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Abstract

To reveal a policy mandate for financial stability, we introduce a frictional credit

market with a search and matching process into a standard New Keynesian model

with nominal rigidities in the goods market, and then investigate optimal policy

under financial frictions. We show that a second-order approximation of social wel-

fare includes terms for credit, in addition to terms for inflation and consumption, so

that any optimal policy must hold responsibility for financial and price stabilities.

We highlight this issue by considering several tools for monetary and macropru-

dential policy. We find that optimal monetary policy requires keeping the credit

market countercyclical against the real economy. Also, optimal macroprudential

policy, which poses constraints on supply and demand sides of credit, reduces ex-

cessive variations in lending and contributes to both financial and price stabilities.
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1 Introduction

The serious economic disruptions caused by financial crises reveal the critical roles played

by financial markets in the U.S. and the euro area. Acknowledging that the current policy

framework cannot fully mitigate nor avoid financial crises, policymakers have begun to

shed light on roles of financial markets on policy measures and vice versa. Two policy

measures are particularly focused on. The first is monetary policy, which aims to achieve,

in addition to traditional policy goals, stability of the financial system. The second is

macroprudential policy geared toward financial stability.

A growing number of publications stresses this new role of monetary policy for fi-

nancial stability. The Bank for International Settlements (BIS) emphasizes that central

banks need to tighten monetary policy against accumulation of financial imbalances,

such as overheating of mortgage, stock, and bond markets, even when the real economy

seems to be stable in the near-term.1 Taylor (2008) argues that in the U.S., the Federal

Reserve Board appears to adjust the policy rate in response to credit spread to stimulate

the economy and maintain financial stability.2

The role of macroprudential policy, which is independent from monetary policy, in

sustaining financial stability is also highlighted in the literature. Borio (2011) empirically

shows the difference between financial and business cycles, and justifies the necessity of

the coexistence of macroprudential policy and other policies such as monetary policy.3

In practice, international organizations have begun to introduce macroprudential policy,

for example, the Basel III framework, as set forth by the Basel Committee on Banking

Supervision (BCBS, 2010) and BCBS (2014). Such macroprudential policy includes,

among others, bank regulations that constrain supply of credit according to capital base

and/or economic situations.4

1See BIS (2009) and Caruana (2010).

2See also Christiano et al. (2010), Gertler and Karadi (2011), Teranishi (2015), and Cúrdia and

Woodford (2016). In particular, Gertler and Karadi (2011) build a model with a borrowing constraint

for banks as in Bernanke, Gertler, and Gilchrist (1999), and evaluate the quantitative easing policy.

3Drehmann, Borio, and Tsatsaronis (2012) also show such empirical results.

4For example, in the Basel III, banks are required to meet a particular base level of capital ratio
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In this paper, we build a model with a banking sector and a frictional credit market

that is suitable for analyzing financial instability (or equivalently, inefficient fluctuations

in variables related to credit) and then analytically examine the optimal policy in such

an environment. As in Wasmer and Weil (2000) and Den Haan, Ramey, and Watson

(2003), we introduce financial market frictions by assuming search and matching process

in the credit market.5 Unlike these authors, however, we incorporate the credit market

by following the existing studies, in particular Ravenna and Walsh (2011), that embed

a frictional labor market into a standard New Keynesian model with nominal price

rigidities.6 Our approach enables expression of the welfare function in an intuitive form,

and allows tractable analyses of the optimal policy in a model that explicitly formulates

the supply side of credit. To elaborate, in our model, the aggregate loan volume is

determined by the formation and destruction of borrower-lender relationships, and the

loan interest rate varies with tightness of the credit market. These financial variables

are related to business cycles, and vice versa. Thus, we can analyze policies that directly

focus on the supply side, rather than the demand side of credit.

We begin our analysis of the model by, as in Woodford (2003), approximating the

representative household’s welfare in the second order. A novel finding is that the ap-

proximated welfare function includes, in addition to terms involving inflation and con-

sumption, terms related to credit such as credit market tightness, credit growth, and the

upper bound of loan volume. This result provides a theoretical justification for including

financial stability among the goals of optimal policy.

We then explore the properties of the optimal policy, starting from the monetary

policy that controls a deposit (policy) rate. We find that by taking a financial friction

into account, monetary policy should contribute to financial stability and thus perform

against risk assets, where this base is changed according to economic and financial conditions. Several

countries have also introduced different types of macroprudential policies, including total credit control

and capital control, as described in Lim et al. (2011) and Nier et al. (2011).

5Search and matching frictions are widely assumed in analyses of labor markets. See, e.g., Mortensen

and Pissarides (1994) and Rogerson, Shimer, and Wright (2005).

6Earlier studies that feature such a model include Walsh (2003), Thomas (2008), and Trigari (2009).
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the macroprudential role. When equipped with this additional role, optimal monetary

policy must keep the credit market countercyclical against the real economy by setting

the policy rate to induce disinflation against positive credit growth. We then turn to

macroprudential policy, such as taxation or a subsidy on the cost of searching for credit

in the demand side of credit, i.e., firms, and total credit control that poses lending limits

on the supply side of credit, i.e., banks. We show that optimal macroprudential policy

reduces excessive variations of credit. A key finding is that optimal macroprudential

policy, primarily linked with financial stability, is indeed closely associated with price

stability, and consequently with monetary policy.

This paper is related to three strands of literature, but differs from the existing studies

in important ways. First, our paper is related to the existing work that adopts search-

theoretic models of the credit market, such as Wasmer and Weil (2000) and Den Haan,

Ramey, and Watson (2003). This framework enables elaborating the supply side of credit,

and is thus suitable for conducting policy analyses for financial stability. Furthermore,

Den Haan, Ramey, and Watson (2003) show that search and matching frictions in the

loan market substantially amplify business cycle shocks. This provides an interpretation

of Bernanke (1983), who shows that financial disruptions through credit misallocation

induced the unusual length and depth of the Great Depression. Credit market search

is therefore an appropriate mechanism for explaining financial disruptions against which

policy measures should play a role. Our paper, however, substantially differs from the

studies above in embedding credit market search into the standard New Keynesian model,

as well as in revealing the optimality criteria for policy measures.

Second, our paper is related to studies that follow Woodford (2003) and analyze the

optimal policy through a linear-quadratic approach, which makes use of the first order

approximation of the structural equations of the model and the second order approxi-

mation of welfare. Extending this approach, Teranishi (2015) and Cúrdia and Woodford

(2016) introduce financial frictions into a standard New Keynesian model and derive

the optimal policy. They show that stabilizing credit spread and loan interest rate is

a principle for optimal policy, but they do not address bank behavior that induces se-
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rious financial disruptions. In contrast, our analysis shows that variables closely linked

to bank behavior, such as credit market tightness, credit growth, and over- and under-

lending, should be stabilized. Moreover, the former studies focus only on monetary

policy, whereas this paper investigates also macroprudential policy. Thomas (2008) and

Ravenna and Walsh (2011) pursue a linear-quadratic approach in models with search

and matching frictions in the labor market, and show that the objective function of the

monetary authority includes unemployment gaps. These authors, however, do not dis-

cuss the role of financial market frictions in the conduct of optimal monetary policy and

exclude roles of macroprudential policy.

Third, our paper is related to studies that explore the roles of macroprudential policy

in models with credit constraints. Bianchi and Mendoza (2013) build a model with a

pecuniary externality and a collateral constraint following Kiyotaki and Moore (1997)

and Bernanke, Gertler, and Gilchrist (1999), and derive optimal and time-consistent

macroprudential policy without commitment. Farhi and Werning (2016) introduce a

borrowing constraint into a model with nominal rigidities in goods and labor markets,

and show optimal interventions that are justified by an aggregate demand externality.7

These authors, however, do not focus on the supply side of credit and exclude direct

regulations on credit creation, and also, they do not analytically show the optimality

criteria for macroprudential policy.8 While we focus only on business cycles, defined

as deviations from an efficient steady state, and do not deal with types of externalities

discussed by these authors, we analytically show the stabilization of financial variables

as a principle of optimal macroprudential policy.

The rest of the paper is organized as follows. In Section 2, we set up the model. In

Section 3, we derive the second-order approximation of the social welfare function and

analyze an economy without policy response. In Section 4 and 5, we discuss optimal

monetary and macroprudential policy. Finally, in Section 6, we conclude the paper.

7Also see Bianchi (2010) and Korinek and Simsek (2015).

8An exception to this is where Gertler and Kiyotaki (2010) build a model which features, in addition

to the liquidity constraint, the borrowing constraint for banks as in Bernanke, Gertler, and Gilchrist

(1999), and evaluate macroprudential policies.
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2 Model

The model economy is populated by four types of private agents: a single representative

household (consumer), and large numbers of wholesale firms, banks, and retail firms.

We explain the problems faced by these agents in turn, then describe the credit market,

which is characterized by search and matching frictions, as well as the goods market.

2.1 Household

An infinitely lived representative household derives utility only from consumption, and

discounts the future with discount factor β ∈ (0, 1). In period t, the household enjoys

total real consumption Ct and receives Πt as a real lump-sum profit from firms and banks,

and Tt as a real lump-sum transfer from the government. In addition, the household

deposits Dt into a bank account, to be repaid at the end of period t with a nominal

interest rate RD
t − 1, where RD

t is a policy variable of monetary policy.

Letting Pt denote the price of Ct, the household’s problem is

max
{Ct+i,Dt+i}∞i=0

Et

∞∑
i=0

βiξtu(Ct+i), (1)

subject to the budget constraint

Ct = Πt + Tt +
RD
t−1Dt−1 −Dt

Pt
. (2)

The household’s period utility function is

ξtu(Ct) ≡ ξt
C1−σ
t

1− σ
, (3)

where ξt is an intertemporal preference shock which follows a known stochastic process,

and σ > 0 is the coefficient of relative risk aversion.

This optimization problem leads to

λt = ξtC
−σ
t , (4)

1 = βEt

[
λt+1

λt

Pt
Pt+1

RD
t

]
, (5)
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where λt is the Lagrange multiplier on the budget constraint, (2).

Total consumption Ct is an aggregate of differentiated retail goods, labeled by j ∈

[0, 1]. Consumption of each good ct(j) is related to Ct by

Ct ≡
[∫ 1

0

ct(j)
εt−1
εt dj

] εt
εt−1

, (6)

where εt ∈ (1,∞) is the elasticity of substitution among retail goods, which follows a

known stochastic process. In what follows, random fluctuations of ξt and εt are the only

sources of aggregate uncertainty.

The household chooses each ct(j) to minimize cost
∫ 1

0
pt(j)ct(j)dj, given the level of

Ct and the price of each good, pt(j). This minimization yields

ct(j) =

[
pt(j)

Pt

]−εt
Ct , (7)

where

Pt ≡
[∫ 1

0

pt(j)
1−εtdj

] 1
1−εt

. (8)

2.2 Wholesale Firms

In any period, a wholesale firm can be either a productive firm or a credit seeker firm.

A productive firm produces Zt units of wholesale goods. To be productive, a firm must

obtain a real units of credit from a bank.

The credit market is characterized by search frictions, and the flow cost of posting

a vacancy is κ > 0 in real units. In addition, the government imposes tax τ ct on the

search cost κ as a tool of macroprudential policy for demand side of credit, and rebates

the tax revenue to the household as a lump-sum transfer Tt.
9 Thus, the total flow cost

of searching for a credit is (1 + τ ct )κ . When τ ct < 0, the policy amounts to a subsidy

for the firms’ search cost, financed by a lump-sum tax on the household. Thus, a credit

seeker firm must buy retail goods (1 + τ ct )κt(j), j ∈ (0, 1), to satisfy[∫ 1

0

κt(j)
εt−1
εt dj

] εt
εt−1

≥ κ. (9)

9For example, Farhi and Werning (2016) also assume a financial tax on the demand side of credit.

7



The cost minimization for κt(j) parallels that for ct(j) in the household’s problem. For

simplicity, we assume that firms finance the cost of searching for credit by issuing stocks

to the household.10

In period t, with probability pFt , a credit seeker firm is matched with a bank and

engages in a credit contract. The firm then receives a real units of credit and becomes

productive, sells the produced goods to retail firms, and repays RL
t a to the bank, where

the loan interest rate RL
t − 1 is determined in equilibrium. Finally, at the end of period

t, a credit contract is terminated with probability ρ ∈ (0, 1), in which case the firm and

the bank separate and search for new matches in period t + 1. With probability 1 − ρ,

a credit contract is sustained and the firm again receives credit in period t+ 1. We call

ρ the credit separation rate.

There is free entry into the wholesale goods industry. Thus, in equilibrium, the value

of a credit seeker firm is zero, and hence the cost of searching for credit must equal the

expected revenue, or

(1 + τ ct )κ = pFt Wt. (10)

Here, Wt is the value of a productive wholesale firm, written as

Wt =
Zt
µt
−
(
RL
t − 1

)
a+ βEt

[
λt+1

λt
(1− ρ)Wt+1

]
, (11)

where

µt ≡
Pt
Pw
t

(12)

is the price markup by retail firms, and Pw
t is the price of a wholesale good. The first

two terms on the right-hand side (RHS) of equation (11) show the net current profit

from production, while the third term is the discounted present value of future profit.

Given these assumptions, the demand for retail good j and total demand are

ydt (j) ≡ ct(j) + κt(j)ut, (13)

10In an older version of our paper, Munakata, Nakamura, and Teranishi (2013) pursue an alternative

setup in which wholesale firms costlessly search for credit and banks pay the cost of posting vacancies.

The form of the approximated welfare function under this setup is identical to that obtained below.
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and

Y d
t ≡ Ct + κut, (14)

respectively, where ut is the number of credit seeker firms. Note that the tax τ ct does

not enter these equations, since the entire tax revenue is rebated to the household. Also

note that ydt is related to Y d
t by the following equation:

ydt (j) =

[
pt(j)

Pt

]−εt
Y d
t . (15)

2.3 Banks

Banks collect money from the household as deposits, and lend it to wholesale firms.

To search for credit seeker firms, banks must post credit offers, which we call “credit

vacancies”. Posting credit vacancies is costless, but total funds available for lending is

capped at aL∗t , such that the upper limit of the number of credit contracts is L∗t .
11

Therefore, the number of credit vacancies vt is expressed as

vt = L∗t − (1− ρ)Lt−1, (16)

where Lt is the number of productive wholesale firms. In period t, a credit vacancy is

filled with probability qBt . Thus, Lt evolves according to

Lt = (1− ρ)Lt−1 + qBt vt. (17)

In such settings, the value of a credit match for banks is

J1
t = a(RL

t − 1) + βEt

(
λt+1

λt

{
(1− ρ)J1

t+1 + ρ
[
qBt+1J

1
t+1 + (1− qBt+1)J0

t+1

]})
. (18)

The first term on the RHS of the equation shows current profit from lending, while the

second term represents discounted present value of future profit. On the other hand, the

value of a credit vacancy for banks is

J0
t = βEt

{
λt+1

λt

[
qBt+1J

1
t+1 + (1− qBt+1)J0

t+1

]}
. (19)

11For simplicity, we assume that aL∗t is less than the amount of deposit.
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Since a credit vacancy yields no current profit, it has only discounted future values.

These two equations imply that the bank’s surplus from a credit match is

Jt ≡ J1
t − J0

t = a(RL
t − 1) + βEt

[
λt+1

λt
(1− ρ)(1− qBt+1)Jt+1

]
. (20)

We conclude the description of banks by explaining the nature of the upper limit of

credit contracts L∗t . In the real economy, when banks are allowed to extend ample loans,

the screening criteria become less strict, resulting in the deterioration of the average

productivity of projects funded by loans. To examine such a feature, we assume the

following relationship between L∗t and the productivity of wholesale firms Zt:

Zt = f(L∗t ). (21)

Here, the function f is strictly positive, strictly decreasing, strictly concave, and contin-

uously differentiable.

Furthermore, L∗t works as the macroprudential regulation of lending limit for supply

side of credit. This policy corresponds to a total credit control that is implemented in

some countries as explained in Lim et al. (2011) and Nier et al. (2011).12

2.4 Retail Firms

Retail firms produce differentiated retail goods from wholesale goods, which are then sold

to the household in a monopolistically competitive market. One unit of wholesale goods

is converted into one unit of retail good j. To introduce price stickiness, we assume that

a firm can adjust its price each period with probability 1−ω, as in Calvo (1983) and Yun

(1996). Since the demand for good j is given by equation (15), the profit maximization

problem of a retail firm that has a chance to adjust its price P ∗t becomes

max
P ∗t

Et

∞∑
i=0

(ωβ)i

[(
λt+i
λt

)(
(1 + τ)P ∗t − Pw

t+i

Pt+i

)(
P ∗t
Pt+i

)−εt+i

Y d
t+i

]
. (22)

12This policy is also interpreted as a capital adequacy ratio regulation that poses a constraint on

banks to supply credit as explained in Lim et al. (2011) and Nier et al. (2011).
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We here assume that the subsidy for retails firms τ is set to ensure that price flexibility is

achieved at the efficient steady-state equilibrium defined below. Note that Pt is related

to Pt−1 and P ∗t as

P 1−εt
t = (1− ω) (P ∗t )1−εt + ωP 1−εt

t−1 . (23)

2.5 Credit Market

The number of new credit matches in a period is given by a Cobb-Douglas matching

function

m (ut, vt) = χu1−α
t vαt , χ, α ∈ (0, 1) . (24)

Defining credit market tightness as13

θt =
ut
vt
, (25)

we obtain

pFt = χθ−αt , (26)

qBt = χθ1−α
t , (27)

Lt = (1− ρ)Lt−1 + χθ1−α
t vt. (28)

The loan interest rate is determined according to generalized Nash bargaining between

the matched wholesale firm and bank. Thus, RL
t solves

max
RL

t

W 1−b
t J bt , (29)

where b ∈ (0, 1) is the bargaining power for banks. The first-order condition with respect

to RL
t yields

bWt = (1− b)Jt. (30)

Using equations (10), (26), (27), and (30) to eliminate pFt , qBt , Wt, and Jt from (11)

and (20), we obtain

(1 + τ ct )
κ

χ
θαt =

Zt
µt
− (RL

t − 1)a+ βEt

[
λt+1

λt
(1− ρ)

(
1 + τ ct+1

)
κ

χ
θαt+1

]
(31)

13Note that in our environment, ut and vt correspond, respectively, to the demand and the supply of

credit. Thus, market tightness is defined as ut/vt, rather than its inverse.
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and

b

1− b
(1 + τ ct )κ

χ
θαt = (RL

t − 1)a+ βEt

[
λt+1

λt
(1− ρ)

(
1− χθ1−α

t+1

) b

1− b

(
1 + τ ct+1

)
κ

χ
θαt+1

]
.

(32)

By further eliminating RL
t from these equations and using equation (4), we obtain the

following condition, which relates the markup µt to credit market tightness θt:

Zt
µt

=
1 + τ ct
1− b

κ

χ
θαt − βEt

[
ξt+1(Ct+1)−σ

ξt(Ct)−σ
(1− ρ)

1 + τ ct+1

1− b

(
κ

χ
θαt+1 − bκθt+1

)]
. (33)

Equation (33) shows that the credit market affects the real economy, that is, the price

setting behavior, through the cost channel.

2.6 Goods Market Clearing Condition

Since one unit of wholesale goods is needed as an input to produce one unit of each retail

good j, the market clearing condition for wholesale goods is

ZtLt =

∫ 1

0

ydt (j)dj. (34)

Together with the demand equation for retail goods (15), the following goods market

clearing condition is obtained:
ZtLt
Qt

= Ct + κut. (35)

Here,

Qt ≡
∫ 1

0

[
pt(j)

Pt

]−εt
dj (36)

represents the dispersion of prices of retail goods due to price stickiness for retail firms.

3 Economy without Policy Response

We first analyze an economy without any policy response. Thus, we set policy variables

at constant values, such as RD
t = R̄D, L∗t = L̄∗ (and thus Zt = Z̄ ≡ f(L̄∗)), and

τ ct = 0.14 This analysis serves to clarify the effect of optimal policy on the social welfare

and economic structure.

14Throughout, a bar above each variable implies its value in the efficient steady-state equilibrium.
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3.1 Welfare Criteria

We examine the optimal policy under the linear-quadratic approximation framework of

Woodford (2003) and Benigno and Woodford (2003, 2012). In this section, we first

introduce the concepts of efficient stochastic equilibrium and efficient steady-state equi-

librium. The household’s utility function is expanded around the efficient steady-state

equilibrium to derive the second-order approximation of the welfare function. We then

comment on the implications of the approximated welfare function.

3.1.1 Efficient Stochastic Equilibrium

The efficient stochastic equilibrium is defined as the equilibrium of the economy without

the cost-push shock (i.e., εt = ε̄ for all t), whose allocation coincides with that of a benev-

olent social planner who maximizes the discounted lifetime utility of the representative

household. Such an equilibrium can be achieved only when the model exhibits neither

credit matching inefficiency nor price markup. Specifically, we assume throughout that

(1) the Hosios (1990) condition holds, that is, the bargaining power of banks (b) equals

the elasticity of the matching function with respect to credit vacancies (α), and (2) the

subsidy for retail firms τ is chosen to ensure µ̄ = ε̄
(ε̄−1)(1+τ)

= 1.

By definition, the allocation in the efficient stochastic equilibrium is obtained by

solving the following optimization problem of the social planner:

max
{Ce

t+i,L
e
t+i,v

e
t+i,θ

e
t+i}∞i=0

Et

∞∑
i=0

βi{
ξt+i(C

e
t+i)

1−σ

1− σ
+ φet+i

[
Z̄Let+i − κθet+ivet+i − Ce

t+i

]
(37)

+ νet+i
[
(1− ρ)Let+i−1 + χ(θet+i)

1−αvet+i − Let+i
]

+ set+i
[
vet+i − L̄∗ + (1− ρ)Let+i−1

]
},

where the superscript e represents the value of each variable in the efficient stochastic

equilibrium. This problem yields the following condition that characterizes the allocation

in the efficient stochastic equilibrium.

Z̄ =
1

1− α
κ

χ
(θet )

α − βEt

[
ξt+1(Ce

t+1)−σ

ξt(Ce
t )
−σ (1− ρ)

1

1− α

(
κ

χ
(θet+1)α − ακθet+1

)]
. (38)
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3.1.2 Efficient Steady-State Equilibrium

The efficient steady-state equilibrium is defined as a steady-state equilibrium of the

deterministic (i.e., ξt = ξ̄ = 1 and εt = ε̄ for all t) model, whose allocation coincides

with that of a benevolent social planner. By setting ξt = ξt+1 = 1 in (38) and removing

the expectation operator as well as subscripts and superscripts, we obtain the following

condition that characterizes the efficient steady-state equilibrium:

Z̄ − 1

1− α
κ

χ
θ̄α = −β(1− ρ)

1

1− α
κ

χ
θ̄α
(
1− αχθ̄1−α) . (39)

For later convenience, let

δ1 ≡ Z̄ − 1

1− α
κ

χ
θ̄α, (40)

δ2 ≡ (1− ρ)
1

1− α
κ

χ
θ̄α
(
1− αχθ̄1−α) , (41)

to simplify (39) as

δ1 = −βδ2. (42)

Since q̄B = χθ̄1−α ≤ 1, it follows that δ2 ≥ 0 and thus δ1 ≤ 0.

3.1.3 Policy Objective Function

Below, we express the log-deviation of a variable (e.g., Ct) from its efficient steady-state

value (C̄) by placing a hat (̂) over its lower case (ĉt); the difference, or the gap, between

such variable with a hat from its value in the efficient stochastic equilibrium is denoted

by placing a tilde (˜). We call c̃t ≡ ĉt − ĉet = lnCt − lnCe
t the consumption gap, and

similarly for other variables with a tilde.

As shown in Appendix A, the second-order expansion of the household’s utility func-

tion around the efficient steady-state equilibrium yields

Et

∞∑
i=0

βiξt+iu(Ct+i) ' Vmax −
1

2
Et

∞∑
i=0

βiNt+i, (43)

where the maximum achievable welfare Vmax is given by

Vmax = Et

∞∑
i=0

βiξt+iu(Ce
t+i)−

1

2
λπ(1− ω)∆V

t−1, (44)
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while the period loss function Nt+i is given by

Nt+i = λππ
2
t+i + λcc̃

2
t+i + λθθ̃

2
t+i. (45)

Here, πt ≡ p̂t − p̂t−1 is the inflation rate, λπ ≡ ucZ̄L̄ε̄/δ, λc ≡ σucC̄, λθ ≡ ucκūα,

uc ≡ u′(C̄), δ ≡ (1 − ω)(1 − ωβ)/ω, and ∆V
t ≡Varj p̂t(j) ≥ 0. On the RHS of equation

(43), Vmax represents, as observed from (44), the social welfare achieved by the social

planner less the welfare cost due to inherited price dispersion.15 Since these terms are

independent of policy, welfare maximization amounts to minimizing Et

∑∞
i=0 β

iNt+i; since

Nt+i is nonnegative and equals zero if and only if all gaps are zero, the social welfare

under the optimal policy is bounded above by Vmax.

Equation (45) shows that optimal policy faces a trade-off between variations in the

inflation rate, consumption, and credit market tightness. The presence of the market

tightness gap θ̃t in the approximated welfare function has a novel implication for optimal

policy – even when the real economy is perfectly stable, with zero gaps in consumption

and inflation, optimal policy should respond to an inefficient state of the credit market.

Thus, introduction of a frictional credit market provides a theoretical justification for

including financial stability as among the goals of optimal policy. We now explore in

more detail the economic wedge represented by each of the terms in Nt+i.

The first two terms in Nt+i are present also in the standard New Keynesian model

without credit market frictions. The inflation variation term π2
t+i results from price

dispersion due to price stickiness. Even when the aggregate consumption is at an efficient

level, price dispersion distorts the composition of differentiated retail goods that are

produced and consumed. The resulting welfare loss is captured by this term π2
t+i. Note

that when prices are flexible, i.e., ω = 0, we have δ =∞ and thus λπ = 0, such that the

inflation variation term disappears from the objective function. The term c̃2
t+i, on the

other hand, appears here because consumption variation induces welfare loss due to the

concavity of the consumer’s utility function.

15The term representing welfare cost due to inherited price dispersion arises because we assume the

absence of such inherited price dispersion in the planner’s problem.
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The third term in Nt+i, θ̃
2
t+i, represents welfare loss due to inefficient variations in

credit market tightness. The weight on this term, λθ, depends on the model parameters

in a complicated fashion through the steady state number of credit seeker firms, ū. As

shown below in Section 3.1.4, however, the relative importance of the variations in market

tightness to that in consumption, λθ/λc, increases with the search cost κ. This result is

intuitive since the presence of the term θ̃2
t+i here is a result of introducing a frictional

credit market. In fact, without the cost of searching for credit, i.e., κ = 0, the term

θ̃2
t+i is absent from the policy objective function, just like in a standard New Keynesian

model.16

Note that the approximated welfare function can be transformed as

Et

∞∑
i=0

βiξt+iu(Ct+i) ' V max− 1

2

∞∑
i=0

βi
[
λππ

2
t+i + λcc̃

2
t+i +

λθ
(1− α)2ρ2

(
l̃t+i − ρul̃t+i−1

)2
]
,

(46)

where

ρu ≡ (1− ρ)

(
1− ρL̄

v̄

)
. (47)

Equation (46) clearly shows that the optimal policy should respond to the volume of

credit. Note that ρu ∈ (0, 1), since equations (27) and (28) yield ρL̄/v̄ = q̄B ∈ (0, 1). In

particular, as the separation rate ρ approaches 1, ρu approaches zero. This implies that

the optimal policy should focus on the current volume of credit, because the history of

the credit market is irrelevant when all matches are replaced each period. In contrast, as

ρ approaches zero, ρu approaches 1. In this limit, all existing loans continue to the next

period, so the optimal policy should focus on the volume of new loans, or equivalently,

on the growth of credit.

The result that the criteria for optimal policy directly includes the volume of credit

is a nontrivial finding. It justifies that optimal policy works for eliminating inefficient

dynamics of lending, such as an over- and under-lending. This is quite consistent with

16When κ = 0, the zero profit condition for credit seeker firms, equation (10), implies pFt = 0. That

is, there will be infinite number of credit seeker firms, and thus θt+1 =∞. To deal with such a situation,

we need to redefine the matching function as m (ut, vt) = min
{
χu1−αt vαt , ut, vt

}
. Then, qBt = 1 and

Lt = L̄∗ for all t, such that all funds available for lending are lent out in all periods.
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the aim of macroprudential policy to stabilize the volume of loans.17

Furthermore, the approximated welfare includes both financial variables, such as

credit, and real economic variables, such as inflation and consumption. This finding

clearly contrasts with recent argument that insists that the macroprudential authority

should focus only on the financial variables.18

3.1.4 Analysis for Welfare Criteria

We now analyze the dependence of the welfare function on several parameters, especially

focusing on the weight of the term corresponding to financial frictions.

Straightforward calculation in Appendix B yields

∂

∂κ

(
λθ
λc

)
> 0, (48)

where the parameters (e.g., α) except κ are fixed, but the efficient steady-state value

of the variables (e.g., θ̄) are allowed to vary with κ. This relationship (48) implies

that, as the cost of searching for credit κ increases, the relative weight for credit to

that for consumption in the approximated welfare function (λθ/λc of equation (45))

increases. This is because as κ increases, the degree of financial friction and thus welfare

improvement from addressing inefficiency in the credit market becomes greater.

A similar relationship holds for the credit separation rate ρ, namely:

∂

∂ρ

(
λθ
λc

)
> 0. (49)

Again, this is because the increase in ρ raises the cost of holding credit.

These results imply that the relative weight for the credit term increases when the

cost of obtaining credit increases. In other words, as the degree of market imperfection

increases, the optimal policy should react more strongly to the credit market condition.

17For example, see BCBS (2010, 2014).

18For example, Drehmann, Borio, and Tsatsaronis (2012) show that the credit–GDP ratio is a good

predictive indicator of financial crisis and emphasize that policymakers should use this ratio as the

criterion for implementing macroprudential policy.
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3.2 Linearization

In this subsection, we log-linearize the structural equations around the efficient steady-

state equilibrium. For a non-efficient stochastic equilibrium, the Calvo-type price sticki-

ness introduced in the retail sector leads to the standard Phillips curve with a cost-push

shock ε̂t,

πt = βEtπt+1 − δ
(

1

ε̄− 1
ε̂t + µ̂t

)
. (50)

The retail price markup term µ̂t in this equation can be obtained from the log-linearized

version of equation (33),

Z̄µ̂t = − α

1− α
κ

χ
θ̄α
(
θ̂t − βρuEtθ̂t+1

)
− βδ2

(
σEtĉt+1 − Etξ̂t+1 − σĉt + ξ̂t

)
, (51)

where equation (4) and the Hosios condition b = α is used.

From equations (4) and (5), the IS relation is given as

ĉt = Etĉt+1 +
1

σ

(
Etπt+1 − Etξ̂t+1 + ξ̂t

)
. (52)

On the other hand, by linearizing equations (16) and (28), we can express the credit

market tightness term θ̂t by utilizing the loan volume term l̂t in

θ̂t =
1

(1− α)ρ

(
l̂t − ρul̂t−1

)
. (53)

By combining equation (53) with the linearized equation of the market clearing condition

(equation (35)), the consumption term ĉt is given by

ĉt =
L̄δ2

C̄

(
−βl̂t + l̂t−1

)
. (54)

These equations are a closed system of the linearized economy around the efficient

steady-state equilibrium.19

Next, we log-linearize the structural equations of the efficient stochastic equilibrium

around the efficient steady-state equilibrium. The equation similar to the markup equa-

tion (51) is obtained by the log-linearizing equation (38) as

0 = − α

1− α
κ

χ
θ̄α
(
θ̂et − βρuEtθ̂

e
t+1

)
− βδ2

(
σEtĉ

e
t+1 − Etξ̂t+1 − σĉet + ξ̂t

)
, (55)

19It is noteworthy that, by using linearized equations of (4) and (32) and equations (52)–(54), we

obtain a loan curve showing a relationship between the loan interest rate and credit volume. See a

detail of a loan curve in Appendix C.
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while the credit market tightness term and the consumption term are given by

θ̂et =
1

(1− α)ρ

(
l̂et − ρul̂et−1

)
, (56)

ĉet =
L̄δ2

C̄

(
−βl̂et + l̂et−1

)
. (57)

In addition, the deposit interest rate term for the efficient stochastic equilibrium r̂et is

implicitly defined by the the following equation that corresponds to the IS equation

(52):20

ĉet = Etĉ
e
t+1 +

1

σ

(
−r̂et − Etξ̂t+1 + ξ̂t

)
. (58)

Finally, by subtracting each structural equation of the efficient stochastic equilibrium

from its counterpart in the non-efficient stochastic equilibrium, we obtain the structural

equations in terms of gaps. More precisely, equations (51) and (55) yield

Z̄µ̂t = − α

1− α
κ

χ
θ̄α
(
θ̃t − βρuEtθ̃t+1

)
− βσδ2 (Etc̃t+1 − c̃t) , (59)

while equations (52) and (58) lead to

c̃t = Etc̃t+1 +
1

σ
(Etπt+1 + r̂et ) . (60)

Similarly, equations (53) and (56) lead to

θ̃t =
1

(1− α)ρ

(
l̃t − ρul̃t−1

)
, (61)

and equations (54) and (57) yield

c̃t =
L̄δ2

C̄

(
−βl̃t + l̃t−1

)
. (62)

4 Optimal Policy

We now illustrate optimal policy under financial frictions by considering several monetary

and macroprudential policy tools. Throughout, optimal policy refers to the optimal

commitment policy under the timeless perspective.

20Here, r̂et = ret − r̄, where ret and r̄ are, respectively, the interest rate in the efficient stochastic

equilibrium and the efficient steady-state equilibrium. We do not refer to r̂et as the gap in natural interest

rate since the flexible price equilibrium does not coincide with the efficient stochastic equilibrium due

to the presence of cost-push shocks.
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4.1 Monetary Policy

In this subsection, we investigate optimal monetary policy when the central bank is the

unique authority responsible for financial as well as real economic stability.21 Following

Woodford (2003), we assume that the central bank controls the nominal interest rate on

deposits, RD
t , to maximize social welfare. In this case, equation (60) includes the deposit

interest rate gap, r̃Dt ≡ r̂Dt − r̂et , as

c̃t = Etc̃t+1 −
1

σ

(
r̃Dt − Etπt+1

)
. (63)

The central bank controls r̃Dt and thus the real deposit interest rate gap r̃Dt −Etπt+1 by

varying r̂Dt . Accordingly, the central bank can affect consumption, and thus the entire

economy, through the IS relation given by equation (63). This is the typical transmission

channel of monetary policy in the literature.

It is noteworthy that by linearizing equations (5) and (32), the loan interest rate gap

r̃Lt is shown to be related to θ̃t and r̃Dt as

aR̄Lr̃Lt =
α

1− α
κ

χ
θ̄α
[
αθ̃t − β(1− ρ)

(
α− χθ̄1−α)Etθ̃t+1 (64)

+ β(1− ρ)
(
1− χθ̄1−α) (r̃Dt − Etπt+1

) ]
.

In particular, equation (64) implies that when the deposit interest rate gap and credit

market tightness gap increase, so does the loan interest rate gap.

For the approximated welfare function in equation (43), the optimal policy for the

central bank is obtained by solving

min
{πt+i,θ̃t+i,c̃t+i,l̃t+i,r̃Dt+i}∞i=0

Et

∞∑
i=0

1

2
βi
(
λππ

2
t+i + λθθ̃

2
t+i + λcc̃

2
t+i

)
, (65)

subject to the Phillips curve equation (50), the markup equation (59), the IS equation

(63), the credit market tightness equation (61), and the consumption equation (62).22

21To elaborate, we assume here that macroprudential policy variables are held constant (L∗t = L̄∗ and

τ ct = 0) such that monetary policy is expected to play a macroprudential role as well.

22Optimal criteria for monetary policy given by equation (65) implies that, under credit market fric-
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The intertemporal preference shock terms ξ̂t and Etξ̂t+1 appear in neither the objective

function nor these constraints. Therefore, optimal monetary policy varies r̂Dt one-to-one

with r̂et to prevent the preference shock from affecting the deposit interest rate gap

r̃Dt and accordingly the gaps of inflation, market tightness, consumption, and the loan

volume. Thus, under optimal monetary policy, these gaps and consequently the welfare

loss depend solely on the cost-push shock; in the absence of the cost-push shock, optimal

monetary policy eliminates these gaps and achieves Vmax.

To further characterize optimal monetary policy, note that the first-order conditions

with respect to πt, θ̃t, c̃t, l̃t, and r̃Dt are

λππt + ϕ1t − ϕ1t−1 − β−1σ−1ϕ2t−1 = 0, (66)

λθθ̃t −
δ

Z̄

α

1− α
κ

χ
θ̄α(ϕ1t − ρuϕ1t−1) + ϕ3t = 0, (67)

λcc̃t −
δδ2σ

Z̄
(ϕ1t−1 − βϕ1t) + ϕ2t − β−1ϕ2t−1 + ϕ4t = 0, (68)

− 1

(1− α)ρ
ϕ3t +

βρu
(1− α)ρ

Etϕ3t+1 +
L̄δ2β

C̄
ϕ4t −

L̄δ2β

C̄
Etϕ4t+1 = 0, (69)

ϕ2t = 0, (70)

where ϕ1t, ϕ2t, ϕ3t, and ϕ4t are the Lagrange multipliers for equations (50) (combined

with (59)), (63), (61), and (62), respectively. As shown in Appendix D.1, these first-order

conditions yield

ϕ1t = uc
Z̄L̄

δ
l̃t, (71)

ϕ3t = ϕ4t = 0. (72)

tions, simple policy rules should include terms related to credit. Without a credit market, Woodford

(2003) analytically shows that simple monetary policy rules, e.g, the Taylor rule, should respond to

inflation rate and consumption terms, since approximated welfare includes these terms and their sta-

bilization can improve welfare. A number of studies claim that a simple policy rule should include

variables related to credit under financial frictions. For example, Christiano et al. (2010), from numeri-

cal simulations, claim that policy should respond to credit in addition to inflation and the output gap to

improve welfare. Our results extend Woodford (2003) and theoretically support Christiano et al.(2010).
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Substituting equations (70) and (71) into equation (66) yields the optimal targeting rule

defined in Woodford (2003),

πt +
1

ε̄

(
l̃t − l̃t−1

)
= 0. (73)

The central bank adjusts the deposit interest rate RD
t (and thus r̃Dt ) to satisfy equation

(73). This optimal targeting rule and the linearized structural equations (50), (59), (61),

(62), and (63) define the paths of πt, θ̃t, c̃t, l̃t, and r̃Dt under optimal monetary policy.

Equations (70) and (72) imply that constraints (61)–(63) do not bind under the cur-

rent environment. That the IS equation (63) is slack under optimal monetary policy

is not surprising, and it follows because the monetary authority can choose r̃Dt such

that the desired allocation satisfies (63). To see why the credit market tightness equa-

tion (61) and the consumption equation (62) are also slack, note that these two con-

straints combined represent the market clearing condition.23 Now, among the paths of(
θ̃t, c̃t, l̃t

)
that satisfy, for a given path of µ̂t, the market clearing condition and the

version of equation (59) for a general b ∈ (0, 1) (i.e., when the Hosios condition is not

imposed), the ones that satisfy the latter equation for b = α (i.e., equation (59)) maxi-

mize −Et

∑∞
i=0

1
2
βi
(
λθθ̃

2
t+i + λcc̃

2
t+i

)
. Further, when the IS equation (63) is slack, such

paths of
(
θ̃t, c̃t, l̃t

)
that maximize −Et

∑∞
i=0

1
2
βi
(
λθθ̃

2
t+i + λcc̃

2
t+i

)
for some path of µ̂t

also maximize social welfare. Thus, in the central bank’s problem, equation (59) already

takes into account equations (61) and (62).24

23Equation (62) is obtained by combining equation (61) with the market clearing condition. Then,

since no other equations in the central bank’s problem involves the loan volume term l̃t, the only role

played by equations (61) and (62) in this problem is to restrict the choices of credit market tightness

and consumption gap to those satisfying the market clearing condition.

24Appendix D.2 discusses in more detail why equations (61) and (62) are slack. Key in this argument is

that the central bank’s problem can be split into three parts, namely, (i) choosing the path of
(
θ̃t, c̃t, l̃t

)
for a given path of µ̂t, (ii) choosing the path of πt for a given path of µ̂t, and (iii) choosing the path of

µ̂t given (i) and (ii). When the monetary policy is not chosen optimally, the IS equation (63) imposes

an additional restriction on the relationship between consumption and inflation, hence the argument

breaks down and equation (72) generally fails to hold. The intuition is that imposing the Hosios condition

resolves search externalities, but not the distortions caused through the IS equation.

22



The optimal targeting rule (73) has several important features. First, that equation

(73) includes both financial variables (l̃t and l̃t−1) and a real economic variable (πt) implies

the optimal targeting rule must maintain a balance between conditions in the financial

market and the real economy. By taking financial variables into account, monetary policy

may contribute to financial stability and perform the macroprudential role. This result

contrasts with the standard result shown in Woodford (2003): Under the model with

frictions in the goods market, that is, price stickiness, the loan volume gap l̃t is replaced by

the consumption gap c̃t, so optimal monetary policy focuses on the relationship between

inflation and consumption.

Second, when monetary policy serves a macroprudential role, optimality requires

keeping negative comovement between price and credit. In the optimal targeting rule,

the policy rate is set to induce disinflation against positive credit growth, so as to avoid

overheating or overcooling of the economy. This finding is consistent with the recent

argument claiming that preventing pro-cyclicality of financial markets can reduce the

occurrences of, and dampen the disruptions from, financial crises.25

4.2 Tax/Subsidy on the Search Cost as a Macroprudential Pol-

icy

In this subsection, we examine the macroprudential policy of varying tax τ ct on the

search cost κ of credit seeker firms. Here, we shut down the monetary policy as well as

the macroprudential policy of controlling the upper bound on credit supply by keeping

fixed RD
t at R̄D and L∗t at L̄∗. Then, the linearized markup equation (59) is replaced by

Z̄µ̂t = − α

1− α
κ

χ
θ̄α(θ̃t − βρuEtθ̃t+1)− βσδ2 (Etc̃t+1 − c̃t)

−
[(
Z̄ + βδ2

)
τ ct − βδ2Etτ

c
t+1

]
. (74)

The optimal tax/subsidy policy minimizes the loss function (65) subject to the Phillips

curve equation (50), the markup equation (74), the IS equation (60), the credit market

25See, e.g., BIS (2009).
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tightness equation (61), and the consumption equation (62). As a result, while the first-

order conditions with respect to πt, θ̃t, c̃t, and l̃t are still given by equations (66)–(69),

equation (70) is replaced by the first-order condition with respect to τ ct ,

ϕ1t −
δ2

Z̄ + βδ2

ϕ1t−1 = 0. (75)

Equation (74) suggests that the tax/subsidy policy changes the marginal cost of

production due to variation of the search cost for credit. As explained below, this policy

plays a role that is complementary to the monetary policy. Since the term τ ct does not

appear in the IS equation (52), the tax/subsidy policy fails to undo the preference shock,

which affects the gaps πt, θ̃t, c̃t, and l̃t in this equation through a change in r̂et . However,

the tax/subsidy policy is able to completely offset the cost-push shock ε̂t, which acts

only on the Phillips curve equation. To see this, first substitute equation (74) into the

Phillips curve equation (50) to obtain

(πt − βEtπt+1)− δ

Z̄

α

1− α
κ

χ
θ̄α
(
θ̃t − βρuEtθ̃t+1

)
+
δ

Z̄
βδ2σ (c̃t − Etc̃t+1)

= − δ

ε̄− 1
ε̂t +

δ

Z̄

(
Z̄ + βδ2

)(
τ ct −

βδ2

Z̄ + βδ2

Etτ
c
t+1

)
. (76)

Note that the RHS of equation (76) is freely controlled by varying τ ct . Now, suppose

the preference shock is absent so that r̂et = 0 for all t. Then, since the term ε̂t does

not appear in the objective function or other constraints, it follows that the optimal

tax/subsidy exactly cancels the cost-push shock by setting

τ ct =
Z̄

Z̄ + βδ2

ε̂t
ε̄− 1

+
βδ2

Z̄ + βδ2

Etτ
c
t+1. (77)

The optimal tax/subsidy policy given by equation (77) eliminates the gaps πt, θ̃t, c̃t, and

l̃t and achieves Vmax.

Equation (77) implies that if the cost-push shock ε̂t has no persistence or exhibits

positive autocorrelation, then optimal macroprudential policy under no preference shock

requires adjusting τ ct in the same direction as ε̂t. To understand this, suppose the econ-

omy is hit by a cost-push shock that raises inflation (ε̂t < 0). As observed from equation

(10), lowering the tax τ ct on the search cost reduces the equilibrium value of a productive
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wholesale firm and thus the match surplus, and therefore lowers the loan interest rate

RL
t . This lowers the production cost of wholesale firms, causing a fall in the price of

wholesale goods relative to that of retail goods. This raises the markup µt of retail firms

and lowers inflation, thus cancelling the cost-push shock.

4.3 Optimal Combination of Monetary Policy and Tax/Subsidy

Policy on the Search Cost

As discussed in the previous two subsections, optimal monetary policy completely offsets

the preference shock but not the cost-push shock, while the macroprudential policy is

capable of fully cancelling the cost-push shock. Clearly, then, the optimal combination of

monetary and macroprudential policies are given by r̃Dt = 0 and (77) and completely can-

cel the cost-push and preference shocks in equations (63) and (76), thereby eliminating

the welfare loss.

The interpretation of these combined policy rules is straightforward. Optimal mon-

etary policy prevents the deviation of consumption from its efficient counterpart by off-

setting the effect that the preference shock has on the IS equation through r̂et . Optimal

macroprudential policy cancels the effect that the cost-push shock has on the Phillips

curve equation through varying the retail price markup. Clearly, any combinations of

shocks that affect only these structural equations can be offset by the optimal combina-

tion of monetary and tax/subsidy policy.

5 Extended Model with Total Credit Control as a

Macroprudential Policy Tool

In this section, we extend our baseline model by incorporating the macroprudential policy

of controlling the upper bound on credit supply L∗t . This policy corresponds to a total

credit control. In order to focus on this form of macroprudential policy, we set τ ct = 0

throughout this section.
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5.1 Total Credit Control as a Macroprudential Policy

We first inactivate the monetary policy by fixing the deposit interest rate RD
t at R̄D.

Note that in this extended model, the social-planner problem for obtaining the condi-

tion for efficient steady-state equilibrium treats L∗t as a choice variable. Observing that

the second order expansion of equation (21) is expressed as

Z̄

(
ẑt +

1

2
ẑ2
t

)
' L̄∗

[
f̄1l̂
∗
t +

1

2

(
f̄1 + f̄2L̄

∗) l̂∗2t ] , (78)

where f̄1 ≡ f ′(L̄∗) < 0 and f̄2 ≡ f ′′(L̄∗) < 0, we obtain, as shown in Appendix E, in ad-

dition to equation (42), the following condition for the efficient steady-state equilibrium:

L̄f̄1 = − α

1− α
κθ̄. (79)

Furthermore, the approximated welfare function becomes

Et

∞∑
i=0

βiξt+iu(Ct+i) ' V ∗max −
1

2
Et

∞∑
i=0

βi
(
λππ

2
t+i + λθθ̃

2
t+i + λcc̃

2
t+i + λL∗ l̃

∗2
t+i

)
(80)

− Et

∞∑
i=0

βiψL∗ l̃
∗
t+il̃t+i,

where λL∗ ≡ ucL̄L̄
∗2(−f̄2) > 0 and ψL∗ ≡ ucL̄

∗ α
1−ακθ̄ > 0.26

Equation (80) has a clear implication. The second-order term λL∗ l̃
∗2
t+i on the RHS is

the cost incurred by excessive variations in the limit of credit that induces, given the con-

cavity of f , efficiency losses in productivity. The linearity of the last term in l̃∗ suggests

that, when the volume of credit exceeds its value in the efficient stochastic equilibrium

(l̃ > 0), society is better off by restricting the supply of loans L∗ to a level below that in

the efficient stochastic equilibrium. This result serves as a theoretical foundation for set-

ting a lending limit as a macroprudential policy to eliminate inefficient supply of credit.

26The expression for the maximum achievable welfare V ∗max is given by the RHS of equation (44), just

like for Vmax. However, since the social planner is now equipped with an extra tool of varying L∗t , the

first term on the RHS of equation (44) in this extended model is weakly greater than that in the baseline

model. Thus, V ∗max ≥ Vmax, with the inequality being strict whenever varying L∗t is optimal.
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Furthermore, the time variation in productivity Zt, which depends on the upper limit

of credit L∗t , modifies the markup equation (59) as

Z̄µ̂t = − α

1− α
L̄∗

L̄
κθ̄l̃∗t −

α

1− α
κ

χ
θ̄α
(
θ̃t − βρuEtθ̃t+1

)
(81)

− βσδ2 (Etc̃t+1 − c̃t) ,

and the relationship (61) between credit market tightness and the volume of credit as

θ̃t =
1

(1− α)ρ

[
l̃t − ρul̃t−1 −

(
ρ+ (1− ρ)χθ̄1−α) l̃∗t ] . (82)

Thus, when the macroprudential authority increases the upper bound on the credit

supply, tightness of the credit market loosens. Then, the marginal cost for production as

in equation (81), thus real economy as well as financial economy, responds to the policy.

We observe from above that depending on the macroprudential policy variable, the

form of the approximated welfare function and structural equations differ from that in

the economy without policy. This is because macroprudential policies themselves become

a part of the economy and change the economic structure. This simple but new finding

can be demonstrated via the approach of a model-consistent welfare approximation, and

is important in conducting optimal policies under new macroprudential policies.

Optimal macroprudential policy maximizes the approximated welfare in (80) subject

to the Phillips curve equation (50), the modified markup equation (81), the IS equation

(63), the modified credit market tightness equation (82), and the consumption equation

(62). Then, the first-order condition (69) is replaced by

ψL∗ l̃
∗
t −

1

(1− α) ρ
ϕ3t +

βρu
(1− α) ρ

Etϕ3t+1 +
L̄δ2β

C̄
ϕ4t −

L̄δ2β

C̄
Etϕ4t+1 = 0, (83)

while the first-order condition with respect to l̃∗t is given by

− λL∗ l̃∗t − ψL∗ l̃t +
δ

Z̄

α

1− α
L̄∗

L̄
κθ̄ϕ1t −

1

1− α
L̄∗

v̄
ϕ3t = 0. (84)

The first-order conditions (66)–(68), (83), and (84), along with equations (50), (60), (62),

(81), and (82), give the optimal paths of πt, θ̃t, c̃t, l̃t, and l̃∗t .

In this case, the optimal macroprudential measure of the upper bound on credit

supply is determined by both financial variables, such as credit market tightness and
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loan volume, and real economic variables, such as inflation and consumption. From the

first-order conditions, the optimal instrumental rule defined in Woodford (2003) for the

policy variable l̃∗t is expressed as27

Θ1(F,L)l̃∗t = Θ2(F,L)c̃t + Θ3(F,L)πt + Θ4(F,L)l̃t + Θ5(F,L)θ̃t, (85)

where Θ1, Θ2, Θ3, Θ4, and Θ5 are functions of lag operator L and forward operator

F. Equation (85) implies that the macroprudential authority needs to set the level of

lending limit depending on financial and real economic conditions.

As clarified in the next section, the total credit control policy turns out to be incapable

of fully offsetting the cost-push shock. Thus, even in the absence of the preference shock,

the total credit control policy fails to eliminate the welfare loss, unlike the case of the

optimal tax/subsidy on the search cost explained in Section 4.2.28 29

5.2 Optimal Combination of Monetary Policy and Total Credit

Control Policy

We now examine the consequence of the joint optimization of monetary and macropru-

dential policies. In this case, the first-order conditions include (70) in addition to those

mentioned above. As shown in Appendix G, these conditions yield equation (71) and

l̃∗t = ϕ3t = ϕ4t = 0. (86)

27See details of derivation in Appendix F.

28The optimal combination of monetary and total credit control policy achieves weakly greater social

welfare than the optimal total credit control policy alone, since the latter case amounts to imposing an

extra constraint, r̂Dt = 0. As shown below in Section 5.2, even the optimal combination of monetary

and total credit control policy fails to achieve V ∗max, so the same is true here.

29On the other hand, even in the absence of cost-push shocks, the total credit control policy alone is

not able to fully offset the preference shock ξt. This observation is intuitive given that the total credit

control policy l̃∗t directly affects equations (81) and (82), while the preference shock, represented by the

interest rate shock r̂et , appears only in a different equation (60). We have numerically confirmed this

intuition.
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This simple equation suggests that when the monetary policy is optimized, it is optimal

to set l̂∗t at its value in the efficient stochastic equilibrium, l̂∗et .30 Since l̂∗et does not

vary with the cost-push shock, the optimal total credit control policy not simply fails

to eliminate, but in fact serves no role against the cost-push shock; as a result, the

combination of monetary and macroprudential policy fails to eliminate all gaps and to

achieve V ∗max. In particular, when the only source of uncertainty is the cost-push shock,

the efficient stochastic equilibrium coincides with the efficient steady-state equilibrium,

hence l̃∗t = 0 implies L∗t = L∗et = L̄∗; in this case, the active use of total credit control

policy yields no welfare improvement.

The reason why the total credit control policy plays no role against the cost-push

shock here is explained as follows. Unlike the tax/subsidy policy that directly alters the

markup of retail firms through its effect on the production cost of wholesale firms, the

total credit control policy alters the retail price markup only indirectly by affecting the

number of vacancies vt as well as productivity Zt and thereby varying output.31 More-

over, since the monetary policy already optimizes output by taking into consideration its

trade-off with inflation, there is no additional net benefit from varying output through

the total credit control policy. Given the strict concavity of f , then, varying the upper

limit of credit contracts L∗t in response to the cost-push shock simply generates efficiency

losses in productivity; it is thus optimal to let L∗t exactly follow L∗et .32

30Even when the monetary policy is absent, the same conclusion for the total credit control policy

holds under flexible prices (ω = 0). This conclusion may be altered, however, if we introduce some

additional shocks that affect the structural equations.

31Note that the term τ ct appears only in the markup equation (74), while the term l̃∗t shows up not

only in the markup equation (81), but also in the welfare function (80) and in the credit market tightness

equation (82).

32In the first-order condition for l̃∗t (equation (84)), the second term represents the direct effect that

changes in output, resulting from changes in l̃∗t , have on welfare. Given equation (71), this term cancels

with the third term, which represents the indirect effect of changes in output on welfare that arises

through its impact on inflation. Optimal monetary policy, as discussed in Section 4.3, prevents the

IS equation (63) from binding, which in turn makes the credit market tightness equation (61) and the

consumption equation (62) also slack. Thus, the fourth term in equation (84) is zero. This leaves
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6 Concluding Remarks

We extend a standard New Keynesian model by introducing search and matching frictions

into the credit market. In this model, the second-order approximation of social welfare

includes terms related to credit, such as credit market tightness, volume of credit, and

and upper bound of loan volume, in addition to inflation rate and consumption. This is

a new finding in the field of optimal policy. Then, we reveal several important features

for monetary policy and macroprudential policy.

For future research, the following points may be of interest. Through quantitative

assessment, establishing simple and optimal macroprudential and monetary policy rules

with credit terms is one important extension of this paper. It would be also interesting

to additionally introduce other search and matching frictions for a goods market and a

labor market and examine interactive effects of search and matching frictions on conduct

of monetary policy and macroprudential policy.

the first term, which corresponds to the efficiency losses in productivity from varying l̃∗t ; clearly, such

efficiency losses are minimized when l̃∗t = 0, or equivalently, l̂∗t = l̂∗et . As this explanation makes clear,

the conclusion that l̂∗t should exactly follow l̂∗et does not hold when, as in Section 5.1, the monetary

policy is not chosen optimally.
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[26] Nier, E. W., J. Osiński, L. I. Jáome, and P. Madrid, 2011. Towards Effective Macro-

prudential Policy Frameworks: An Assessment of Stylized Institutional Models. IMF

Working Paper, WP/11/250.

[27] Ravenna, F. and C.E. Walsh, 2011. Welfare-Based Optimal Policy with Unem-

ployment and Sticky Prices: A Linear-Quadratic Framework. American Economic

Journal: Macroeconomics 3(2), pp. 130-162.

[28] Rogerson, R., R. Shimer, and R. Wright, 2005. Search-Theoretic Models of the

Labor Market: Survey. Journal of Economic Literature 43(4), pp. 959-988.

[29] Taylor, J., 2008. Monetary Policy and the State of the Economy. Testimony before

the Committee on Financial Services, U.S. House of Representatives, February 26,

2008.

[30] Teranishi, Y., 2015. Smoothed Interest Rate Setting by Central Banks and Staggered

Loan Contracts. Economic Journal 125(582), pp. 162-183.

[31] Thomas, C., 2008. Search and Matching Frictions and Optimal Monetary Policy.

Journal of Monetary Economics 55(5), pp. 936-56.

[32] Trigari, A., 2009. Equilibrium Unemployment, Job Flows and Inflation Dynamics.

Journal of Money, Credit and Banking 41(1), pp. 1-33.

[33] Walsh, C.E., 2003. Labor Market Search, Sticky Prices, and Interest Rate Policies.

Review of Economic Dynamics 8(4), pp. 829-49.

33



[34] Wasmer, E. and P. Weil, 2000. The Macroeconomics of Labor and Credit Market

Imperfections. American Economic Review 94(4), pp. 944-963.

[35] Woodford, M., 2003. Interest and Prices: Foundation of a Theory of Monetary

Policy. Princeton University Press, Princeton, NJ.

[36] Yun, T., 1996. Nominal Price Rigidity, Money Supply Endogeneity, and Business

Cycles. Journal of Monetary Economics 37(2-3), pp. 345-370.

34



Appendix

A Derivation of Equation (43)

Noting ξ̄ = 1, the second-order expansion of the household’s period utility function

around the efficient steady state yields

ξtu(Ct) ' u0 −
1

2
σucC̄ĉ

2
t + ucC̄

(
ĉt +

1

2
ĉ2
t

)
+ ucC̄ξ̂tĉt + u0(ξ̂t +

1

2
ξ̂2
t ) (87)

and thus

Et

∞∑
i=0

βiξt+iu(Ct+i) '
u0

1− β
− 1

2
σucC̄Et

∞∑
i=0

βiĉ2
t+i + u0Et

∞∑
i=0

βi(ξ̂t+i +
1

2
ξ̂2
t+i) (88)

+ ucC̄Et

∞∑
i=0

βi
(
ĉt+i +

1

2
ĉ2
t+i

)
+ ucC̄Et

∞∑
i=0

βiξ̂t+iĉt+i,

where u0 ≡ u(C̄) = C̄1−σ/(1 − σ) and uc ≡ u′(C̄) = C̄−σ. Below, we first eliminate the

terms ĉt+i and ξ̂t+iĉt+i from this expression by rewriting each of the term in the second

line on the RHS. We then obtain a corresponding expression in the efficient stochastic

equilibrium and combine the two expressions to obtain equation (43).

Rewriting the Term ucC̄Et

∑∞
i=0 β

i
(
ĉt+i + 1

2 ĉ
2
t+i

)
We first focus on the term ucC̄Et

∑∞
i=0 β

i
(
ĉt+i + 1

2
ĉ2
t+i

)
in equation (88).

By using the market clearing condition (35), we obtain

ĉt +
1

2
ĉ2
t ' −

Z̄L̄

C̄
q̂t +

Z̄L̄

C̄

(
l̂t +

1

2
l̂2t

)
− κū

C̄

(
ût +

1

2
û2
t

)
. (89)

Note that the efficient steady-state value of the price dispersion term Qt is Q̄ = 1, and

the log-deviation of this term q̂t is already in the second order, as shown below.

Expansion of equation (16) yields

v̂t +
1

2
v̂2
t ' −η

(
l̂t−1 +

1

2
l̂2t−1

)
, (90)
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where η ≡ (1− ρ)L̄/v̄, while the expansion of equation (28) yields

1

ρ

(
l̂t +

1

2
l̂2t

)
− 1− ρ

ρ

(
l̂t−1 +

1

2
l̂2t−1

)
' (1− α)

(
θ̂t +

1− α
2

θ̂2
t

)
+

(
v̂t +

1

2
v̂2
t

)
+ (1− α)θ̂tv̂t. (91)

From equations (25), (90), and (91), we obtain

ût +
1

2
û2
t '

1

ρ(1− α)

(
l̂t +

1

2
l̂2t

)
− L̄

κū
δ2

(
l̂t−1 +

1

2
l̂2t−1

)
+

1

2
αθ̂2

t . (92)

Combining equations (89) and (92) yields

ucC̄

(
ĉt +

1

2
ĉ2
t

)
' −ucZ̄L̄q̂t−

ucκūα

2
θ̂2
t +ucL̄

(
δ1l̂t + δ2l̂t−1

)
+

1

2
ucL̄

(
δ1l̂

2
t + δ2l̂

2
t−1

)
(93)

and therefore

ucC̄Et

∞∑
i=0

βi
(
ĉt+i +

1

2
ĉ2
t+i

)
' −ucZ̄L̄Et
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i=0

βiq̂t+i −
ucκū

2
αEt
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i=0

βiθ̂2
t+i (94)

+ ucL̄Et
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i=0

βi
(
δ1l̂t+i + δ2l̂t+i−1

)
+

1

2
ucL̄Et

∞∑
i=0

βi
(
δ1l̂

2
t+i + δ2l̂

2
t+i−1

)
.

From the efficient steady-state condition (42), the second line on the RHS of equation

(94) equals ucL̄δ2l̂t−1 + 1
2
ucL̄δ2l̂

2
t−1. Therefore, we obtain

ucC̄Et

∞∑
i=0

βi
(
ĉt+i +

1

2
ĉ2
t+i

)
' −ucZ̄L̄Et
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i=0

βiq̂t+i −
ucκūα

2
Et

∞∑
i=0

βiθ̂2
t+i + ucL̄δ2l̂t−1 +

1

2
ucL̄δ2l̂

2
t−1. (95)

We now rewrite the first term on the RHS of equation (95). From equation (36),

q̂t =

∫ 1

0

dj exp [−εt (p̂t(j)− p̂t)]− 1 (96)

' −ε̄(∆E
t − p̂t)(1 + ε̂t) +

1

2
ε̄2
[
∆V
t +

(
∆E
t − p̂t

)2
]

,

where ∆E
t ≡ Ej p̂t(j) =

∫ 1

0
p̂t(j)dj and ∆V

t ≡Varj p̂t(j) = Ej p̂t(j)
2 − (Ej p̂t(j))

2. The

definition of the aggregate price Pt given by equation (23) can be used to show that

∆E
t − p̂t ' −

1

2
(1− ε̄)∆V

t . (97)
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Thus, up to the second order in p̂t, we can rewrite q̂t as

q̂t '
1

2
ε̄∆V

t , (98)

leading to

Et

∞∑
i=0

βiq̂t+i '
1

2
ε̄Et

∞∑
i=0

βi∆V
t+i. (99)

On the other hand, the expression defining ∆V
t is written as

∆V
t = Ej(p̂t(j)−∆E

t−1)2 − (∆E
t −∆E

t−1)2. (100)

Here, recall that only fraction 1 − ω of all firms adjust their prices to P ∗t , while other

firms do not change their prices pt−1(j). This condition yields

P 1−εt
t = (1− ω)(P ∗t )1−εt + ωP 1−εt

t−1 . (101)

Also note that, by using the same condition, equation (100) can be restated as

∆V
t = ωEj(p̂t−1(j)−∆E

t−1)2 + (1− ω)(p̂∗t −∆E
t−1)2 − (∆E

t −∆E
t−1)2, (102)

where p̂∗t is the log-deviation of P ∗t .

By taking the log-deviation of both sides of equation (101), p̂∗t can be expressed by

p̂t and p̂t−1. Substituting this equation into equation (102) yields

∆V
t ' ω∆V

t−1 + (1− ω)

(
1

1− ω
p̂t −

ω

1− ω
p̂t−1 − p̂t−1

)2

− (p̂t − p̂t−1)2 , (103)

up to the second order in p̂t. Using πt = p̂t − p̂t−1, we thus have

∆V
t ' ω∆V

t−1 +
ω

1− ω
π2
t . (104)

and thus let δ = (1− ω)(1− ωβ)/ω,

Et
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i=0

βi∆V
t+i ' ω∆V

t−1 + ωβEt

∞∑
i=0
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Finally, substituting equations (99) and (105) into equation (95) yields
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where λπ = ucZ̄L̄ε̄/δ and λθ = ucκūα.

Rewriting the Term ucC̄Et

∑∞
i=0 β

iξ̂t+iĉt+i

We now rewrite the term ucC̄Et
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iξ̂t+iĉt+i. Using equations (54) and (55), we have
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βiξ̂t+iĉt+i = ucL̄δ2Et

∞∑
i=0

βi
(
ξ̂t+il̂t+i−1 − βξ̂t+il̂t+i

)
= ucL̄δ2Et

∞∑
i=0

βi
(
ξ̂t+il̂t+i−1 − β

[
ξ̂t+i+1 − σ(ĉet+i+1 − ĉet+i)

− 1

βδ2

α

1− α
κ

χ
θ̄α(θ̂et+i − βρuθ̂et+i+1)

]
l̂t+i

)
= ucL̄δ2Et

∞∑
i=0

βi
(
ξ̂t+il̂t+i−1 − βξ̂t+i+1l̂t+i

)
(107)

+ ucL̄δ2Et

∞∑
i=0
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On the RHS of (107), the first term is written as
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The second term becomes
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(
l̂t+i−1 −

C̄

L̄δ2
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= −ucL̄δ2σĉ
e
t l̂t−1 + σucC̄Et

∞∑
i=0

βiĉet+iĉt+i, (109)

where we have used equation (54) to obtain the second equality.

Finally, the third term on the RHS of (107) is rewritten as

ucL̄
α

1− α
κ

χ
θ̄αEt

∞∑
i=0

βi(θ̂et+i − βρuθ̂et+i+1)l̂t+i

= ucL̄
α

1− α
κ

χ
θ̄αEt

∞∑
i=0

βi(θ̂et+il̂t+i − βρuθ̂et+i+1l̂t+i)

= ucL̄
α

1− α
κ

χ
θ̄αEt

∞∑
i=0

βi
[
θ̂et+i

(
(1− α)ρθ̂t+i + ρul̂t+i−1

)
− βρuθ̂et+i+1l̂t+i

]
= ucL̄α

κ

χ
θ̄αρEt

∞∑
i=0

βiθ̂et+iθ̂t+i + ucL̄
α

1− α
κ

χ
θ̄αρuEt

∞∑
i=0

βi
(
θ̂et+il̂t+i−1 − βθ̂et+i+1l̂t+i

)
= λθEt

∞∑
i=0

βiθ̂et+iθ̂t+i + ucL̄
α

1− α
κ

χ
θ̄αρuθ̂

e
t l̂t−1, (110)

where we have used equation (54) to obtain the second equality.

Using equations (108)–(110) and letting λc = σucC̄, equation (107) becomes:

ucC̄Et

∞∑
i=0

βiξ̂t+iĉt+i = λθEt

∞∑
i=0

βiθ̂et+iθ̂t+i + λcEt

∞∑
i=0

βiĉet+iĉt+i (111)

+ ucL̄δ2ξ̂tl̂t−1 − ucL̄δ2σĉ
e
t l̂t−1 + ucL̄

α

1− α
κ

χ
θ̄αρuθ̂

e
t l̂t−1.
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Combining the Results

Substituting equations (106) and (111) into equation (88) yields

Et

∞∑
i=0

βiξt+iu(Ct+i) (112)

' −1

2
Et

∞∑
i=0

βi(λππ
2
t+i + λcĉ

2
t+i + λθθ̂

2
t+i) + λθEt

∞∑
i=0

βiθ̂et+iθ̂t+i + λcEt

∞∑
i=0

βiĉet+iĉt+i

+ u0Et

∞∑
i=0

βi(ξ̂t+i +
1

2
ξ̂2
t+i) + ucL̄δ2ξ̂tl̂t−1 − ucL̄δ2σĉ

e
t l̂t−1 + ucL̄

α

1− α
κ

χ
θ̄αρuθ̂

e
t l̂t−1

+
u0

1− β
+ ucL̄δ2l̂t−1 +

1

2
ucL̄δ2l̂

2
t−1 −

1

2
λπ(1− ω)∆V

t−1.

Note that in the efficient stochastic equilibrium, there is neither inherited price disper-

sion nor price changes over time. Thus, the counterpart of equation (112) in the efficient

stochastic equilibrium is obtained by setting π2
t+i = ∆V

t−1 = 0 and putting superscript e

on endogenous variables (except l̂t−1, which is pretermined at date t) as

Et

∞∑
i=0

βiξt+iu(Ce
t+i)

' −1

2
Et

∞∑
i=0

βi(λc(ĉ
e
t+i)

2 + λθ(θ̂
e
t+i)

2) + λθEt

∞∑
i=0

βi(θ̂et+i)
2 + λcEt

∞∑
i=0

βi(ĉet+i)
2 (113)

+ u0Et

∞∑
i=0

βi(ξ̂t+i +
1

2
ξ̂2
t+i) + ucL̄δ2ξ̂tl̂t−1 − ucL̄δ2σĉ

e
t l̂t−1 + ucL̄

α

1− α
κ

χ
θ̄αρuθ̂

e
t l̂t−1

+
u0

1− β
+ ucL̄δ2l̂t−1 +

1

2
ucL̄δ2l̂

2
t−1.

Subtracting equation (113) from (112) yields the approximated welfare function given by

equation (43), which is accurate up to the second order in the log-linearized variables.

B Proof of Inequalities (48) and (49)

The first step for the proof is to express

λθ
λc

=
α

σ

κū

C̄
(114)
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in terms of θ̄. By evaluating equations (16), (25), (28), and (35) at the efficient steady-

state equilibrium, we obtain

ū =
ρθ̄

ρ+ (1− ρ)χθ̄1−αL
∗ (115)

and

C̄ =
Z̄χθ̄1−α − κρθ̄
ρ+ (1− ρ)χθ̄1−αL

∗. (116)

From equations (114)–(116), we have

λθ
λc

=
α

σ

ρκ
χ
θ̄α

Z̄ − ρκ
χ
θ̄α
. (117)

By taking the partial derivative with respect to κ, we obtain

∂

∂κ

(
λθ
λc

)
=
α

σ

Z̄

(Z̄ − ρκ
χ
θ̄α)2

∂

∂κ

(
ρ
κ

χ
θ̄α
)

=
α

σ

Z̄

(Z̄ − ρκ
χ
θ̄α)2

ρ

χ

(
καθ̄α−1 ∂θ̄

∂κ
+ θ̄α

)
. (118)

On the other hand, taking the partial derivative of equation (39) with respect to κ

yields the following expression for ∂θ̄/∂κ:[
κ

χ
αθ̄α−1 (1− β(1− ρ)) + αβ(1− ρ)κ

]
∂θ̄

∂κ

+
1

χ
θ̄α (1− β(1− ρ)) + αβ(1− ρ)θ̄ = 0. (119)

Finally, by eliminating ∂θ̄/∂κ from equations (118) and (119), we prove inequality

(48). Inequality (49) can be shown in a similar way.

C Loan Curve

From linearized equations of (4) and (32) and equations (52)–(54), we can derive a loan

curve as

r̂Lt = h1Etl̂t+1 + h2l̂t + h3l̂t−1 − h4

(
Etξ̂t+1 − ξ̂t

)
, (120)
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where

h1 ≡
1

h5

[
−β (1− ρ)

ρ

(α− χθ1−α
)

1− α
− β2σρu

L̄

C̄
δ2

]
,

h2 ≡
1

h5

[
α

(1− α)ρ
+ β

(1− ρ)

ρ

(α− χθ1−α
)

1− α
ρu + βσρu

L̄

C̄
δ2(1 + β)

]
,

h3 ≡
1

h5

[
− α

1− α
ρu
ρ
− βσρu

L̄

C̄
δ2

]
,

h4 ≡
1

h5

βρu,

h5 ≡
a (1− α)χR̄L

ακθ
α .

Thus, the loan interest rate and credit volume are closely related. By using equation

(120), it is possible to include the loan rate term in the approximated welfare function.

The welfare function that includes the loan interest rate is consistent with those in

Teranishi (2015) and Cúrdia and Woodford (2016). Teranishi (2015) shows that under

the staggered cost channel model, an approximated welfare function includes growth of

the loan interest rate. Cúrdia and Woodford (2016) show that an approximated welfare

function includes the credit spread term under a model where households face financial

market frictions.

D Derivation and Intuition of the Optimal Mone-

tary Policy Rules

D.1 Derivation of Equations (71) and (72)

Let us first eliminate θ̃t and c̃t from equations (67) and (68) by using equations (61),

(62), and (70). This leads to

ϕ3t =
δ

Z̄

α

1− α
κ

χ
θ̄α(ht − ρuht−1), (121)

ϕ4t =
δδ2σ

Z̄
(−βht + ht−1), (122)
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where

ht ≡ ϕ1t −
λθZ̄χ

δαρκθ̄α
l̃t = ϕ1t − uc

Z̄L̄

δ
l̃t. (123)

By substituting equations (121) and (122) into equation (69), we obtain

Etht+1 − k1ht − k2ht−1 = 0, (124)

where

k1 ≡
1 + βρ2

u + ζ (1 + β)

β (ρu + ζ)
, (125)

k2 ≡ −
1

β
, (126)

and

ζ ≡ β
(1− α)2

α
ρσδ2

2

L̄

C̄

χ

κθ̄α
. (127)

The path of ht described by the second difference equation (124) is dynamically stable

if and only if both roots of the characteristic equation

h2 − k1h− k2 = 0 (128)

are inside the unit circle, which is equivalent to |k1| < 1 − k2 and k2 > −1.33 Since

β < 1, however, k2 = −1/β < −1 and thus the stability condition is not satisfied. The

optimal policy therefore requires ht = 0 for all t, because otherwise, the path of ht will

be divergent, which is clearly suboptimal. Thus, equation (71) follows from equation

(123), while equation (72) follows from equations (121) and (122).

D.2 Intuition for Equation (72)

In this section, we provide an intuition for equation (72), that is, why the constraints

(61) and (62), which together serve as the restriction from the market clearing condition,

do not bind. As explained below, this result follows because in the presence of optimal

monetary policy, the markup equation (51) incorporates the market clearing condition.

33See, e.g., Enders (2004, Chapter 1). Enders, W., 2004. Applied Econometric Time Series, 2nd ed.

John Wiley and Sons, New York, NY.
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Note that in the central bank’s problem in Section 4.1, the IS equation (63) is

slack because it can always be satisfied by an adequate choice of r̃Dt+i. We can thus

remove the IS equation (63) from the constraint and consider the problem of choos-

ing
{
πt+i, θ̃t+i, c̃t+i, l̃t+i

}∞
i=0

. Then, clearly, for any path of µ̂t, the problem of choosing

the path of
(
θ̃t, c̃t, l̃t

)
is independent of the problem of choosing the path of πt. More

precisely, the former problem is of maximizing − (1/2)Et

∑∞
i=0 β

i
(
λcc̃

2
t+i + λθθ̃

2
t+i

)
with

respect to
{
θ̃t+i, c̃t+i, l̃t+i

}∞
i=0

subject to equations (59), (61), and (62), taking {µ̂t+i}∞i=0

as given. Let us explore this problem, ignoring for now the latter two constraints.

The Lagrangian for the simplified problem of maximizing

− (1/2)Et

∑∞
i=0 β

i
(
λcc̃

2
t+i + λθθ̃

2
t+i

)
subject to equation (59) is written as

L = Et

∞∑
i=0

βi{−1

2

(
λcc̃

2
t+i + λθθ̃

2
t+i

)
(129)

+ φt+i

[
Z̄µ̂t+i +

α

1− α
κ

χ
θ̄α
(
θ̃t+i − βρuEtθ̃t+i+1

)
+ βσδ2 (Etc̃t+i+1 − c̃t+i)

]
}.

Taking the first-order conditions with respect to c̃t+i and θ̃t+i and rearranging yields

θ̃t =
1

λθ

α

1− α
κ

χ
θ̄α (φt − ρuφt−1) =

1

(1− α) ρ

1

ucL
(φt − ρuφt−1) , (130)

c̃t =
δ2σ

λc
(−βφt + φt−1) =

Lδ2

C̄

1

ucL
(−βφt + φt−1) . (131)

Equations (130) and (131) reveal that the solution to this simplified problem can always

be made to satisfy equations (61) and (62) by setting l̃t = φt/ (ucL).34 Since this ar-

gument holds for any path of µ̂t, equations (61) and (62) do not bind in the original

problem of the central bank.

To understand the role played by the Hosios condition in the result above, let the

banks’ bargaining power b take on a general value in [0, 1], in which case equation (59)

34This condition can be rewritten as φt = ucLl̃t = uc (Lt − Let ), whose intuition is explained as

follows. Relaxing constraint (59) by one unit enables increasing each wholesale firm’s output by 1 unit,

or equivalently, the aggregate wholesale good production by Lt units; these wholesale goods are then

converted into Lt units of final goods, whose utility value is approximately ucLt. The same explanation

implies that the corresponding increase in utility in the efficient stochastic state is ucL
e
t , hence the value

of relaxing constraint (59) is φt = uc (Lt − Let ).
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is replaced by

Z̄µ̂t = − b

1− b
κ

χ
θ̄α
(
θ̃t − βρuEtθ̃t+1

)
− βσδ2 (Etc̃t+1 − c̃t) (132)

+

(
α

1− α
− b

1− b

)
κ

χ
θ̄α
(
θ̂et − βρuEtθ̂

e
t+1

)
.

The Hosios condition makes the loan interest rate determined by the bargaining be-

tween the bank and the wholesale firm, and the resulting equation (132), socially efficient

in the following sense. Among the paths of
(
θ̃t, c̃t, l̃t

)
that satisfy, for a given path of

µ̂t, the market clearing condition and equation (132) for a general b ∈ (0, 1), the ones that

satisfy equation (132) for b = α (i.e., equation (59)) maximize−Et

∑∞
i=0

1
2
βi
(
λθθ̃

2
t+i + λcc̃

2
t+i

)
.

Thus, in the central bank’s problem, equation (59) already takes into account equations

(61) and (62) that correspond to the market clearing condition.

The argument above hinges on the fact that the paths of
(
θ̃t, c̃t, l̃t

)
that maximize, for

some path of µ̂t, the function − (1/2)Et

∑∞
i=0 β

i
(
λcc̃

2
t+i + λθθ̃

2
t+i

)
subject to equations

(61), (62), (132) coincide with the optimal paths of
(
θ̃t, c̃t, l̃t

)
in the original problem of

the central bank. This is no longer true when optimal monetary policy is absent as in

Section 4.2. In such a case, satisfaction of the Hosios condition does not make equation

(132) socially efficient, since the resulting equation (59) pays no consideration to the

restriction imposed by the IS equation (60) on the relation between c̃t and πt. In other

words, unlike the search externality, the distortion arising through the IS equation (60)

is not addressed by the Hosios condition.

E Derivation of Equations (79) and (80)

We here adopt the upper bound of the credit supply L∗t as an additional policy tool and

assume the relation (21) between this variable and the productivity of wholesale firms
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Zt. The social planner then solves the following problem:

max
{Ce

t+i,L
e
t+i,v

e
t+i,θ

e
t+i,L

∗e
t+i}∞i=0

Et

∞∑
i=0

βi{
ξt+i(C

e
t+i)

1−σ

1− σ
+ φet+i

[
f(L∗et+i)L

e
t+i − κθet+ivet+i − Ce

t+i

]
(133)

+ νet+i
[
(1− ρ)Let+i−1 + χ(θet+i)

1−αvet+i − Let+i
]

+ set+i
[
vet+i − L∗et+i + (1− ρ)Let+i−1

]
}.

By taking the first-order conditions and rearranging them, we obtain

f(L∗et ) =
1

1− α
κ

χ
(θet )

α − βEt

[
ξt+1(Ce

t+1)−σ

ξt(Ce
t )
−σ (1− ρt)

1

1− α

(
κ

χ
(θet+1)α − ακθet+1

)]
,

(134)

and

Letf
′(L∗et ) = − α

1− α
κθet . (135)

The latter equation becomes equation (79) by evaluating it at the steady state.

To obtain the second-order approximation of welfare, equation (80), we only need

to allow the time variation of L∗t and Zt and conduct the calculation similar to that

explained in Appendix A for the baseline model. This time, the equation corresponding

to equation (89) is given by

ĉt +
1

2
ĉ2
t '

Z̄L̄

C̄
(ẑt +

1

2
ẑ2
t + ẑtl̂t − q̂t) +

Z̄L̄

C̄

(
l̂t +

1

2
l̂2t

)
− κū

C̄

(
ût +

1

2
û2
t

)
, (136)

while the expansion of the number of credit seeker firms (92) is modified as:

ût +
1

2
û2
t '

1

ρ(1− α)

(
l̂t +

1

2
l̂2t

)
− L̄

κū
δ2

(
l̂t−1 +

1

2
l̂2t−1

)
(137)

+
1

2

α

ρ2(1− α)2

(
l̂t − ρul̂t−1 −

(
ρ+ (1− ρ)χθ̄1−α) l̂∗t)2

− α

1− α
L̄∗

v̄

(
l̂∗t +

1

2
l̂∗2t

)
.

These two equations yield

ξtu(Ct) ' u0 + ucZ̄L̄

(
ẑt +

1

2
ẑ2
t + ẑtl̂t − q̂t

)
+ uc

α

1− α
κθ̄L̄∗

(
l̂∗t +

1

2
l̂∗2t

)
+ ucC̄

[
L̄

C̄

(
δ1l̂t + δ2l̂t−1

)
+

L̄

2C̄

(
δ1l̂

2
t + δ2l̂

2
t−1

)]
− ucκū

2
αθ̂2

t −
1

2
σucC̄ĉ

2
t + ucC̄ξ̂tĉt + u0(ξ̂t +

1

2
ξ̂2
t ). (138)
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Some of the terms in equation (138) can be rearranged by using equations (78) and (79)

as follows:

ucZ̄L̄

(
ẑt +

1

2
ẑ2
t + ẑtl̂t

)
+ uc

α

1− α
κθ̄L̄∗

(
l̂∗t +

1

2
l̂∗2t

)
= ucL̄

[
f̄1L̄

∗l̂∗t +
1

2
L̄∗
(
f̄1 + f̄2L̄

∗) l̂∗2t + f̄1L̄
∗l̂∗t l̂t

]
+ uc

α

1− α
κθ̄L̄∗

(
l̂∗t +

1

2
l̂∗2t

)
= ucL̄

∗
(
L̄f̄1 +

α

1− α
κθ̄

)(
l̂∗t +

1

2
l̂∗2t

)
+

1

2
ucL̄L̄

∗2f̄2l̂
∗2
t + ucf̄1L̄L̄

∗l̂∗t l̂t

= 0 +
1

2
ucL̄L̄

∗2f̄2l̂
∗2
t − ucL̄∗

α

1− α
κθ̄l̂∗t l̂t

= −1

2
λL∗ l̂

∗2
t − ψL∗ l̂∗t l̂t. (139)

We therefore see that equation (138) is simplified as

ξtu(Ct) ' u0 − ucZ̄L̄q̂t −
1

2
λL∗ l̂

∗2
t − ψL∗ l̂∗t l̂t

+ ucC̄

[
L̄

C̄

(
δ1l̂t + δ2l̂t−1

)
+

L̄

2C̄

(
δ1l̂

2
t + δ2l̂

2
t−1

)]
− ucκū

2
αθ̂2

t −
1

2
σucC̄ĉ

2
t + ucC̄ξ̂tĉt + u0(ξ̂t +

1

2
ξ̂2
t ). (140)

The rest of the argument closely follows that in Appendix A, the only difference being

that the linearized version of equation (135) is additionally used.

F Derivation of Equation (85)

From the first-order conditions (66)–(68), (83), and (84), we can eliminate the Lagrange

multipliers and express l̃∗t as a function of other endogenous variables as[
1 +

λL∗σδ2βZ̄L̄
2

ψL∗ακδC̄L̄∗
(1− F)

1− α
θ̄

ST−1 − λL∗L̄θ̄
α−1

ψL∗χ (1− α) ρL̄∗
(1− βρuF) T−1 (1− ρuL)

]
l̃∗t

=
λcδ2βL̄

ψL∗C̄
(1− F) c̃t −

λπδ2βσL̄

ψL∗C̄
(1− F) (1− βF) πt (141)

+
L̄

L̄∗

[
θ̄α−1

(1− α) ρχ
(1− βρuF) T−1 (1− ρuL)− σδ2βZ̄L̄

C̄ακδ
(1− F)

1− α
θ̄

ST−1

]
l̃t

+
λθ
ψL∗

[
σδ2βZ̄L̄

2

δακθ̄v̄C̄
(1− F) ST−1 − 1

(1− α) ρ
(1− βρuF) T−1

]
θ̃t,
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where

S ≡ −βF +

(
−β δδ2

Z̄
+ β + 1

)
+

(
δδ2

Z̄
− 1

)
L, (142)

T ≡
(

1− 1

1− α
θ̄α−1

χ

L̄

v̄

)
+

ρu
1− α

θ̄α−1

χ

L̄

v̄
L. (143)

Clearly, this equation can be rewritten in the form of equation (85).

G Derivation of Equation (86)

Let us first eliminate θ̃t and c̃t from equations (67) and (68) by using equations (62),

(70), and (82). This leads to

ϕ3t =
δ

Z̄

α

1− α
κ

χ
θ̄α(ht − ρuht−1) +

α

1− α
ucκθ̄L̄

∗l̃∗t , (144)

ϕ4t =
δδ2σ

Z̄
(−βht + ht−1), (145)

where

ht ≡ ϕ1t −
λθZ̄χ

δαρκθ̄α
l̃t = ϕ1t − uc

Z̄L̄

δ
l̃t. (146)

In addition, equation (84) is rewritten using ht as

λL∗ l̃
∗
t −

δ

Z̄

α

1− α
L̄∗

L̄
κθ̄ht +

1

1− α
L̄∗

v̄
ϕ3t = 0. (147)

By eliminating l̃∗t , ϕ3t, and ϕ4t, we can obtain a second-order difference equation for

ht that involves only the model parameters. To achieve this, first substitute equation

(144) into (147) to obtain

l̃∗t =
δ

Z̄

v̄γ

ucL̄L̄∗
(−αht + ρuht−1) , (148)

where

γ ≡
α

(1−α)2
ucκθ̄

L̄∗
2

v̄

λL∗ + α
(1−α)2

ucκθ̄
L̄∗

2

v̄

∈ (0, 1) . (149)

By substituting equations (144), (145), and (148) into (83), we obtain

Etht+1 − k3ht − k4ht−1 = 0, (150)
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where

k3 ≡
α(1− α)ρ2γ + (1− αργ) + βρ2

u(1− ργ) + ζ(1 + β)

β [ρu(1− αργ) + ζ]
, (151)

k4 ≡ −
ρ2γ(1− α)ρu + (1− ργ)ρu + ζ

β [ρu(1− αργ) + ζ]
, (152)

and ζ is as defined by equation (127).

As discussed in Appendix D.1, the path of ht described by equation (150) is dynam-

ically stable if and only if |k3| < 1 − k4 and k4 > −1. Now, note that we can express

k3 + k4 − 1 in two ways as

k3 + k4 − 1

=
(1− βρu)(1− α) + (1− βρu)(α− ρu)(1− ργ) + ρ2γ(1− α)(α− ρu)

β [ρu(1− αργ) + ζ]
(153)

=
(1− βρu)(1− ρu) + ργ(ρu − α)

[
(1− ρ)(1− β(1− q̄B)) + αρ

]
β [ρu(1− αργ) + ζ]

. (154)

Here, β, ρu, α, ρ, γ, and q̄B all lie in (0, 1), and ζ > 0. Then, if α ≥ ρu, we have

k3 + k4 ≥ 1 as observed from equation (153), while if ρu > α, then k3 + k4 ≥ 1 as seen

from equation (154). The stability condition is therefore never satisfied, and thus the

same argument as in Appendix D.1 implies that under the optimal policy, ht = 0 for

all t. Therefore, equation (71) follows from equation (146). Further, ϕ4t = l̃∗t = 0 from

equations (145) and (148), which in turn implies ϕ3t = 0 from equation (147).
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