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Abstract

This paper develops a novel and efficient algorithm for Bayesian inference in inverse Gamma

Stochastic Volatility models. It is shown that by conditioning on auxiliary variables, it is possible to

sample all the volatilities jointly directly from their posterior conditional density, using simple and

easy to draw from distributions. Furthermore, this paper develops a generalized inverse Gamma

process with more flexible tails in the distribution of volatilities, which still allows for simple and

efficient calculations. Using several macroeconomic and financial datasets, it is shown that the

inverse Gamma and Generalized inverse Gamma processes can greatly outperform the commonly

used log normal volatility processes with student-t errors or jumps in the mean equation.

JEL: C11, C15

Keywords: Markov Chain Monte Carlo, Gibbs Sampling, Flexible Parametric Models, Particle

Filters.

∗I thank the Japan Society for the Promotion of Science for financial support under the Young-Scientist (B) Grant
(#23730214 and #26780135). I thank participants of the Statistics & Econometrics Workshop of Hitotsubashi University,
DSSR workshop of Tohoku University, ISBA 2012 World Meeting in Kyoto, the CFE 2012 in Oviedo, the RCEA 2014 in
Rimini, EEA 2014 in Gran Canaria and IMS-APRM 2014 in Taiwan. The author is also a fellow of the Rimini Centre
for Economic Analysis (RCEA).

1



1 Introduction

There is overwhelming empirical evidence in favor of Stochastic Volatility models with both macroe-

conomic (e.g. Sims and Zha 2006) and financial data (e.g. Kim et al. (1998)). The first algorithms

for posterior simulation were developed for the case in which the volatility σ2
t follows an autoregressive

log-normal process. The first algorithms used a single-move update for the volatilities (e.g. Jacquier,

Polson and Rossi (1994)), which implies that σ2
t is generated conditionally on the volatility values in

other periods (σ2
1 , ..., σ

2
t−1, σ

2
t+1, ..., σ

2
T ). To improve the convergence speed, it was later proposed to

sample several of the volatility values at a time using blocking strategies (e.g. Shephard and Pitt (1997),

Watanabe and Omori (2004), Asai (2005)). In an influential paper, Kim et al. (1998) showed that by

accurately approximating the likelihood with a mixture of normals, it is possible to draw jointly all the

latent log-volatilities given some auxiliary variables. Furthermore, the log-volatilities can be integrated

out when drawing the unknown parameters.

A more recent literature provides methods for Bayesian inference in models where σ2
t follows some

type of gamma or inverse gamma process. In a multivariate stochastic volatility context, Philipov and

Glickman (2006) proposed a single-move algorithm whereas Fox and West (2011) proposed to sample all

the volatility matrices jointly in a Metropolis-step which conditions on auxiliary variables. Creal (2017),

in the univariate context, proposed maximum likelihood estimation by accurately approximating the

likelihood with a finite state Markov-switching model. In the multivariate context Casarin and Sartore

(2007) proposed sequential monte carlo and particle filters for estimation of the states and parameters

and Triantafyllopoulos (2010) proposed a simplified Wishart stochastic volatility model which allows

for fast and simple computations. Abraham et al. (2006) proposed method of moments estimators for

gamma type univariate stochastic volatility models and Gourieroux et al. (2009) develop maximum

likelihood inference for a Wishart autoregressive process for observed volatility. There is also a recent

literature that deals with Ornstein-Ulhlenbeck processes with marginal gamma laws (e.g. Barndorff-

Nielsen and Shephard (2001), Roberts et al. (2004), Griffin and Steel (2006a), Frühwirth-Schnatter and

Sögner (2009)).

A related strand of literature proposes flexible models for stochastic volatility. Although there

are many papers that provide alternative methods to model flexibly the distribution of the observed

dependent variable (e.g. Steel (1998), Durham (2007), Jensen and Maheu (2010), Delatola and Griffin

(2011), Griffin and Steel (2011)), there are few that model flexibly the distribution of the unobserved

volatility. As argued by Janssen and Drees (2013), the latter approach is more appropriate in datasets

where the returns exhibit extreme values over several consecutive periods. In this line Griffin and Steel

(2006b) and Jensen and Maheu (2014) provide semiparametric methods of inference based on infinite
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mixtures for the volatility distribution. However, there is a lack of models that specify the volatility

process in a flexible yet parametric manner. Flexible parametric models could potentially perform

better than semiparametric ones in some datasets, while taking advantage of simpler and more efficient

computational methods.

The purpose of this paper is to develop efficient posterior simulators for flexible inverse gamma

stochastic volatility models. We show that by conditioning on some auxiliary variables, it is possible to

draw all the volatilities jointly using simple distributions such as the Poisson and Gamma. Furthermore,

it is possible to generate the unknown parameters after integrating out all the volatilities. Because of

these features, our algorithm mimicks the efficient algorithm that Kim et al (1998) developed for the

lognormal model, without requiring the use of an approximation to the likelihood. Moreover, this paper

proposes a generalized inverse gamma time-series model that specifies a more flexible distribution for

the volatility, allows for more abrupt jumps in volatility, and can be estimated using simple and efficient

methods. In an empirical exercise we show that the generalized inverse gamma process is especially

suitable to model series with greater volatility jumps and returns that take extreme values over several

consecutive periods. Furthermore, we use real and simulated data to illustrate the efficiency of the new

algorithm and show that it is much more efficient than the recently proposed Particle Markov Chain

Monte Carlo methods (Andrieu et al. 2010) which sample the volatilities and parameters in a joint

move using a particle filter.

This paper differs from previous work on gamma type stochastic volatility models in two main

aspects. Firstly, we find a method to sample all the volatilities jointly from the posterior using well-

known distributions such as the Poisson and Gamma, whereas previous work mostly used single-move

or blocking strategies in a Metropolis-step to sample the volatilities. As mentioned before, sampling the

volatilities jointly from the posterior is an important characteristic of efficient algorithms. Secondly, we

develop and study the properties of a flexible inverse gamma time series model that can be estimated

with simple and efficient computations. Thus this paper provides a new class of flexible stochastic

volatility models that can be estimated with simple and efficient MCMC methods.

Section 2 describes the inverse gamma and generalized inverse gamma processes and Section 3 de-

velops the posterior simulators. Section 4 presents evidence on the computational efficiency of the

algorithms and Section 5 compares the empirical performance of different models using several macroe-

conomic and financial datasets. Section 6 concludes.
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2 Models

2.1 The Autoregressive Gamma Process (ARG)

We consider the following model of stochastic volatility:

yt = xtβ + σtet, et ∼ N(0, 1)

Although for simplicity in the exposition we are assuming normality for et, in the empirical applica-

tions we will consider also models where et follows a student-t. The student-t can be easily incorporated

into this framework by writing it as a scale mixture of normals, as in Chib et al (2002). The stochastic

process for the volatility σ2
t can be described by defining kt = σ−2t and assuming that the conditional

distribution of (kt/θ
2)|kt−1 is a noncentral chi squared (Muirhead (1982, p. 22)) with n degrees of

freedom and non-centrality parameter equal to ρ2kt−1, where (n, ρ, θ2) are parameters to be estimated.

When n is an integer, kt can be written as kt = z′tzt, where zt is a n×1 vector distributed as a Gaussian

AR(1) process:

zt = ρzt−1 + εt εt ∼ N(0, θ2In) (1)

Because the noncentral chi squared is well defined for non-integer values of n, we will treat n as a

continuous unknown parameter. The joint distribution of (k1, ..., kT ) is the multivariate gamma distri-

bution analyzed by Krishnaiah and Rao (1961). It was proposed for observed volatility (or intertrade

durations) by Gourieroux and Jasiak (2006) and for unobserved volatility by Creal (2017). In our case

we are using it for the inverse of the unobserved volatility, as this makes Bayesian computations simpler.

This is in line with the Bayesian analysis of Fox and West (2011), who specify a Wishart distribution

for the inverse volatility matrix. However, although the stationary distribution of σ2
t is the same as in

Fox and West (2011), the transitional density σ2
t |σ2

t−1 is different.

The properties of (k1, ..., kT ) are well known (e.g. Krishnaiah and Rao (1961), Gourieroux and

Jasiak (2006)) and the most important ones can be summarized as:

• E(kt) = nθ2

1−ρ2 , E(k2t ) =
(

θ2

1−ρ2

)2
n(n+ 2)

• corr(kt, kt−h) = ρ2h

• E(kt|kt−1) = ρ2kt−1 + (1− ρ2)E(kt)

• The conditional distribution kt
θ2 |kt−1 is a noncentral chi squared.

• The stationary distribution of kt is a G(n/2, 2θ2

1−ρ2 ), where G(.) represents the gamma distribution

(Bauwens et al. (1999, p. 290)).
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• A necessary and suficient condition for stationarity is |ρ| < 1

In addition, the properties of (σ2
1 , ..., σ

2
T ) can be derived from the properties of (k1, ..., kT ) as ex-

plained at the end of the proof of Proposition 1 in the appendix, so that we obtain:

• E(σ2
t ) = 1−ρ2

θ2(n−2) for n > 2, var(σ2
t ) =

(
E(σ2

t )
)2 2

n−4 for n > 4

• corr(σ2
t , σ

2
t−h) = (n/2 − 2)[2F1(1, 1;n/2; ρ2h) − 1], for n > 4, where 2F1(.) is a hypergeometric

series (e.g. Slater (1966, p. 1)).

• E(σ2
t |σ2

t−1) = 1
θ2(n−2) [1F1(1;n/2;− ρ2

2θ2σ2
t−1

], for n > 2.

• The stationary distribution of σ2
t is a IG2( 1−ρ2

θ2 , n), where IG2(.) represents the inverted gamma

distribution (Bauwens et al. (1999, p. 292)).

From the properties of the hypergeometric series it can be shown that the correlation corr(σ2
t , σ

2
t−h)

is 0 when ρ = 0 and it is equal to 1 when ρ = 1 (e.g. Slater (1966, p.2)). In the following it will be

assumed that k1 is drawn from the stationary distribution, that is k1 ∼ G(n/2, 2θ2/(1 − ρ2)). Note

finally that the autocorrelations are defined by ρ2, so that they cannot be negative. In fact ρ enters

the likelihood always in the form of ρ2, so that the sign of ρ is not identified. For this reason in our

empirical section we will specify the prior not on ρ but directly on ρ2.

2.2 Flexible Tail Autoregressive Gamma Process (FTARG)

The parameters (n, θ2, ρ2) control the unconditional mean, variance and the first order correlation of

kt. However, the degrees of freedom n also control the shape of the tails of the distribution of k and

therefore it also controls the tails of the distribution of y. Hence it might be desirable to consider models

where the shape of the tails is not determined by the first two unconditional moments of kt. There

is previous literature that develops more flexible gamma-type distributions, such as the generalized

gamma distribution of Stacy (1962) or the compound gamma of Dubey (1970) (see also Johnson et al.

(1994, section 17.8) for a review). However, here we propose a different type of distribution that lends

itself better to the context of time-series and the use of MCMC methods for computation. For this

purpose we define the Flexible Tail Autoregressive Gamma Process (FTARG). Recall that kt = z′tzt.

Instead of zt = ρzt−1 + εt we now assume:

zt =

√
T̃t(ρzt−1 + εt) (2)

where (T̃2, ..., T̃T ) are independent draws from a Beta distribution B(α, β). Given that we are more

concerned with modelling the left tail of kt (which corresponds to the right tail of σ2
t ) and given that
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the stationarity of the process requires E(T̃t) < 1/ρ2, it seems appropriate to specify a distribution

with bounded support for T̃t. If we write ρ̃t = ρ

√
T̃t and θ̃2t = T̃tθ

2 it is clear that the FTARG process

arises from (1) by writing ρ̃t instead of ρ and θ̃2t instead of θ2, and therefore the FTARG is equivalent to

the ARG with time-varying parameters. Furthermore, the FTARG can be also compared to the ARG

process by defining ρ̃ =

√
E(T̃t)ρ, θ̃2 = E(T̃t)θ

2 and ε̃t ∼ N(0, θ̃2), such that (2) can be equivalently

written as:

zt =

√
T̃t

E(T̃t)
(ρ̃zt−1 + ε̃t)

so that kt = z′tzt becomes:

kt =
T̃t

E(T̃t)
(ρ̃zt−1 + ε̃t)

′(ρ̃zt−1 + ε̃t) (3)

From this expression it is clear that when T̃t > E(T̃t) (T̃t < E(T̃t)), the value of kt is higher (lower)

than in the ARG model, which adds flexibility to the model. Furthermore, when the variance of T̃t

approaches 0, the ratio T̃t/E(T̃t) behaves as a constant of value 1, and therefore the FTARG becomes

equivalent to the ARG. However this implies that when the variance of T̃t is close to 0, the mean of T̃t is

poorly identified. To avoid this local non-identification problem, we fix1 E(T̃t) = 1/2. For this purpose,

we reparameterize (α, β) as A = E(T̃t) = α/(α+ β) and V = (α+ β), and fix A = 1/2. Therefore with

this normalization we have that α = β = V/2. The parameter V controls the variance of T̃t and will be

estimated.

The properties of the FTARG can be derived using basic properties of the gamma and beta distri-

butions and are summarized in the following proposition whose proof is in the appendix.

Proposition 1 Define ρ̃2 = E(T̃t)ρ
2 and θ̃2 = E(T̃t)θ

2. The main properties of (k1, ..., kT ) and

(σ2
1 , ..., σ

2
T ) implied by (2) are:

E(kt|kt−1) = ρ̃2kt−1 + (1− ρ̃2)E(kt) if ρ̃2 < 1 (4)

corr(kt, kt−h) = ρ̃2h if ρ̃2 < 1 (5)

E(kt|kt−1, T̃t) =
T̃t

E(T̃t)
(ρ̃2kt−1 + (1− ρ̃2)E(kt)) (6)

E(kt) =
nθ̃2

1− ρ̃2
if ρ̃2 < 1 (7)

E(k2t ) =
(
θ2
)2
n(n+ 2)E(v2c,t) if ρ4E(T̃ 2

t ) < 1 (8)

1Alternatively, using a shifted Beta distribution, it is possible to normalize E(T̃t) to be one, and if so the stationarity
condition would be the more usual one of |ρ| < 1.
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where vc,t = T̃t(1 + ρ2T̃t−1 + ρ4T̃t−1T̃t−2 + ρ6T̃t−1T̃t−2T̃t−3 + ...) and:

E(v2c,t) =
E(T̃ 2

t )(1 + ρ̃2)

(1− ρ̃2)(1− ρ4E(T̃ 2
t ))

if ρ4E(T̃ 2
t ) < 1

Higher moments of kt are given by:

E(kst ) = E(vsc,t)
(
θ2
)s s−1∏

i=0

(n+ 2i) if ρ2sE(T̃ st ) < 1

where E(vsc,t) can be calculated recursively as:

E(vsc,t) =
E(T̃ st )

1− ρ2sE(T̃ st )

s−1∑
i=0

(
s

i

)
ρ2iE(vic,t) if ρ2sE(T̃ st ) < 1 (9)

and where the properties of the Beta distribution imply that:

E(T̃ st ) =

s−1∏
i=0

α+ i

α+ β + i

The stationary distribution of kt is that of the product of ε′tεt (i.e. a gamma distribution) and vc,t,

where ε′tε and vc,t are independent of each other. The sth moment E(
(
σ2
t

)s
) = E(k−st ) is finite if and

only if α > s and n > 2s.

Since E(T̃t) is normalized to be 1/2, the condition for the first order moment of the stationary

distribution of kt to be finite is ρ2 < 2. However, the existence of higher moments of kt requires a

tighter restriction on ρ2. In the empirical analysis of Section 5 we only impose the restriction ρ2 < 2,

implying that the first order correlation coefficient ρ̃2 is allowed to vary on the whole range of the

interval (0, 1). Note also that the restriction ρ2 < 2 is sufficient for σ2
t (i.e. the inverse of kt) to have

finite moments up to the order min(α, n/2).

Equation (4) indicates that the conditional expectation of kt given kt−1 is a weighted average of kt−1

and the unconditional mean E(kt), as in a standard AR(1) model. Furthermore, equation (5) indicates

that the autocorrelation structures of the ARG and the FTARG are the same.

The expression for E(kt|kt−1, T̃t) in equation (6) indicates that when T̃t > E(T̃t) (T̃t < E(T̃t)) the

expected value of kt|kt−1 is above (below) what would be expected in the ARG model, making the tails

more flexible. In particular, very small values of T̃t will imply low values for kt and consequently very

large values for the volatility σ2
t . As we will see in the empirical section, this feature makes the FTARG

model specially useful for data with periods of greater instability.

Using the Poisson representation of the non-central chi-squared distribution (Muirhead (1982, p.

23)), the conditional distribution of kt|kt−1 can be written as a Gamma G(n/2 + ht, 2θ
2T̃t), where
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ht follows a Poisson distribution P (λt) with λt = ρ2kt−1/2θ
2 and T̃t follows a beta distribution (as

described in Section 3.1). Therefore we are generalizing the conditional distribution of kt|kt−1 by using

a scale mixture of gammas, in which the mixing distribution is a beta distribution. Similarly, the

stationary distribution of kt is a scale mixture of Gammas, where the mixing distribution is that of vc,t.

Note that restricting the support of T̃t to (0, 1) does not restrict the support of vc,t, which is unbounded.

This approach to generalize the distribution is somehow analogous to the compound gamma distribution

of Dubey (1970), which is also derived as a scale mixture of gammas, but with a gamma as the mixing

distribution. Our framework could be further generalized by assuming that T̃t follows a discrete mixture

of Beta distributions, as a mixture of beta distributions can accurately approximate any distribution

on the (0, 1) interval (e.g. Petrone, 1999).

Tables 1 and 2 show how V affects the percentiles of the stationary distribution of kt while keeping

E(kt), E(k2t ) and cov(kt, kt−1) constant. Even if the parameter for the degrees of freedom n increases

from 1 to 100, by decreasing V and θ in a suitable manner, the moments can be kept constant while the

tail of the distribution varies considerably. In particular Table 1 shows that the 1% percentile varies

from 0.003 to 0.45 as V varies from∞ to 40. In Table 2 the 1% percentile varies from 3.5E-12 to 0.2157

as V varies from ∞ to 27.4. Thus, when V is large and n is small, the tail of kt towards 0 is fatter,

whereas decreasing the value of V allows n to be larger and in this way reduces the probability of values

near 0. This implies that the right tail of the volatility σ2
t is fatter when V is large and n is small.

To see the impact on the distribution of the volatility σ2
t , Figure 1 plots three random realizations of

(σ2
1 , ..., σ

2
1000), each one for a different process represented in Table 2 (those corresponding to V = 33,

V = 29 and V = 27.5). Even though the 3 processes imply the same values for E(kt), E(k2t ) and

cov(kt, kt−1), we can see that σ2
t takes occasionally very large values (larger than 800 in Figure 1a)

when V = 33, but when V = 27.5 the values for σ2
t in Figure 1c are all below 11. Note that the first

moments for σ2
t , that is E(σ2

t ), E((σ2
t )2) and cov(σ2

t , σ
2
t−1), need not be the same through Figures 1a

to 1c. For example the second moment of σ2
t is infinity in Figure 1a, because n is smaller than 4.

For simplicity, instead of assuming that k1 is drawn from the stationary distribution, it will be

assumed that k1 is drawn from a distribution which has the same mean as the stationary distribution:

k1 ∼ G(n/2, 2θ̃2/(1− ρ̃2)).

3 Computation by Gibbs Sampling

3.1 Autoregressive Gamma Process (ARG)

In this section we will use the notation ρ̃t =

√
T̃tρ and θ̃2t = T̃tθ

2 for t = 2, ..., T and ρ̃1 = ρ̃ =

√
E(T̃t)ρ,

θ̃21 = θ̃2 = E(T̃t)θ
2 with the understanding that in the ARG model T̃t = 1 and so ρ̃t = ρ and θ̃2t = θ2 for
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V n θ2 ρ2 1% 5% 95% 99% var(T̃t)
∞ 1.28 0.078 1.96 0.003 0.031 8.78 14.53 0

15000 1.29 0.078 1.96 0.003 0.032 8.85 14.61 1.7E-05
7500 1.29 0.078 1.96 0.003 0.032 8.76 14.54 3.3E-05
1000 1.34 0.075 1.96 0.003 0.036 8.77 14.50 2.5E-04
500 1.40 0.072 1.96 0.004 0.041 8.65 14.58 5.0E-04
200 1.60 0.062 1.96 0.009 0.064 8.46 14.70 1.2E-03
150 1.76 0.057 1.96 0.012 0.080 8.32 14.92 1.7E-03
100 2.16 0.046 1.96 0.028 0.125 8.02 14.74 2.5E-03
50 6.31 0.016 1.96 0.203 0.396 7.12 13.85 4.9E-03
45 10.84 0.009 1.96 0.295 0.498 6.84 13.48 5.4E-03
42 22.04 0.005 1.96 0.380 0.581 6.71 13.37 5.8E-03
41 35.34 0.003 1.96 0.412 0.613 6.63 13.24 6.0E-03
40 96.20 0.001 1.96 0.451 0.645 6.54 13.24 6.1E-03

Table 1: Percentiles of kt for different values of V . The value of E(kt), E(k2t ) and cov(kt, kt−1) are
kept equal in all cases to 2.5, 16 and 0.98, respectively. The percentiles are calculated using 150000
independent draws. The table does not show values of V smaller than 40 because it is not possible to
maintain the same values of (E(kt), E(k2t ), cov(kt, kt−1)) when V < 40.

(a) V = 33, n = 2.04, θ2 = 0.029
and ρ2 = 1.96.

(b) V = 29, n = 6.28, θ2 =
0.0095 and ρ2 = 1.96.

(c) V = 27.5, n = 83.77, θ2 =
0.00072 and ρ2 = 1.96.

Figure 1: A random draw of (σ2
1 , ..., σ

2
1000) for several values of (V, n, θ2). In all cases the values for

(V, n, θ2) imply that E(kt) = 1.5, E(k2t ) = 16, and cov(kt, kt−1) = 0.98.
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V n θ2 ρ2 1% 5% 95% 99% var(T̃t)
∞ 0.327 0.183 1.96 4.0E-12 6.2E-08 8.12 18.39 0

15000 0.328 0.183 1.96 3.4E-12 6.2E-08 8.11 17.91 1.67E-05
40 1.09 0.055 1.96 0.0003 0.006 5.97 14.19 6.10E-03
35 1.59 0.038 1.96 0.0031 0.024 5.47 13.13 6.94E-03
33 2.04 0.029 1.96 0.0092 0.045 5.30 12.47 7.35E-03
30 4.00 0.015 1.96 0.0501 0.125 4.76 11.12 8.06E-03
29 6.28 0.010 1.96 0.0884 0.179 4.62 10.54 8.33E-03
28 16.0 0.004 1.96 0.1574 0.254 4.41 10.11 8.62E-03

27.6 45.0 0.001 1.96 0.1944 0.293 4.27 10.00 8.74E-03
27.5 83.8 0.001 1.96 0.2020 0.304 4.24 9.63 8.77E-03
27.4 631.2 9.5E-05 1.96 0.2157 0.314 4.19 9.53 8.80E-03

Table 2: Percentiles of kt for different values of V . The value of E(kt), E(k2t ) and cov(kt, kt−1) are
kept equal in all cases to 1.5, 16 and 0.98, respectively. The percentiles are calculated using 150000
independent draws. The table does not show values of V smaller than 27.4 because it is not possible to
maintain the same values of (E(kt), E(k2t ), cov(kt, kt−1)) when V < 27.4.

every t. In this way the conditional posterior densities derived in this section will be valid for both the

ARG and the FTARG models when T̃ is among the conditioning variables. As noted before, the prior

of kt
θ̃2t
|kt−1 is a noncentral chi squared. From Muirhead (1982, p. 23) it turns out that a noncentral chi

squared can be written as a mixture of (central) chi-squared with degrees of freedom n+ 2ht, where ht

follows a Poisson. Using this representation, the model can be written as:

yt = xtβ +

√
1

kt
et, et ∼ N(0, 1) (10)

kt|k1:(t−1), h1:t,Θ, β ∼ G(n/2 + ht, 2θ̃
2
t )

ht|k1:(t−1),h1:(t−1),Θ, β ∼ P (λt) with λt =
ρ̃2tkt−1

2θ̃2t

where G(.) represents the gamma distribution (Bauwens et al. (1999), p. 290), P (.) is the Poisson

distribution (Koop (2003), p. 325) and k1:(t−1) is notation for (k1, ..., k(t−1)). Let Θ = (n, θ2, ρ2),

k = (k1, ..., kT ) and h = (h2, ..., hT ). The representation (10) suggests the first Gibbs sampling algorithm

that we consider:

The h-Gibbs

• Generate Θ|h, β (Metropolis step)

• Generate k|h,Θ, β (draw from independent gamma).

• Generate h|k,Θ, β (draw from independent Bessel distributions).

• Generate β|k, h,Θ (draw from a multivariate normal).

Note that for greater efficiency Θ is drawn marginally on k. For this reason k needs to be drawn
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immediately after Θ, so that the algorithm converges to the joint posterior distribution. An advantage

of this algorithm is that all the precisions in the vector k can be drawn jointly from the conditional

posterior. Similarly, as noted by Creal (2017), the vector h can be drawn jointly from the posterior

conditional using a discrete distribution known as Bessel distribution (Yuan and Kalbfleisch (2000)).

Devroye (2002) and Iliopoulos and Karlis (2003) have developed efficient algorithms to draw from the

Bessel distribution. The conditional distributions needed in the h-Gibbs algorithm are summarized in

the following proposition, whose proof is in the appendix.

Proposition 2 Consider the model defined by (10), and define:

r2t = (yt − xtβ)2

r̃2t =

(
1 + ρ̃2t

θ̃2t
+ r2t

)−1
for t = 2, ..., T − 1, r̃2t =

(
1

θ̃2t
+ r2t

)−1
for t = 1 and t = T

h1 = hT+1 = 0

The conditional posteriors are as follows:

kt|h,Θ, β ∼ G((n+ 1)/2 + ht + ht+1, 2r̃
2
t ) for t = 1, ..., T

ht|k,Θ, β ∼ Bessel(
n− 2

2
, ρ̃t

√
ktkt−1

θ̃2t
) for t = 2, ..., T

and

p(Θ|Y, h, β) ∝
∫
p(Θ)p(k, h|Θ, β)L(Y |k, β)dk = (11)

T∏
t=1

[(
2r̃2t
)n+1

2 +ht+1+ht
Γ

(
n+ 1

2
+ ht+1 + ht

)] T∏
t=2

1(
2θ̃2t

)n/2
(
ρ̃t
2θ̃2t

)2ht

ht!

1

Γ(n/2 + ht)


(2π)

−T/2
(1− ρ̃2)n/2

(
2θ̃2
)−n

2
(

Γ
(n

2

))−1
p(Θ)

where L(Y |k, β) is the density function of the observed data Y given the volatilities k and p(Θ) is the

prior.

However, the convergence of this algorithm can be slow because of the high correlation between k

and h. Indeed, once we condition upon h, the different components of k become independent of each

other, even if unconditionally the serial correlation of kt is tipically very high. This suggests that h

contains too much information about k and so ideally we would like to draw k and h jointly. Thus

we consider a second Gibbs algorithm that surpasses this problem, and that also has the advantage of

drawing from distributions that are simpler than the Bessel. For this purpose we introduce two vectors
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of auxiliary variables, one of them continuous m = (m2, ...,mT ) and another discrete d = (d2, ..., dT ),

such that we will be able to draw (k, h) jointly conditioning on (m, d) and viceversa. Let us introduce

mt by assuming that mt conditional on ht has a beta distribution:

mt|ht ∼ B(αm + ht, βm), αm = (n− 1)/2, βm = 1/2 (12)

Note that this requires n > 1. This restriction is weaker than the condition to ensure that E(σ2
t ) is

finite, which requires n > 2. The advantage of this parameterization is that the posterior of ht|(k1:(t−1),

h1:(t−1), m1:t) is a finite mixture of shifted Poissons, whereas the posterior of kt|k1:(t−1), h1:t,m1:t

continues to be a Gamma. This is what makes possible the joint sampling of the two vectors k and h

conditional on m. However, the calculation of the probabilities of each component of the mixture could

be time consuming, especially when T is large. For this reason it seems preferable to condition on a

mixture indicator dt, such that the conditional posterior of ht becomes simply a shifted Poisson. This

implies that conditional on (m, d), the two vectors k and h can be drawn jointly from the conditional

posterior using simple gamma and shifted Poisson distributions. In turn, (m, d)|(k, h) can be drawn

using independent beta distributions (for m) and the hypergeometric distribution for d.

A shifted Poisson results from adding a fixed constant to a random variable with Poisson distribution

(Winkelmann (2008, p.10)). We use the notation ht ∼ SP (λt, dt) to mean that (ht−dt) follows a Poisson

distribution (i.e. (ht − dt) ∼ P (λt)). The probability density function of a shifted Poisson distribution

is:

fSP (h|λ, d) = λh−d
1

(h− d)!

1

exp(λ)
h = d, (d+ 1), ... (13)

Note that a draw from a shifted Poisson ht ∼ SP (λt, dt) can be obtained by first obtaining a draw

x from the Poisson distribution P (λt) and then calculating ht = x + dt. The vector d is formally

introduced in the model by using a hypergeometric distribution (e.g. Monahan (2001, p. 305)) as a

prior for each of the components of d given h:

Pr (dt = s|ht, dt+1) =

(
Mdt
s

)(Ndt
−Mdt

ndt
−s

)
(
Ndt
ndt

) t = 2, ..., T

dT+1 = 0

0 ≤ s ≤ min((1 + dt+1), ht)

(14)

Mdt
= ht, ndt = 1 + dt+1, Ndt

= (n− 1)/2 + ht + dt+1

Because in our case Ndt
is not an integer, the corresponding binomial coefficient should be written

12



using the gamma function instead of the factorial, based on the relationship Γ(x+ 1) = x! (see proof of

Proposition 3 in the appendix for more details). There are several algorithms that efficiently draw from

the hypergeometric distribution, are available in some standard statistical packages and are applicable

in the case that Ndt
is not an integer (e.g. Stadlober, (1989), Kachitvichyanukul and Schmeiser (1988)

or see Monahan (2001, p. 306) for a review). Note that dT can take only two values, 0 and 1. The

support of dT−1|dT is from 0 up to (1 + dT ), so dT−1 could at most take value 2. Similarly, the support

of dt|d(t+1):T is from 0 up to (1 + dt+1), such that d2 could take at most value (T − 1). However, in our

applications to real data we have found dt to be at most 20 even when T = 10168, and so each dt was

drawn from a discrete distribution defined on a relatively small set of values. Note also that dt ≤ ht,

so if ht = 0 then dt should also be fixed to be 0.

Thus the Gibbs algorithm that uses (m, d) as auxiliary variables can be described as:

The m-Gibbs for the ARG model.

• Generate Θ|(m, d), β using a Metropolis step.

• Generate (k, h)|(m, d),Θ, β using gammas and poisson.

• Generate (m, d)|(k, h),Θ, β using beta and the hypergeometric distribution in (14).

• Generate β|k, h,Θ (draw from a multivariate normal).

Note that for greater efficiency Θ is drawn marginally on (k, h). Therefore, the step to draw (k, h)

needs to come just after drawing Θ, so that the joint posterior continues to be the stationary distribution.

The following proposition describes the distributions that are used in the m-Gibbs.

Proposition 3 Given the model described in equations (10), (12), (14), and the following definitions:

r̂2T = r̃2T , r̂2t =

 1

r̃2t
−mt+1

(
ρ̃t+1

θ̃2t+1

)2

r̂2t+1

−1 for t = 1, ..., T − 1

m1 = 1, d1 = dT+1 = h1 = 0, λt =
ρ̃2tkt−1

2θ̃2t
, λ̂t = λt

mtr̂
2
t

θ̃2t
,

with r̃2t defined in Proposition 2, the conditional posteriors are as follows:

mt|k, h, d,Θ, β ∼ B((n− 1)/2 + ht, 1/2),

kt|k1:(t−1), h1:t,m, d,Θ, β ∼ G((n+ 1)/2 + ht + dt+1, 2r̂
2
t )

ht|k1:(t−1),h1:(t−1),m, d, ,Θ, β ∼ SP (λ̂t, dt)
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The conditional posterior d|k, h,m is the same as the conditional prior in (14). In addition:

p(Θ|Y,m, d, β) ∝
∫
p(Θ)p(k, h,m, d|Θ)L(Y |k, β)dkdh = (15) T∏
t=2

mt

(
ρ̃t

2θ̃2t

)2
dt

[ T∏
t=2

1

dt!

Γ ((n+ 1)/2 + dt+1)

Γ ((n− 1)/2 + dt)

Γ(2 + dt+1)

Γ(2 + dt+1 − dt)

]
×

[
T∏
t=1

(
2r̂2t
)n+1

2 +dt+1+dt

][
T∏
t=2

mαm−1
t (1−mt)

βm−1

]
Γ ((n+ 1)/2 + d2)

Γ (n/2)
CpCLCBp(Θ)

where

Cp =
(
1− ρ̃2

)n/2 T∏
t=1

(
2θ̃2t

)−n
2

, CL = (2π)
−T/2

CB = (Γ (βm))
−(T−1)

, βm = 1/2, αm = (n− 1)/2

and p(Θ) is the prior of Θ.

Using Proposition 3, a draw of (k, h)|(m, d) can be obtained by first drawing k1 from a Gamma

(recall that h1 = 0), then h2|k1 from a shifted Poisson, then k2|h2 again from a Gamma and so on

until we finally draw hT |kT−1 and kT |hT . Conversely, a draw from the conditional posterior of (m, d)

is obtained by using the prior distributions (12) and (14). Thus, mt is drawn using independent beta

distributions, and dt is drawn recursively using the hypergeometric distribution, starting with dT , and

then dT−1|dT and so on until we finally draw d2|d3. The vector of unknown parameters Θ is generated by

targeting the kernel in (15) using a Metropolis step. It seems recommendable to repeat the Metropolis

step several times (between 5 and 15) since this could reduce the autocorrelations while not having

much impact on computation time.

3.2 Flexible Tail Autoregressive Gamma Process (FTARG)

As shown in the proof of Proposition 4 in the appendix, the conditional posterior density of T̃t|V, h,Θ

is proportional to:

(
T̃t

)αt−1 (
1− T̃t

)V/2−1( 1

1 + T̃tSt

)vt
t = 2, ..., T (16)

with:

αt =
V

2
+ ht+1 +

1

2
vt =

n+ 1

2
+ ht + ht+1

St = θ2(r2t + ρ2/θ2) for t = 2, ..., T − 1 ST = θ2r2T
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This kernel can be written as that of an infinite mixture of beta distributions if we write the last

term of this density as a series (e.g. Muirhead (1985, p. 259)):

(
1

1 + T̃tSt

)vt
=

1

(1 + St)
vt

∞∑
s=0

(
St

1 + St
(1− T̃t)

)s
[vt]s
s!

Thus one possibility to draw T̃t is to draw from a mixture of betas. However, calculating the

probability of each component of the mixture requires evaluation of the hypergeometric function 2F1(.),

which could be computationally demanding. An easier method is to draw from (16) using a Metropolis-

step with a random walk proposal density. A third possibility is to introduce an auxiliary variable

Jt such that T̃t|Jt and Jt|T̃t can be both drawn from simple distributions. This variable Jt can be

introduced as a negative binomial (e.g. Johnson et al. (2005, p. 208)) discrete random variable with

probability of success pt and number of failures vt (denoted as Jt ∼ NB(vt, pt)):

Pr
(
Jt = s|T̃t, St

)
= (1− pt)vt (pt)

s

(
vt + s− 1

vt − 1

)
(17)

pt =
St

1 + St
(1− T̃t) t = 2, ..., T

Draws from the negative binomial distribution can be obtained using efficient algorithms which are

implemented in a wide range of statistical software. Alternatively, Jt can be drawn from a Poisson

P (ct) where ct is a draw from a Gamma G(vt, pt/(1 − pt)) (e.g. Johnson et al. (2005, p.p. 212-213)).

Furthermore, T̃t conditional on Jt becomes a simple beta distribution B(αt, V/2 + Jt).

Therefore, a sampling algorithm for the FTARG model can be obtained by adding the following

three steps to sample T̃ = (T̃2, ..., T̃T ), J = (J2, ..., JT ) and V to any of the two algorithms described in

the previous section:

Additional Steps for the FTARG

• J |(k, h),Θ, T̃ , V, β using the negative binomial distribution in (17).

• T̃ |(k, h),Θ, J, V, β using beta distributions.

• V |(k, h),Θ, T̃ , β using a Metropolis step.

Proposition 3 in the previous section and the following proposition describe the distributions that

are necessary in this algorithm.
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Proposition 4 The conditional posterior densities for T̃ , and V in the FTARG model are as follows:

T̃t|Jt ∼ B(αt, V/2 + Jt)

p(V |Y, T̃ ) ∝ p(V )

(
Γ(V )

Γ(V/2)Γ(V/2)

)T−1 T∏
t=2

(
T̃t

)V/2−1 (
1− T̃t

)V/2−1

where p(V ) is the prior for V . The conditional posterior density for Jt is the same as the conditional

prior given in (17).

4 Evidence on the Efficiency of the Algorithms

We use real and simulated data to compare the computational efficiency of the two algorithms developed

in this paper (the h-Gibbs and the m-Gibbs) with the recently developed Particle marginal Metropolis

- Hastings sampler (PMMH, Andrieu et al. 2010) that updates jointly the unknown parameters Θ and

the volatilities k. The PMMH is a general purpose algorithm and it uses a particle filter to evaluate

the conditional posterior of Θ marginally on the volatilities. The efficiency of the algorithm depends on

the number of particles used, and as the number of particles increases, the performance of the PMMH

(in terms of autocorrelations) approaches that of an ideal algorithm that generates Θ marginally on

the volatilities. To be able to set optimally the proposal density for Θ in the PMMH algorithm, we

simplify the estimation by keeping β equal to the OLS estimate, so that (n, θ2, ρ2) remain as the only

parameters to be estimated. In all algorithms we use a random walk proposal density for Θ and for

optimality we fix the variance-covariance matrix of the proposal density proportional to the posterior

variance-covariance matrix of Θ (Gelman et al. 1996), which is obtained in a previous estimation. For

simplicity in the PMMH algorithm we use the bootstrap filter (Gordon et al. 1993). In the h-Gibbs

and m-Gibbs algorithms, we repeat the Metropolis step 10 times to obtain a single value for Θ. This

reduces significantly the autocorrelation for the parameter n (not much for θ2 and ρ2) while increasing

computation time by 21% or 49% (when T = 100) and 18% or 41% (when T = 2000), respectively.

In terms of comparing the efficiency among the algorithms, results would be very similar if we did not

repeat the Metropolis-step.

We use the prior described in the appendix and in the Metropolis step we use a transformation

of the parameters that maps them into an unbounded space. In particular, we target the conditional

posterior of δ = (δ1, δ2, δ3) defined as: δ1 = ln(n)+ln(θ2)− ln(1−ρ2), δ2 = ln(θ2) and δ3 = − ln(1−ρ2).

By this transformation the only restriction on δ is δ3 > 0, which is likely to be satisfied provided that

ρ2 is not close to 0. To be more precise, we are not using a proposal density for Θ but for δ, calibrated

using the posterior var-cov of δ.
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First we simulate a short time series of T = 100 using parameter values n = 2, θ2 = 0.15, ρ = 0.95

with yt = 2 + σtet, and xt = (1, yt−1), so that the true value of β is β = (2, 0). We compare the

efficiency of the algorithms using the effective sample size (e.g. Brooks (1999)). The effective sample

size measures the number of independent draws from the posterior that is equivalent to 1 draw from an

MCMC algorithm. Thus, algorithms with larger values of ESS are more efficient. Since the computation

time per iteration differs for different algorithms, we present also the ESS adjusted for computation time

(ESS/TIME), which is the number of independent draws from the posterior obtained in one minute.

The code, written in C++ and integrated in the R software through the Rcpp library, is available

through the author’s website and the calculations were done in an Intel Xeon CPU E5-2690 with 2.9

GHz with 8 cores and 16 threads. The code allows for parallel computations using several threads

simultaneously, which reduces the computation time almost linearly for all the algorithms considered.

However, in Tables 3 and 5 we show the computation time when using only one thread because all

algorithms benefit in the same way from using additional threads2.

The ESS of the PMMH depends on the number of particles used in the bootstrap filter. Table 3

shows that when considering computation time choosing 25 particles gives better results. However, the

m-Gibbs sampler is 8.5 times better than the best PMMH in terms of ESS/TIME to sample n, 2.2

times better for θ2, and 3 times better for ρ. When we compare the m-Gibbs with the h-Gibbs, we can

see that the m-Gibbs is between 20 and 23 times more efficient.

In Table 4 we can see that choosing 500 or 1000 particles gives roughly the same ESS for the PMMH,

indicating that there is not much further gain in increasing the number of particles. Thus we can expect

that the PMMH algorithm with 1000 particles has practically the same ESS as the ideal algorithm that

samples Θ marginally on the volatilities (Andrieu et al. (2010)). Thus it is interesting to compare the

ESS sample size of the m-Gibbs and the h-Gibbs with the ESS of such ideal algorithm. In Table 4 we

can see that the m-Gibbs has roughly the same ESS for n as the ideal algorithm, but the ESS for θ2

and ρ is 15% and 22.6%, respectively, of the ideal algorithm. Because the number of observations is

relatively small and the prior for ρ is quite spread, the 95% posterior credible interval for ρ is wide and

equal to (0.76, 0.98). Although not shown in the tables, all algorithms produced the same summary of

the posterior distribution, indicating the absence of programming errors. Overall Tables 3 and 4 show

that the m-Gibbs algorithm is much more efficient than the best PMMH even when T is as small as

100 and much more efficient also than the h-Gibbs.

Let us now compare the efficiency of the algorithms using 2000 daily observations of the exchange

2The parallelization strategy uses the OpenMP library and consists in running independent chains in each thread and
putting all the after burn-in draws together at the end. For the PMCMC algorithm the strategy of distributing particles to
different threads actually increases computation time due to the time lost in coordinating the threads for the resampling
step. The code can be easily run with multicore Amazon cloud computers using an Rstudio Server Amazon Machine
Image (AMI).
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rate Yen - US dollar (6th Aug 2003 - 15th Jul. 2011). yt is the first difference of the log exchange

rate and xt−1 includes a constant and a lag, so that β = (β0, β1). In Table 5 we can see that it is best

to choose 500 particles for the PMMH and that the m-Gibbs is 696 times more efficient than the best

PMMH to sample n, 18 times more efficient to sample ρ and 15 times more efficient to sample θ2. With

respect to the h-Gibbs algorithm, the m-Gibbs is about 294 and 172 times more efficient to sample θ2

or ρ, respectively, and 25 times more efficient to sample n. The posterior 95% credible interval for ρ is

(0.956, 0.99), which is quite close to 1. That is one reason why the relative performance of the h-Gibbs

is particularly bad in this case.

Table 6 shows the posterior mean, posterior standard deviation and Monte Carlo Standard Errors

(MCSE) for a run of 300000 iterations after a burn-in of 1500 using the m-Gibbs. The MCSE values can

be used to decide whether the number of iterations is enough (e.g. Flegal et al. (2008)) and Hall (2012)

recommends a number of iterations such that the MCSE is less than 6.27% of the posterior standard

deviation whereas Toft et al. (2007) use a threshold of 5%. Table 6 shows that with 300000 iterations the

MCSE values more than amply satisfy both criteria, indicating that the number of iterations is sufficient.

The computation time depends on the number of threads used, and in our implementation it was 48.9

minutes with one thread, 25.3 mins with 2 threads, 13.5 mins with 4 threads, 7.4 mins with 8 threads,

and 5.2 mins using all of the 16 threads in the machine. The same number of iterations (300000) was also

sufficient to satisfy the criteria when estimating the FTARG model, with computation time increasing

approximately 40%, and was also sufficient when estimating the model with an increased sample size

of 4000 or 8000 observations of the Yen-US dollar exchange rate (i.e. from 22nd Aug. 1995 or 14 Sept.

1979 until 15th Jul. 2011, respectively). The computation time is roughly proportional to the number of

observations and so, for example, it took 27 minutes to estimate the FTARG model with 16 threads and

8000 observations. Assuming a student-t distribution instead of normal for et increases computation

time by 45%, with the same number of iterations being sufficient for estimating all parameters. The ESS

values for the slope parameters (β) and precision at the middle of the sample (kT/2) were 0.6 and 0.3,

respectively, which is substantially higher than for the other parameters, suggesting that the number

of iterations can be smaller when the main interest is in the slope parameters or estimated precisions.

5 Empirical Application

The aim of this section is to compare the empirical performance of several models using real macroe-

conomic and financial data. In addition to the ARG and FTARG described in Section 2, we consider

the model where σ2
t follows a log-normal distribution (LNORM) (using the SvPack in Ox provided by

Kim et al (1998)). In addition, we consider 3 models where et follows a student-t distribution: ARG-T,
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h-Gibbs m-Gibbs P 25 P 50 P 100 P 500 P 1000
n 0.0037 0.0302 0.0113 0.015 0.021 0.042 0.028

[210] [3991] [467] [306] [222] [91] [24]
θ2 0.0011 0.0105 0.015 0.029 0.034 0.063 0.069

[62] [1388] [621] [591] [359] [136] [59]
ρ 0.0015 0.015 0.016 0.029 0.034 0.06 0.07

[85] [1982] [662] [591] [359] [129] [60]
Accept R. 93% 93% 21% 34% 45% 50% 52%

Table 3: Effective Sample Size (ESS) and ESS over time (ESS/TIME) for the h-Gibbs, the m-Gibbs and
PMMH algorithms using 100 artificial observations. ESS/TIME is in squared brackets and represents
the number of independent samples per minute. The column P 25 refers to the PMMH algorithm that
uses 25 particles. The row Accept R. gives the acceptance rate in the Metropolis step. Note that in
the h-Gibbs and m-Gibbs the Metropolis step is repeated 10 times, and Accept R. is the probability of
accepting a new value in the sequence of 10 draws.

h-Gibbs m-Gibbs P 25 P 50 P 100 P 500 P 1000
n 13.1 107.7 40.3 54.9 74.2 149.2 100
θ2 1.6 15.3 21.4 42.3 49.0 91.9 100
ρ 2.2 22.6 23.3 42.3 50.3 90.2 100

Table 4: Effective Sample Size (ESS) as a proportion of the ESS of the PMMH with 1000 particles.

h-Gibbs m-Gibbs P 300 P 500 P 750 P 1000
n 0.004 0.041 0.002 0.004 0.007 0.007

[9.8] [246.1] [0.20] [0.29] [0.35] [0.25]
θ2 0.00001 0.0012 0.0016 0.0065 0.0079 0.0078

[0.024] [7.2] [0.16] [0.48] [0.40] [0.28]
ρ 0.00002 0.0014 0.0019 0.0062 0.0082 0.0091

[0.049] [8.4] [0.19] [0.46] [0.41] [0.33]
Accept R. 93% 96% 9% 20% 28% 34%

Table 5: Effective Sample Size (ESS) and ESS over time (ESS/TIME) for the h-Gibbs, the m-Gibbs
and PMMH algorithms using 2000 observations of the Yen - US dollar exchange rate. ESS/TIME is
in squared brackets and represents the number of independent samples per minute. See explanation in
Table 3 for other definitions.

n θ2 ρ
E(.|Y ) 6.18 0.02 0.98√
var(.|Y ) 1.04 0.009 0.008
MCSE 0.01 0.0003 0.0003

(MCSE/
√
var(.|Y )) ∗ 100 1.2 3.5 3.3

Table 6: Posterior mean (E(.|Y )), posterior standard deviation (
√
var(.|Y )), and MCSE values using

the m-Gibbs for 300000 iterations and 2000 observations of the Yen-US dollar exchange rate. MCSE
values were calculated using the library LaplacesDemon in R (Hall, 2005) with the option of batch
means (Jones et al. 2006 and Flegal et al. 2008).
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FTARG-T and LNORM-T. These 3 models are the same as the ARG, FTARG and LNORM models,

respectively, but assume a student-t distribution for et instead of normal. We run the models separately

on 4 datasets, 3 of which are exchange rates (1 daily exchange rate and 2 monthly) and one dataset

corresponds to UK inflation (see Table 7 for more details on the data). The dependent variable yt is

either the level of inflation or the first difference of the log exchange rate. When yt is the return of the

exchange rate, xt contains a constant and a lag of yt. When yt is inflation, xt contains a constant, two

lags of inflation, the unemployment rate and two lags of the unemployment rate (as in the estimation

of a Phillips curve, e.g. Staiger et al. (1997) or Sargent et al. (2006)). The exchange rate data was

obtained from the Federal Reserve Bank of St. Louis, and the inflation and unemployment rate data

from OECD (2010).

Table 8 shows the value of the log-likelihood at the posterior median of parameters, calculated using

the bootstrap particle filter (e.g. Gordon et al. (1993)), and using the prior specification shown in

the appendix. Marginal likelihood values (calculated with the method of Chib and Jeliazkov, (2001)),

show a similar patter and are given in Table 9. We can see that the ARG model has a much higher

value of the log likelihood than the LNORM and LNORM-T models for the monthly India-US and

Brazil-US exchange rates. The improvement in the log-likelihood is as much as 30 (India-US) or 40

(Brazil-US) points over the LNORM-T. Furthermore, for these two exchange rates the FTARG model

is much superior than all the other simpler models (by more than 20 points or 36 points increase in the

log likelihood with respect to the ARG). The extension to student-t errors does not bring any noticeable

improvement in the value of the log-likelihood of the ARG or FTARG models, although it does increase

the log likelihood of the LNORM model. In summary, the FTARG is a clear winner in the case of the

monthly India-US and Brazil-US exchange rates.

Regarding the EU-US exchange rate, the LNORM-T and ARG-T are substantially better than

the LNORM and ARG, again indicating that it is important to allow for student-t errors. Both the

LNORM-T and the ARG-T seem to perform equally well, whereas the FTARG and FTARG-T models

do not bring any noticeable increase in the log likelihood. Hence, the LNORM-T and ARG-T could be

said to be joint winners for the EU-US exchange rate, as confirmed by the marginal likelihood values

in Table 9.

Finally, regarding the estimation of the Phillips curve for UK inflation, all models have very similar

values for the log likelihood, indicating that the simpler models (LNORM and ARG) might be more

adequate in the estimation of the Phillips curve with UK data.

Figure 2 shows the OLS residuals for each of the 4 datasets. We can observe larger jumps in

volatility in the exchange rates of India and Brazil, which might be one of the reasons why the inverse

gamma models perform much better than the log-normal models in these datasets. This suggests that
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IND-US
Exchange rate Indian Rupee - US dollar, monthly average:

March 1973 - June 2013, 484 observations

BRA-US
Exchange rate Brazilian Real - US dollar, monthly average:

March 1995 - June 2013, 220 observations

EU-US
Exchange rate Euro - US dollar, daily: 6 Jan 1999 - 17 May

2013, 3615 observations

UK-INFL
Quarterly Inflation based on GDP deflator, seasonally adjusted,

1971Q1 - 2011Q4, 162 observations.

UK-UR
Harmonized Unemployment Rate: All Persons for United

Kingdom, seasonally adjusted, 1971Q1 - 2011Q4, 162
observations.

Table 7: Description of variables used in empirical analysis

previously proposed stochastic volatility models that allow for jumps in the mean equation might also

perform well in these cases. To investigate this possibility we estimated the model in Lopes and Polson

(2010, eqns. 34-37), which has lognormal stochastic volatility and includes jumps in the mean equation

of the returns. This model adds 3 extra parameters to the basic stochastic volatility model and we use

the same prior as that specified in Lopes and Polson (2010) for these parameters. The log-likelihood

values estimated at the posterior medians are 515.8 (0.28) and 1433.6 (0.03) for Brazil and India,

respectively. These values are much larger than those of the basic lognormal SV model (413 and 1258),

indicating that jumps are an important feature in the data. However, the FTARG model, which only

adds one extra parameter to the basic SV model (i.e. two less than the jumps model), has even larger

log-likelihood values, with gains of more than 10 points in the log-likelihood (526 and 1447), suggesting

that the FTARG model captures much better the nature of the jumps. Note that the FTARG model

incorporates jumps in volatility, whereas the Lopes and Polson (2010) model has jumps in the mean

equation of the returns. Therefore we can conclude that with these datasets it is better to model the

jumps in the volatility equation. Because the volatility is autocorrelated, a jump in volatility implies

that returns will continue to have extreme values for several periods. This feature is captured neither

by the Lopes and Polson (2010) model nor by LNORM-T model. To see this recall that the LNORM-T

model can be written as a mixture of normals: yt = xtβ + et, where et ∼ N(0, χ−1t σ2
t ) and χt are i.i.d.

draws from a gamma distribution. Therefore the volatility of et has two components, one determined

by σ2
t and another by χt. Although χt is a jump in volatility, an extreme value of χt has no impact

on the expected value of the volatility of the next period χ−1t+1σ
2
t+1. Thus, the LNORM-T model does

not imply that returns will continue to have extreme values for several periods after an extreme value

of χt. This is in contrast with the inverse gamma and generalized inverse gamma models, where the

volatility of et has only one component σ2
t , which has high positive correlation with σ2

t−1 regardless of

whether σ2
t−1 was on the tail of the distribution or not.
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IND-US BRA-US US-EU UK-INFL
LNORM 1258.5 413.6 13275.1 -198.7

(0.09) (0.21) (0.16) (0.32)
LNORM-T 1398.4 448.0 13285.8 -197.8

(0.23) (0.26) (0.28) (0.16)
ARG 1427.2 490.5 13276.5 -195.8

(0.08) (0.67) (0.05) (0.09)
ARG-T 1427.6 490.4 13287.0 -195.9

(0.09) (0.19) (0.25) (0.08)
FTARG 1447.8 526.0 13276.2 -196.5

(0.09) (0.15) (0.05) (0.07)
FTARG-T 1446.4 526.1 13286.1 -195.5

(0.09) (0.30) (0.05) (0.12)

Table 8: Value of Log-Likelihood at the posterior median, calculated with a particle filter for different
models and datasets. Numerical standard error in brackets (obtained using independent estimates of
the likelihood).

IND-US BRA-US US-EU UK-INFL
LNORM 1259.1 390.7 13236.1 -236.7

(0.45) (0.21) (0.16) (0.32)
LNORM-T 1365.2 421.5 13247.2 -231.9

(0.23) (0.26) (0.28) (0.16)
ARG 1401.0 467.3 13241.0 -256.1

(0.08) (0.67) (0.05) (0.09)
ARG-T 1401.1 466.9 13249.8 -255.5

(0.09) (0.19) (0.25) (0.07)
FTARG 1426.0 497.0 13234.5 -260.1

(0.12) (0.19) (0.05) (0.09)
FTARG-T 1419.6 494.0 13242.2 -263.5

(0.09) (0.33) (0.05) (0.12)

Table 9: Value of Marginal Likelihood calculated using the method of Chib and Jeliazkov (2001), but
the posterior ordinate was calculated using an asymptotic approximation detailed in the appendix.
Numerical standard error in brackets.

(a) India (b) Brazil (c) EU (d) UK Inflation

Figure 2: OLS residuals for 4 different datasets: 3 exchange rates versus the US dollar and a Phillips
Curve for UK inflation.
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6 Conclusions

This paper has developed efficient posterior simulators for inverse gamma and generalized inverse gamma

processes for stochastic volatility. By conditioning on some auxiliary variables, it is shown that it is

possible to draw all the volatilities jointly using simple distributions such as Poisson and Gamma.

Furthermore, the unknown parameters can be drawn after integrating out the volatilities. Estimations

with real and simulated data show that the new algorithm is much more efficient than the recently

developed Particle MCMC algorithms that generate the volatilities and unknown parameters in a joint

move.

We also developed a new type of generalized inverse gamma time-series model and analytically

derived its properties. Using simulation we calculated the percentiles of the distribution and illustrated

that the generalized inverse gamma process has much greater flexibility in the right tail. In this way

we provide a new class of flexible stochastic volatility models that can be estimated with simple and

efficient MCMC algorithms. Furthermore, the FTARG process can be further generalized by specifying

T̃t to be a mixture of beta distributions, since such a mixture can approximate any distribution in the

interval (0, 1). Finally, the empirical exercise shows that inverse gamma and generalized inverse gamma

models outperform the lognormal volatility model with student-t errors or jumps in the mean equation,

specially in the datasets that exhibit greater jumps and where returns have extreme values over several

consecutive periods, such as the exchange rates of Brazil-US or India-US.
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Appendix

Prior Specification in the Empirical Application

For the Gamma type models we specified the prior as: ln(n) ∼ N(ln(40), 1.5), ρ2 ∼ B(8, 1), θ2 ∼

G(1, 200), ln(V ) ∼ N(ln(20), 1).

For the log-normal volatility model we use the same prior specification and the same notation as in

Kim, Shephard and Chib (1998): µ ∼ N(0, 10),
(
σ2
η

)−1 ∼ G(2.5, 40), (φ+ 1)/2 ∼ B(20, 1.5).

In all models the prior for β is N(0, T I), where I is the identity matrix and T is the sample size.

For the models with student-t errors, we specify ln($) ∼ N(ln(40), 1.5), where $ is the parameter

for the degrees of freedom of the student-t.

For some datasets the log-normal volatility model did not converge with the baseline prior, and in

those cases we used a tighter prior for σ2
η to ensure convergence:

(
σ2
η

)−1 ∼ G(17.5, 57.14) (Brazil),(
σ2
η

)−1 ∼ G(22.5, 444.4) (India, normal errors),
(
σ2
η

)−1 ∼ G(17.5, 57.14) (India, student-t errors),(
σ2
η

)−1 ∼ G(3.5, 28.57) (UK inflation).

As mentioned above, in the Metropolis step we target the conditional posterior of δ = (δ1, δ2, δ3),

defined as: δ1 = ln(n)+ln(θ2)−ln(1−ρ2), δ2 = ln(θ2) and δ3 = − ln(1−ρ2). The inverse transformation

is Θ(δ) = (n(δ), θ2(δ), ρ2(δ)) = (exp(δ1 − δ2 − δ3), exp(δ2), 1− exp(−δ3)). Since our prior is defined on

Θ∗ = (ln(n), θ2, ρ2), the prior of δ can be written using the Jacobian as: p(Θ∗)θ2(1− ρ2), where p(Θ∗)

is the prior of Θ∗ and [θ2(1− ρ2)] is the Jacobian of the transformation.

In the FTARG model instead of specifying the prior on (ρ2, θ2) we specify it on (ρ̃2, θ̃2), and the

Metropolis step targets the conditional posterior of δ1 = ln(n) + ln(θ̃2) − ln(1 − ρ̃2), δ2 = ln(θ̃2) and

δ3 = − ln(1− ρ̃2).

In order to calculate the marginal likelihood, the posterior ordinate was calculated using a normal

density for the transformed parameters (δ1, δ2, δ3, ln(V ), ln($)).

Proof of Proposition 1

From equation (2) we can write the process for the vector zt as:

zt =

√
T̃tεt + ρ

√
T̃t

√
T̃t−1εt−1 + ρ2

√
T̃t

√
T̃t−1

√
T̃t−2εt−2 + ρ3

√
T̃t

√
T̃t−1

√
T̃t−2

√
T̃t−3εt−3 + ...

which implies that conditional on T̃ , zt is the sum of independent normals. Hence, zt|T̃ is also a normal,

with mean 0 and variance-covariance θ2vc,tIn, where In is the identity matrix and vc,t is the scalar

defined in Proposition 1. This implies that kt = z
′

tzt conditional on T̃ is a G(n/2, 2θ2vc,t), and therefore

(kt/vc,t)|T̃ is a G(n/2, 2θ2) (i.e. independent of T̃ ). Note that (ε′tεt) is also distributed as a G(n/2, 2θ2),
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and therefore we can write E((kt/vc,t)
s) = E((ε′tεt)

s). By the law of iterated expectations we can

calculate the moments of kt as E(kst ) = E(E(kst |T̃ )) = E(vsc,tE((kt/vc,t)
s|T̃ )) = E(vsc,t)E((ε′tεt)

s
).

Because (ε′tεt) is distributed as a G(n/2, 2θ2), its moments are given by (e.g. Johnson et al. (1994 p.

339)):

E((ε′tεt)
s
) =

(
θ2
)s s−1∏

i=0

(n+ 2i)

To calculate E(vsc,t) note that we can write vc,t as vc,t = T̃t + ρ2T̃tvc,(t−1). so that E(vsc,t) =

E((T̃t + ρ2T̃tvc,(t−1))
s). Using the binomial theorem we can write:

E((T̃t + ρ2T̃tvc,(t−1))
s) = E(T̃ st )

s∑
i=0

(
s

i

)
ρ2iE(vic,(t−1)) (18)

Because E(vsc,t) = E(vsc,(t−1)), (18) implies property (9) and the other unconditional moments stated

in Proposition 1. To obtain the conditional moments, note that equation (3) can be written as:

kt =
T̃t

E(T̃t)
(ρ̃2kt−1 + ε̃′tε̃t + 2ρ̃ε̃′tzt−1) (19)

Because ε̃t is independent of zt−1 and E(ε̃t) = 0 we obtain that E(ε̃′tzt−1) = 0. Taking into account

that E(ε̃′tε̃t) = nθ̃2 we can take conditional expectations on both sides of (19) to get equations (4) and

(6).

Let us calculate cov(kt, kt−h) as cov(kt, kt−h) = E(ktkt−h) − [E(kt)]
2
. To derive E(ktkt−h) let us

use iterative expectations to rewrite equation (4) as:

E(kt|kt−h) = ρ̃2hkt−h +

h−1∑
i=0

ρ̃2i(1− ρ̃2)E(kt) (20)

Multiplying both sides of (20) by kt−h and then taking expectations with respect to kt−h we obtain:

E(ktkt−h) = ρ̃2hE(k2t−h) +

h−1∑
i=0

ρ̃2i(1− ρ̃2) [E(kt)]
2

= ρ̃2hE(k2t−h) + (1− ρ̃2h) [E(kt)]
2

where we have used the formula for the sum of a geometric series. Thus cov(kt, kt−h) = E(ktkt−h) −

[E(kt)]
2

= ρ̃2h(E(k2t−h)− [E(kt)]
2
) = ρ̃2hvar(kt). Thus, the correlation between kt and kt−h is ρ̃2h.

Because the stationary distribution of σ2
t = 1/kt is that of the product of (vc,t)

−1
and (ε′tεt)

−1
, with

(vc,t)
−1

being independent of (ε′tεt)
−1

, the expectation E(σ2s
t ) is finite if and only if both E((vc,t)

−s
) and

E((ε′tεt)
−s

) are finite. Because (ε′tεt)
−1

is an inverted gamma with n degrees of freedom, E((ε′tεt)
−s

)
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is finite only if 2s < n. In addition, from vc,t = T̃t(1 + ρ2vc,(t−1)) it follows that:

1

vc,t
=

1

T̃t

1

1 + ρ2vc,(t−1)

Because (1+ρ2vc,(t−1))
−s < 1, it follows that E((1+ρ2vc,(t−1))

−s) is finite because the density function

of vc,(t−1) integrates up to 1. Because T̃t follows a B(α, β), E(T̃−st ) is finite if and only if α > s. Putting

both conditions together, E(σ2s
t ) is finite when α > s and n > 2s.

For the ARG model (i.e. T̃t = 1 for all t), the expressions for the expected value and variance of σ2
t

are derived from the properties of the inverted gamma distribution (e.g. Bauwens et al. (1999. p.292)).

To calculate the correlations between σ2
t and σ2

t−s in the ARG model, let us first proof the following

property:

E(σ2
t |σ2

t−s) =

∫ ( s∏
i=2

(ui)
n/2

)
1

θ2(n− 2)
exp

(
− (1− us)

2θ2
ρ2

1

σ2
t−s

)
p(u1)du1 (21)

where u1 ∼ B((n−2)/2, 1), p(u1) is the density function of u1 and us = 1/(1+ρ2(1−us−1)) for s ≥ 2.

To proof this note that the Poisson representation in (10) implies that kt|(kt−1, ht) is a Gamma which in

turn implies that σ2
t |(σ2

t−1, ht) is an IG2(θ−2, n+ 2ht), such that E(σ2
t |(σ2

t−1, ht)) = θ−2/(n+ 2ht− 2).

We can therefore integrate out ht to obtain E(σ2
t |σ2

t−1).as:

E(σ2
t |σ2

t−1) =
1

θ2 exp(λt)

∞∑
i=0

λit
i!

(
1

n+ 2i− 2

)
, where λt =

ρ2

2σ2
t−1θ

2
(22)

Note that 1/(n+ 2i− 2) = (n− 2)−1[n/2− 1]i/[n/2]i = (n− 2)−1E((u1)i), where [n/2]i is the rising

factorial. Therefore (22) can be written as:

E(σ2
t |σ2

t−1) =

∫
1

θ2 exp(λt)

1

(n− 2)

∞∑
i=0

λit
i!

(u1)
i
p(u1)du1 (23)

=

∫
1

θ2 exp(λt)

1

(n− 2)
exp(λtu1)p(u1)du1

=

∫
1

θ2
1

(n− 2)
exp

(
− (1− u1)

2θ2
ρ2

1

σ2
t−1

)
p(u1)du1

which is the same as (21) for the case s = 1. To proof (21) for s = 2 we need to integrate E(σ2
t |σ2

t−1)

with respect to p(σ2
t−1|σ2

t−2) using expression (23). This can be done by first integrating with respect

to p(σ2
t−1|ht−1, σ2

t−2) (which is a IG2(θ−2, n+ 2ht−1)) and then integrating out ht−1 (using a P (λt−1))

as follows:
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E(σ2
t |σ2

t−2) =

∫
E(σ2

t |σ2
t−1)p(σ2

t−1|σ2
t−2)dσ2

t−1 (24)

=

∫
E(σ2

t |σ2
t−1)

∞∑
ht−1=0

p(σ2
t−1|ht−1, σ2

t−2)p(ht−1)dσ2
t−1

=

∞∑
ht−1=0

∫
E(σ2

t |σ2
t−1)p(σ2

t−1|ht−1, σ2
t−2)p(ht−1)dσ2

t−1

Using the properties of the inverse Gamma distribution, we can obtain that:

∫
E(σ2

t |σ2
t−1)p(σ2

t−1|ht−1, σ2
t−2)dσ2

t−1 =

∫
(u2)

n+2ht−1
2

1

θ2
1

(n− 2)
p(u1)du1

Therefore, (24) can be written as:

E(σ2
t |σ2

t−2) =

∞∑
ht−1=0

∫
(u2)

n+2ht−1
2

1

θ2
1

(n− 2)
p(u1)du1p(ht−1)

Using the properties of the Poisson distribution, we can obtain that:

∞∑
ht−1=0

∫
(u2)

n+2ht−1
2

1

θ2
1

(n− 2)
p(u1)du1p(ht−1) =

∫
(u2)

n
2

1

θ2(n− 2)
exp

(
− (1− u2)

2θ2
ρ2

1

σ2
t−2

)
p(u1)du1

The proof for s > 2 can be obtained by repeating the same process, that is, integrate out with

respect to p(σ2
t−s+1|ht−s+1, σ

2
t−s) and then integrate out ht−s+1 (using a P (λt−s+1)).

E(σ2
t σ

2
t−s) can be obtained by using expression (21) to calculate E(σ2

t σ
2
t−s|σ2

t−s) and then integrate

out σ2
t−s using the stationary distribution IG2((1− ρ2)/θ2, n). This gives:

E(σ2
t σ

2
t−s) = E(σ2

t−sE(σ2
t |σ2

t−s)) = σ2
t−sE(σ2

t |σ2
t−s)p(σ

2
t−s)dσ

2
t−s

Using the properties of the gamma function we have that Γ(n/2−1)/Γ(n/2) = (n/2−1)−1 and therefore

E(σ2
t σ

2
t−s) can be written as:

E(σ2
t σ

2
t−s) =

(1− ρ2)n/2

(2θ2)
2

(n/2− 1)2

∫ ( s∏
i=2

(ui)
n/2

)(
1

1− ρ2us

)n/2−1
p(u1)du1 (25)

By using the definition of us it is possible to verify that:

(
s∏
i=2

ui

)
1

1− ρ2us
=

(
s−1∏
i=2

ui

)
us

1− ρ2us
=

(
s−1∏
i=2

ui

)
1

1− ρ2us−1
=

1

1− ρ2u1

30



and:
s∏
i=2

ui = usus−1

s−2∏
i=2

ui =
1

1 + (ρ2 + ρ4)(1− us−2)

s−2∏
i=2

ui =
1

1 + ρ2s(1− u1)

where ρ2s =
∑s−1
g=1 ρ

2g. Hence, the integral in expression (25) can be written as:

E

[(
s∏
i=2

(ui)
n/2

)(
1

1− ρ2us

)n/2−1]
= E

[
(1− ρ2u1)−(n/2−1)

1 + ρ2s(1− u1)

]
(26)

= E

[
(1 + ρ2s)

−1

1− ρ̂2su1

(
1

1− ρ2u1

)n/2−1]

where the expectation is calculated with respect to u1 and ρ̂2s = ρ2s/(1 + ρ2s). By expanding (1/(1 −

ρ2u1))n/2−1 as a hypergeometric series (e.g. Muirhead (1985, p. 259)) and using basic properties of the

beta distribution, it is possible to show that:

E

[
(uh1 )

(
1

1− ρ2u1

)n/2−1]
=

(
[n/2− 1]h

[n/2]h

)(
2F1(

n

2
− 1,

n

2
− 1 + h;

n

2
+ h; ρ2)

)

and therefore the expectation in (26) can be written as:

1

1 + ρ2s

∞∑
h=0

[(
ρ̂2s
)h( [n/2− 1]h

[n/2]h

)(
2F1(

n

2
− 1,

n

2
− 1 + h;

n

2
+ h; ρ2)

)]

=
1

1 + ρ2s

∞∑
h=0

∞∑
i=0

[(
ρ̂2s
)h (

ρ2
)i

h!i!
[1]h

[n/2− 1]h+i
[n/2]h+i

[n/2− 1]i

]
=

1

1 + ρ2s
F1

[n
2
− 1; 1,

n

2
− 1;

n

2
; ρ̂2s, ρ

2
]

where F1[.] is an Appell series of the first type (e.g. Slater (1966, p. 210)), which in our case can be

reduced to a 2F1(.) series (Slater (1966, p. 219)):

F1

[n
2
− 1; 1,

n

2
− 1;

n

2
; ρ̂2s, ρ

2
]

=

(
1

1− ρ2

)n/2−1 [
2F1

(
n

2
− 1, 1;

n

2
;
ρ̂2s − ρ2

1− ρ2

)]
=(

1

1− ρ2

)n/2−1 [
2F1

(
n

2
− 1, 1;

n

2
;
−ρ2s

1− ρ2s

)]

Using the Euler relationships (e.g. Muirhead (1982, p. 265) ), the 2F1(.) series can be written as:

2F1

(
n

2
− 1, 1;

n

2
;
−ρ2s

1− ρ2s

)
= (1− ρ2s)

[
2F1

(
1, 1;

n

2
; ρ2s

)]

Putting all this together the expectation in (26) can be written as:

E

[(
s∏
i=2

(ui)
n/2

)(
1

1− ρ2us

)n/2−1]
=

1− ρ2s

1 + ρ2s

(
1

1− ρ2

)n/2−1 [
2F1

(
1, 1;

n

2
; ρ2s

)]
=

(1− ρ2)

(
1

1− ρ2

)n/2−1 [
2F1

(
1, 1;

n

2
; ρ2s

)]
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where we have used that a geometric series can be written as 1 + ρ2s = (1− ρ2s)/(1− ρ2). This proves

that (25) is equal to:

E(σ2
t σ

2
t−s) =

(1− ρ2)2

(2θ2)
2

(n/2− 1)2

[
2F1

(
1, 1;

n

2
; ρ2s

)]
The correlation corr(σ2

t , σ
2
t−s) can then be calculated as

(
E(σ2

t σ
2
t−s)− E(σ2

t )
)
/var(σ2

t ), where E(σ2
t )

and var(σ2
t ) are obtained from the properties of the inverted gamma distribution (e.g. Bauwens et al.

(1999. p.292)).

Proof of Proposition 2

The likelihood is:

L(Y |k, β) = (2π)
−T/2

[
T∏
t=1

(kt)
1/2

]
exp

(
−1

2

T∑
t=1

r2t kt

)
r2t = (yt − xtβ)2

The prior p(k, h|Θ, β) is equal to:

p(k1|Θ, β)

T∏
t=2

(p(kt|ht,Θ, β)p(ht|kt−1,Θ, β)) = p(k1|Θ, β)

T∏
t=2

p(kt|ht,Θ, β)

λ
ht
t

ht!

exp(λt)


The densities p(k1|Θ, β) and p(kt|ht,Θ, β) are Gamma densities:

p(k1|Θ, β) =
|k1|

n−2
2

c1
exp

(
−1− ρ̃2

2θ̃2
k1

)
c1 = Γ

(n
2

)( 2θ̃2

1− ρ̃2

)n/2
(27)

p(kt|ht,Θ, β) =
|kt|

n+2ht−2
2

ct
exp

(
− 1

2θ̃2t
kt

)
ct = Γ

(n
2

+ ht

)(
2θ̃2t

)n/2+ht

t = 2, ..., T

Thus, the product of the prior and the likelihood, p(Θ, β)p(k, h|Θ, β)L(Y |k, β), can be written as:

(2π)
−T/2

[
T∏
t=1

(kt)
n+2ht−2

2 + 1
2

]
exp

(
−1

2

T∑
t=2

kt

(
1

θ̃2t
+ r2t

))
× (28)

exp

(
−1

2
k1

(
1− ρ̃2

θ̃2
+ r2t

)) T∏
t=2

 λ
ht
t

ht!

exp(λt)

( T∏
t=1

ct

)−1
p(Θ)

Recalling that λt = ρ̃2tkt−1/(2θ̃
2
t ) and also that (ρ̃2t/θ̃

2
t ) = (ρ̃2t+1/θ̃

2
t+1), it is clear that kt|h,Θ, β ∼

G((n+ 1)/2 + ht + ht+1, 2r̃
2
t ). To find the conditional distribution of h given k note that ct depends on

ht and putting together the terms in (28) that depend on ht we get:

T∏
t=2

 1

ht!

1

Γ(n/2 + ht)

( ρ̃t

2θ̃2t

)2

ktkt−1

ht
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which shows that ht|k,Θ, β ∼ Bessel(n−22 , ρ̃t

√
ktkt−1

θ̃2t
) for t = 2...T . The expression for p(n, θ2, ρ2|Y, h, β)

can be obtained by integrating (28) with respect to k using basic properties of the Gamma distribution.

Proof of Proposition 3:

For the proof let us write the hypergeometric distribution in (14) using the gamma function and the

factorial instead of the binomial coefficients, so that Pr (dt = s|ht, dt+1) is equal to:

ht!

dt!(ht − dt)!
Γ((n+ 1)/2 + dt+1)

Γ((n− 1)/2 + dt)

Γ(2 + dt+1)

Γ(2 + dt+1 − dt)
Γ((n− 1)/2 + ht)

Γ((n+ 1)/2 + dt+1 + ht)

Thus, the joint prior of (d = (d2, ..., dT )) given (h, k,m), denoted as π(d|h, k,m), can be written as:

π(d|h, k,m) =

2∏
t=T

p (dt|ht, dt+1) with dT+1 = 0

and we will also use the notation p(d2:T−l|dT−l+1, h, k,m) for:

p(d2:T−l|dT−l+1, h, k,m) =

2∏
t=T−l

p (dt|ht, dt+1)

The prior p(k, h,m|Θ, β) is equal to:

p(k1|Θ, β)

T∏
t=2

(p(kt|ht,Θ, β)p(mt|ht)p(ht|kt−1,Θ, β))

= p(k1|Θ, β)

T∏
t=2

p(kt|ht,Θ, β)

λ
ht
t

ht!
mht
t

exp(λt)

Γ(αm + βm + ht)

Γ(αm + ht)Γ(βm)
mαm−1
t (1−mt)

βm−1


where p(k1|Θ, β) and p(kt|ht,Θ, β) have been defined in (27), and where αm = (n− 1)/2, βm = 1/2, as

defined before.

Thus, the product of the prior and the likelihood, p(k, h,m, d|Θ, β)L(Y |k, β), can be written as:

(2π)
−T/2

[
T∏
t=1

(kt)
n+2ht−2

2 + 1
2

]
exp

(
−1

2

T∑
t=2

kt

(
1

θ̃2t
+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃2
+ r21

))
×

T∏
t=2

 λ
ht
t

ht!
mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)Γ(βm)
mαm−1
t (1−mt)

βm−1

π(d|h, k,m)

(
T∏
t=1

ct

)−1

It is clear that the conditional posterior of kT |hT ,m, d is a G((n+ 1)/2 + hT , 2r̂
2
T ). Integrating out kT
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we find:

Γ ((n+ 1)/2 + hT )
(
2r̂2T
)n+1+2hT

2 (2π)
−T/2

[
T−1∏
t=1

(kt)
n+2ht−2

2 + 1
2

]
× (29)

exp

(
−1

2

T−1∑
t=2

kt

(
1

θ̃2
+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃2
+ r21

))
×

T∏
t=2

 λ
ht
t

ht!
mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)Γ(βm)
mαm−1
t (1−mt)

βm−1

 p(d|h, k,m)

(
T∏
t=1

ct

)−1

In order to find out the posterior conditional of hT , note that cT depends on hT and so the terms

that contain hT in expression (29) can be written as:

Γ ((n+ 1)/2 + hT )
(
2r̂2T
)hT λhT

T

hT !
mhT

T

Γ(n/2 + hT )

Γ((n− 1)/2 + hT )
× (30)(

2θ̃2T

)−hT

Γ(n/2 + hT )

hT !

(hT − dT )!

Γ((n− 1)/2 + hT )

Γ((n+ 1)/2 + dT+1 + hT )
=
(
λ̂T

)hT 1

(hT − dT )!

where we have implicitly used that λ̂T = λTmT r̂
2
T \θ̃2T and that dT+1 = 0.

Recall that the restriction dT ≤ hT comes from the prior of dT . Therefore (30) implies that

hT |kT−1,m, d is a SP (λ̂T , dT ). Summing up expression (30) over all values of hT ∈ [dT ,∞) gives(
λ̂T

)dT
exp(λ̂T ). Thus, integrating out hT from (29) we obtain:

(
λ̂T

)dT
exp

(
−(λT − λ̂T )

) (
2r̂2T
)n+1

2 (2π)
−T/2

[
T−1∏
t=1

(kt)
n+2ht−2

2 + 1
2

]
× (31)

exp

(
−1

2

T−1∑
t=2

kt

(
1

θ̃2t
+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃2
+ r21

))
×

T−1∏
t=2

 λ
ht
t

ht!
mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)

 T∏
t=2

(
1

Γ(βm)
mαm−1
t (1−mt)

βm−1
)
×

1

dT !

Γ((n+ 1)/2)

Γ((n− 1)/2 + dT )

Γ(2)

Γ(2− dT )

(
2θ̃2T

)−n/2
p(d2:T−1|dT , h, k,m)

(
T−1∏
t=1

ct

)−1

Noting that:

exp
(
−(λT − λ̂T )

)
= exp

−1

2

 ρ̃2T
θ̃2T
−mT

(
ρ̃T

θ̃2T

)2

r̂2T

 kT−1
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we obtain that:

exp

(
−1

2
kT−1

(
1

θ̃2T−1
+ r2T−1

))
exp

(
−(λT − λ̂T )

)
= exp

(
− 1

2r̂2T−1
kT−1

)

Therefore the conditional posterior kT−1|hT−1,m, d is a G((n+ 1)/2 + dT + hT−1, 2r̂
2
T−1). Thus, inte-

grating out kT−1 from (31) we obtain:

(
2r̂2T
)n+1

2
(
2r̂2T−1

)n+1
2 +hT−1+dT

Γ ((n+ 1)/2 + dT + hT−1)

mT

2

(
ρ̃T

θ̃2T

)2

r̂2T

dT

× (32)

(2π)
−T/2

[
T−2∏
t=1

(kt)
n+2ht−2

2 + 1
2

]
exp

(
−1

2

T−2∑
t=2

kt

(
1

θ̃2t
+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃2
+ r21

))
×

T−1∏
t=2

 λ
ht
t

ht!
mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)

 T∏
t=2

(
1

Γ(βm)
mαm−1
t (1−mt)

βm−1
)
×

1

dT !

Γ((n+ 1)/2)

Γ((n− 1)/2 + dT )

Γ(2)

Γ(2− dT )

(
2θ̃2T

)−n/2
p(d2:T−1|dT , h, k,m)

(
T−1∏
t=1

ct

)−1

The terms that depend on hT−1 are:

Γ ((n+ 1)/2 + dT + hT−1)
(
2r̂2T−1

)hT−1
λ
hT−1

T−1
hT−1!

m
hT−1

T−1
Γ(n/2 + hT−1)

Γ((n− 1)/2 + hT−1)
× (33)(

Γ (n/2 + hT−1)
(

2θ̃2T−1

)hT−1
)−1

(hT−1)!

(hT−1 − dT−1)!

Γ((n− 1)/2 + hT−1)

Γ((n+ 1)/2 + dT + hT−1)

=
(
λ̂T−1

)hT−1 1

(hT−1 − dT−1)!

where λ̂T−1 = λT−1mT−1r̂
2
T−1/θ̃

2
T−1.

This shows that hT−1|kT−2,m, d is a SP (λ̂T−1, dT−1). Therefore, if we integrate out hT−1 from
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(32) we get:

(
λ̂T−1

)dT−1

exp
(
−(λT−1 − λ̂T−1)

) (
2r̂2T
)n+1

2
(
2r̂2T−1

)n+1
2 +dT

mT

2

(
ρ̃T

θ̃2T

)2

r̂2T

dT

(2π)
−T/2 ×

[
T−2∏
t=1

(kt)
n+2ht−2

2 + 1
2

]
exp

(
−1

2

T−2∑
t=2

kt

(
1

θ̃2t
+ r2t

)
− 1

2
k1

(
1− ρ̃2

θ̃2
+ r21

))
×

T−2∏
t=2

 λ
ht
t

ht!
mht
t

exp(λt)

Γ(n/2 + ht)

Γ((n− 1)/2 + ht)

 T∏
t=2

(
1

Γ(βm)
mαm−1
t (1−mt)

βm−1
)
×

1

dT !

1

(dT−1)!

Γ((n+ 1)/2)

Γ((n− 1)/2 + dT )

Γ(2)

Γ(2− dT )

Γ((n+ 1)/2 + dT )

Γ((n− 1)/2 + dT−1)

Γ(2 + dT )

Γ(2 + dT − dT−1)
×

(
2θ̃2T

)−n/2 (
2θ̃2T−1

)−n/2
p(d2:T−2|dT−1, h, k,m)

(
T−2∏
t=1

ct

)−1

This shows that kT−2|hT−2,m, d is a G((n+1)/2+hT−2+dT−1, 2r̂
2
T−2). The other results in Proposi-

tion 3 can be obtained by using similar operations to recursively integrate out (kT−2, hT−2, ..., k2, h2, k1).

Proof of Proposition 4

The conditional posterior of T̃ , which is given in (16), comes simply from finding the terms that

depend on T̃ in the product of expression (11) times the prior for T̃ . Multiplying expression (16) times

the conditional prior of J (17) gives T̃ |J , which is clearly a Beta distribution. Similarly, the conditional

posterior of V |T̃ is proportional to the prior of V times the prior for T̃ .
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