard to catch up to 

their male counterparts in terms of observed qualifications. For medium- and low-skilled groups, 

their improvement in observed skills was much smaller than that for the high-skilled group. For all 

skill groups, gaps in unobserved skills or discrimination were driving forces behind the increased 

gender gap. 

 Table 11 shows decomposition of the gender wage differential in urban India. Panel A shows 

that improvement in wage trends is different across the skill groups. Log real wage of male workers 

increased for low-skilled and high-skilled workers, while there was almost no change for 

medium-skilled workers. At the same time, women’s wages improved sharply for all skill levels, 

reducing the gap with male workers. Women’s relative position of residual in male distribution also 

improved over time.  

 Panel B of Table 11 describes contributions of each factor to the gender wage differential 

across skill groups. In all skill levels, improvement of observed skills contributed to a decrease in the 

gender wage gap. For low- and medium-skilled groups, both overall wage structure and unobserved 

price effects worked favorably to reduce the gender wage gap. In contrast, the positive gap effect 

implies that unobserved characteristics or discrimination factors worked unfavorably for female 

workers. However, its magnitude is much smaller than other factors.  

 For high-skilled workers, the story is very different. Female high-skilled workers caught up 

to their male counterparts by improving their human capital over the period. Further, discrimination 

or gaps in unobserved skills contributed to huge reductions for high-skilled female workers. 

However, the market premium for skill and experience was quite unfavorable for them, increasing 
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the gender gap. In addition, overall wage inequality deteriorated their wages as they are in a 

relatively lower position at residual wages.  

 

VI.  Concluding Remarks 

 

 We examined the source of changes in the gender wage gap in urban areas of China and 

India over the past two decades. The evolution of wages in both countries showed common features 

such as increasing wage inequality and skill premium with the rising supply of skilled workers. In 

contrast, the changes in the gender wage gaps for each country showed dissimilar patterns over the 

same time period, as the wage gap deteriorated in China while being dramatically reduced in India.  

The decomposition of change in the gender wage gap showed significant improvement of 

women’s qualifications contributed to gender wage gap reduction in both countries. However, the 

change in observed prices of skills worked unfavorably for high-skilled women, counterbalancing 

their improvement in labor market qualifications.  

In China, in spite of their fast wage growth, a sharp deterioration of women’s position in 

wage distribution, relative to males after controlling for observed qualifications, contributed 

significantly to widening gender wage inequality. This gender-specific gap effect is attributable to 

deterioration in unobservable qualifications of female workers, an increase in discrimination, and 

less favorable treatment than male workers due to their employment status and industry-specific 

factors. By contrast, in India both wage structure and improvement of women’s qualifications 

contributed to a decreased gender wage gap. Women’s position in residual wage distribution also 

improved over the period, reducing the gender wage gap.  

 Analyses by skill group showed that there was a race between education and wage structure 

among high-skilled workers in both countries. The effect of increased skill premium was greater than 

that of narrowed education gap in China, thereby increasing gender wage differentials. On the other 

hand, the relatively slow increase of skill premium and rapid increase in females’ education level 
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reduced gender wage gap in India. For low- and medium- skilled workers, there was a race between 

observed qualifications and unobserved characteristics. In China, the sharp increase in the gap effect 

exceeded the effect that the increase in females’ education has, contributing to the increase in gender 

wage gap. By contrast, in India, the improvement in gender educational gap has a larger effect 

compared to the increase in the gap effect, causing the eventual decline in gender wage differentials.  

Data shows that the gender gap remains large in both China and India. A significant part of 

the gender earnings differentials is attributable to the gap in education and skills between males and 

females. An important policy priority should be promoting gender equity and inclusiveness in 

education and skill development. Furthermore, our research suggests that consideration of overall 

wage structure, unobserved skills, and gender-specific factors such as unobserved labor market 

qualification and discrimination against women should be included in any policy design.  
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FOR ONLINE PUBLICATION ONLY 

Appendix 

Analyses of Rural India 

This appendix summarizes wage inequality changes and gender earnings differentials in 

rural India during the 1990s and 2000s. Figure A1 shows that real wages among the skilled group 

(the 90th percentile) decreased in the 2000s while they rose among the low-skilled and median 

groups, implying that wage inequality declined in the recent decade. Figure A2 shows that all 

indicators of skill premiums declined over the period. An exception is the rise of the premium for 

workers with tertiary education relative to secondary educated workers in the 1990s.  

<Figures A1& A2 Here> 

Figure A3 also indicates that the residual wage differential between the 90th and 10th 

percentiles for all workers declined in the 1990s, indicating the declining trends of wage inequality 

among narrowly defined demographic groups. The wage differential showed an increasing trend for 

rural males in the 2000s. While the gap increased, the wage differentials for males remained below 

that for female workers over the period.  

<Figure A3 Here> 

Table A1 shows trends in male and female wages for the past two decades in rural India. 

Women’s relative wages improved significantly. The average female wage increased from about 42 

percent in 1988 to about 61 percent of the average male wage in 2010. Mean female wage percentile 

in the male wage distribution rose from 15.6 to 27.1. Figure A4 shows the gender gap in log weekly 

earnings declined in all percentiles in wage distribution. 

<Table A1 Here> 

<Figure A4 Here> 
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 Figure A5 shows a slight decrease in female workers’ labor market participation rate over 

the period, implying the selection into the labor force could be associated with changes in the gender 

wage gap. Table A2 presents OLS estimates and two-step estimates of the gender wage gap for 1988, 

2000, and 2010. The result shows that there is significant negative selection into the labor market. 

After correcting selection bias, the gender wage gap becomes smaller but still shows declining trends 

over time. We also adopted alternative specifications, which were applied to the analysis of urban 

India, to further examine the robustness of the estimated change of the gender gap. The results also 

support a decrease in the gender wage gap even after selectivity correction.  

<Figure A5 Here> 

<Table A2 Here> 

 Table A3 presents the estimation results of decomposition of change in gender wage 

differentials in rural India using both the human capital model and full model. In the human capital 

model, the negative price effect indicates that observed price change was favorable to rural female 

workers, just as with females working in the urban area (Table 8). Its magnitude is much greater in 

rural than in urban areas indicating that the favorable wage structure had a greater contribution in 

rural areas where more workers are low- and medium-skilled. The magnitude of the effect of 

observed qualifications contributing to a decreased gender wage differential is also greater in rural 

area as many female workers in the 1980s were less educated in rural than in urban areas.  

<Table A3 Here> 

The unobserved parts contributed significantly to reduction of the gender wage gap. The 

negative estimate of gap effect indicates that women’s position in residual distribution improved over 

the period in rural India. However, the contribution of the gap effect is relatively small compared to 

that in urban areas. The estimated unobserved price effect is negative in rural areas, implying that 

being in a relatively unfavorable position did not cause as much wage loss in 2010 compared to 

1988.  
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In the full model, the results are similar with those in the human capital model. However, 

the size of change in overall wage inequality became much smaller in the full model, indicating that 

industry and state wage differentials constituted a great part of the effects of observed qualifications 

and observed prices.  

 The size of the gap effect in the full model declined more significantly compared to that in 

the human capital model. The estimate of the gap effect has a positive sign. The striking difference 

implies that relative improvement in women’s position in residual distribution was mainly caused by 

the inflow of female workers into better-treated industries and regions. On the other hand, the 

estimate of unobserved prices does not show the magnitude of difference from those in the human 

capital model.  
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FIGURE A1. INDEXED WAGE INEQUALITY IN RURAL INDIA 

 

 

 

 

 

FIGURE A2. TREND OF SKILL PREMIUM IN RURAL INDIA 
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FIGURE A3. RESIDUAL WAGE INEQUALITY IN RURAL INDIA 

 

 

 

 

 

FIGURE A4. GENDER LOG WAGE GAP IN RURAL INDIA 
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FIGURE A5. FEMALE LABOR FORCE PARTICIPATION RATE IN RURAL INDIA 
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TABLE A1. OVERVIEW OF REAL WAGE TRENDS IN RURAL INDIA, 1988–2010 

 1988 2000 2010 

Log male real wage 
1.3744 

(0.0236) 

1.4095 

(0.0108) 

1.5955 

(0.0100) 

Log female real wage 
0.3718 

(0.0115) 

0.7978 

(0.0123) 

1.0991 

(0.0169) 

Differential 
1.0025 

(0.0251) 

0.6117 

(0.0130) 

0.4964 

(0.0174) 

Mean female percentile in the male wage distribution 
15.58 

(0.33) 

23.89 

(0.51) 

27.14 

(0.71) 

Ratio of average real wages between male and female 0.42 0.51 0.61 

Note: Mean female percentile in the male wage distribution was computed by assigning each woman a percentile ranking 

in the indicated years male wage distribution and calculating the female mean of these percentiles.  

 

 

 

 

TABLE A2. SELECTION-CORRECTED GENDER WAGE GAP IN RURAL INDIA: 

HECKMAN’S TWO-STAGE ESTIMATION 

 

Year OLS Two-Step Bias 

1988 -0.6180 -0.2423 -0.3757 

2000 -0.4006 -0.2226 -0.1780 

2010 -0.4351 -0.1113 -0.3238 
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TABLE A3. DECOMPOSITION OF CHANGES IN THE GENDER WAGE GAP IN 

RURAL INDIA 

 

 Human 

Capital Model 

Full Model 

A. Descriptive Statistics   

 Mean female residual from male wage regression   

  1988 -0.5965 -0.4937 

  2010 (2009 for urban China) -0.4226 -0.4468 

 Mean female residual percentile   

  1988 21.79 24.18 

  2010 (2009 for urban China) 28.28 26.98 

B. Decomposition of Change   

 Change in differential (D2010-D1988) -0.5044 -0.5044 

 All observed X’s -0.1592 -0.2019 

   Education variables -0.1707 -0.0923 

   Experience variables 0.0115 0.0092 

   Industry indicators  -0.2084 

   State indicators  0.0896 

 All observed prices -0.1719 -0.2562 

   Education variables -0.1865 -0.1573 

   Experience variables 0.0146 0.0220 

   Industry indicators  -0.0161 

   State indicators  -0.1048 

 Gap effect -0.0768 0.0406 

 Unobserved prices -0.0971 -0.0876 

Sum gender-specific -0.2360 -0.1613 

Sum wage structure -0.2690 -0.3488 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 1. INDEXED WAGE INEQUALITY 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 2. TRENDS IN SKILL PREMIUM 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 3. RESIDUAL INEQUALITY 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 4. GENDER LOG WAGE GAP 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 5. FEMALE LABOR FORCE PARTICIPATION RATE 
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TABLE 1. OVERVIEW OF REAL WAGE TRENDS 

 

PANEL A. China, 1988–2009 

 1988 2002 2009 

Log male real wage 
1.4026 

(0.0061) 

2.2589 

(0.0158) 

3.0496 

(0.0168) 

Log female real wage 
1.2395 

(0.0066) 

2.0094 

(0.0185) 

2.7514 

(0.0185) 

Differential 
0.1631 

(0.0090) 

0.2495 

(0.0243) 

0.2982 

(0.0255) 

Mean female percentile in the male wage distribution 
42.21 

(0.41) 

41.67 

(0.78) 

38.09 

(0.80) 

Ratio of average real wages between male and female  0.85 0.79 0.72 

 

PANEL B. India, 1988–2010 

 1988 2000 2010 

Log male real wage 
1.7371 

(0.0100) 

2.1171 

(0.0135) 

2.2800 

(0.0159) 

Log female real wage 
1.1471 

(0.0257) 

1.6394 

(0.0293) 

1.8983 

(0.0362) 

Differential 
0.5900 

(0.0234) 

0.4777 

(0.0255) 

0.3817 

(0.0330) 

Mean female percentile in the male wage distribution 
32.83 

(0.82) 

36.75 

(0.99) 

39.51 

(1.12) 

Ratio of average real wages between male and female  0.68 0.76 0.82 

 

Notes: Sample consists of full-time paid workers between ages 18 and 60 in both countries. Mean female percentile in the 

male wage distribution was computed by assigning each woman a percentile ranking in the indicated years’ male wage 

distribution and calculating the female mean of these percentiles.  
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TABLE 2. SELECTION-CORRECTED GENDER WAGE GAP: 

HECKMAN’S TWO-STAGE ESTIMATION 

 

Year OLS Two-Step Bias 

PANEL A. Urban China 

1988 -0.1045 -0.1324 0.0279 

2002 -0.1813 -0.1352 -0.0461 

2009 -0.2718 -0.2573 -0.0145 

PANEL B. Urban India 

1988 -0.4810 -0.2186 -0.2624 

2000 -0.3339 -0.1712 -0.1627 

2010 -0.3477 -0.0266 -0.3211 

 

Notes: Regression sample includes urban women between the ages of 18 and 60. The set of selection variables includes 

number of children under 6, number of children under 18, and marital status. The selection equation of urban China in 

1988 does not contain marital status because of data limitations.  
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TABLE 3. SELECTION-CORRECTED GENDER WAGE GAP: 

SELECTION CONTROL 

 

PANEL A. Urban China 

Year 1988 2002 2009 

Excluding the least likely to work (Prob.<0.05) -0.1041 -0.1854 -0.2710 

Excluding the least likely to work (Prob.<0.1) -0.1041 -0.1854 -0.2706 

Rule 2 + using only married women -0.0891* -0.1734 -0.2541 

PANEL B. Urban India 

Year 1988 2000 2010 

Excluding the least likely to work (Prob.<0.05) -0.4810 -0.3997 -0.3714 

Excluding the least likely to work (Prob.<0.1) -0.4953 -0.4141 -0.3765 

Rule 2 + using only married women -0.4894 -0.4035 -0.4071 

 

Notes: All estimated gender gap model controls years of schooling, experience, and square term of experience.  

*Estimates in this case are from a sample of 1995, as CHIPS data in 1988 does not contain marital status.       
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TABLE 4. CHANGES IN REAL MONTHLY WAGES AMONG FULL-TIME URBAN WORKERS IN 

CHINA 

Group 1988–2009 1988–2002 2002–2009 

All 141.9 71.2 70.7 

By gender    

  Male 150.4 77.9 72.5 

Female 131.3 63.2 68.1 

By education    

Elementary school 119.3 48.2 71.0 

  Junior high school 126.7 53.7 73.0 

Senior high school 136.0 71.0 65.1 

University degree or above 171.5 93.7 77.8 

By experience    

1–10 years 169.4 83.0 86.4 

11–20 years 154.4 73.2 81.2 

21–30 years 125.0 64.4 60.6 

> 30 years 119.2 66.6 52.5 

Male workers by education    

Elementary school 119.4 67.5 51.9 

  Junior high school 132.2 61.9 70.3 

  Senior high school 146.1 74.0 72.1 

  University degree or above 177.4 98.2 79.2 

Female Workers by Education    

Elementary school 118.1 40.4 77.7 

Junior high school 120.5 44.4 76.0 

  Senior high school 124.6 67.5 57.1 

  University degree or above 161.6 86.2 75.4 

Male workers by experience    

1–10 years 175.9 90.0 85.9 

 11–20 years 170.3 82.9 87.4 

  21–30 years 136.6 72.0 64.6 

  > 30 years 122.9 69.9 53.0 

Female Workers by Experience    

  1–10 years 163.0 76.0 86.9 

  11–20 years 137.0 62.5 74.5 

  21–30 years 112.0 56.8 55.2 

  >30 years 110.0 58.6 51.3 

Notes: Annual average monthly wages were computed for each of 32 gender-education-experience cells. 

Average wages for broader groups in each year are computed based on these cell averages using the average 

employment share per cell for the entire period as weights. All wages are deflated by the consumer price index.  
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TABLE 5. CHANGES IN REAL MONTHLY SUPPLY IN URBAN CHINA 

 

Group 1988–2009 1988–2002 2002–2009 

By gender    

Male 6.8 4.1 2.7 

Female -10.5 -6.2 -4.3 

By education    

Elementary school -159.9 -153.6 -6.3 

  Junior high school -83.0 -55.9 -27.1 

Senior high school -6.3 10.8 -17.1 

University degree or above 106.2 79.0 27.2 

By experience    

1–10 years -8.8 -43.8 35.0 

11–20 years 2.5 7.7 -5.2 

21–30 years 6.7 16.2 -9.5 

> 30 years -6.3 -2.6 -3.6 

Male workers by education    

 Elementary school -136.4 -131.1 -5.4 

   Junior high school -74.6 -47.1 -27.5 

   Senior high school 5.2 10.5 -5.3 

   University degree or above 90.7 68.6 22.1 

Female workers by education    

  Elementary school -187.6 -179.9 -7.7 

 Junior high school -96.1 -69.8 -26.3 

   Senior high school -23.1 11.2 -34.3 

   University degree or above 139.2 102.9 36.3 

Male workers by experience    

    1–10 years -10.6 -47.4 36.8 

    11–20 years 13.2 12.7 0.4 

    21–30 years 10.6 18.9 -8.2 

    > 30 years 6.5 4.8 1.7 

Female workers by experience    

    1–10 years -6.9 -39.9 33.0 

    11–20 years -12.8 0.9 -13.7 

    21–30 years 1.3 12.5 -11.2 

    >30 years -48.7 -24.4 -24.3 

Notes: The numbers in the table represent log changes in each group's share of total monthly labor supply 

measured in efficiency units (annual working hours times the average relative wage of the group for the sample 

period) using CHIPS. Supply measures include all workers in the count sample described above.  
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TABLE 6. CHANGES IN REAL WEEKLY WAGES AMONG FULL-TIME URBAN WORKERS IN 

INDIA 

Group 1988–2010 1988–2000 2000–2005 2005–2010 

All 37.76 30.74 -5.99 13.01 

By gender     

  Male 36.93 30.08 -5.04 11.88 

Female 41.87 34.01 -10.71 18.57 

By education     

Illiterate 41.26 29.25 1.89 10.12 

  Literate or primary school 28.92 29.43 -1.16 0.66 

Secondary school 27.58 27.82 -13.43 13.20 

University degree or above 60.92 38.29 -4.32 26.95 

By experience     

1–10 years 43.48 25.73 -7.48 25.23 

11–20 years 38.36 30.96 -8.89 16.30 

21–30 years 34.76 32.10 -4.07 6.73 

> 30 years 34.65 33.86 -2.94 3.72 

Male workers by education     

Illiterate 36.73 25.46 5.34 5.93 

  Literate or primary school 26.78 27.32 0.07 -0.61 

  Secondary school 29.53 28.25 -11.30 12.58 

  University degree or above 60.90 39.15 -4.96 26.71 

Female workers by education     

Illiterate 49.29 35.97 -4.23 17.55 

Literate or primary school 42.12 42.44 -8.79 8.47 

  Secondary school 8.96 23.65 -33.80 19.11 

  University degree or above 61.06 33.89 -1.00 28.17 

Male workers by experience     

1–10 years 44.08 25.61 -6.29 23.77 

  11–20 years 38.07 30.03 -7.54 15.58 

  21–30 years 33.12 30.38 -3.75 6.48 

  > 30 years 32.00 33.49 -1.69 0.20 

Female Workers by Experience     

  1–10 years 39.90 20.48 -14.63 34.04 

  11–20 years 40.10 36.59 -17.14 20.65 

  21–30 years 42.62 40.34 -5.64 7.92 

  >30 years 43.89 35.16 -7.30 16.02 

Notes: Annual average weekly wages were computed for each of 32 gender-education-experience cells. 
Average wages for broader groups in each year are computed based on these cell averages using the 
average employment share per cell for the entire period as weights. All wages are deflated by the consumer 
price index each year. 
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TABLE 7. CHANGES IN REAL WEEKLY SUPPLY OF EMPLOYED URBAN WORKERS IN INDIA 

 

Group 1988–2010 1988–2000 2000–2005 2005–2010 

By gender     

Male -1.80 -0.37 -2.09 0.66 

Female 13.32 2.92 14.85 -4.45 

By education     

Illiterate -89.23 -38.84 -35.05 -15.35 

  Literate or primary school -77.06 -47.88 -10.93 -18.25 

Secondary school -0.42 6.18 -42.10 35.51 

University degree or above 55.78 32.07 41.00 -17.30 

By experience     

1–10 years 11.76 -1.38 20.16 -7.02 

11–20 years -6.63 -3.26 -3.80 0.42 

21–30 years 5.92 12.13 -6.98 0.77 

> 30 years -7.42 -8.89 -3.31 4.78 

Male workers by education     

 Illiterate -86.85 -37.68 -40.03 -9.15 

   Literate or primary school -81.57 -49.49 -13.17 -18.91 

   Secondary school -1.69 5.14 -42.85 36.02 

   University degree or above 53.69 32.51 39.91 -18.73 

Female workers by education     

  Illiterate -97.21 -42.62 -19.92 -34.67 

 Literate or primary school -27.67 -27.07 11.83 -12.44 

   Secondary school 15.43 19.23 -33.68 29.88 

   University degree or above 67.65 29.37 47.60 -9.32 

Male workers by experience     

    1–10 years 5.02 -1.92 16.85 -9.90 

    11–20 years -8.03 -4.55 -5.87 2.39 

    21–30 years 5.48 12.16 -8.48 1.79 

    > 30 years -7.03 -8.52 -4.28 5.77 

Female Workers by Experience     

    1–-10 years 44.82 1.81 37.47 5.54 

    11–20 years 5.70 8.17 11.96 -14.43 

    21–30 years 9.55 11.86 4.82 -7.13 

    >30 years -10.51 -11.81 4.25 -2.96 

Notes: The numbers in the table represent log changes in each group's share of total monthly labor supply 

measured in efficiency units (annual working hours times the average relative wage of the group for the sample 

period) using CHIPS. Supply measures include all workers in the count sample described above.  
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TABLE 8. DECOMPOSITION OF CHANGES IN THE GENDER WAGE GAP: HUMAN CAPITAL 

MODEL 

 

 (1) 

Urban China 

(2) 

Urban India 

A. Descriptive Statistics   

 Mean female residual from male wage regression   

  1988 -0.1101 -0.4888 

  2010 (2009 for urban China) -0.2713 -0.3768 

 Mean female residual percentile   

  1988 45.48 30.21 

  2010 (2009 for urban China) 38.49 35.80 

B. Decomposition of Change   

 Change in differential (D2010–D1988) 0.1351 -0.2082 

 All observed X’s -0.0254 -0.0625 

   Education variables -0.0342 -0.0745 

   Experience variables 0.0088 0.0120 

 All observed prices 0.0012 -0.0336 

   Education variables 0.0312 -0.0315 

   Experience variables -0.0300 -0.0021 

 Gap effect 0.2388 -0.1295 

 Unobserved prices -0.0776 0.0175 

Sum gender-specific 0.2134 -0.1920 

Sum wage structure -0.0764 -0.0161 
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TABLE 9. DECOMPOSITION OF CHANGES IN THE GENDER WAGE GAP: FULL MODEL 

 

 (1) 

Urban China 

(2) 

Urban India 

Period 1988–2009 1988–2010 

A. Descriptive Statistics   

Mean female residual from male wage regression   

 Year 0 -0.1047 -0.4921 

 Year 1 -0.2416 -0.4814 

Mean female residual percentile   

 Year 0 44.35 28.81 

 Year 1 38.29 31.58 

B. Decomposition of Change   

Change in differential (D2010-D1988) 0.1351 -0.2082 

Observed X’s -0.0204 -0.0522 

  Education variables -0.0336 -0.0507 

  Experience variables 0.0099 0.0103 

  Industry variables -0.0013 -0.0304 

  Province (State) indicators 0.0046 0.0086 

  Occupation  0.0103 

Observed prices 0.0177 -0.1441 

  Education variables 0.0278 -0.0405 

  Experience variables -0.0290 0.0012 

  Industry variables 0.0179 -0.0376 

  Province (State) indicators 0.0010 -0.0308 

  Occupation  -0.0362 

Gap Effect 0.1089 -0.0191 

Unobserved prices 0.0290 0.0085 

Sum gender-specific 0.0885 -0.0713 

Sum wage structure 0.0467 -0.1356 
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TABLE 10. DECOMPOSITION OF CHANGES IN THE GENDER PAY WAGE BY SKILL LEVEL: 

URBAN CHINA  

 

 

 

Low-Skilled Medium-Skilled High-Skilled 

A. Descriptive Statistics    

Mean log wage of male    

1988 1.0980 1.4791 1.5882 

2009 2.8217 2.9752 3.2025 

Mean log wage of female    

1988 0.9775 1.3049 1.3983 

2009 2.6022 2.6804 2.8233 

Mean female residual from male wage regression    

1988 -0.0649 -0.1319 -0.1346 

2009 -0.2515 -0.2843 -0.2301 

Mean female residual percentile    

1988 49.17 40.57 42.71 

2009 37.32 36.07 68.57 

B. Decomposition of Change    

Change in differential (D2009–D1988) 0.0990 0.1206 0.1893 

Observed X’s -0.0932 0.0305 -0.2623 

Observed prices 0.0052 -0.0632 0.3589 

Gap effect 0.2651 0.1914 0.1612 

Unobserved prices -0.0785 -0.0389 -0.0657 

Sum gender-specific 0.1719 0.221 9 -0.1011 

Sum wage structure -0.0733 -0.1021 0.2932 
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TABLE 11. DECOMPOSITION OF CHANGES IN THE GENDER PAY WAGE BY SKILL LEVEL:  

URBAN INDIA 

 

 Low-Skilled Medium-Skilled High-Skilled 

A. Descriptive Statistics    

Mean log wage of male    

  1988 1.1277 1.6292 2.2812 

  2010 1.4267 1.7631 2.7340 

Mean log wage of female    

  1988 0.3872 0.4592 1.3387 

  2010 0.8819 1.1855 2.2770 

 Mean female residual from male wage regression    

  1988 -0.3015 -0.5490 -0.6895 

  2010 -0.3264 -0.4910 -0.3912 

Mean female residual percentile    

  1988 30.81 22.22 25.15 

  2010 28.47 26.54 36.61 

B. Decomposition of Change    

 Change in differential (D2010–D1988) -0.1966 -0.5925 -0.4855 

 Observed X’s -0.1823 -0.2946 -0.5288 

 Observed prices -0.0403 -0.2392 0.3445 

 Gap effect 0.0589 0.0479 -0.3366 

 Unobserved prices -0.0340 -0.1059 0.0384 

Sum gender-specific -0.1234 -0.2467 -0.8654 

Sum wage structure -0.0743 -0.3451 0.3829 

 

 

 

 

 

 

 

 

 

 

 


