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Abstract

This paper considers the infinite alternative case to prove the existence of continuous social

welfare aggregation that is anonymous and respects the unanimity. It clarifies the contro-

versy between Chichilnisky (1982, QJE) and Huang for their contradictory results for the

continuum case. Compared to their topological frameworks, the infinite alternative case is

easier to understand and pinpoint their difference.



1 Introduction

Built on Arrow’s (1951) framework, Chichilnisky (1982) proves that for a continuum alterna-

tive space X, there exists no continuous social welfare function on profiles of preferences that

is anonymous and respects unanimity. These theorems have resulted in two of the most-cited

works in the area of social choice theories.

Huang (2009) proves the existence of continuous social utility maps that are anonymous

and respect unanimity, contrary to Chichilnisky’s (1982) impossibility theorem. Huang in-

troduces the notion of singularity of social aggregations and notes that in Chichilnisky’s

framework the singularity that relates to the set of zero preference vectors is not properly

treated. On the other hand, Huang (2014) reexamines Arrow’s paradox and proposes the

extent principle to revise the form of Arrow’s independence. He shows Arrow’s framework

excludes a singularity such as cyclic social preference orderings. To tackle the behavior of

continuous variation in preferences on X collectively while dealing carefully with singular-

ity, Huang (2004, 2009, 2014) uses the technical language of topology, which reduces the

tractability and applicability of his findings.

For purposes of helping explain Huang’s (2009) existence theorem, we consider a simpler

setting, where X is an infinite discrete set {x1, x2, x3, ...}. Under this joint setting between

discrete and continuum cases, we reexamine the existence of continuous social aggregation

in a manner analogous to Chichilnisky (1982).

The rest of the paper is organized as follows. Section 2 introduces the analysis framework,

and Section 3 proves the existence theorem.

2 The framework

Consider X = {xi; i ∈ Z+} as an alternative space, i.e., X consists of infinite discrete

alternatives, where Z+ is the set of natural numbers. The conventional topology of X is

generated by the base B = {Bi; i ∈ Z+}, where Bi = {xi, xi+1, xi+2, ...}. A preference p on

X is a transitive binary order over any pairs of X, i.e., (i) ∀x, y ∈ X, we have x � y, or

y � x, or both; (ii) ∀x, y, z ∈ X, if x � y and y � z, then x � z.

Given a preference p, “x � y (in p)” indicates “x is at least as good as y in the preference

p.” The strict preference � is defined by “x � y ⇔ x � y but not y � x” (that is, x is

preferred to y). The indifference preference ∼ is defined by “x ∼ y ⇔ x � y and y � x”

(that is, x is indifferent to y).
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A preference p on X is called regular, if there is no pair of (distinct) alternatives x, y ∈ X
with x ∼ y in p. Otherwise, p is called singular. Given any V and W in X, “V � W in p”

means “v � w in p” for any v in V and w in W . The totality of all preferences on X is

denoted by P , while P ∗ ⊂ P denotes the set of all regular preferences on X. Let p ∈ P,

given x ∈ X we consider the superior set Ux(p) ≡ {y ∈ X; y � x in p}, the inferior set

Lx(p) ≡ {y ∈ X; y � x in p} and the indifferent set Ix(p) ≡ {y ∈ X; y ∼ x in p}.

In an economy with N individuals, let pα be the preference of the individual α =

1, 2, ..., N ; let p = (p1, p2, ..., pN) denote a profile of individual preferences; and let PN

denote the set of all profiles. Let F(X) be the space of real valued functions defined on X.

A social utility map U is a map,

U : PN → F(X), (2.1)

assigning to each profile a real valued function u ∈ F(X), which we may call a social utility

function on X. A social welfare function is a map, F : PN → P , which assigns to each

profile a social preference.

Analogous to local setting of preference vector fields, defined by Antonelli (Debreu 1972)

and developed by Chichilnisky (1982), a local preference on infinite discrete X is an assign-

ment, v : xi → v(xi) ∈ {−1, 0,+1}, assigning to each alternative xi a number -1, 0 or +1,

which respectively indicates “x �,∼ or ≺ xi+1”.

Let Pc denote the totality of local preferences. A local preference v provides preference

order between xi and xi+1, but may not do so for xi and xi+2. For example, when v(xi) =

+1, v(xi+1) = −1, we cannot judge whether xi+2 is preferred to xi. In this sense, we call it

“local.” Comparatively, a preference p in P is called a global preference on X, as it defines

orders over all pairs x, y of X.

Given an abstract set G, a topology defines a consistent way of “convergence” among

element in G, i.e. how “at converges to a, where at, a ∈ G.” It means how elements of G “vary

continuously” in rigorous mthematical terms. We will define various ways of convergence on

preference spaces P and Pc by introducing topologies as follows:

Definition 2.1. Let the topological spaces (P,=), (Pc,=c) and (P,=0) be defined as follows.

1. pt converge to p0 in the global preference topology = (usually denoted by pt → p0 in =)

if and only if for any finite set A in X, there exists a number T such that ∀t > T ,

pt|A = p0|A. (2.2)

The last formula means: ∀x, y ∈ A, x � y in pt iff x � y in p0.
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2. vt converges to v0 in the local preference topology =c (usually denoted by vt → v0 in =c)
if and only if for any finite set A in X, there exists a number T such that ∀t > T ,

vt|A = v0|A, where “|A” means the function restriction, i.e. ∀x ∈ A, vt(x) = v0(x).

3. pt converges to p0 in the social preference topology =0 (usually denoted by pt →
p0 in =0) if and only if for any pair of disjoint finite sets V,W in X with V � W in p0,

there exists a number T such that V � W in pt ∀t > T .

We note that the global preference topology = is stronger than the social preference

topology.

Proposition 1.

pt → p in = ⇒ pt → p in =0. (2.3)

The converse is not true unless p is regular.

Proof. Given any two finite sets V and W in X with V ≺ W in p, we choose a finite set A

such that A ⊃ V ∪W . By pt → p in =, ∃ T such that pt|A = p|A, ∀t > T. Hence, V ≺ W

in pt, ∀t > T. Thus pt → p in =0. As for the converse, consider two preferences q1 and q2

defined by

q1 : x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺ ...

q2 : x2 ≺ x1 ≺ x3 ≺ x4 ≺ x5 ≺ ...

both monotone after x3. We define a sequence of preferences {pt} = {q1, q2, q1, q2, q1, q2, ...}
and p : x1 ∼ x2 ≺ x3 ≺ x4 ≺ x5 ≺ .... Clearly, pt → p in =0. In fact, if V and W are two

non-empty sets in X with V ≺ W in p, then ∀xj in W , we see that j ≥ 3 since V 6= ∅. By

monotonicity of q1 and q2 after j ≥ 3, it holds that V ≺ W in pt. On the other hand, it is

evident that Pt does not converge to p in =. Hence, the converse of (2.3) is not true.

The proof of Proposition 1 tells us the basic difference between = and =0 is focused on

singularities. We notice that the converse of (2.3) is not true only when p is singular. If p is

regular, it becomes that

pt → p in = ⇔ pt → p in =0. �

The map ψ defined in the following provided a link between P and Pc.

Definition 2.2. The localization map ψ : P → Pc is defined by

ψ(p)(xi) =


1 if xi+1 � xi

0 if xi+1 ∼ xi

−1 if xi+1 ≺ xi
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Remark 1. The map ψ is surjective and many to one. For example, consider

p1 : x1 ≺ x2 � x3 ∼ x4 ∼ x5 ∼ x6 ∼ · · · , but x1 ≺ x3,

p2 : x1 ≺ x2 � x3 ∼ x4 ∼ x5 ∼ x6 ∼ · · · , but x1 � x3,

p3 : x1 ≺ x2 � x3 ∼ x4 ∼ x5 ∼ x6 ∼ · · · , but x1 ∼ x3.

Then ψ(pk) = same v0 ∈ Pc, ∀k = 1, 2, 3, where v0(x1) = +1, v0(x2) = −1, v0(x3) = 0 =

v0(x4) = · · · .

Proposition 2. The topology = of the global preference space P is equivalent to the topology

=c of the local preference space Pc under the localization map ψ, in the sense that for any

set τ ⊂ Pc.

τ is open in (Pc,=c) iff ψ−1(τ) is open in (P,=).

And furthermore, ψ is an open map, i.e., for any σ open in (P,=), ψ(σ) is open in (Pc,=c).1

Proof. See the Appendix. �

3 Existence theorems

Definition 3.1. The cardinality-forgetting map π : F(X)→ P is defined by p := π(u) ∈ P,
for any u ∈ F(X) such that

x % y in p iff u(x) ≥ u(y),∀x, y ∈ X.

We call u a utility function on X defining the global preference p ∈ P, or call p the preference

corresponding to utility function u.

Proposition 3. Let pt = π(ut), p = π(u) where ut, u ∈ F(X). Then

ut → u uniformly on X ⇒ pt → p ∈ =0,

but under the same hypothesis, pt may not converge to p in =.
1A topology of an abstract set G can be defined either by the notion of “openness” or “convergence.” If

by the former, we introduce a family θ ≡ {uα;α ∈ I} of subsets uα of G in which each uα is called an open
set, such that (i) the empty set φ and the entire set G are open (i.e., contained in θ); (ii) any union of open
sets is open; (iii) any finite intersection of open sets is open. (B) If a topology of G is defined by the notion
of “convergence” then it defines “openness” in the sense that U ⊂ G is said to be open in G if and only if
for any convergent sequence

xt → x0 in G, (2.4)

where x0 ∈ U , there exists T such that xt ∈ U , ∀t > T .
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Proof. (i) Given finite sets V,W ⊂ X with V ≺ W in p, it holds that

u(v) < u(w),∀v ∈ V,w ∈ W,

since p = π(u). To show that pt → p in =0, it suffices to show that ∃ T such that

V ≺ W in pt∀t > T . In fact, we may choose ε so small that u(v) < u(w) − 2ε. By

ut → F(X), ∃ T such that ∀v ∈ V,w ∈ W,

|ut(v)− u(v)| < ε and |ut(w)− u(w)| < ε,∀t > T.

Hence, ut(v) < u(v) + ε < (u(w)− 2ε) + ε = u(w)− ε < ut(w). As pt = π(ut), we have

V ≺ W in pt,∀t > T , as required.

(ii) To claim pt may not converge to p in =, we let

u(xj) =

{
1 for j = 1, 2

j for j > 2
and ut(xj) =


1− 1/t for j = 1

1 + 1/t for j = 2,

j for j > 2.

Then ut → u uniformly on X. Now let p = π(u), pt = π(ut). We see that x1 ≺ x2 in

pt ∀t. However, x1 ∼ x2 in p. Thus, pt does not converge to p in =. �

Theorem A. Given an infinite discrete alternative set X, let F(X) denote the space of all

of the real-valued functions on X, and P denote the totality of preferences on X. If P is

equipped with the global preference topology =, then there exist social utility maps

U : PN → F(X)

where PN is the space of N-profiles of preferences equipped with product topology of = on P ,

and U satisfies the following properties:

1. Continuity: For any sequence of profile pt in PN ,

pt → p in =N ⇒ U(pt)→ U(p) uniformly on X.

2. Anonymity: U(p1, ..., pi, ...pj, ..., pN) = U(p1, ..., pj..., pi..., pN) ∀i, j ∈ Z+, where pi and

pj interchange their positions.

3. Respecting Unanimity: If all N individuals have a common preference p ∈ P , then the

social utility U(p, p, ..., p) defines the preference p, i.e. π(U(p, p, ..., p)) = p.
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Proof. Step 1 Consider the sequence of maps, PN ηN−→ F(X)N
Gk−→ F(X). Here η :

P −→ F(X) maps a preference p to a utility function up defined by

up(x) = µ(Lx(p)) ≡
1

2j1
+

1

2j2
+ . . . > 0,∀x ∈ X, (3.1)

where the inferior set

Lx(p) = {xj1 , xj2 , . . .} with j1 < j2 < . . . . (3.2)

And Gk is a symmetric function (k = 1, . . . , N) defined by

Gk(u1, u2, . . . , uN) =
∑
Ik

exp(ui1) exp(ui2) · · · exp(uik), (3.3)

where ui ∈ F(X) and Ik indicate the set of all combinations {i1, i2, · · · , ik} of {1, 2, · · · , N}

Step 2 Given p ∈ P, the following three statements are equivalent:

x � y in p⇔ Lx(p) ⊇ Ly(p)⇔ up(x) ≥ up(y). (3.4)

Let the social utility map U be defined by U = Gk ◦ ηN . Clearly, U satisfies anonymity

since G is a symmetric function. We show that U satisfies strong Pareto principle.

Given x � y in each individual preference pα, ∀α ∈ {1, 2, · · · , N}, we have upα(x) ≥
upα(y) for any α by (3.4). Evidently, Gk(up1(x), · · · , upN (x)) ≥ Gk(up1(y), · · · , upN (y)),

which yields that (Gk ◦ ηN(p))(x) ≥ (Gk ◦ ηN(p))(y), where p = (p1, ..., pN). Thus

U(p)(x) ≥ U(p)(y).

Step 3 It remains to show the continuity of U . Claim that η : (P,=) → F(X) is

continuous, i.e.,

pt → p in = ⇒ ut → u uniformly,

where ut = η(pt) = upt , u = η(p) = up defined by (3.1) and (3.2). For any ε1 > 0,

choose a finite integer δ such that

δ >
− ln ε1

ln 2
+ 1. (3.5)

Take A ≡ {x1, x2, ..., xδ} ⊂ X. Given x in X, let

Lx(pt) = Bt ∪ Ct, where Bt = Lx(Pt) ∩ A, Ct ⊂ X − A.

Similarly, let Lx(p) = B∪C, where B = Lx(P )∩A and C ⊂ X−A. Since there exists
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T such that pt|A = p|A for any t > T , we have Bt = B for any t > T . However,

µ(Ct) ≤ µ(X − A) and µ(C) ≤ µ(X − A).

It is clear that µ(X −A) = 2−(δ+1) + 2−(δ+2) + · · · = 2−δ. By equation (3.5), we obtain

that for all t > T ,

|µ(Lx(pt))− µ(Lx(p))| = |µ(Ct)− µ(C)| ≤ µ(Ct) + µ(C)

≤ 2 · µ(X − A) ≤ 1

2δ−1
< ε1. (3.6)

Thus, µ(Lx(pt))→ µ(Lx(p)) and ut → u pointwisely. This convergence is also uniform

because the bound of (3.6) is independent of x. Therefore, η is continuous. By the

continuity of the product map and the symmetric function Gk, we have U = Gk ◦ ηN

is continuous. This complete the proof. �

We note that the measure µ in (3.1) is a nonnegative measure defined on X and that the

value of Gk in (3.3) depends on the choice of k. A different measure of X and different choice

of k may induce various social utility maps U that assign different social utility functions

to a given individual preferences profiles. In other words, there exist many different social

utility maps which satisfy the given rational principles.

Combining Theorem A and Proposition 3, we obtain the existence of rational social

welfare functions as follows.

Theorem B. Given X, an infinite discrete set of alternatives, and P , the totality of prefer-

ences on X equipped with the global preference topology =. If we replace the topology = of P

by zero order topology =0, when social preferences are considered, then there exist continuous

social welfare functions,

F : (PN ,=N)→ (P,=0),

which is anonymous and respects unanimity.

Proof. Let F = π◦U , where U be the continuous utility maps given in Theorem A. Proposi-

tion 3 implies the cardinality-forgetting map, π : F(X)→ (P,=0), is continuous. Therefore,

F is continuous. The requirements of anonymity and unanimity are clearly satisfied. �

Definition 3.2. Let 2X denote the power set of X; that is, the set of all subsets of X. A

map C : PN → 2X is called a choice map.

Definition 3.3. A choice map C : PN → 2X , where P is equipped with the global preference
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topology =, is called continuous if

xt ∈ C(pt)⇒ lim
t→∞

xt ∈ C(p),

wherever pt converges to p in =N .

Definition 3.4. A choice map C respects unanimity if

M(pi) = same Z 6= φ, ∀i = 1, · · · , N ⇒ C(p) = Z,

where M(p) is defined {x ∈ X;x � y in p,∀y ∈ X}. And C is called anonymous if

C(pi1 , pi2 , · · · , piN ) = C(p1, p2, · · · , pN),

for any permutation (i1, i2, ·, iN) of (1, 2, · · · , N).

Theorem C. Given X, an infinite discrete set of alternatives, and P , the totality of pref-

erences on X equipped with the global preference topology =. There exist continuous choice

maps C : PN → 2X which are anonymous and respect unanimity.

Proof. For a utility function u on X, define S(u) = {x ∈ X ; u(x) = u0} ⊂ X, where

u0 := lim sup{u(y), y ∈ X}. Note that S(u) may or may not be empty as X is infinite.

Define

C(p) = S(U(p)),∀p = (p1, · · · , pN) ∈ PN ,

where U is the social utility map given in Theorem A. Since U is continuous, anonymous

and respect unanimity, those requirements are statisfied. �

Appendix: A proof of proposition 2

Step 1 Using (2.4), we set up a criterion for a set open in P . Claim that ∀σ ⊂ P , σ is open

in P if and only if ∀p0 ∈ σ, there corresponds a finite set A in X such that

NA(P0) ⊂ σ, (a)

where NA(p0) ≡ {p ∈ P ; p|A = p0|A}. First we assume σ ⊂ P is open in =. Suppose

∃ p0 ∈ σ such that for any finite set A ⊂ X, NA(p0) * σ. For any t < ∞, let

At ≡ {x1, x2, · · · , xt}. We select pt ∈ NAt(p0) − σ 6= φ. Clearly, pt → p0 in =. (In

fact, ∀A ⊂ X, a finite subset, let t0 be such that At0 ⊃ A, then pt|A = p0|A for any
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t > t0 because pt ∈ NAt0
(p0) ⊂ NAt(p0) ⊂ NA(p0).) By σ open in P , we have pt ∈ σ,

for t large enough. This contradicts to pt ∈ NAt(p0) − σ, for any t < ∞. Thus (a) is

satisfied.

The converse is proved as follows. Given σ ⊂ P satisfying (a), we will show that σ is

open in P in the sense of (2.4), i.e. ∀pt → p0 ∈ σ in =, ∃ T such that pt ∈ σ,∀t > T .

Since by (a), ∃ some A ⊂ X such that NA(p0) ⊂ σ. By (2.2) in Definition (2.1), ∃ T
such that pt|A = p0|A,∀t > T . This implies pt ∈ NA(p0) ⊂ σ,∀t > T . So σ is open in

P in the sense of (2.4).

Step 2 Claim that ∀τ ⊂ Pc, τ is open if and only if ∀v0 ∈ τ , there exists a finite set A in

X such that MA(v0) ⊂ τ , where MA(v0) = {v ∈ Pc; v|A = v0|A}. The proof is similar

as in Step 1.

Step 3 Step 1 simply says that all sets of the form NA(p0) in P constitute a “basis” of

topology =. It is clear that we may assume without loss of generality that A is an

sequence from x1 to xm, i.e. A = {x1, x2, x3, · · · , xm} for some m.

Step 4 Similarly, all sets of the form MA(v0) in Pc constitute a basis of topology =c, where

A is assumed to be a sequence from x1 to some xm without loss of generality.

Step 5 To claim that (P,=) and (Pc,=c) are equivalent under ψ, it suffices to show

ψ(NA(p0)) = MA′ (v0), (b)

where A = {x1, x2, · · · , xm−1, xm}, A
′
= {x1, x2, · · · , xm−1}, and ψ(p0) = v0. It means

that ψ is a continuous map and is an open map. However, we note that ψ−1(MA′(v0)) %
NA(p0).

Step 6 To show (b), we first check “⊂”: For p ∈ NA(p0), p|A = p0|A and ψ(p)|A′ =

ψ(p0)|A′ = v0|A′ . Hence, ψ(p) ∈ MA′ (v0). Now we claim “⊃”: Given v ∈ MA′ (v0), we

have to construct p ∈ NA(p0) such that ψ(p) = v. We define an utility function f on

X by f(xi) = number of {xj;xj ≺ xi in p0 and 1 ≤ j ≤ m} for i = 1, 2, · · · ,m, and

f(xm+k) = f(xm) + vm + vm+1 + · · ·+ vm+k−1, for k ≥ 1.

Finally, we define p = π(f), that is, p is the preference corresponding to f . It is clear

that p|A = p0|A and ψ(p) = v, as required.
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