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Abstract

The promoting diversity of science, or scientodiversity (variety, balance, and disparity in
research subjects), is a prominent issue in science and technology policy because of their
importance to research responsive to a wide range of socio-economic demands. However,
resource allocation on science has been carried out on a publication performance-based
without considering scientodiversity, given the lack of precise formulations and under-
standings such as those found in biodiversity studies. As a result, the decline in sciento-
diversity has emerged as a policy concern in Japan.

This problem on resource allocation is threefold; amount, distribution, and types. How
much should we invest in science research as a country? What distribution of resource to
research bodies is the optimum as a whole? What type of investment is the most appro-
priate to the promotion of scientodiversity? To answer these questions, this dissertation
investigates the impact of resource allocation on the pattern and process of scientodiver-
sity in three scales, such as country, university, and team, respectively.

First, I investigate the distribution of research subjects in the country-scale to develop
a framework analogous to that of biodiversity. The result suggests that scientodiversity
has similar statistical characteristics as biodiversity. Second, I evaluated the efficiency of
universities in terms of the quantity and diversity of their publication. The results indicate
the importance of the external research grant in university’s research expenditure in terms
of both publication and diversification. Third, I examined the impact of a mission-oriented
grant on scientodiversity in the team-scale. The results show that the research subjects
are better conserved under the mission-oriented program than the curiosity-driven one, a
finding contrary to the conventional expectation.

These results may not only validate the adoption of sophisticated concepts and tech-
niques from biodiversity studies in scientodiversity ones but also imply the possible “diversity-
aware” design of science and technology policy.
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Chapter 1

Introduction

1.1 Diversity in science

Diversity is a prominent concept widely used in wide variety of disciplines such as ecol-
ogy, biology, physics, statistics, information science, sociology, economics, and policy
studies (Grabher and Stark (1997); Hill (1973); Jost (2006); Limpert et al. (2001); May
(1975); Newman (2005); Page (2010); Stirling (2007)). It has also been recognized as
important in the science of science (Gibbons et al. (1994); Kuhn (1970); Merton (1973);
Rosenberg (1996); Stirling (2007)). The impact of diversity in science on knowledge
productivity has been studied in several aspects such as in terms of new combinations
of existing knowledge (Rafols and Meyer (2010); Uzzi et al. (2013)), balance of exper-
tise in interdisciplinary research teams (Aydinoglu et al. (2016); Barjak (2006); Lee et al.
(2015)), efficiency in grant distribution (Hicks and Katz (2011); Shibayama (2011)), and
geographical and gender balance (Williams and O’Reilly (1998)).

In particular, the promotion and maintenance of the diversity of research subjects, or
scientodiversity, are prominent issues in science and technology policy because of their
importance to research and innovation responsive to a wide range of societal demands
(Gibbons (1999); Lund Declaration (2009)). Despite the known tradeoffs of diversity
against transaction cost (Williamson (1993)), the economics of scale (Matthews and Mc-
gowan (1992)), and standardization (Cowan (1991)), scientodiversity has attracted great
attention in policy discussions as a key driver of innovation.

However, only a few aspects have been investigated in terms of the impact of science
policy on scientodiversity, and thus understanding of the key mechanisms of scientodiver-
sity has been limited. In many studies, it has been shown what type of research theme is
popular and/or growing (Börner (2010); Leydesdorff et al. (2013); Van Noorden (2015)),
but merely mentioned how those distributions are maintained by means of science policy.
This gap between observed scientodiversity and understanding of the key mechanism of
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Introduction

it may hinder the evidence-based science policy. For example, statistical studies of the
distribution of research topics, the universality of their distribution over many scales and
time periods, and underlying mathematical models that generate and explain observed
distributions may contribute to an understanding of the science of scientodiversity.

Despite the weak empirical evidence, a naïve conceptual analogy between sciento-
diversity and biodiversity raises primitive unanswered questions, notably the following.
How are scientific research subjects distributed over disciplines in a given country, univer-
sity, or research teams? Does that distribution differ substantially from country to country,
and if so how? Are those distributions similar across countries? How did research port-
folio of a university change with changes in policy and in time? What factors determine
that distribution and how might that distribution change over time? What kind of policy
tool is suitable for the effective and efficient maintenance of scientodiversity?

To answer these open questions, a promising way this thesis proposes is using an
approach similar to that used in biodiversity studies. The ecosystem of sciences, like or-
ganisms’ ecosystem, should be understood as an interactive system of science subjects
and the environment. Local-scale patterns and dynamics of research subjects may be
determined by local interaction among disciplines, like the inter-species interaction in
bioecosystem, but are also interrelated with the external environment. The amount and
structure of popular research topics in the local groups of different scales (i.e. countries,
universities, research teams, etc.) are strongly influenced by their environment, in partic-
ular, by the resource allocation (research facilities, research expenses, human resources,
etc.). Conversely, such environmental condition may be influenced by the composition of
research subjects and the manner of interaction among them in given local groups through
a discovery in local fields and/or the new combination of existing disciplines.

Therefore, an accurate grasp of the present situation and future prediction of sciento-
diversity are difficult without understanding the structure of the group of research topics
and the interaction among constituent disciplines. In order to conduct evidence-based
policies on science and technology, it is necessary to first understand the mechanism of
science ecosystem as an interactive system including the environment, and then consider
policy options for maintenance and/or promotion of scientodiversity based on these un-
derstandings.

1.2 Whys is scientodiversity a matter for concern?

In the philosophy and sociology of science, the scientodiversity has long been considered
important to stimulating creative imagination (Kuhn (1970)) and improving rigor (Mer-
ton (1973)) of sciences, and to the creation of a portfolio of flexible strategic responses to
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uncertain futures (Rosenberg (1996)). From the viewpoint of innovation studies, promo-
tion of learning (David and Rothwell (1996)), knowledge spillovers (Feldman and Kogler
(2010)) and cross-fertilization (Braczyk et al. (2004); Levén et al. (2014)) are also impor-
tant rationale for scientodiversity.

Recently, diversification of science has been regarded as a reflection of the complex-
ity of social needs (Gibbons (1999)). Science in the modern society is expected not only
to expand our intellectual frontier by discovery (Bush (1945)) but also to be responsive
to a wide variety of socioeconomic demands, facilitating work in different academic do-
mains and disciplines (Lund Declaration (2009); Schot and Steinmueller (2016)). Such a
societal requirement of science has played a key role in opening the eyes of universities
and public research institutes, as well as research funding agencies, to a vast unexplored
territory of research subjects. In many countries, scientists have taken on such mission-
oriented research, and funding agencies have consequently shifted their strategies towards
socioeconomic interest and away from academic curiosity.

This new objective-driven research, which has been well investigated as mode 2 sci-
ence (Gibbons et al. (1994)) or the Pasteur’s Quadrant (Stokes (1997)), often lies outside
traditional disciplinary boundaries of both basic or applied research. Complex and un-
certain socioeconomic needs have surely shifted a certain amount of resource allocation
across the spectrum of specific scientific subjects, towards mission-oriented research grant
and specific research projects. The excessive expectation for practical application and so-
lution to real problems may impair scientodiversity although scientodiversity is needed for
solving those socioeconomic problems. Nevertheless, the impact of the mission-oriented
grant has never been demonstrated empirically. The effect of resource allocation on the
diversity of science is still an open question in the policy sphere, even though its under-
standing is crucial to decision-making regarding both concentration and diversification
strategies. It is necessary to understand the mechanism of interaction between sciento-
diversity and science policy, and then to develop a new design of diversity-aware policy
based on the understanding.

In the past, the importance of diversity as important as (1) the importance for the
development of science itself, (2) the portfolio that flexibly responds to the demands of
society has been debated. These are derived from the sociology of science, the economics
of science, respectively. In this paper, we propose "view of science ecosystem" as the
third reason that diversity is important. In scientific research, though the importance of
ecosystems has been pointed out, there is no research on how scientific diversity is impor-
tant to the ecosystem. According to ecological findings, the pattern of species distribution
closely relates to ecological stability. It is known that the system stabilizes if there are a
large number of species in special conditions where there is interaction like the problem
raised for a long time. In recent years, it has also been pointed out that the diversity of
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interactions is important for the stability of the system. Even in scientific research, the
relationship between scientific diversity and system stability is not expected to be simple.
By understanding the role of science diversity in ecosystems, it is necessary to design
policy considering the ecosystem.

1.3 Declining diversity in Japanese science

The decline in the diversity of science has emerged as a policy concern in Japan (National
Institute of Science and Technology Policy (2015)). The results of a comprehensive ques-
tionnaire survey of Japanese researchers indicate that recent changes in the research en-
vironment, such as the growth of social expectations regarding rapid commercialization
of research results, the creation of bureaucratic management systems to prevent research
misconduct, and excessively performance-based evaluation of research, may serve to de-
crease the diversity of science, although there is as yet no concrete evidence of such a
decrease. Quantitative analysis of clusters of highly cited articles has revealed a decrease
in the coverage of clusters, i.e. of the percentage of research areas to which Japanese
researchers contribute (from 41% in Science Map 2008 to 33% in Science Map 2012),
(Igami and Saka (2016)).

Japan’s stagnation of scientific activity has also shown in low publication performance
as compared with other countries such as South Korea, China, and United Kingdom
(Fuyuno (2017)). The total number of articles published by Japanese authors indeed
slightly increased between 2005 and 2015 in Scopus database, but has not kept pace with
the rapid growth of the world’s average. Such decrease of Japan’s presence in the research
community is also evident in the decline of the ranking of Japanese research universities
(Quacquarelli Symonds Limited (2017)Times Higher Education (2017)). A comprehen-
sive survey on Japanese national universities in terms of both R&D budget and publication
suggested that the total amount and distribution of budgets are associated to the observed
decline of publication performance (Toyoda (2015)).

However, the relationship between the decrease in the number of papers and the de-
cline of scientodiversity may not be simple. Indeed, the decrease ratio greatly varies from
field to field observed 11 out of 14 research fields in Web of Science database (Fuyuno
(2017)). Changes in Japan’s total number of papers are dominantly influenced by changes
in the number of papers in popular fields such as medicine, physics, chemistry, material
science, engineering, biochemistry and molecular biology. In contrast, from a diversity
perspective, relatively small changes in unpopular research areas often imply a crucial
change in the whole ecosystem of scientific research activity. For example, mathematics
is relatively small in terms of the number of publication but has a large impact on many
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disciplines. This concept, i.e. relatively rare elements having a wide influence on the
entire system, has been well investigated as keystone species in ecology. Several diversity
indices are known to be sensitive to the tail of a distribution, i.e. relatively rare elements,
and widely used in ecology studies(Paine (1995); Power et al. (1996)). Moreover, the
observed decrease in coverage of research areas in Science Map (Igami and Saka (2016))
itself should not be hastily taken as a decline in scientodiversity. Rather, it may well
indicate a slow diversification in Japanese science, i.e. the percentage of research areas
in which Japanese researchers participate cannot keep pace with the increase in the total
number of research areas around the world.

Therefore, policies to improve average paper productivity do not always promote re-
search diversity. Rather, those may impair scientodiversity, i.e. those will reduce the
number of research topics and bring skew distribution. For example, it is expected that
the competitive research grants stimulate researchers to produce more articles with better
quality, but such grants sometimes motivate researchers to choose their research themes
that researchers can easily obtain results. In particular, the mission-oriented grant is
widely used and believed to limit researchers’ freedom to choose their research themes,
thus it should decrease scientodiversity. Promoting the mode 2 science (Gibbons et al.
(1994)) or the Pasteur’s Quadrant research (Stokes (1997)) is important in terms of re-
sponse to the social demands and may also contribute to improving research productivity.
However, excessive concentration of investment on a narrow area in the wide spectrum of
possible research topics may prevent blooming of diverse emerging research.

1.4 Research object and challenges

The objective of this research is to understand fundamental mechanism of diversity and
diversification of science and to apply it to design of new funding programs and compre-
hensive science, technology, and innovation (STI) policy.

The stagnation of government spending on science may have great impact on research
performance in Japan as mentioned in previous studies (Fuyuno (2017); National Institute
of Science and Technology Policy (2015); Toyoda (2015)). But the impact of such a
stagnation of government expenditure on scientodiversity may not be simply estimated
by the observed decline of the global share of the number of articles. The impediment
to the survey on the impact of R&D funding to scientodiversity in country-scale is the
lack of empirical and quantitative research because of the lack of standard framework for
quantitatively evaluating scientodiversity. Thus, the establishment of such methodology
will be the first challenge that this thesis has to tackle.

Another major challenge of this thesis is to show that the quantitative framework pro-
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posed by this thesis is effective in clarifying the relationship between scientodiversity and
research fundings. This thesis will try to demonstrate the effectiveness of the framework
on three different scales. First of all, I would like to clarify the relationship between R&D
expenditure and scientodiversity in country-scale as a whole picture. Because the growth
of Japanese R&D expenditure is about 20% in this decade, it is difficult to examine how
scientodiversity will change when changing R&D funding on a logarithmic scale by ana-
lyzing Japanese data only. Therefore, an inter-country comparison is necessary. Previous
reports on the decline of the number of research areas in comparison with other bench-
marking countries also suggest the importance of country-scale comparison (Igami and
Saka (2016)). The country-scale analysis of the relationship between scientodiversity and
R&D expenditure will have some predictions and implications to help Japan’s funding
decision.

Second, I would like to grasp the relationship between scientific diversity and research
funds in more detail than the national level. From the viewpoint of the flow of R & D
funds, the proportion of government spending is only 15.4% of research and development
funds nationwide, and more than 75% by private enterprises. Approximately half of this
15% of the funds will be invested in public research institutes and the other half in the
university. On the other hand, more than 70% of all the papers published by Japanese
institutions are published from universities with only 12% share as expenditure. Since
these ratios differ from country to country, the result of the country-scale analysis will
be only an understanding of the macroscopic behavior of scientodiversity. Therefore, in
order to maintain consistency between input and output, it is necessary to analyze only for
universities. The relationship between R&D funding and publication at Japanese national
universities is well studied, and it has been reported that the decrease in research time
and in the number of researchers in FTE count have a negative impact on the number of
research articles (Toyoda (2015)). In addition, the concentration of grant to few universi-
ties has also been pointed out as a key cause of the decline of publication performance in
terms of the effect of decreasing return to the scales (Shibayama (2011)). However, the
effect of the latter on the paper productivity is reported to be smaller than the former, i.e.
decrease in research time (Aoki and Kimura (2014)). Therefore, the analysis of sciento-
diversity at the university level is important in terms of the consistency of input-output,
the richness of past research (i.e. it implies the easy availability of data), and also the high
share of the research articles in Japan. Thus, universities should be investigated as the
essential performing sector not only for publication but also for scientodiversity.

Third, I would like to empirically analyze the realistic case as a policy option. As
already mentioned, it will be unrealistic for the Japanese government to increase the R&D
investment on a logarithmic scale (for example double). If the block grant to the national
university will not increase and competitive grants by the government and the grant from
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1.5 Outline of thesis

private companies will continue to increase, a possible policy option to promote and/or
manage scientodiversity is devising a way of allocating competitive funds. Competitive
funds are often allocated to researcher individuals or research teams. Therefore, the team-
scale analysis is important to reveal the impact of the ways to allocate competitive grants
(i.e. amount, distribution and type) on scientodiversity.

In this thesis, by overcoming the two key kinds of challenges (lack of framework and
evidence) through three empirical studies, I will answer to the research question “how
does the total amount, distribution and types of funding affect scientodiversity?”.

1.5 Outline of thesis

The outline of this thesis is as followings (see also Figure 1.1). Chapter 2 draws a quan-
titative methodology to handle scientodiversity. First, we introduce (general) diversity
indices developed and widely used in the field of ecology. Second, we compare sev-
eral literature databases because the resolution of classification code is crucial for this
research. We use J-Global database which has the high-resolution classification code
scheme. Third, we introduce a lognormal distribution and a random multiplicative gener-
ative model to explain the local pattern of scientodiversity.

Chapter 3 shows that the statistical behavior of scientodiversity at the country scale
can be understood by the analogy of ecology. In particular, we indicate that the character-
istic of scientodiversity is determined by its scales. For example, it can be expected that
richness of research subjects, which is one of the basic attributes of science ecosystem,
depends on scales of R&D investment with assuming that the number of research topics
is proportional to the number of articles (which is known to depend on R&D investment).
Indeed, scale dependence called species-area relationship is widely known in the study of
ecology (Hubbell (2001); May (1975)). By examining its analogy, we will indicate the
importance of scale in scientodiversity. This is also a justification of the argument in this
section.

Chapter 4 analyze the relationship between scientodiversity and budget at university
scale. In particular, we investigate the efficiency of publication and diversification of
Japanese national universities by data envelopment analysis when scientodiversity is re-
garded as one of the outputs of the research university. Research university plays a key
role in scientific research in many countries and also well investigated from the viewpoint
of public policy. However, the correspondence relationship between resource allocation
among universities and the distribution of research subjects as a characteristic of each
university is unobvious. The determining mechanism of university’s scientodiversity may
be different from the country’s one even the size of the budget is in the same order. The
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Figure 1.1: Schematic diagram of outline of the thesis.

chapter concludes the importance of external resources such as research grants from gov-
ernment and private companies.

Chapter 5 investigates the impact of the mission-oriented research grants on publica-
tion performance and scientodiversity at the team-scale. The relationship between inter-
disciplinarity in a research team and publication performance has been studied and the
result justifies the importance of interdisciplinary research. However, what the policy-
makers and funding agencies face in terms management and promotion of scientific re-
search is a problem in much large-scale compared with the scales of these empirical stud-
ies. For example, even the importance is evident, policy design to incentivize researchers
to build such an interdisciplinary team still needs concrete evidence. For this reason, how
to predict macroscopic results from findings obtained on micro-scales, or vice versa, how
to predict micro-scale changes from macroscopic environmental changes is required. This
recognition is an underlying concept of this chapter.

Chapter 6 summarizes the results obtained in chapters 3 to 5 and policy implications
and adds a comprehensive discussion. In particular, program design and recommendation
to improve richness and balance will be explored with a focus on comprehensive analysis
over three different scales.
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Chapter 2

Quantifying scientodiversity

2.1 Diversity indices

The methodologies for formalization and quantification of diversity are well established
in the fields of ecology and economics (Stirling (2007)). Several types of diversity index
have been proposed for the measurement of three heuristic features of diversity (variety,
balance, and disparity), and have been recently applied to scientometric studies (Mitesser
et al. (2008); Pan et al. (2012); Rafols and Meyer (2010); Wagner (2010)). Many investi-
gations of the structure of science have provided visualizations of the diversity and mutual
relationship among elements of scientific knowledge as maps of science (Börner (2010);
Leydesdorff et al. (2013)).

In this study, we use the total number of subject, the richness R, as a measure of va-
riety because this is the simplest and the most popular way to characterize a biological
community in a single parameter (May (1975)). Another popular single number for char-
acterization is the total number of individuals, N. In our case, this is equal to the total
number of papers in a group (i.e. a specified year and country). Notice that the research
subjects and biological species are quite different in their definitions. While the biological
species can be defined by objective methodologies (to some extent) such as morphological
species, genetic species, and ecological species, the classification of the research theme
in a bibliographic database is always more subjective (see also the limitation section in
Chapter 6). One may ask how the individuals (i.e. papers) are distributed among species
(research subjects). Usual models in ecology are defined as a class of functions for S(n),
the number of species with population n. The total number of species, or the richness R,
and the total number of individuals N are thus related to S(n) as

R =
Z •

0
S(n)dn (2.1)
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N =
Z •

0
nS(n)dn (2.2)

We use Gini-Simpson index

1�l = 1�
R

Â
i=1

p2
i (2.3)

for a measure of evenness.

Gini-Simpson index corresponds to the probability that two individual organisms you
happen to see are of the same species when you are walking through a field. As same as
Gini-Simpson index, Shannon-Wiener index H 0 =�ÂR

i=1 pi ln pi also evaluate rarity of an
event that two of your sample are of same species. However, Shannon-Wiener index puts
more weight on rare species than on common ones, while Gini-Simpson index puts same
importance on them. This idea is derived from Shannon entropy in information theory
in which the rarer news is considered to contain the richer information. Because of this
formulation, Shannon-Wiener index is more sensitive to rare species while Gini-Simpson
index is dominantly influenced by common species. Thus, Shannon-Wiener index is less
robust than Gini-Simpson one against numerical fluctuation of counting for rare species.
For example, in the beginning, you have N = 1000 samples and estimate that they can be
divided into three species with relative abundance p1 = 998/1000 and p2 = p3 = 1/1000.
Then, you can calculate Gini-Simpson index 1�l = 0.996 and Shannon-Wiener index
H 0 = 0.0158. However, if you accidentally notice an error in your classification and
finally find that the individual in the species 2 should be counted as the species 1, i.e.
p1 = 999/1000 and p3 = 1/1000, both indices must be corrected as 1�l = 0.998 and
H

0
= 0.00791, respectively. For the larger number of sample, this rare-species-sensitive

behavior of Shannon-Wiener index makes the noisier result. In this study, we choose
Gini-Simpson index for a measure of evenness since it is robust on a counting error.

Gini-Simpson index, by definition, depends on the value of R. It takes the maximum
value 1� 1/R when all classification codes have the equal population (pi = 1/R for any
category i). In order to measure balance independently from variety (or richness), we also
use an index called evenness defined as

E = 1/R
R

Â
i=1

p2
i (2.4)

corresponding to the Gini-Simpson index normalized by 1/R.

In this study, we assume that all classification codes in J-Global database (see the next
section) are equally different from each other, i.e. a disparity between subject i and j is
same as the disparity between subject i and k for any i, j, and k (i 6= j 6= k). This setting
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2.2 Bibliometric databases and classification codes

Table 2.1: Stirling’s general diversity index.

a = 0 a = 1

b = 0
Variety Disparity-weighted variety

D00 = Âi j(i6= j)(di j)0 = R(R�1)
2 D10 = Âi j(i6= j) di j

b = 1
Balance-weighted variety Balance/disparity-weighted variety

D01 = Âi j(i6= j) pi p j =
l
2 D11 = Âi j(i6= j) di j pi p j

is equivalent to Stirling’s general diversity index (Stirling (2007)) in the case of a = 0.
The relation between Stirling’s index Dab and richness R and Gini-Simpson index 1�l
are listed in Table 2.1. Disparity di j between subject i and j can be defined by similarity
in terms of co-occurrence pattern. Possible disparity-weighted calibration of diversity
indices used in this study is discussed in Chapter 6.

2.2 Bibliometric databases and classification codes

The diversity of research topics is often measured in terms of diversity of classification
codes attached to journals and/or papers, prompted by the availability of bibliographic
datasets. The ISI subject category is the most popular for systematical classification of
research subjects (Rafols and Meyer (2010)). These category codes are assigned to each
journal but not to papers, so this coarse classification cannot be sufficient for analysis
of the detailed structure of research topics. Descriptors of each paper, such as title, co-
author, and reference, are often incorporated to improve the resolution of the classifica-
tion. Several fine classification schemes are available, but only for specific fields and
specific research subjects. For example, the JEL code and the PACS code are often used
for classification in the field of economics and physics, respectively.

Clustering of research papers are also commonly used to quantify the diversity of
research topics by evaluating the variety of forward citation (i.e. the number of other pa-
pers citing the paper) and/or reverse citation (number of distinct references in the paper)
(Carley and Porter (2012); Van Noorden (2015)). This citation-based approach affords a
powerful description of relations among scientific subjects and a bird’s-eye view of whole
network structures (Leydesdorff and Rafols (2011); Leydesdorff et al. (2013); Trajtenberg
et al. (1997)). The clustering of papers by means of citation networks can generate a suf-
ficiently granular classification of research topics without an a priori classification system
(Mitesser et al. (2008); Schmidt et al. (2006)), although identification and consistency of
clusters over time remain challenging research targets in bibliometrics (Igami and Saka
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(2016)). Clustering has also made it possible to compute a number of diversity indices,
such as Gini coefficient, Shannon entropy, Rao-Stirling index, as well as network pa-
rameters such as degree, betweenness centrality, and cluster coefficient (Leydesdorff and
Rafols (2011); Wagner (2010)). Co-authoring network is one of the most useful founda-
tion tools for measuring diversity within a research team or research community (Abbasi
et al. (2011); Lee et al. (2015); Voutilainen and Kangasniemi (2015)).

Those clustering techniques are popular and mature for generation of the fine struc-
ture of research topics without an a priori classification scheme (Mitesser et al. (2008);
Schmidt et al. (2006)). However, the consistency of clusters over time can hardly be guar-
anteed because of the arbitrariness underlying the identification of each cluster. Thus,
detailed analysis of the diversity of subjects, which depends on the fine distribution of pa-
pers among clusters, needs to pay close attention to the definition of clustering parameters.
Text-mining is one promising alternative technique for extracting detailed information for
each paper and the structure of each research subject, although it requires considerable
computational resources (Kostoff (2012)). Thus, the measure of diversity of research sub-
jects with large coverage, fine granularity, and sure consistency is necessary for detailed
analysis of the diversity of science.

In this study, we used the J-Global database in order to mitigate the shortage of res-
olution of the classification scheme. The characteristics of each publication database are
shown in Table 2.4. The collection of the J-Global database is skewed to Japanese jour-
nals, but major international journals for the area we survey here are covered. The number
of journal collected in Scopus, Web of Science, and J-Global are summarized in Figure
2.1. The classification scheme in Scopus, which is often used for bibliometric studies,
is too coarse to analyze the diversity of research subjects at the level we need since the
category code is assigned on a journal-by-journal basis. For example, articles on super-
conductivity and supernovae in Physical Review Letters cannot be distinguished in terms
of Scopus classification because all articles in that journal are assigned to the one category
‘physics and astronomy’. The resolution of the category code system is also insufficient in
the ISI Web of Science database. The number of categories at the finest level in Scopus is
313 over all disciplines, which is slightly larger than that for the Web of Science database,
175. In contrast to those two major bibliographic databases, the J-Global database con-
tains JST classification code scheme that hierarchically distinguish research subjects in
science and technology field by 3,367 categories attached to each articles (Kitai (2008)),
although the collection of journal in the J-Global database is slightly different from the
Scopus and the Web of Science.

The granularity of the classification code influences the diversity index. Table 2.2
shows samples of distribution of the number of articles with each classification codes.
There are two classification codes, namely "fine" and "coarse", and the structure of sub-
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division is different depending on the classification code, e.g. category d includes only 2
subcategories d1 and d2 while category e have 6 subcategories. As summarized in Table
2.3, we compute the diversity indices by using "fine" or "coarse" classification scheme for
these 5 cases.

Case A is a flat distribution when viewed in the fine classification, but distribution
with a somewhat biased distribution in category e is seen in the coarse classification.
Although it is perfectly balanced distribution when viewed in the fine classification, the
Gini-Simpson coefficient does not become 1 as described in the previous section. How-
ever, Evenness is equal to 1 because it is normalized by the value of R. Evenness com-
puted by the coarse classification is 0.909, which indicates slightly skewed distribution.
Conversely, Case B has a flat distribution (E = 1) in the coarse classification, but it looks
skewed in the fine classification (E = 0.882). Case C is a flat distribution in the fine clas-
sification as same as Case A, but Gini-Simpson index for Case C is smaller than that for
Case A because of its small R as discussed in the previous section. Case D and Case
E have the same distribution shape in the fine classification and the diversity indices in
the fine classification are exactly the same in those two cases. However, in the coarse
classification, the distribution is not necessarily the same, reflecting the structure of the
classification code, and then the distribution of Case E looks more skewed than that of
Case D. That is, there are cases in which the skewness of distribution to be noticed is
hidden by subdividing the classification code, but conversely, there may be a skewness
that cannot be seen unless classification codes are enough granular. In parallel with the
discussion of what to be the fair balance, it will be necessary to consider what to be the
appropriate granularity of classification.

In the classification system, there are five hierarchical ranks expressed with a clas-
sification code A1A2N1N2N3N4N5A3 where Ai and Ni are alphabet character and num-
ber, respectively. Five ranks are described by A1, A1A2, A1A2N1N2, A1A2N1N2N3N4, and
A1A2N1N2N3N4N5 in the order of fineness, and A3 is a check digit. Number and examples
of the classification code in each rank are listed in Table 2.5. For example, in the JST
classification scheme, the finest-level code BM03043X represents Electric conduction in
crystalline semiconductors. This code reflects the structure of code system as the fol-
lowings; the first character B represents Physics and BM represents Electronic structure,
electrical, magnetic and optical properties as a subcategory of B: Physics, the following
two digits 03 represents Electrical properties: electronic conduction as a subcategory of
BM, and the following 04 represents Electric conduction in semiconductors and insula-
tors.

This classification scheme on scientific paper resembles to Linnaean taxonomy in
terms of its hierarchical rank-based structure which opposed to cladistics approach. The
classification code was developed based on the Universal Decimal Classification through
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Table 2.2: Sample distributions for the comparison of granularity.

classification code Case A Case B Case C Case D Case E

a

a1

2,000

500

2,000

500

4,000

1,000

3,600

975

400

25

a2 500 500 1,000 925 75

a3 500 500 1,000 875 125

a4 500 500 1,000 825 175

b

b1

2,000

500

2,000

500

4,000

1,000

2,800

775

1,200

225

b2 500 500 1,000 725 275

b3 500 500 1,000 675 325

b4 500 500 1,000 625 375

c

c1

2,000

500

2,000

500

2,000

1,000

2,000

575

2,000

425

c2 500 500 1,000 525 475

c3 500 500 0 475 525

c4 500 500 0 425 575

d
d1

1,000
500

2,000
1,000

0
0

700
375

1,300
625

d2 500 1,000 0 325 675

e

e1

3,000

500

2,000

333

0

0

900

275

5,100

725

e2 500 333 0 225 775

e3 500 333 0 175 825

e4 500 333 0 125 875

e5 500 334 0 75 925

e6 500 334 0 25 975

Total 10,000 10,000 10,000 10,000 10,000

14



2.2 Bibliometric databases and classification codes

Table 2.3: Comparison of diversity indices between the fine and coarse classification.

Case A Case B Case C Case D Case E

Fine

Richness 20 20 10 20 20

Gini-Simpson 0.950 0.943 0.9 0.933 0.933

Evenness 1 0.882 1 0.750 0.750

Coarse

Richness 5 5 3 5 5

Gini-Simpson 0.780 0.800 0.640 0.739 0.667

Evenness 0.909 1 0.926 0.766 0.601

1213

9940

25244

6

279

401

9903

WoS

Scopus

J−GLOBAL

Scopus

J-GLOBALWeb of Science

Figure 2.1: Comparison of bibliographic databases.
The numbers included in the Venn diagram represent the number of journals recorded in
each database (as of December 2016). For example, 401 journals are registered in both J-
Global and Scopus, while 9903 journals (including many Japanese journals) are recorded
only in J-Global. Identification and matching of the journal were done by ISSN. The list
of journals contained in the Web of Science and Scopus were downloaded from each web
site.
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Table 2.4: Comparison of bibliographic databases.

Web of Science Scopus J-GLOBAL

Collection (international journal) Approx. 12,000 19,829 5,011

Collection (Japanese journal) 373 417 9,514

Number of records Approx. 55M Approx. 30M Approx. 35M

Number of category (in the coarsest level) 22 27 24

Number of category (in the finest level) 175 313 3,367

Unit of classification Journal Journal Paper

As of April 2015

expert knowledge in 1975 and revised in 1981 with reference to the Broad System of
Ordering developed by UNESCO (Sakagami (1989)). In this study, we use the latest ver-
sion of the classification system, revised in 1993. Up to three classification codes can be
attached to one article in J-GLOBAL database. The average number of attached classifi-
cation code per paper is 1.31. Due to this property that multiple classification codes can
be attached to a single article, it is possible to classify the paper of a new interdisciplinary
research topic without any drastic revises of the classification code system. More than
90% of classification codes are attached to at least 1000 papers in J-Global database as
shown in Figure 2.2.

2.3 Datasets

In this research, we used data from several sources. The number of papers (including
original article, review, proceedings) is computed from the papers in the journals recorded
in both J-Global and Scopus commonly. The raw data (tsv format) of J-Global database
and the conversion table of the document ID between the databases was provided by the
department of information planning, Japan Science and Technology Agency. Following
with the lists of the article retrieved from Scopus on the web, SciVal calculates the number
of highly-cited articles. J-Global gives the count of classification codes for a certain group
of articles, and we can easily compute diversity indices from it. Scopus also gives the
distribution of subject in its classification scheme (i.e. it is much coarser than that of
J-Global) for a certain group of articles.

The expenditure on research and development (ERD) used in Chapter 3 has been
retrieved and calculated from World Development Indicators (The World Bank (2017)).
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Figure 2.2: Abundance-rank plot of the classification codes in J-Global.
The plot shows the number of articles for each 3367 classification codes in descending
order of the number of articles. The number of articles with the most popular classification
code in this database is about 3⇥105, while there are some rare classification codes with
less than 1000 articles. The proportion of such rare classification codes is less than 10%.

Table 2.5: Example of JST classification code.

Rank Number Example Index

1 24
B Physics

E Biology

2 155
BM Electronic structure, electrical, magnetic and optical properties

EG Microbiology, virology

3 533
BM04 Superconductivity

EG04 Virology

4 133
BM0404 Superconducting materials and applications

EG0404 Virus physiology

5 3,367
BM04042N Superconducting magnets

EG04042Y Physiology and pathogenicity of virus infection
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Figure 2.3: Comparison between J-Global and Scopus.
The number of articles recorded in Scopus (including proceedings and reviews) is shown
in the gray bar. Among those articles, the number of articles recorded also in J-Global
is plotted by the green bar. This identification of articles was done by the journal name,
the title of articles, and the author name. The identification rate indicated by black circles
(read on right axis) is approximately 30% in this time window.

The information of the expenditure and human resources of Japanese national universities
used in Chapter 4 are based on the microdata of "the Survey of Research and Develop-
ment, Ministry of Internal Affairs and Communications". All aggregation and statistical
calculation have been done by the authors, independently from the ministry. The raw data
became available only after our application for "Secondary use of official statistics" was
accepted by the Statistics Bureau. These input data matched the bibliometric data by the
name of the university. The information of the principal investigators such as affiliation,
position, the location of their affiliated institution used in Chapter 5 was retrieved from
the public databases, such as the JST Project Database and the Database of Grants-in-Aid
for Scientific Research, utilized by the funding agencies. Those researchers were also
identified in the Scopus database by their name and affiliation.
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2.4 Log-normal distribution

2.4 Log-normal distribution

The log-normal distribution is most often used to describe distribution seen in ecology
(Limpert et al. (2001)), and has been observed in this scientodiversity studies as shown in
Chapter 3 and Chapter 5. In general, the lognormal distribution requires three parameters
S0, µ , and s for its specification:

S(n) = S0 exp

�(lnn�µ)2

2s2

�
. (2.5)

Instead of these three parameters S0, µ , and s , ecologists prefer to use the richness R,
nmax, which is the number of individuals in the most abundant species, and a parame-
ter g ⌘ log2 nmode/ log2 nmax, where nmode represents the mode of nS(n), which is also a
Gaussian function of lnn. This new set of parameters {R,nmax,g} is sufficient to deter-
mine a unique lognormal distribution since both R and g depend S0 and s , while nmax can
be written as a function of S0, µ , and s (see Appendix A). The Gini-Simpson index can
be computed from given parameters S0 and s , and thus it cannot be a new parameter to
be added to the parameter set.

The parameter g characterizes the shape of the lognormal distribution. A distribution
with smaller g is relatively sharper than one with larger g . The g is also correspond-
ing to the positional relationship between S(n) and nS(n). One of the reasons why g is
so popular in ecology studies is Preston’s “canonical hypothesis” which proposes g = 1
(Preston (1962, 1980)). This empirical assumption fits many data in biodiversity study
and is still an open question whether it derives from purely mathematical reason or bio-
logical and/or ecological one. One strong support for this phenomenological hypothesis
is the prediction of species-area relations in power law by assuming canonical lognormal
species-abundance distribution (Irie and Tokita (2012); May (1975)). Regardless of its
theoretical origin, if the lognormal distribution is “canonical”, i.e. g = 1, the lognormal
distribution can be uniquely determined by only two parameters, R and nmax as a purely
mathematical consequence.

In Chapter 3, we estimate g from histograms of S(n) and nS(n) (see Figure 3.5). We
count the number of papers ni for each subject i, and then create histogram of the subjects
with bin width of 0.5 on a scale of logarithms to the base 2 (Preston’s octave), i.e. count
the number of subjects each of which contains between n/ 4p2 and n⇥ 4p2. We compute
the histogram of nS(n) from S(n) for each bin, and then estimate g by observed nmax

and nmode. We also count the total number of subjects, i.e. the richness R, and the Gini-
Simpson index is calculated from ni.

The generative model for lognormal distribution is random multiplicative process
(Render (1990)). Consider a binary sequence in which the positive numbers z1 and z2
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(z1 > z2) independently appear with probabilities p and q = 1� p, respectively. When
there are S elements in this sequence, the probability function p(k) can be written as the
Gaussian form,

p(k) =
1p

2ps2
norm

exp
✓
�(k�µnorm)2

2s2
norm

◆
(2.6)

where an average µnorm = Sp and variance s2
norm = Spq, as the continuum limit approxi-

mation of a binary product

p(n) =

0

BB@
S

k

1

CCA pkqS�k (2.7)

By using the generic value of the product X = zk
1zS�k

2 = (z1/z2)kzS
2, the number of z1 in

the sequence can be rewritten as

k =
log X

zN
2

log z1
z2

= log
✓

X
b

◆ 1
a

⌘ logm (2.8)

where a = logz/z2 and b = zS
2. Then, by transformation of the variable k to X , one obtains

the log-normal distribution function (i.e. normal distribution along logX)

1 =
Z •

�•
p(n)dn

=
Z •

0

1
m

p(logm)
dm
dX

dX

=
Z •

0

1p
2ps2

norma2

1
X

exp
✓
�(logX �µnorma� logb)2

2s2
norma2

◆
dX (2.9)

The average X̄ and median X̃ of the log-normal distribution function p(X) with parameters
µ = µnorma+ logb and s = snorma are computed as
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X̄ = exp
✓

µ +
s2

2

◆

= exp

 
N p log

✓
z1

z2

◆
+N logz2 +

1
2

N p(1� p)
✓

log
✓

z1

z2

◆◆2
!
, (2.10)

X̃ = exp(µ)

= exp
✓

N p log
✓

z1

z2

◆
+N logz2

◆
. (2.11)

The average X̄ ,median X̃ , a lognormal parameter s are plotted as a function of design
parameters {z1,z2, p} in Figure 2.4 and 2.5.

The investment portfolio is important from the perspective of scientodiversity and
science policy. For example, in the case of KAKENHI (Grant-in-Aid for Scientific Re-
search), the relevant funding agency JSPS has adjusted the adoption rate so that there is
not much difference between scientific fields, and does not define priority areas. Indeed,
the adoption rate seems to be constant among all disciplines. This may be fair for all disci-
plines. However, the constant rate makes the adopted number non-constant (and thus the
total amount of allocated grant) over research subjects. The number of adopted proposals
simply be proportional to the number of submitted proposals which may be associated
with the population of the specific research community. This setting can be understood
as the Matthew effect, i.e. the rich discipline gets richer, and the poor get poorer. By
repeating this process, the distribution of the number of papers among disciplines will be
skewed.

Assume that the resource allocation Bi(t) to the subject i at time t is proportional to
the number of applications Ai to the call with the adoption rate p0, which is independent
of subject i, the number of papers produced in that field can be written in a simple linear
model;

xi(t +1) = biBi(t) = bi p0Ai(t), (2.12)

where bi is a coefficient, which represents (effective) productivity. The number of appli-
cation Ai(t) may be proportional to the size of research community, which is estimated by
the number of publication xi(t) with a coefficient ai, then the microscopic process of the
Matthew effect discussed above is described as a following simple time-evolution model;

xi(t +1) = bi p0aixi(t) (2.13)
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Figure 2.4: Contour plot of (a) average X̄ , (b) median X̃ , and (c) a lognormal param-
eter s for constant z2.
Under this condition, s hardly depends on p when z1 is small (z1 ⇠ 1.1), but suddenly
becomes sensitive to p when z1 increases to z1 ⇠ 2.
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Figure 2.5: Contour plot of (a) average X̄ , (b) median X̃ , and (c) a lognormal param-
eter s for constant p.
Under this condition, the ratio of z1 and z2 is a parameter characterizing X̄ , X̃ , s , re-
spectively, i.e. the contour lines are almost linear in the z1-z2 plane. The parameter area
(z1 < z2) which is not permitted by definition is represented by a gray hatched area.
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This model is known as a general random multiplicative process, which generate log-
normal distribution (Limpert et al. (2001); Newman (2005); Render (1990)).

2.5 Production function

The shape of the distribution function is closely related to the shape of the production
function. Given the distribution shapes of input X and output Y , the functional shape of
the production function Y = F(X) is identified as the followings. First, let the cumulative
distribution function of X and Y be represented with at most two parameters as follows:

P(X � x) = FX(x; µX ,sX), (2.14)

P(Y � y) = FY (y; µY ,sY ). (2.15)

Then, assuming that the production function F(X) monotonically increases with increase
of X , the inverse function of production function F�1(y) is computed by use of the rela-
tionship between those two distribution functions as

FY (y; µY ,sY ) = FX(F�1(y); µX ,sX). (2.16)

When both FX(x; µX ,sX) and FY (y; µY ,sY ) are lognormal distribution, the cumulative
distribution function can be explicitly wrote down as

FX(x; µX ,sX) =
1
2

erfc
✓

lnx�µX

sX
p

2

◆
, (2.17)

FY (y; µY ,sY ) =
1
2

erfc
✓

lny�µY

sY
p

2

◆
. (2.18)

Then, the production function F(X) can be formalized as the Cobb–Douglas production
function:

Y = F(X) = exp
✓

µX sY �µY sX

sX

◆
X

sY
sX (2.19)

Concrete derivation and cases where X and Y have other distribution shapes are summa-
rized in Appendix B.
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2.6 Data envelopment analysis

Table 2.6: Classification of Japanese national universities by their size.

Class Budget size (1010JPY) Medical STEM Social Science Education

1) Research ~10 O O O O

2) Large ~5 O O O O

3) Middle ~3 O O O O

4) Tech ~1 O

5) Non-med ~1 O O O

6) Social ~1 O O

2.6 Data envelopment analysis

The data envelopment analysis (DEA) methodology was developed for empirical estima-
tion of production frontiers in operations research and economics (Charnes et al. (1978))
and has been used to measure the productive efficiency of decision-making units. DEA
is often used to assess the efficiency of not an only private company but also public and
not-for-profit organizations such as hospitals (Kuntz et al. (2007)), police (Aristovnik
et al. (2014); Thanassoulis (1995)), and universities (Ahn et al. (1988); Johnes (2006);
Wolszczak-Derlacz and Parteka (2011)). Since DEA does not assume any particular pro-
duction function, i.e. non-parametric, the most efficient decision-making units defined by
DEA form “best-practice frontier” (Cook et al. (2014)) effective only within the data and
may not necessarily form a general production frontier.

In this study, we select 69 national universities in Japan as listed in Table 2.6 and 2.7
where the universities are categorized in 6 classes according to the previous study (Toyoda
(2015)). The universities in the category of 1) Research, 2) Large, and 3) Middle have the
whole set of departments of science, technology, engineering and mathematics (STEM),
medical, social science and education. Those three categories are classified by means of
the size of the budget. The universities in 4) Tech, 5) Non-med, and 6) Social have similar
size of the total budget (⇠ 1⇥ 1010 JPY/year) but their configuration of the department
is different. The universities in 5) Non-med have the department of the STEM (Science,
Technology, Engineerings, and Mathematics), social science and education, while ones in
4) Tech and 6) Social have one or two of these three.

The technical efficiency in DEA is defined as a ratio of the weighted sum of multiple
outputs to a weighted sum of multiple inputs, and the weights are calculated by solving a
linear programming in a configuration and an assumption model on the structure of return
to scale (Cooper et al. (2011)). In this study, we use the output-oriented model where
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Table 2.7: Japanese national universities.

Class Universities Number

1) Research Hokkaido University, Kyoto University, Kyushu University, Nagoya University,
Osaka University, The University of Tokyo, Tohoku University, Tokyo Institute of
Technology

8

2) Large Chiba University, Hiroshima University, Kanazawa University, Kobe University,
Okayama University, Tokyo Medical and Dental University, University of Tsukuba

7

3) Middle Akita University, Asahikawa Medical College, Ehime University, Gifu University,
Gunma University, Hamamatsu University School of Medicine, Hirosaki University,
Kagawa University, Kagoshima University, Kochi University, Kumamoto University,
Mie University, Nagasaki University, Niigata University, Oita University, Saga
University, Shiga University of Medical Science, Shimane University, Shinshu
University, The University of Tokushima, Tottori University, University of Fukui,
University of Miyazaki, University of the Ryukyus, University of Toyama, University
of Yamanashi, Yamagata University, Yamaguchi University

28

4) Tech Japan Advanced Institute of Science and Technology, Kitami Institute of Technology,
Kyoto Institute of Technology, Kyushu Institute of Technology, Muroran Institute of
Technology, Nagaoka University of Technology, Nagoya Institute of Technology,
Nara Institute of Science and Technology, Obihiro University of Agriculture and
Veterinary Medicine, The University of Electro-Communications, Tokyo University
of Agriculture and Technology, Toyohashi University of Technology

12

5) Non-med Ibaraki University, Iwate University, Nara Women’s University, Ochanomizu
University, Saitama University, Shizuoka University, Utsunomiya University,
Yokohama National University

8

6) Social Fukushima University, Hitotsubashi University, Osaka Kyoiku University, Shiga
University, Tokyo Gakugei University, Wakayama University

6
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2.6 Data envelopment analysis
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Figure 2.6: Schematic diagram of “best practice frontier” in data envelopment anal-
ysis.
As an example of 1-input 1-output model, the number of papers and the budget of the six
universities (A to F) are plotted. The productivity of each university can be calculated
by the output per input (i.e. publication per budget). The university B has the highest
productivity among these six universities, and its productivity is equal to the slope of the
straight line connecting the origin and the point B as indicated by a dashed line. For
the output-oriented DEA, universities A, B, C, and D are defined as the best performer
in this dataset thus they form the best practice frontier as illustrated in the green line.
DEA efficiency of these universities is set to 1 by definition. The DEA efficiency of
the university E, which shows smaller output than B although E has same input as B, is
calculated by the ratio between the productivity of university E and B. It is always smaller
than 1.

the linear programming model is configured to determine a potential output of decision-
making unit given its inputs if it operated as efficiently as units on the best-practice frontier
do as shown in Figure 2.6. We also assume variable returns to scale (Banker et al. (1984)).

As the benchmarking of universities, number of students, number of staffs including
professors, operational expense, and investment to infrastructure are commonly used as
inputs, and number of graduates, gross revenue, publication, and total amount of research
grants are often used as outputs (Ahn et al. (1988); Avkiran (2001); Bhattacharyya and
Chakraborty (2014); Castano and Cabanda (2007); Johnes (2006); Sinuany-Stern et al.
(1994); Wolszczak-Derlacz and Parteka (2011)). In this study, we use number of prin-
cipal investigators (including full professors, associate professors, assistant professors,
and lecturers), number of PhD students, number of researchers (including post-docs),
and R&D expenditure on goods as inputs, and total publication count and ratio between
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the number of the top 10% highly cited papers and total number of papers measured by
Scopus as output. The number of paper published by a specified national university is
counted as the whole count, i.e. a paper written by two authors whose affiliations are
different but both are one of 69 national universities is double counted in our dataset.
As well as the DEA efficiency f p for publication, we also compute DEA efficiency f d

for diversification with use of diversity indices namely richness and evenness as listed in
Table 2.8 as outputs. The scale economy of each university is also estimated by compar-
ison of efficiencies calculated by different assumptions such as variable returns to scale
fi, constant returns to scale f CRS

i , increase returns to scale f IRS
i and decrease returns to

scale f DRS
i , where i represents a university (i = 1 ⇠ 69). When f j = f CRS

j , the scale econ-
omy of university j is estimated as constant returns to scale. For the case of f j 6=f CRS

j ,
the scale economy of university j is estimated as decrease (increase) returns to scale for
f DRS

j > f IRS
j (f DRS

j < f IRS
j ). We set a one-year time lug between the three-year moving

average of inputs and outputs.
Since the survey of expenditures and human resources of national universities has

been done in every Japanese fiscal year (begins from April), not in the nominal year
(begins from January), the actual minimum lug is 0.75 year. For example, the annual
average of expenditure and number of researchers between April 1, 2001, to March 31,
2004, and the annual average of the number of papers published between January 1, 2002,
and December 31, 2004, are used to compute efficiencies of the term 2002. In order to
estimate the impact of R&D budget to the publication and diversification efficiencies, we
attempted panel Tobit regression with several variables listed in Table 2.8. A schematic
diagram of our data analysis is shown in Figure 2.6. Since the efficiencies calculated by
DEA is regulated as 0  fi  1 by definition, we use a two-limit Tobit model (by setting
the value for upper and lower limit)

fi =

8
>>><

>>>:

0 (f⇤
i  0)

f⇤
i (0 < f⇤

i  1)

1 (f⇤
i > 1)

(2.20)

with a latent variable f⇤
i written as a quadratic model;

f⇤
i = b1xi +b2x2

i + ei, (2.21)

where b1 and b2 determine the relationship between independent variables and the latent
variable and ei is a normally distributed error. We use the university classification dummy
and year dummy as control variables. It is confirmed that there is no influence of multi-
collinearity in the Tobit regression since correlation coefficients between any two of the
five variables are less than 0.6.
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Figure 2.7: Outline of analysis.
All input variables, i.e. expenditures and human resources of national universities used in
this study are based on the microdata of "the Survey of Research and Development, Min-
istry of Internal Affairs and Communications". All aggregation and statistical calculation
have been done by the authors, independently from the ministry. The articles used here
are identified by the affiliation (i.e. the name of national university) of the authors. In this
thesis, only the articles commonly recorded in both Scopus and J-Global were analyzed.
The number of papers and the top-10%-cited articles in each field defined by Scopus was
counted in Scopus for each national university. The richness and evenness indices are
computed by the number of classification codes and the number of papers with each JST
classification codes in J-Global. First, two set (i.e. DEA on publication and on scientodi-
versity) of 4-input 2-output DEA are performed. Then, the panel Tobit regression on those
two DEA efficiencies as dependent variables. Notice that the independent variables used
here are different from that used for inputs of DEA. We used both a linear and quadratic
model.
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Table 2.8: Definition of variables used in the data envelopment analysis and the panel
Tobit regression.

Variable Definition Source

Data Envelopment Analysis

Inputs

nPI Number of principal investigators

Statistics
Bureau*

ndoc number of PhD students

nres number of post-docs & researchers

Bgoods
RD R&D expenditure on goods

Outputs

puball total publication count

Scopus &
JGLOBAL

pubt10 Ratio of publication with top 10% citation to total
publication

R Richness (see the Method section)

E Evenness (see the Method section)

Panel Tobit regression

dependent
variable

f p Technical efficiency for publication (calculated by
DEA)f d Technical efficiency for diversification

independent
variable

B Total expenditure

Statistics
Bureau*

BRD R&D expenditure

Bex
RD R&D expenditure supported by external grants

Bblock block grant per PI; (B�Bex
RD)/nPI

Bex
com external grants from private company

rex ratio of external grant to the whole R&D budget;
Bex

RD/BRD

rRD ratio of R&D budget to total budget; Bex
RD/B

rcom ratio of external grants from private company;
Bex

com/Bex
RD

*All variables of budgets and human resources of national universities used in this study are based on the
microdata of "the Survey of Research and Development, Ministry of Internal Affairs and
Communications". All aggregation and statistical calculation have been done by the authors,
independently from the ministry.
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2.7 Propensity score matching

2.7 Propensity score matching

An approach often used in quantitative analysis on the policy effect is the Difference in
Differences (DID) technique. One way of obtaining that treatment effect on publication
performance by research grants would be to subtract publication count for non-awarded
researchers from one for awardees. However, the allocation of research grants is unlikely
to be at random. Indeed, in the case of KAKENHI and CREST program (as discussed in
Chapter 5), awardees are selected by the peer-review of proposals and oral presentations.
The awardee researchers may be more productive, have more reputations, or have better
research career and position, and those variables can be referred at some point in the
selection process. Therefore, the positive effect would be easily estimated by such simple
comparison (cross-section estimation) although it is difficult to distinguish net treatment
effect of the research grant from other unintended external causes as shown in Figure 2.8.
The simple comparison of the performance of treatment group samples between before
and after the specific grant awards cannot be understood as the treatment effect, too. To
this extent, the direct comparison between the awardee and non-awardee researchers may
be biased in terms of an intrinsic difference between the natures of researcher groups.

In order to mitigate this sampling bias, we attempted the propensity score matching
(PSM) method to set appropriate samples. First, we ran Probit regression for the prob-
ability of adoption to the CREST program with several variables, such as the position,
affiliation, publications and citations before the application to the grant, which seems to
be relevance to adoption. The definition of variables is listed in Table 2.9. The participa-
tion probabilities, or the propensity scores, were calculated for each individual researcher.
Second, we matched CREST awardees (treatment group) to one or more KAKENHI
awardees (control group) by comparing their propensity score as illustrated in Figure
2.9. We dealt with the matching in two ways: the caliper matching (the caliper size is
0.03) and the kernel matching (the bandwidth is 0.001) under the common support condi-
tion. Then, we statistically tested the balance of the covariates across treatment (CREST
awardee) and control (KAKENHI awardee) groups in the matched sample. We verified
the balance by t-test on each variable as well as the likelihood-ratio test over all variables
used in the Probit regression. The parameters used in the matching process written above
were determined from the detailed analysis on the parameter dependency of the p-value
of the likelihood-ratio test.

31



Quantifying scientodiversity
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BA: Before-after comparison
CS: Cross-section estimation
DID: Difference in differences

Figure 2.8: Schematic diagram of the difference in differences.
The simplest way to estimate the treatment effect is to calculate the difference between
before and after treatment for the treatment group (y11 � y00). However, this before-after
comparison (BA) also includes the effect of the trend in a whole sample including the
treatment group. The effect of the trend can be removed by calculating the difference
between the BA of the treatment group and the control group, that is, the difference in
differences (DID), namely (y11 � y00)� (y01 � y00). Notice that it is assumed that the
effect of the trend of the treatment group and the control group are same (as depicted in
the blue and red hatched triangles). The value y01 cannot be observed because this cannot
happen, i.e. counter-factual. The cross-section estimation (CS) is also inappropriate to
estimate the treatment effect as illustrated in the figure.
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Table 2.9: Definition of variables.

variables definition

dUT If the affiliation of researcher is the University of Tokyo, d_UT=1.

dFIU If the affiliation of researcher is either the former Imperial University, such as the
University of Tokyo, Kyoto university, Tohoku university, Kyushu University,
Hokkaido University, Osaka University, or Nagoya University, d_FIU=1.

dprof If the position of researcher is professor, d_prof=1.

dkanto If the affiliating institution is located in Kanto area, d_kanto=1.

dkansai If the affiliating institution is located in Kansai area, d_kansai=1.

pubave
before Average publication count in three years prior to participation.

pubave
going Average publication count in five years of participation.

pubave
after Average publication count in three years after finishing the program.

citeave
before Average citation count in three years prior to participation.

citeave
going Average citation count in five years of participation.

citeave
after Average citation count in three years after finishing the program.

top10ave
before Average publication count of top 10 % cited paper in three years prior to

participation.

top10ave
going Average publication count of top 10 % cited paper in five years of participation.

top10ave
after Average publication count of top 10 % cited paper in three years after finishing the

program.

cppave
before Average of citation per publication count in three years prior to participation.

cppave
going Average of citation per publication count in five years of participation.

cppave
after Average of citation per publication count in three years after finishing the program.

citemax
before Maximum of citation count in three years prior to participation.

citemax
going Maximum of citation count in five years of participation.

citemax
after Maximum of citation count in three years after finishing the program.
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Figure 2.9: Schematic diagram of the propensity score matching.
If we can compare the treated and non-treated cases among the treatment group samples,
the treatment effect can be estimated correctly. However, the former does not occur in
reality (i.e. counterfactual). The treatment effect can be estimated by comparison between
samples with similar probability of treatment, i.e. propensity score. In our case, the
propensity score is equivalent to the awarding probability of CREST for each PIs. We
compare the researcher A in the treatment group and the researcher D of the control group
since they have same propensity score. In this case, the researcher D is a researcher who
has a high probability (80%) but was not actually adopted by CREST. On the contrary,
the researcher C is adopted despite the probability being estimated to be as low as 30%,
and will be compared with the researcher F who has the same propensity score.
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Chapter 3

Country-scale analysis

3.1 Analogy between scientodiversity and biodiversity

There are several bibliometrics studies (either implicitly or explicitly inspired by biodiver-
sity) using an approach similar to that used in ecology (Mugabushaka et al. (2016); Stir-
ling (2007); Wagner (2010)). The application of biodiversity indices, e.g. Gini-Simpson
index, Shannon–Wiener index, and Leinster–Cobbold index, to the distribution of papers,
has been verified as a powerful tool for investigation of interdisciplinarity. Besides di-
versity indices, the shape of the distribution of research subjects at the country level may
give us new information about science activities. The shape of the distribution function
has often been regarded as reflecting its origin. Just as a normal distribution is generated
by the random additive process, the lognormal distribution and the power-law distribution
both have generative processes (Limpert et al. (2001); Newman (2005)).

However, only a few studies have mentioned the shape of the distribution of research
subjects as classified by sufficiently granular category codes, and thus understanding of
the key mechanisms of scientodiversity has been limited. For example, studies of the
statistical distribution of research subjects, the universality of their distribution over time
and space, and mathematical models that generate observed distributions may contribute
to an understanding of this ‘science of sciences.’ The mathematical framework for sci-
entodiversity is still based on a naïve conceptual analogy between scientodiversity and
biodiversity, which, despite the weak empirical evidence, raises primitive unanswered
questions, notably the following. How are scientific topics distributed over disciplines in
a given country? Does that distribution differ substantially from country to country, and if
so how? or is that distribution similar across numerous countries? What factors determine
that distribution and how might that distribution change over time? What kind of policy
tool is suitable for the effective and efficient maintenance of scientodiversity? Answering
these open questions using an approach similar to that used in biodiversity studies may
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yield fruitful insights on public policy on science.
To ensure the validity of the underlying analogy between biodiversity and scientodi-

versity, a revisitation of salient studies on biodiversity may afford an indirect understand-
ing of the mechanism of the ecosystem of science in terms of the generative process of
distribution. The key framework for quantitative analysis of biodiversity selected here is
derived from the concept of island biogeography (MacArthur and Wilson (1967)). The
island has been considered the most important platform for evolutionary ecology since
Darwin visited Galapagos because islands can be regarded as closed ecosystems suitable
for examination of the mechanisms of biodiversity (May (1975)). The closed nature of
the innovation system in terms of national (Nelson (1993)), sectoral (Malerba (2002)),
and regional (Chaminade and Plechero (2014)) levels, which are a foundation of today’s
innovation policy in many countries, suggests a possible analogy between the ecosystems
of knowledge and living organisms.

Based on the outcomes of ecology studies on biodiversity, scientodiversity is ex-
pected to have different types of distribution patterns maintained by different mecha-
nisms distinguishable by the fine shape of research subject distribution. This difference
in types is also expected to appear as a change of slope in the subject-budget relationship,
which can be regarded as comparable to the species-area relationship seen in biodiver-
sity. The species-abundance distribution and species-area relationship are the most inten-
sively investigated patterns in both theoretical and empirical studies of ecology (Hubbell
(2001); May (1975)). The neutral model predicts both species-abundance distribution and
species-area relationship base on realistic assumptions on population dynamics (Hubbell
(2001)). This theory explains inflection points in the species-area curve by the change of
dominant determinant of biodiversity. In a local spatial scale, the rate of encounter with
new species mainly determines (the observed value of) biodiversity. This sampling pro-
cess is sensitive to universality and rarity of species; thus the species-area curve presents
a relatively steep slope. However, at the subcontinental scale, the encounter rate does not
depend so much on relative species abundance, but rather on speciation rates, dispersal
rates, and extinction rates and their equilibrium. Moreover, the slope of the species-area
curve will recover on a much larger scale, i.e. continental and global scale, due to over-
coming of dispersal biogeographical barriers formed by their evolutional history over the
long term.

In this study, we investigated the distribution of research subjects in a bibliographic
database to develop a framework of scientodiversity by comparison with that of biodiver-
sity. We examine the following three hypotheses derived from an analogy with biodiver-
sity. First, we examine the distribution of research subjects and test whether log-normal
is the most appropriate function for describing that distribution. Although the skewed
distribution of papers for specific subject areas has been reported and explained as a bias
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in databases (Bosman et al. (2006)), which may reflect an imbalance of author popu-
lation, concentrated investments, and collection policy of databases, distribution shape
has never been analyzed on the basis of a fine classification scheme. If research sub-
jects can be regarded as analogous to biological species, the distribution of subjects might
conform to the species-abundance distribution seen in biodiversity. Therefore, we also
compute representative diversity indices, such as richness and Gini-Simson index (see the
method section), which are often used for measurement of biodiversity, to demonstrate
the feasibility of their application to the measurement of scientodiversity. We also ex-
amine whether or not the log-normal subject distribution is commonly observed in the
distribution of publications in a number of countries.

Second, we verify the linear dependency of the number of subjects on research bud-
get in a double logarithmic plot. This is found to be equivalent to the power function
species-area relationship seen in biodiversity. The linear relationship in log-log plot is
a mathematical consequence of lognormal species-abundance distribution. Thus, it can-
not be a property unique to biodiversity. The power function is asymptotically expected,
given the additional assumption that spatial density of species is constant (May (1975)).
Therefore, our examination of linearity of the subject-budget relationship will serve to
evaluate this assumption of equal access to resources among research subjects.

Third, we confirm an inflection point on the subject-budget relationship curve cor-
responding to change in the dominant determinant of scientodiversity. This change in
the slope may imply a change in the underlying mechanism of scientodiversity, as seen
in biodiversity (Hubbell (2001)). The relationship between publication performance and
research budget at the country level has been investigated, in particular, to evaluate the
efficiency of public investment (OECD (2016)). Although low diversity can be easily ex-
pected in a country with a small budget (i.e. a small publication), there is no study on
function type of subject-budget relationship over many countries.

This study shows that science policy work for the preservation and promotion of the
diversity of research would benefit greatly from an assessment of the analogy between sci-
entodiversity and biodiversity. Just as environmental policy for biodiversity preservation
at the country level often differs from policy for promotion of village level biodiversity
because of difference of the underlying mechanism that maintains biodiversity in each
scale, successful science policy in the case of large budgets may not work as well when
applied to the case of small budgets if the maintaining mechanism of scientodiversity de-
pends on the size of research. The results of this study will provide an evidence-based
clue to means of avoiding such an inefficient science policy.
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Country-scale analysis

Table 3.1: Fundamental statistics of diversity indices.

Index Country Mean Median S.D. Min Max N

Richness
All 779.2 227 1005.5 1 3209 219

OECD 2408.3 2578 733.6 483 3209 35

Gini-Simpson index
All 0.9444 0.9886 0.1342 0 0.9984 219

OECD 0.9976 0.9980 0.0010 0.9939 0.9984 35

3.2 Log-normal subject distribution

We evaluated the diversity of research subjects in articles by country, i.e. the location of
the affiliating institutions of the authors. The histogram and empirical cumulative distri-
bution function (see Figure 3.1(a)) indicates the skewed distribution of richness over 219
countries. More than 60 percent of the countries observed in this study show the relatively
small richness, i.e. R < 500. The significant difference between mean (R = 779.2) and
median (227) richness reflects the fact that the distribution of richness over the country
is more skew than the normal distribution. For the 35 OECD member countries, repre-
sented as open circles in Figure 3.1(b), the median (2578) is larger than the mean (2408).
This indicates that the variety of research subjects for a few countries is much larger than
for the others. The observed skewed distribution of research subject, even for the OECD
member countries, implies that the promotion of scientodiversity will be influenced by
that country’s economic development as shown in Table 3.1(see also Figure 3.2).

From the result of this study, scientodiversity of Japanese science, by means of the
richness of research subject, is not inferior to that of Germany and the UK as contrastive
to the result of previous bibliometric research (Igami and Saka (2016)). This difference
perhaps due to the difference of dataset we use. Therefore, the analysis applying our
method proposed in this thesis to their dataset, i.e. highly-cited articles only, is worth to
be investigated in the future.

Figure 3.1(b) suggests that the Gini-Simpson index is dependent on richness. The
fact that almost all countries are plotted in one curve close to the theoretical upper limit
1� 1/R (solid line) implies that distribution of subject follows one universal statistical
pattern for all countries, i.e. the Gini-Simpson index is almost uniquely determined by
richness.

We test the suitability of fit on the observed distribution of classification code for 143
countries with R � 100. Comparison of the Akaike information criterion (AIC) among
four statistical models (normal, log-normal, negative binomial, and gamma distribution)
suggests that for all 143 countries, log-normal is the most appropriate distribution among
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Figure 3.1: Richness and Gini-Simpson index.
(a) The histogram and empirical cumulative distribution function of the number of coun-
tries. More than 60 percent of the countries observed in this study show the relatively
small richness, i.e. R < 500. (b) Gini-Simpson index as a function of richness for 219
countries. The open circles represent the 35 OECD member countries. The solid line
represents the theoretical upper limit 1�1/R. Richness and Gini-Simpson index are cal-
culated based on the papers published between 2001 and 2010 registered in both J-Global
and Scopus databases commonly.
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Figure 3.2: World map of richness in (a) 2000 and (b) 2010.
Richness, i.e. the number of classification codes attached to the papers published by a
research institution in each country, is calculated based on the papers registered in both
J-Global and Scopus databases commonly. As shown in the lower left legend, the shade
of green indicates the magnitude of richness.
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3.2 Log-normal subject distribution
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Figure 3.3: The cumulative distribution of research subject for eight example coun-
tries.
The cumulative distribution function for the classification codes is plotted by the open
circles. The solid lines are the best fit functions by the lognormal distribution for each
example countries as depicted by different colors. The abundance k, i.e. the number of
papers, used in this plot is the count based on the papers published between 2001 and
2010 and registered in both J-Global and Scopus databases commonly.

the four types of distribution functions (see Table 3.2). Figure 3.3 shows the cumulative
distribution of subject

C(k) =
1
R

Z •

k
S(n)dn, (3.1)

where probability density function S(n) represents the number of subjects containing n
papers for eight example countries, Japan, Sweden, South Africa, Indonesia, United Arab
Emirates, Iceland, Kenya, and Luxembourg (in descending order of R).

The log-normal distribution is the most popular tool used in biodiversity studies; this
implies the coexistence of dominant species and relatively rare species in the same ecosys-
tem. The problem from the policy point of view is whether such an inhomogeneous sys-
tem is stable or not. Indeed, this question has not yet been answered; it is listed as one
of the most important unanswered questions in ecology in the 20th century (May (1999)).
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Country-scale analysis

Table 3.2: The result of fitting.

country Akaike information criterion (AIC) Parameters OECD

code normal lognormal gamma binomial µ s (M: member)

usa 55153.0 44994.0 510212.6 45523.8 5.0599 1.7008 M

chn 51238.7 40924.0 318642.7 41594.0 4.4501 1.7417

Jpn 49248.1 40116.3 277864.7 40613.0 4.4181 1.7232 M

gbr 44096.1 35282.6 131194.5 35911.3 3.7461 1.5894 M

deu 45272.3 35446.3 158082.1 36187.8 3.7090 1.7209 M

can 40431.1 31813.6 91016.8 32473.4 3.3144 1.5991 M

fra 42044.8 32955.1 122099.5 33638.9 3.4568 1.7288 M

ita 38972.0 30723.2 84411.0 31419.4 3.1712 1.6308 M

ind 38835.5 29791.5 82734.3 30651.8 3.0211 1.6731

aus 35280.1 27339.0 54608.9 28183.8 2.7692 1.5031 M

kor 40100.0 29533.1 88101.3 30612.5 3.0567 1.6415 M

esp 38460.5 29533.9 84118.1 30382.3 3.0733 1.6643 M

nld 34088.9 25889.5 49046.2 26807.6 2.6185 1.5026 M

twn 36050.9 26028.9 61751.3 27177.1 2.6974 1.5979

swe 32485.2 24025.1 42366.2 25029.4 2.4500 1.4794 M

bra 31387.7 23891.8 40920.6 24810.4 2.4306 1.4843

che 32679.2 24284.7 45106.2 25238.3 2.5137 1.5153 M

tur 29217.9 22301.5 33316.6 23179.5 2.3000 1.3940 M

bel 29864.7 22056.4 35082.7 23079.6 2.2648 1.4414 M

pol 29602.5 22227.0 37913.0 23172.3 2.3136 1.5192 M

aut 26332.2 19375.8 26311.6 20406.5 1.9992 1.3500 M

grc 25464.2 19155.1 25791.3 20117.3 1.9836 1.3659 M

rus 30238.3 21930.6 45896.4 22944.6 2.4000 1.6471

fin 25523.0 18662.4 25740.3 19707.4 1.9349 1.3919 M

dnk 26452.0 18875.7 26666.1 19957.7 1.9802 1.3895 M

(to be continued)
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3.2 Log-normal subject distribution

country Akaike information criterion (AIC) Parameters OECD

code normal lognormal gamma binomial µ s (M: member)

irn 25160.9 18355.1 25142.8 19362.1 1.9539 1.3786

isr 26395.8 18843.6 27839.8 19911.3 2.0411 1.4155 M

prt 24585.1 18179.3 24794.6 19171.0 1.9577 1.3717 M

mex 24039.3 17707.7 24019.2 18694.1 1.9048 1.3882 M

hkg 26053.3 18336.8 28629.6 19456.6 2.0280 1.4604

nor 22655.9 15977.3 19957.5 17094.7 1.7030 1.2924 M

sgp 26124.0 17807.2 29448.5 19050.6 1.9929 1.4875

cze 22147.3 16134.1 21342.3 17114.6 1.8213 1.3692 M

egy 20790.8 14772.3 17799.1 15843.7 1.6151 1.2646

nzl 20191.6 14504.6 17254.2 15548.8 1.5875 1.2589 M

zaf 18927.7 13703.0 15584.8 14725.9 1.4900 1.2013

arg 20700.1 15067.4 19174.6 15988.5 1.7634 1.3408

hun 19833.0 14327.5 17196.2 15280.9 1.6565 1.2676 M

irl 20002.5 14260.3 17439.9 15266.5 1.6710 1.2705 M

tha 19307.0 13319.8 16154.6 14447.2 1.5315 1.2574

svn 15430.7 10746.3 11766.6 11745.6 1.2571 1.1177 M

mys 16416.5 11054.2 12679.7 12167.9 1.3173 1.1783

rou 15493.5 10742.5 12173.7 11758.1 1.3291 1.1741

chl 14609.4 10404.5 11542.1 11282.4 1.3685 1.1473 M

ukr 16534.5 11449.2 14524.8 12422.5 1.5314 1.3341

sau 12431.6 8587.1 9262.2 9531.7 1.0750 1.0310

bgr 13114.7 9161.4 10124.0 10040.2 1.2468 1.1403

svk 12753.9 8953.3 9824.8 9808.3 1.2293 1.1283 M

hrv 11144.1 7793.1 8377.5 8673.6 1.0143 1.0008

pak 11973.3 7951.8 8695.7 8890.9 1.0745 1.0606

(to be continued)
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country Akaike information criterion (AIC) Parameters OECD

code normal lognormal gamma binomial µ s (M: member)

tun 11306.1 7760.5 8487.2 8588.6 1.1443 1.0956

dza 9998.9 6837.6 7415.1 7599.7 1.0987 1.0426

col 9237.6 6050.2 6600.0 6866.4 0.9138 0.9840

jor 7971.3 5597.7 6048.8 6337.5 0.8411 0.8926

mar 9013.2 6094.3 6600.7 6844.2 0.9797 0.9954

srb 7506.1 5136.6 5593.7 5890.2 0.7830 0.8603

ven 8143.1 5596.8 6054.1 6310.1 0.9037 0.9433

idn 7863.1 5227.9 5710.4 5971.3 0.8475 0.9310

ltu 8239.7 5360.9 5903.7 6130.6 0.9187 1.0037

are 6458.0 4445.6 4844.4 5133.1 0.7342 0.8118

bgd 7373.5 4818.0 5287.2 5538.7 0.8206 0.9206

vnm 7168.2 4672.4 5113.4 5363.7 0.8171 0.8922

blr 8446.6 5519.2 6165.4 6227.7 1.0660 1.0993

nga 8231.4 4984.2 5592.4 5790.7 0.8923 1.0183

yux 6228.8 4118.9 4525.6 4800.5 0.7102 0.8224

est 7082.0 4707.3 5132.5 5353.6 0.8823 0.9483 M

cub 6916.4 4456.7 4900.7 5135.1 0.8244 0.9044

kwt 5343.8 3576.8 3917.7 4147.0 0.7299 0.8323

lbn 4674.2 3269.4 3551.3 3802.9 0.6568 0.7576

pri 5928.4 3660.9 4090.4 4314.6 0.7364 0.8718

phl 6671.6 3638.5 4147.1 4353.0 0.7606 0.9067

cyp 5005.9 3018.8 3403.9 3616.7 0.6616 0.8396

omn 3775.7 2504.1 2779.2 3011.6 0.5741 0.7297

ury 4042.2 2786.4 3041.4 3217.9 0.7232 0.8518

lva 4172.1 2623.9 2914.3 3105.1 0.6568 0.8173 M

(to be continued)
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3.2 Log-normal subject distribution

country Akaike information criterion (AIC) Parameters OECD

code normal lognormal gamma binomial µ s (M: member)

lka 3699.3 2346.2 2633.7 2830.4 0.6056 0.7705

isl 4130.6 2518.1 2839.6 3015.2 0.6757 0.8317

per 3232.2 1859.0 2155.8 2352.1 0.5043 0.7232

ken 4017.2 2539.0 2837.9 2958.3 0.8180 1.0185

arm 3966.9 2103.7 2448.3 2586.0 0.6679 0.8797

cmr 3606.5 1904.0 2223.0 2371.0 0.6134 0.8058

uzb 3276.0 1687.9 1989.9 2147.0 0.5353 0.7631

geo 2636.5 1613.5 1842.6 2000.8 0.5324 0.7417

lux 2291.2 1389.1 1589.1 1775.2 0.4511 0.6465

mkd 2365.2 1413.9 1640.4 1821.7 0.4334 0.6813

syr 2557.1 1522.6 1742.3 1905.0 0.5123 0.7098

cri 2431.4 1537.0 1737.4 1884.7 0.5458 0.7419

kaz 2592.2 1239.8 1510.5 1689.0 0.4185 0.6363

irq 1571.0 1046.3 1176.9 1360.1 0.3793 0.5761

qat 1891.6 1123.9 1300.9 1476.2 0.3978 0.6205

gha 2154.6 1451.3 1601.1 1723.1 0.5999 0.7660

eth 2015.8 1411.3 1547.5 1666.6 0.6035 0.7553

aze 2161.2 1378.2 1552.6 1675.4 0.5649 0.7697

prk 2535.4 1574.7 1785.9 1886.5 0.6635 0.9287

mda 2656.9 1709.6 1904.4 1994.6 0.7649 1.0028

npl 1871.3 1228.0 1374.7 1505.2 0.5057 0.7124

pse 1505.3 967.3 1098.3 1267.6 0.3842 0.5795

tto 1398.4 940.4 1056.7 1223.4 0.3728 0.5733

tza 2026.2 1319.4 1471.3 1576.1 0.6162 0.7959

lby 1190.3 711.2 836.4 1025.3 0.2864 0.5110

(to be continued)
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country Akaike information criterion (AIC) Parameters OECD

code normal lognormal gamma binomial µ s (M: member)

ecu 2458.1 1180.7 1444.0 1543.2 0.5461 0.7949

bwa 1389.1 855.7 979.8 1126.4 0.3982 0.5838

zwe 1530.4 892.9 1037.3 1153.4 0.4394 0.6695

sen 1556.2 894.2 1034.6 1149.4 0.4493 0.6675

bhr 1465.5 723.0 902.6 1040.2 0.3238 0.5921

mng 1308.1 737.2 862.4 984.6 0.3887 0.6047

uga 1533.9 994.4 1114.2 1196.3 0.5891 0.7971

jam 992.6 641.1 725.8 848.6 0.3720 0.5549

sdn 1035.4 649.4 745.1 851.7 0.3757 0.6105

scg 685.4 373.4 460.3 627.8 0.2077 0.4343

civ 850.0 577.6 644.2 742.4 0.4032 0.5688

bol 983.5 577.1 676.5 779.0 0.3665 0.5927

bih 616.8 346.6 421.8 584.4 0.2140 0.4256

bfa 898.4 554.9 638.2 726.3 0.3915 0.6150

pan 1232.9 767.9 875.8 935.7 0.5819 0.8483

yem 727.7 444.4 517.8 627.0 0.2952 0.5246

fji 601.6 376.5 436.4 546.6 0.2775 0.4861

ben 955.5 605.9 685.0 737.0 0.5748 0.7835

mac 960.5 436.1 562.0 637.5 0.3232 0.6151

mlt 641.9 380.5 445.7 529.5 0.3196 0.5464

ncl 885.4 598.9 664.6 712.4 0.5809 0.8302

mus 619.6 394.9 454.5 529.7 0.3376 0.5769

mco 989.2 537.3 642.0 687.4 0.5235 0.8285

lie 721.3 396.6 482.8 547.7 0.3324 0.6424

mdg 895.1 471.3 568.1 616.5 0.4490 0.7738

(to be continued)
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3.2 Log-normal subject distribution

country Akaike information criterion (AIC) Parameters OECD

code normal lognormal gamma binomial µ s (M: member)

mwi 504.7 327.1 370.4 442.2 0.3474 0.5249

zmb 384.6 240.5 280.7 378.2 0.2409 0.4399

rom 432.3 239.5 293.0 385.0 0.2200 0.4557

mmr 416.4 258.9 301.9 377.4 0.2708 0.4884

khm 518.7 337.3 383.5 439.8 0.3760 0.5986

nic 413.1 220.3 271.9 355.6 0.2314 0.4560

png 475.7 316.4 356.0 406.3 0.3904 0.6020

brb 491.6 301.0 348.1 402.1 0.3649 0.5851

glp 399.6 241.4 284.0 347.3 0.2784 0.5142

brn 453.0 262.6 313.1 368.8 0.2969 0.5705

gtm 384.5 246.7 285.2 341.1 0.2804 0.5454

mli 517.3 322.7 365.8 408.3 0.4492 0.6488

alb 273.0 122.7 166.9 272.4 0.1404 0.3624

ner 416.7 222.7 273.8 332.3 0.2659 0.5256

cog 345.3 238.3 265.8 314.4 0.3582 0.5273

nam 299.0 187.4 217.9 284.1 0.2548 0.4567

lao 392.7 235.6 277.2 328.6 0.3073 0.5539

moz 285.8 163.4 197.3 269.0 0.2086 0.4358
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Table 3.3: Fundamental statistics of nmax, nmode and their ratio g .

variable country Mean Median S.D. Min Max N

nmax

All 5.478 5.250 3.074 1.250 14.75 193

Type I 3.575 3.250 1.628 1.250 7.750 120

Type II 8.606 8.250 2.206 2.750 14.75 73

nmode

All 2.297 0.250 2.970 0.250 10.25 193

Type I 0.250 0.250 0.000 0.250 0.250 120

Type II 5.661 5.750 2.252 1.250 10.25 73

g

All 0.297 0.143 0.282 0.032 0.935 193

Type I 0.090 0.077 0.049 0.032 0.200 120

Type II 0.638 0.659 0.138 0.333 0.935 73

Contrary to the conventional theory that predicts that a complex community is unstable
(May (1972)), many species coexist stably in complex networks of interspecific inter-
actions in nature. Recently, a simulation study revealed that a certain balance of types
of interaction can stabilize population dynamics of many species (Mougi and Kondoh
(2012)). This stimulated ecologists to strive to identify the ecological mechanism that
determines and maintains species diversity. According to studies of biological ecosystem
stability, our complex research ecosystem cannot be regarded as stable without consider-
ing distribution patterns and network structures of interaction among disciplinal species.
The stability of science ecosystems should be considered as a policy issue because it is
one of the rationales for the promotion of the diversity of research (Stirling (2007)).

The lognormal distribution represents a system coexisting with the very rare elements
and much more popular common elements. Those are of the extremely low probability in
a normal distribution. Figure 3.4 shows the packed bubble representation of the number
of articles in each research subject classified by JST classification code for eight exam-
ple countries. A bubble represents a specific reseach subject, and its size represents the
number of articles, which the classification code is attached, in a specific year indicated
on the top of the figure. Thus, the number of the bubble is equal to the richness. The
characteristic of the lognormal distribution is clearly visualized in Figure 3.4.
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Figure 3.4: Packed bubble representation of the distribution of research subjects.
Each color-coded bubble represents a classification code, and its size represents the num-
ber of articles to which the classification code is attached. This plot shows the biannual
time change of the distribution of research subjects in eight example countries from 2000
to 2010. A few huge bubbles coexist with many extremely-small bubbles for the country
with larger richness. The number of papers used in this plot is the count based on the
papers registered in both J-Global and Scopus databases commonly.
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3.3 Individual distribution

In addition to the distribution of subjects S(n), the distribution of a number of papers nS(n)
should also be considered. The positional relationship between those two distributions is
characterized by g; the ratio between the log of the mode on nS(n) and the log of the
maximum number of individual papers in S(n) (see also Chapter 2). The relation between
g and richness is shown in Figure 3.5(a). It is clear that the countries can be divided into
two groups, namely types I and II, by means of g . Type I countries show relatively smaller
g which decreases with the increase of R. Type II countries with larger R display wider
dispersion of g which slightly increases as R increases. Figure 3.5(b) to (q) show S(n)
and nS(n) for 16 example countries in Preston’s octaves (Preston (1980)). For the small R
countries, nmode is not clearly observed and perhaps the value is less than observation limit
n = 1 (Preston’s veil line). Then, the value g for Type I countries is inversely proportional
to log2 nmax which slightly increases with the increase of R.

For the Type II countries, the range of the observed value, 0.333  g  0.935, is
consistent with the reported non-canonical (g 6= 1) values for biodiversity cases (May
(1975)), but no countries with g value were greater than 1 were observed for distribution
of research subjects. This suggests the existence of some mechanism, which regulates
nmode < nmax, specific to scientodiversity and not present in biodiversity. The effort to
understand the biological mechanism that determines g should be helpful to identify the
mechanism of the distribution of scientific subjects. Fundamental statistics of nmax, nmode,
and g are listed in Table 3.3.

The parameter g characterizes the shape of the lognormal distribution. A special con-
dition defined by g = 1 is called “canonical”, in which the shape, i.e. S0 and s in eq.
2.5, will be uniquely determined by a single parameter R. This special case happens only
when the most popular research subjects contain the highest number of papers in total, i.e.
log2 nmax = log2 nmode. In our observation, the parameter g was always smaller than one.
This means that the number of papers in the most popular subject i, which is expected to
be only one specific subject since S(ni) = S(nmax) = 1, is smaller than the total number
of papers in certain unpopular subjects, in which the number of papers is nmode. In other
word, when one picks up a paper from a specific dataset and finds it belongs in a subject
i, the most probably the subject i is the most popular research subject i but the expected
number of papers of the subject i cannot be nmax but must be smaller than nmax.

3.4 Richness-budget relationship

We plot richness as a function of expenditure on R&D (ERD) averaged over the ten year
period from 2001 to 2010, at 2010 US dollar prices, in Figure 3.6. The observed correla-
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Figure 3.5: Subjects and papers distribution in the Preston’s octave plot.
(a) The parameter g ⌘ log2 nmode/ log2 nmax as a function of richness, where nmode repre-
sents the mode of nS(n) and nmax represents the log of the maximum number of individual
papers in S(n). The relation between g and richness suggests that the countries can be di-
vided into two groups, namely types I and II. (b) to (q) The distribution S(n) (red marks
and line, read in the left axis) and nS(n) (blue marks and line, read in the right axis) for 16
example countries in Preston’s octaves (Preston (1980)). The number of papers used in
this plot is the count based on the papers published between 2001 and 2010 and registered
in both J-Global and Scopus databases commonly.
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Table 3.4: The country level comparison among example countries.

Country R 1�l ERD µ s g Type

Japan 3,143 0.9982 183,500 4.4181 1.7232 0.736 II

Sweden 2,819 0.9979 15,800 2.4500 1.4794 0.721 II

South Africa 2,215 0.9982 2,753.3 1.4900 1.2013 0.677 II

Indonesia 1,190 0.9969 407.89 0.8475 0.9310 0.481 II

United Arab Emirates 1,142 0.9976 - 0.7342 0.8118 0.619 II

Iceland 658 0.9939 339.16 0.6757 0.8317 0.040 I

Kenya 562 0.9921 220.45 0.8180 1.0185 0.520 II

Luxembourg 483 0.9948 793.56 0.4511 0.6465 0.048 I

Tunisia 1,461 0.9971 251.05 1.1443 1.0956 0.448 II

Kuwait 909 0.9967 120.04 0.7299 0.8323 0.520 II

Philippines 873 0.9899 189.03 0.7606 0.9067 0.394 II

Uruguay 702 0.9961 124.60 0.7232 0.8518 0.429 II

Puerto Rico 906 0.9953 455.92 0.7364 0.8718 0.037 I

Cyprus 791 0.9946 84.912 0.6616 0.8396 0.040 I

Oman 745 0.9967 - 0.5741 0.7297 0.048 I

Latvia 699 0.9950 120.53 0.6568 0.8173 0.040 I
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tion between R and ERD strongly resembles the species-area relationship seen in biodiver-
sity studies (MacArthur and Wilson (1967)). Notice that ERD is defined as "current and
capital expenditures (both public and private) on creative work undertaken systematically
to increase knowledge, including knowledge of humanity, culture, and society, and the
use of knowledge for new applications" according to the OECD’s Frascati Manual (The
World Bank (2017)). In this definition, R&D includes basic research, applied research,
and experimental development but not higher education. Thus, this can be regarded as
a proxy measure of input corresponding to the publication as an output in macroscopic
viewpoint.

In the case of biodiversity, species-area relationship is derived from species-abundance
distribution by assuming uniformity of density of individual organisms. For the asymp-
totic case (R � 1), the slope z of species-area curve R =CAz becomes 1/4g for g > 1 or
1/(1+ g)2 for g < 1, where C and z are positive constants and A represents area (May
(1975)). The slopes z = 0.25 and 0.8 are equivalent to gest = 1 and 0.12, respectively (see
the eye-guide lines in Figure 3.6). Those observed slopes mean that if you doubled the
budget, the number of research subject will be expected to increase by 74% in a country
with small R, but it will be only 7.2% in the country with larger R. The consistency among
observations (Figure 3.5(a)) and gest ' 0.12 suggests that deterministic mechanism of sci-
entodiversity for the Type I countries can be inferred from island biogeography studies.
However, the discrepancy between observation and estimation for the Type II countries
implies that there exist other mechanisms, different from those for type I countries, that
determine the diversity of research topics.

Preston expected the existence of biological origin for g = 1 since only this class of
lognormal model is consistent with observed species-abundance distributions and species-
area relationships (Preston (1962)). However, today it is known that power law is also
shown in species-area curve calculated from other types of species-abundance distribu-
tion, such as general (g 6= 1) lognormal, broken-stick, and power function (Irie and Tokita
(2012); May (1975)). Therefore, the linear dependency in log-log plot shown in Figure
3.6 cannot distinguish whether this phenomenon is derived from some mechanism em-
bedded in science or just a mathematical consequence from the lognormal distribution.
The linear dependency observed in both smaller and larger ERD countries implies that
the density of research subjects may be constant within each ERD ranges. The density
of research subjects, i.e. probability to encounter new research subjects if one expands
research space, which may be determined by the budget, is expected to be higher for Type
I countries than that for Type II, thus the slope of richness-ERD curve for Type I countries
is steeper than that for Type II ones.

The key characteristic of the richness-ERD curve is the inflection point of its slope
around ERD' 1 billion USD and R ' 1000. The analogy with the species-area relation-
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Figure 3.6: Richness-ERD relationship curve.
Country-level richness as a function of expenditure on R&D (ERD) averaged over the ten
year period from 2001 to 2010, at 2010 US dollar prices. Richness, i.e. the number of clas-
sification codes attached to the papers published by a research institution in each country,
is calculated based on the papers published between 2001 and 2010 and registered in both
J-Global and Scopus databases commonly. The expenditure on research and development
(ERD) has been retrieved and calculated from World Development Indicators (The World
Bank (2017)). The richness for 16 example countries, such as Japan, Sweden, South
Africa, Indonesia, United Arab Emirates, Iceland, Kenya, Luxembourg, Tunisia, Kuwait,
Philippines, Uruguay, Puerto Rico, Cyprus, Oman and Latvia, are indicated in the colored
circle. The solid lines are the eye-guide for R µ ERD0.25 and R µ ERD0.8, respectively.
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ship in biodiversity suggests that the dominant determinant of scientodiversity changes
at this scale. This implies that depending on the scale of the object to be managed, a
different science policy approach is necessary for the promotion of scientodiversity. The
boundary value (ERD' 1 billion USD) is equivalent to the annual budget size of fund-
ing agencies, top research universities, and institutes in developed countries. Thus, both
new-subjects-oriented and equilibrium-aware research strategies are essential for the pro-
motion of scientodiversity on different scales.

The classification of countries based on the richness-ERD curve (Figure 3.6) is mostly
corresponding to the classification by g (Figure 3.5(a)). Type I countries generally have
small budget size and the number of research subjects, i.e. richness, but have the potential
to expand their diversity efficiently by the increase of their budgets. The fitting of S(n) by
lognormal function, measured by AIC, seems relatively poor compared with that for Type
II countries, and the distribution of individual papers nS(n) tends to be in the lower right in
Preston’s octave plot. It is clear that there are more than 100 research subjects addressed
in a small number of papers (n < 10) in those Type I countries. Smaller s obtained from
fitting by lognormal distribution is consistent with smaller Gini-Simpson index. Type II
countries have large research budgets and number of research subjects. However, it is no
longer possible to efficiently increase the number of subjects by increasing the budget. In
that sense, the system appears to be in an equilibrium state. The lognormal distribution
can be confirmed also in Preston’s octave plot for S(n), and certainly, the mode of nS(n)
is smaller than nmax, i.e. g < 1.

This classification of Types I and II and that shown in Figure 3.6 did not always match.
For example, Kenya is classified as Type II by g = 0.520 (Figure 3.5(a)), but seems to
belong to the group with the larger budget in the richness-ERD relationship (Figure 3.6).
In contrast, Iceland and Luxembourg, which have budget size (and R) comparable to
that of Kenya, are classified as Type I. The method used here to calculate nmode from the
probability density function rather than a cumulative one is susceptible to noise. Thus, it is
possible that the estimation of nmode was too large for Kenya, and therefore the calculated
g was also too large.

As shown in Table 3.4, Kuwait, Philippines, and Uruguay are countries with relatively
small R but large g like Kenya (see also Figure 3.6). On the other hand, g was estimated
as small (i.e. Type I), even for R of about 500 to 800, for Cyprus, Oman, and Latvia.
In this study, no common factors in these countries were found that could constitute a
cause of observed classification mismatch between Figure 3.5 and Figure 3.6. It can
be inferred from the results of this study that scientodiversity can be determined by at
least two different mechanisms for two extreme cases, where the budget is quite large
or quite small, and probably both mechanisms coexist in intermediate scale (i.e. R is
between 500 and 1000). One possible explanatory scenario is that the balance between
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these mechanisms falls to one side by some factor other than R and budget. The result
will be observed as a difference in g . The further research, including an international
comparison of science policy at the country level, is needed.

Although not discussed here, one of the most promising approaches to the promo-
tion of research diversity is international collaborative research. A positive relationship
between international collaboration, which is often measured as co-authorship involv-
ing different institutions in different countries, and citation impact have been found at
the country level (Confraria et al. (2017); OECD (2016)). For example, the relatively
large richness of Indonesia may be explained by the country’s high rate of international
collaboration compared to that of Puerto Rico, which has a similar size budget (Table
3.4). In contrast, Tunisia, with a lower collaboration intensity (Confraria and Godinho
(2014)), shows higher richness than Kenya with a higher collaboration intensity despite
their similarity on the ERD scale. Similar things can be seen in Type I European coun-
tries; for example, Iceland and Luxembourg, which are known for their high international
co-authorship ratio (OECD (2016)), have the richness of approximately R ⇠ 500, approx-
imately half of the value expected from the ERD scale. Thus, the impact of international
co-authorship on scientodiversity is not simple in character, and a more detailed analysis
of the structure and content of international collaborative network is called for.

3.5 Conclusions and policy implications

Comparison of our characterization of the distribution of research subjects over coun-
tries with the distribution of biological species suggests that scientodiversity is analogous
structurally to biodiversity. We show subjects-abundance distribution and subjects-budget
relationships which correspond to the species-abundance distribution and species-area
relationships seen in biodiversity, respectively. We also examine the relation between
subjects-abundance distribution and subjects-budget relationships, and the relation is well
within that which can be inferred by analogy from biodiversity studies (May (1975)).
This structural similarity between two empirical patterns in scientodiversity and two in
biodiversity strongly suggests that the mechanisms underlying them should be similar.
The observed change of slope of subject-budget plot (see Figure 3.6) suggests that the
mechanism for determining diversity varies depending on the scale of research.

There are many important concepts in evolutionary ecology for which until now, no
equivalent has been found in the domain of the science of sciences, for example, equi-
librium among speciation, dispersion, and extinction, food web, ecological niches, mu-
tualistic interspecific network in biodiversity studies. Although equivalence between the
key determinant of biodiversity and those of scientodiversity is not well examined in this
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study, the findings may indicate a fruitful direction for understanding the system of sci-
ence and the promotion of scientodiversity. One of the most highly insightful concepts
for science policy is the keystone species, defined as a species that has a disproportion-
ately large impact on its environment relative to its abundance (Paine (1995)). Pisaster
ochraceus (predatory starfish), Enbydra lutris (sea otter), and Castor Canadensis (beaver)
are well-recognized examples of keystone species (Power et al. (1996); Wagner (2010)).
The innovation ecosystem will dramatically change if a keystone research subject is re-
moved, even though relative abundance was small. Further investigation on the role of
each research subjects in their inter-subject network is thus needed.

Differences between biodiversity and scientodiversity may also give important impli-
cations on scientometrics studies. A crucial question should arise regarding the definition
of “species” of science. The taxonomic classification scheme used in this study resem-
bles Linnaean taxonomy in terms of hierarchy. Other ways of defining biological species
such as morphology, sexual reproduction, and ecological niche may propose a new usable
definition of research subjects. Parallel to a recent success in molecular phylogenetics,
a quantitative classification scheme to objectively identify science disciplines should ac-
celerate research on scientodiversity. Bottom-up approaches, such as text mining and the
clustering of scientific papers, promise to enable the construction of modern classifica-
tion scheme for science research topics. The definition of species affects the distribution
pattern and diversity indices. The lognormal shape of the distribution is not guaranteed
for different definitions of subjects. Thus, from this study alone, it cannot be determined
whether the origin of the lognormal distribution of research subjects is an intrinsic prop-
erty of scientific research or a trivial mathematical consequence derived from the clas-
sification scheme on the database. Similar to that the appropriateness of a definition of
species is a challenging problem in the ecological study (May (1999)), it is worth com-
paring the shape of the distribution of research subjects with using various classification
schemes.

Further examination of the analogy between the area in biogeography and budget in
science is also necessary. ERD indicates the scale of research from aspects of both num-
bers of researchers and size of the research budget. It is known that more than half of
ERD is researcher labor costs. According to the findings of ecology studies of biodiver-
sity, the area can be reverse defined as a unit in which one can assume homogeneity of
species (Hubbell (2001)). The density of research subjects may be regarded as constant
per researcher rather than per research budget. Thus, further investigation on the subjects-
researchers curve promises to present new implications for the promotion of scientodiver-
sity. The structural similarity between biodiversity and scientodiversity also proposes
several policy implications. First, research universities, institutions, and funding agencies
should pay attention to both new subjects and equilibrium among existing ones when they
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make a decision on their resource allocation with a magnitude of around 1 billion USD.
The inflection point of richness-ERD curve (Figure 3.6) implies that two different factors
may influence the scientodiversity in a certain range of richness (i.e. 500  R  1000).
Second, for scientifically small countries, such as the type I countries shown in Figure
3.5(a), the fact that a local region in a continent shows a larger number of species than
isolated islands, even in equivalent area (May (1975)), implies that international interac-
tion in scientific activity may improve the scientodiversity of the nations involved, even
with the same R&D budget size. Extrapolation of the richness-ERD line for type II coun-
tries estimates that R ' 500 should be achievable with ERD'100 million USD (Figure
3.6). Third, recovery of the slope of the species-area curve is known to occur in a much
larger area, i.e. continental and global scale. This phenomenon can be explained as the
overcoming of dispersal biogeographical barriers formed by their evolutional history over
the long term (Hubbell (2001)). Thus, international collaboration among large countries
with rich scientodiversity (R > 1000) should push science toward a new phase of diver-
sification. According to the observed inflection point of the richness-ERD curve, the
underlying mechanism of scientodiversity may vary depending on the budget size. Thus,
promoting scientodiversity in country level may not be accomplished by simply scaling
up a grant program that promotes interdisciplinarity of research teams. And vice versa,
the creation of new knowledge, which often rays across the traditional disciplinal border,
will not be easily stimulated by facilitating national level science policy.

In the history of scientometrics, the statistical property of research articles has at-
tracted many researchers and provided implicative laws such as Lotka’s law, Gibrat’s law,
and Bradford’s law. These statistical laws have counterparts in other fields such as ecol-
ogy, seismology, medicine, economics, and social sciences (Limpert et al. (2001); New-
man (2005)). The analogy we present here is based on a quantitative approach to diversity
and statistical models that have been used in both bibliometrics and evolutionary ecology
for a long time. Our approach, incorporated from the studies of ecology, itself is not new
for scientometrics but provides an integrative view for the science of sciences with mo-
bilizing various disciplines. In that framework, the history, sociology, and economics of
science, which until now have been based on innovation policy, should be reconsidered
from the viewpoint of an “ecology” of science.
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Chapter 4

University-scale analysis

4.1 Japanese national universities

The Research University plays important role in national innovation ecosystem (Cole
(2009)). Benchmarking based on their research activities such as publication, patent, and
university-industry collaboration have revealed a high performance of American research
universities in some rankings (Quacquarelli Symonds Limited (2017); Times Higher Ed-
ucation (2017)). In Japan, National universities are the central player for basic research.
More than 70 % of Ph.D. students belong to national universities and almost 80% of
academic papers published by researchers whose affiliation is located in Japan are pro-
duced by the researcher in the national universities (The Japan Association of National
Universities (2017)).

The stagnation of publication performance and decline of the diversity of research
have emerged as a policy concern in Japan. The bibliometric study and a questionnaire
survey of Japanese researchers indicate reconstruction of grant system may cause the
negative impacts on both publication and diversification (Igami and Saka (2016); Na-
tional Institute of Science and Technology Policy (2015)). A comprehensive survey on
Japanese national universities in terms of both budget and publication suggested that (1)
total amount and (2) distribution of R&D budgets are associated to the observed decline
of publication performance of Japanese national universities (Toyoda (2015)). The report
concludes that the sluggish public research funding from the late 1990s should be the pri-
mary cause of the downturn in publication while the concentration of research grants to
few universities may reduce resource availability for the rest of universities and thus total
publication may be influenced by a balance in the resource distribution. The importance
of (1) total R&D budgets is also indicated by a study to evaluate research activity of the
national universities by the growth accounting methodology (Aoki and Kimura (2014)).
The study shows that distortion of resource allocation has a smaller impact on papers pro-
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ductivity than the total budgets shared by all national universities has. The study reveals
that 2.0% net growth of publication can be explained by 14.5% declining of productivity,
16.0% growth of total research budgets, 1.1% improvement of resource misallocation,
1.3% by deflation, and 1.9% reduction of labor costs between 2005 and 2009.

The concentration of research grants happened through the two major transforma-
tions, the reduction of operating expense subsidies (i.e. institutional grant including per-
sonnel expenses) and the expansion of competitive research findings, in Japanese grant
system. The operating expense subsidy is distributed based on the number of students
and professors, while competitive research grants tend to be concentrated to specific re-
searchers. Thus, the conversion from the institutional grant to competitive ones resulted
in enlargement of financial difference among national universities. This transformation
pushed Japanese researchers into the competitive environment to get external grants since
internal research budget supported by their own institution was no longer enough (Sunami
(2017)). Since the university can also acquire indirect expense that can be used freely by
universities, the university management was often incentivized to the acquisition of exter-
nal research grants.

In this study, we investigated the research efficiency of Japanese national universi-
ties in terms of the quantity and diversity of their publication using data envelopment
analysis (DEA) for data between 2001 and 2012. First, we confirmed the change of (1)
total amount and (2) balance of R&D budget by using government statistics. Second, we
evaluate technical efficiencies of national universities in terms of both publication and di-
versification by DEA methodology. Finally, we test the impact of the balance of research
grants to the technical efficiencies by Tobit regression. Our results confirmed that differ-
ence among universities in terms of inputs, outputs, and efficiencies. Tobit regression of
efficiencies implies the importance of (2) balance rather than (1) total R&D budgets. Our
results contribute to not only the foundation of a strategy for individual universities but
also provide useful suggestions for nation-wide resource allocation.

4.2 Inputs and outputs

Figure 4.1 shows the time change of inputs and outputs of whole universities. All figures
are the moving average over 3 years. As shown in Figure 4.1(a), R&D expenditure (BRD)
accounts for roughly half of total expenditure (B), and about 80% of R&D expenditure is
derived from the internal budgets. This internal budget is derived from the Management
Expenses Grants ("uneihi koufukin" in Japanese) by the government. Overall expendi-
ture has increased by about 10% in the past 10 years. As shown in Figure 4.1(b), the
growth rate (i.e. value in 2002 is set to 1) of B became 10%, while Bin

RD decreased. Al-
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though the number of PIs and doctor students did not change much, researchers including
post-doctoral fellows showed a sharp increase of about 40%. This implies the increase
of the number of the research projects, funded by an external grant, that temporary hires
those researchers. Meanwhile, the number of publication has increased more than 30%
as a whole with a plateau as shown in Figure 4.1(e). The fact that the number of papers
increased despite the fact that R&D expenditure hardly increased means that the paper
productivity per research expenditure has been remarkably improved. Richness of re-
search subjects across the university (notice that it is not the sum of richness of individual
universities) has hardly changed. On the other hand, the average of richness of individual
universities grew by about 20%. This implies that small universities have not worked on
novel research themes (that have never been investigated by large research universities),
but worked on a safe (popular) research subjects.

The increase in university total expenditure shown in Figure 4.1 is about 300 billion
yen, which may be due to an increase in income of university hospitals. The expenditure
on R&D BRD includes the labor costs of faculty, but this contains both research and ed-
ucation work time, and thus BRD may represent the upper bound of the input money to
R&D in university. Also, since the increase in the number of papers includes the increase
of international co-authoring papers, the observed increase of the number of papers will
not simply mean improvement in the productivity of Japanese researchers. In addition,
the increase in the number of papers since around 2010 is thought to be due to the increase
in the paper in the field of clinical medicine as pointed out in the previous study (Toyoda
(2015)). The increase in this clinical medicine paper is thought to be due to an increase
in doctors in university hospitals included in nres, which increased by about 3000 people.
However, the personnel expenses for those doctors are often not recorded as the research
expenses. For these reasons discussed above, the simple ratio between input and output
may not be a good indicator for research productivity of Japanese national university.

The Lorenz curve of the share of publication (puball), R&D expenditure (BRD), the
block grant (Bblock), and number of PIs (nPI) in 2010 are shown in Figure 4.2. The dis-
tribution is skewed in the order of Bblock, BRD , and puball. This is consistent with the
past report that examined the distribution of Grants-in-Aid for Scientific Research (KAK-
ENHI) and the number of papers (Shibayama (2011)). The Lorenz curve of Bblock is
approximately equal to the curve of nPI. Gini coefficient for Bblock, estimated by the area
(indicated by gray hatching in Figure 4.2) between Lorenz curve and the line of equality
(dotted line), is around 0.45.

Both nPI, Bblock, and BRD in Figure 4.2 contain both education and research aspects.
In small and medium-sized national universities, the proportion of the education part is
larger than that of large universities, so the Lorenz curve of these inputs become gentler
than the curve of the number of articles, which is the output only from research activity.
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Figure 4.1: Time-change of overall inputs and outputs.
(a) Time change of the total expenditure B, the total R&D expenditure BRD, and the
total internally funded R&D expenditure Bin

RD for 69 Japanese national universities. The
internal fund is derived from the Management Expenses Grants ("uneihi koufukin" in
Japanese) by the government. (b) The growth ratio of B, BRD, and Bin

RD compared with
the values in 2002. Overall expenditure has increased by about 10% in the past 10 years.
(c) Time change of the number of PIs nPI, the number of doctor students ndoc, and the
number of post-doc researchers nres. Notice that those numbers are the head count. (d)
The growth ratio of nPI, ndoc, and nres. compared with the values in 2002. (e) Time change
of the total number of publication puball, the total richness of research subjects Rtotal and
the richness averaged over 69 universities Rave. Notice that Rtotal is not the sum of richness
of individual universities, thus Rave 6= Rtotal/69. (f) The growth ratio of puball, Rtotal, and
Rave compared with the values in 2002. All input data plotted in (a), (b), (c) and (d) are
based on the microdata of "the Survey of Research and Development, Ministry of Internal
Affairs and Communications". The number of papers and the richness index used in those
plots are the count based on the papers registered in both J-Global and Scopus databases
commonly. All values are moving average over 3 years.

62



4.2 Inputs and outputs

1.0

0.8

0.6

0.4

0.2

0

C
um

ul
at

iv
e 

sh
ar

e 
of

 p
ub

al
l, B

RD
, B

bl
oc

k, 
n P

I

1.00.80.60.40.20

Cumulative share of universities

2010
 nPI
 Bblock
 BRD
 puball
 KAKENHI
 line of equality

 

Figure 4.2: Lorenz curve of the puball, BRD, Bblock, nPI and KAKENHI at university
level in 2010.
The distribution is skewed in the order of Bblock, BRD, puball and KAKENHI. The skewed
distribution of KAKENHI grant has been consistently reported by the previous study
(Shibayama (2011)). The value BRD, Bblock, nPI are based on the microdata of "the Survey
of Research and Development, Ministry of Internal Affairs and Communications". The
number of papers puball is the count based on the papers registered in both J-Global and
Scopus databases commonly. The grant allocation amount for FY2010 of the Grants-
in-Aid for Scientific Research (KAKENHI) was downloaded from the website of Japan
Society for the Promotion of Science ( "Japan Society for the Promotion of Science").

The productivity, i.e. output per input, seems higher for larger universities but it is not.
We also plot the curves of the Grants-in-Aid for Scientific Research (KAKENHI) as input.
The curve of KAKENHI is much skewed than that of the number of papers, as consistent
with the result of the previous research (Shibayama (2011)).

The change of expenditure in terms of amount and structure have happened in differ-
ently in each type of national universities between 2002 and 2011. For the universities
in 1) Research category, total expenditure has been grown but the proportion of R&D ex-
penditure took almost flat at around 60% as shown in Figure 4.3. The breakdown of the
R&D part has undergone a structural shift. The ratio of external grants has increased from
approximately 30% to 40% between 2002 and 2011. Most of this increase comes from
competitive research grants given by government rather than the research grants from pri-
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vate companies, which is less than 20% and slightly decreasing its proportion. The oper-
ational subsidies from the government to national universities has reduced approximately
1% per year since the 2004 reorganization of national universities as independent admin-
istrative institutions (Toyoda (2015)). However, according to the expenditure data shown
in Figure 4.3, the universities in 1) Research category, as an average, could compensate
this decrease by earning external grants mainly from the government. This shift from the
institutional grant to competitive and external ones is well consistent with the policy plan
which intended to make the research environment more competitive atmosphere.

For the universities in 2) Large category, the situation did not go well. The aver-
age total expenditure for the large universities, which is approximately half of one for the
research universities, indeed slightly increase between 2002 and 2011, while R&D expen-
diture decrease at the same time, then the proportion of R&D expenditures have dropped
from 60% to 50% as an average over 7 national universities in this category. The increase
of weight for governmental research grant has shown as same as for the universities in 1)
Research category, but the ones in 2) Large category have not been so successful to get
sufficient external research grants that can compensate the loss of the budget cut of 1%
per year. The observed increase in total expenditure may be associated with the growth
of university hospital in terms of both income and expenditure.

For the universities in 3) Middle category, the total expenditure increased slightly
between 2002 and 2011, while R&D expenditure has been almost no change, and then
the proportion of R&D budgets have decreased as a result. For the universities of both
4) Tech and 5) Non-med categories indicate the relatively high ratio of R&D expenditure
(~70%) simply because they do not have university hospital. The ratio of external grants
to total R&D expenditure (rex) have grown between 2002 and 2011, but the contribution of
private companies slightly decreases as compared to one of government. The universities
of 6) Social category show relatively low dependency on the external grants (rex ⇠ 0.1)
while the percentage of R&D expenditure to the total expenditure is similar to that of the
universities in 4) Tech and 5) Non-med categories.

Scientodiversity also varies from university classification. The number of articles with
level 1 classification code (the coarsest classification in JST classification) is summarized
as a heat map for each classification of the university (Figure 4.4). 1) Research classi-
fication universities show many papers in all fields, notably B: Physics, C: Chemistry,
and E: Biological sciences classification. This does not mean that these universities are
concentrating on these fields. Rather, it merely reflects the characteristics of each field
as the number of the article. 2) Large and 3) Middle universities have a profile similar
to 1) Research university, but 4) Tech university has obviously different distribution, e.g.
G: Medicine. This is consistent with the difference in the department composition of
each university (Table 2.6). There seems to focus on I: System and Control Science, J:

64



4.2 Inputs and outputs
R
es

ea
rc
h

La
rg
e

M
id
dl
e

Te
ch

N
on

-m
ed

So
ci
al

10 8 6 4 2 0Budget (10
10

JPY) 10
0 80 60 40 20 0

Budget (%)

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Ye
ar

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Ye
ar

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Ye
ar

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Ye
ar

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Ye
ar

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Ye
ar

1.
0

0.
8

0.
6

0.
4

0.
2

0

rex, rcom

	" #
$

" %&
'

no
n

R&
D

( %
&'#$

(

( )
&*#$(+
,

( -
.#$

( -
.

(a
)

(b
)

(c
)

(d
)

(e
)

(f)

(g
)

(h
)

(i)
(j)

(k
)

(l)

Fi
gu

re
4.

3:
Ti

m
e-

ch
an

ge
of

th
e

st
ru

ct
ur

e
of

ex
pe

nd
itu

re
.

Th
e

no
m

in
al

va
lu

e
of

ex
pe

nd
itu

re
((

a)
to

(f
))

an
d

th
e

pr
op

or
tio

n
((

g)
to

(l)
)o

ft
he

no
n-

R
&

D
ex

pe
nd

itu
re

(th
at

is
,B

�
B

R
D

),
th

e
in

te
rn

al
ly

fu
nd

ed
R

&
D

ex
pe

nd
itu

re
B

in R
D

,t
he

R
&

D
ex

pe
nd

itu
re

fu
nd

ed
by

th
e

go
ve

rn
m

en
tB

ex go
v

an
d

th
e

R
&

D
ex

pe
nd

itu
re

fu
nd

ed
by

pr
iv

at
e

co
m

pa
ny

B
ex co

m
fo

r6
ca

te
go

rie
s

of
un

iv
er

si
ty

.T
he

ra
tio

r e
x
=

(B
ex go

v
+

B
ex co

m
)/

B
R

D
an

d
r c

om
=

B
ex co

m
/(

B
ex go

v
+

B
ex co

m
)

ar
e

al
so

pl
ot

te
d

fo
r(

g)
to

(l)
(r

ea
d

in
th

e
rig

ht
ax

is
).

Th
e

al
ld

at
a

pl
ot

te
d

he
re

is
ba

se
d

on
th

e
m

ic
ro

da
ta

of
"t

he
Su

rv
ey

of
R

es
ea

rc
h

an
d

D
ev

el
op

m
en

t,
M

in
is

try
of

In
te

rn
al

A
ffa

irs
an

d
C

om
m

un
ic

at
io

ns
".

65



University-scale analysis

Information Engineering, and N: Electrical Engineering in 4) Tech university.

The difference between the average of richness of individual universities and richness
as the whole university (as shown in Figure 4.1) can be understood by the distribution of
richness for each university. As shown in Figure 4.5, the richness of research topics for
individual universities indicates skewed distribution. The average richness of 69 national
universities is around 400, while overall richness is around 2,500 (Figure 4.1). In other
words, even for large research universities, it is difficult to follow even half of the research
subjects covered by whole universities. Since there are many themes that are being studied
in multiple universities, the overall richness is significantly less than the simple sum of
the individual richness. Figure 4.5 also shows both the variance within each classification
and the variance among each classification. The variance within 3) Middle classification
is considerably gentler than that within 1) Research university classification.

Figure 4.6 shows the inputs and outputs for DEA averaged in each category of the na-
tional university. The total publication count (puball) implies skewed distribution among
universities as compared to the distribution of researchers and the R&D budget. For ex-
ample, the universities in 1) Research category hold approximately twice larger number
of principal investigators and publish three times larger than ones in 2) Large category do.
This is well consistent with the previous study on the skewed distribution of publication
rather than one of the research grants (Shibayama (2011)). The ratio of publication with
top 10% citation to total publication (pubt10) is larger than 10% only for the university
in 1) Research and 2) Large categories. This implies that there some room for improve-
ment of citation for many national universities. The richness and evenness show opposite
relationship, i.e. the universities with the higher richness show the lower evenness.

The growth of publication (Dpuball) rapidly decreases between 2002 and 2006. This
trend appeared for universities in all six categories. The growth rate has been recovered
but it is still under 5% level in 2011. The richness slightly increase for almost all univer-
sities while evenness shows fluctuation within ±5. Fundamental statistics for both inputs
and outputs variables are shown in Table 4.1 and 4.2, respectively.

The difference of outputs among universities may derive from the difference of inputs
and/or their productivity. Data envelopment analysis computes productivity of each na-
tional university in each year by means of the weighted ratio between multiple inputs and
multiple outputs and assumes that the efficiency of the most productive university (to the
given inputs) in the dataset is 1.
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Figure 4.4: Heatmap of the number of publication in JST classification.
The number of papers (in log-scale) for each classification codes in the most coarse class
in JST classification system. The number of papers is the count based on the papers
published between 2002 and 2011 and registered in both J-Global and Scopus databases
commonly. The university in the category 1) Research shows many papers in all fields,
notably B: Physics, C: Chemistry, and E: Biological sciences classification reflecting the
characteristics of each field. The university in 2) Large and 3) Middle categories have a
similar profile to 1) Research university, while 4) Tech university has obviously different
from those distributions.
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Figure 4.6: Time-change of inputs and outputs.
(a) The time-change of nPI, ndoc, nres, and Bblock for 6 categories of national university.
The growth ratio of each variables are plotted in the lower panels. Those values are
based on the microdata of "the Survey of Research and Development, Ministry of Internal
Affairs and Communications". (b) The time-change of puball , pubt10, R and E for 6
categories of national university. The growth ratio of each variables are plotted in the
lower panels. Those output variables are the count based on the papers registered in both
J-Global and Scopus databases commonly.
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the whole 69 universities.
(a) The richness (Rtotal) and the number of paper (the sum of puball) for 69 national uni-
versities. Notice that Rtotal is not the sum of R for each universitiy. While publication
count shows more than 30% growth during this decade, the richness slightly increases.
(b) DEA efficiencies for publication f p and scientodiversity f d averaged over 69 univer-
sities. Both show improvement as a whole corresponding to the growth of publication and
richness. (c) Gini index for puball and BRD calculated from the Lorenz curve as shown in
Figure 4.2. The input data used in this plot is based on the microdata of "the Survey of
Research and Development, Ministry of Internal Affairs and Communications". The out-
put data used here is based on the papers registered in both J-Global and Scopus databases
commonly.
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Table 4.1: Fundamental statistics of inputs.

nPI ndoc nres Bgoods
RD observation

1) Research mean 2358 2985 590.9 2982446 80

S.E. (92.79) (134.7) (34.57) (186319)

median 2240 2574 538.8 2810207

2) Large mean 1245 1366 300.2 945923 70

S.E. (36.17) (47.41) (12.89) (62724)

median 1297 1152 280.5 759075

3) Middle mean 696.5 330.7 157.4 318280 280

S.E. (11.6) (12.42) (3.653) (8279)

median 704.8 260.5 144.8 304957

4) Tech mean 244 205.6 24.79 262050 120

S.E. (8.61) (12.14) (2.728) (12987)

median 206.2 180.8 14.83 222426

5) Non-med mean 425 263.3 4.608 228692 80

S.E. (18.08) (16.5) (0.626) (16277)

median 427.3 214 2.167 164048

6) Social mean 276.9 147.4 4.6 99797 60

S.E. (5.459) (33.44) (1.413) (9695)

median 272.8 29.33 0 68212

all mean 798.2 698 168.1 651678 690

S.E. (27.15) (38.24) (8.111) (40265)

median 630.5 272 117.7 306879
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Table 4.2: Fundamental statistics of outputs.

puball pubt10 R E observation

1) Research mean 5777 0.1182 1108 0.3033 80

S.E. (254.4) (0.0019) (21.42) (0.005)

median 4886 0.1151 1059 0.3003

2) Large mean 1814 0.1182 556.3 0.3972 70

S.E. (62.2) (0.0025) (19.36) (0.0063)

median 1823 0.1126 580.2 0.401

3) Middle mean 690.7 0.0916 271.7 0.5414 280

S.E. (15.96) (0.0013) (5.984) (0.0042)

median 659.3 0.0867 269.3 0.5451

4) Tech mean 524.1 0.0571 215.9 0.5671 120

S.E. (23.53) (0.0024) (9.205) (0.0092)

median 521.2 0.051 218.5 0.5516

5) Non-med mean 438.8 0.0654 213.6 0.6029 80

S.E. (22.32) (0.0023) (8.331) (0.0075)

median 392.8 0.0584 218.5 0.6046

6) Social mean 81.01 0.0481 33.46 0.7998 60

S.E. (4.775) (0.0028) (2.616) (0.0124)

median 71.83 0.0466 31.5 0.8174

all mean 1283 0.0846 360.4 0.5332 690

S.E. (71.13) (0.0012) (12.09) (0.0055)

median 663.3 0.0819 254.5 0.5331
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4.3 Publication and diversification efficiencies

The result of DEA for publication and diversification are shown in Table 4.3. Both effi-
ciencies f p and f d are average within each university categories. Among 1) Research, 2)
Large, and 3) Middle categories, the universities with a larger size in terms of both bud-
gets and researchers indicate better efficiencies, while the universities in the category 4)
Tech indicate the second-best efficiencies both in terms of publication and diversification.
Those three categories, almost all universities are estimated as the decreasing return to
scale in publication efficiency analysis. However, 30 % of the universities in the category
4) Tech are estimated as increasing return to the scale with high efficiency (f p = 0.918).
Thus, enlarging the size of those universities may be efficient policy to increase total pub-
lication. Those 4) Tech universities have relatively large pubt10 slacks, i.e. approximately
5% can be improved without increase of any inputs.

For the efficiency analysis for diversification, 18.3 % of the universities in the category
4) Tech are estimated as increasing return to the scale with high efficiency (f d = 0.932),
while all universities in the categories 1) Research, 2) Large, and 3) Middle are estimated
as the decreasing return to scale for diversification. There are approximately 3.5% of E
slacks for the categories 1) Research and 4) Tech universities although almost no slacks
improvements are expected for the richness R. The scale expansion, in particular, of the
specific universities, may not be a good policy for improving diversity as comparing with
that for increase the number of papers. More than 35% of R slacks improvement is ex-
pected for the universities in the categories 6) Social, while they indicate high-efficiency
f d = 0.920 perhaps due to the good performance of E.

The standard deviation of the publication efficiency f p for 3) Middle university is
slightly larger than that for other university categories despite the relatively small average
efficiency f p = 0.781. The standard deviation of the diversification efficiency f d for
2) Large classification is larger than those of other university classes. Those observed
variations in the efficiency score suggest the inter-university diversity of their activity, i.e.
some universities focused on research while others emphasize education. The difference
of the research portfolio of each university may also affect the deviation of efficiency.

The time change of efficiencies f p and f d are shown in Figure 4.8. For publication
efficiency, the observed improvement of f p for the universities in the categories 1) Re-
search and 4) Tech indicates a shift of the best-practice frontier, while the universities in
the categories 2) Large and 5) Non-med show catch-up in this decade. The universities
in the category 3) Middle seems struggling to catch-up. For the diversification efficiency,
the catching-up behavior is also observed for the category 2) Large and 3) Middle.
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Table 4.3: Summary statistics for the efficiency scores.

(a) Publication

f p return to scale slacks

mean S.D. min. max. decreasing constant increasing puball pubt10

1) Research 0.939 (0.074) 0.754 1.000 97.5% 2.5% 0.0% 0.00% 0.78%

2) Large 0.830 (0.098) 0.635 1.000 100.0% 0.0% 0.0% 0.00% 0.00%

3) Middle 0.781 (0.120) 0.516 1.000 96.8% 2.5% 0.7% 0.00% 0.07%

4) Tech 0.918 (0.115) 0.504 1.000 43.3% 26.7% 30.0% 0.03% 4.97%

5) Non-med 0.850 (0.126) 0.483 1.000 75.0% 13.8% 11.3% 0.05% 0.64%

6) Social 0.777 (0.250) 0.200 1.000 70.0% 13.3% 16.7% 4.46% 9.27%

all 0.835 (0.145) 0.200 1.000 83.0% 8.7% 8.3% 0.40% 1.86%

(b) Diversification

f d return to scale slacks

mean S.D. min. max. decreasing constant increasing R E

1) Research 0.937 (0.047) 0.839 1.000 100.0% 0.0% 0.0% 0.00% 3.60%

2) Large 0.812 (0.141) 0.486 1.000 100.0% 0.0% 0.0% 0.00% 0.00%

3) Middle 0.820 (0.083) 0.575 1.000 100.0% 0.0% 0.0% 0.00% 0.42%

4) Tech 0.932 (0.071) 0.712 1.000 62.5% 19.2% 18.3% 0.03% 3.51%

5) Non-med 0.914 (0.058) 0.803 1.000 81.3% 11.3% 7.5% 0.00% 0.43%

6) Social 0.920 (0.101) 0.641 1.000 51.7% 25.0% 23.3% 36.01% 0.06%

all 0.872 (0.101) 0.486 1.000 87.1% 6.8% 6.1% 3.14% 1.25%
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Figure 4.8: Efficiency scores for each class of university.
The time change of DEA efficiency of publication (f p shown in (a)) and that of sciento-
diversity (f d shown in (b)) for 6 categories of university. The university in 1) Research
and 4) Tech classification keep their high efficiency, while the university in 2) Large and
3) Middle show the catching-up behaviour for both publication and scientodiversity. The
university in 5) Non-med classification indicates the high efficiency in scientodiversity
while it shows the catching-up in publication. The growth ratio of f p and f d are shown
in the lower panels (c) and (d), respectively.
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4.4 Panel Tobit regression

The Tobit regression of efficiencies f p and f d indicate statistical significance on several
variables both in linear and quadratic models as shown in Table 4.4. The publication
efficiency f p depends on the total R&D expenditure BRD and amount of block grant per
single PI Bblock within a concave-up relationship, i.e. coefficients for the quadratic term is
positive for both variables. This implies that the publication efficiency can be improved
by increase of BRD and/or Bblock and the larger amount of the increase of budget can lead
the better improvement of the efficiency. This dependency on the size of the budget may
be associated with the observed dependence of efficiency on the size of universities, i.e.
the size of the total expenditure of universities is in the order of categories 1) Research, 2)
Large, and 3) Middle as shown in Figure 4.3. The observed good efficiency ( f p > 0.9) of
the universities in the category 4) Tech and 5) Non-med may be explained the relatively
large amount of BRD as shown in Figure 4.3.

According to the observed dependency of f p on the proportion of the external grant
rex to the total R&D expenditure and the ratio of external grant from private company rcom,
changing balance of budget is one possible strategy to improve the publication efficiency
without an increase of the total amount of R&D budget. The publication efficiency f p

indicates quadratic dependency both on rex and rcom with positive coefficients. The local
minimum of the estimated latent variable f p⇤ is realized for r⇤ex ' 0.225 and r⇤com ' 0.427
where |∂f p⇤/∂ rex|rex=r⇤ex = 0 and |∂f p⇤/∂ rcom|rcom=r⇤com = 0. Then, the increase of rex

may improve publication efficiency for most of universities. In contrast, the increase of
rcom may decrease the efficiency since rcom is smaller than r⇤com for most of universities
as shown in Figure 4.3.

The diversification efficiency f d depends on BRD, Bblock and rRD within the linear
model but this dependency has not seen in the quadratic one. This implies that the increase
in the number of research topics, i.e. richness, is not straight-forwardly accomplished by
the increase of paper even richness depends linearly on the number of paper.

The efficiency f d can be explained only by rcom and its quadratic term within the sta-
tistical significance of p< 0.001. The estimated negative coefficient for the quadratic term
implies that f d shows local maximum at r⇤com ' 0.313 where |∂f d⇤/∂ rcom|rcom=r⇤com = 0.
Then, one possible policy to improve diversification efficiency f d is an optimization of
the ratio rcom.

4.5 Conclusions and policy implications

The efficiency of Japanese national universities in terms of the quantity and diversity
of their publication has been quantitatively assessed by using data envelopment analysis
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Table 4.4: Tobit regression of efficiency scores.

Publication Diversification

Linear Quadratic Linear Quadratic

BRD(106) -0.007 -0.059** 0.015*** 0.011

(0.006) (0.019) (0.003) (0.011)

B2
RD(1012) 0.005*** 0.000

(0.001) (0.001)

Bblock(103) 0.018* -0.227*** -0.027*** 0.006

(0.007) (0.028) (0.004) (0.017)

B2
block(106) 0.02393*** -0.00297

(0.003) (0.002)

rex 0.253** -0.696* -0.040 -0.119

(0.093) (0.271) (0.053) (0.168)

r2
ex 1.548** 0.262

(0.567) (0.339)

rRD 0.022 -0.673* -0.215*** -0.207

(0.070) (0.304) (0.040) (0.195)

r2
RD 0.356 0.024

(0.234) (0.151)

rcom -0.160* -0.751*** 0.016 0.433***

(0.068) (0.177) (0.039) (0.112)

r2
com 0.880** -0.691***

(0.280) (0.177)

(Intercept 1) 0.666*** 1.756*** 0.933*** 0.824***

(Intercept 2) -1.942*** -2.076*** -2.488*** -2.506***

Log-likelihood: 193.3 281.4 570.2 579.5

AIC -342.6 -508.8 -1096.3 -1104.9

***p < 0.001, **p < 0.01, *p < 0.05, standard errors in parentheses.
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(DEA).
First, we confirmed structural changes of university expenditure between 2001 and

2012. The universities in the category 1) Research successfully increase their R&D
expenditure by obtaining external grants mainly from the government, while the other
universities decrease their R&D expenditure even they increase dependency on external
grants from the government. The government thought that the reduction of subsidies for
operating expense since the incorporation of the National University in 2002 was able to
be compensated by expanding competitive research grants. However, from our survey,
the compensation was effective only for a few national universities, and many other uni-
versities have reduced their R&D expenditure over a decade. As a result, this policy made
the budget distribution of national universities more skewed, i.e. a few rich universities
get richer. From the viewpoint of paper production, the concentration of budget to some
highly productive universities is not necessarily unfair. If the production function is as-
sumed to be increasing returns to scale for all universities, the number of paper will take
the maximum when all budget is given to one university with the highest productivity.
However, in actual situations production function is assumed to be the decreasing return
to scale in actual situations, so the government needs to allocate resources to universities
with relatively low paper productivity. It is also necessary to keep in mind that paper
production is not the only function of national universities.

Second, we evaluate efficiencies of national universities in terms of both publication
and diversification by DEA. Among 1) Research, 2) Large, and 3) Middle categories, the
universities with larger expenditures have better efficiencies. The production functions
of those universities are estimated to be decrease returns to scale as expected for both
publication and diversification. The good efficiency scores for universities in the cate-
gory 4) Tech suggests that the management of university hospitals may have an important
role in improving the efficiency of publications. The observed catch-up behavior, i.e.
improvement of efficiency scores, of the universities in the categories 2) Large, 3) Mid-
dle and 5) Non-med is explained by both decreases of inputs and increase of outputs as
shown in Figure 4.6. Although it was not mentioned in this research, it has been reported
that the decrease in research time deteriorated the publication performance of Japanese
researchers. Improvement in efficiency of these universities is the key to improving the
performance of papers production in Japan as a whole, and the government should make
a profound support to those universities including human resource aspects other than bud-
get. The diversification efficiency shows similar trends with that of publication efficiency,
i.e. f p

Research > f p
Tech > f p

Non�med > f p
Large > f p

Middle. However, there are smaller room
for improvement of efficiency in terms of both scale economy and slacks improvement as
comparing with that of publication efficiency.

Finally, we test the impact of the balance of research grants on efficiency scores by
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Figure 4.9: Correlation matrix of variables used in DEA and Tobit regression.
The correlation coefficient for the variables used in DEA and Tobit regression in this
chapter. The color indicates the sign of coefficient (i.e. blue represents positive and
red does negative) and the shade of color represents the magnitude of correlation. The
input data used in this plot is based on the microdata of "the Survey of Research and
Development, Ministry of Internal Affairs and Communications". The output data used
here is based on the papers registered in both J-Global and Scopus databases commonly.

Tobit regression. The result implies the importance of total R&D budget and block grant
per researchers to publication efficiency. As well as the amount of budget, the structure of
budget also affects efficiency scores both in publication and diversification. The increase
of the proportion of the external research grant rex may improve the publication efficiency
for most of the national universities, but not for diversification ones (within certain statis-
tical significance). In contrast, the increase of rcom may decline the publication efficiency
scores but improve diversification ones because the estimated sign of quadratic coefficient
on r2

com is opposite between them as shown in Table 4.4.
Our results contribute to not only the foundation of a strategy for individual national

universities but also provide useful suggestions for nation-wide resource allocation.
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Chapter 5

Team-scale analysis

5.1 Japanese grant systems

The evaluation of research grant effectiveness has recently attracted considerable attention
in science policy discussion. In particular, funding agencies are being held responsible
for ensuring the effectiveness of and efficient investment in basic science (Abbott (2016)).
The positive impact of research grants on the performance of researchers have been in-
vestigated (Jacob and Lefgren (2011)), but the manner in which diversity changes as a
result of grant distribution has not been examined. Intuitively, mission-oriented grants
for research in relatively narrow research subject areas should skew the distribution of
publication research subjects, i.e. they should decrease the diversity of science. How-
ever, this expected negative impact on diversity cannot be confirmed by the study of iso-
lated variables. Rather, it should be examined by means of comparison of the impact of
mission-oriented and conventional curiosity-driven grants.

The curiosity-driven grant is widely believed to give researchers the freedom to choose
research topics freely, thus easing concentration on specific research areas, i.e. it should
increase the diversity of research. However, in a research environment with an excessive
focus on performance, the curiosity-driven grant may push research towards rather con-
servative, safe topics more than the mission-oriented grant does, and thus may reduce the
diversity of science. It is also reported that the distribution of the curiosity-driven grant
in Japan is more skewed both in terms of researchers and universities than that of the
publication performance of researchers in many disciplines (Shibayama (2011)).

Performance-based funding, whether curiosity-driven or mission-oriented, tend to be
allocated to certain researchers and/or universities due to the skewed distribution of their
research performance, and their high selection rate is regarded as a possible cause of
reduction of a variety of research subjects (Adams and Smith (2003)). However, the
above is still only working hypotheses that have never been tested quantitatively. The
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relationship between resource allocation type and research outcome is a pressing question
that must be answered in the course of evaluation of policy effect, within the realm of
public policy studies.

Competitive research grants are now recognized in many countries as a popular pol-
icy tool for the promotion of fundamental research and development. The competitive
research grant is believed to (a) encourage researchers to be productive and (b) stim-
ulate entrepreneurship among researchers, although competitive grants require that re-
searchers spend more time on proposal applications and research administration, and less
on research (Stephan (1996)). Japan has recognized that the competitive research grant
system might enhance the performance of Japanese researchers in the current competi-
tive research environment, and as a result, since the establishment of Japan’s Science and
Technology Basic Plan in 1996, Japan has made great efforts to establish a so-called dual-
support system, which utilizes both block grants and competitive grants in some form of
balance.

The performance-based approach became dominant in response to socioeconomic de-
mand, i.e. the demand for scientific outcomes to be translated into economic growth in
the form of new products and processes. The recent history of block grants to national
universities and competitive grants in Japan is shown in Figure 5.1(a). It is clear that
the budget for competitive grants has increased, whereas that for block grants to national
universities has decreased by approximately 1% per year since the 2004 reorganization
of national universities as independent administrative institutions. This cutback of block
grants in Japan is directly related to the reduction of personnel expenses in most national
universities. The impact of that reduction on the performance of Japanese scientists has
not been examined, but obviously a negative effect is expected.

Figure 5.1 (b) shows the growth of two typical competitive grant programs for funda-
mental research in Japan, namely the Grant-in-Aid for Scientific Research (KAKENHI)
and the Strategic Basic Research Programs. The two types of grants, widely recognized
as curiosity-driven and mission-oriented grants, respectively, are managed by different
funding agencies. The societal expectations of science have grown considerably, but in
many countries, substantial growth of public research investment can no longer be ex-
pected. The application of evidence-based design and the implementation of effective
and efficient research funding systems are recognized worldwide as policy demands.

5.2 Datasets

This study used data from several sources. The information of the principal investigators
such as affiliation, position, the location of their affiliated institution was retrieved from
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Figure 5.1: Science budget in Japan.
(a) The recent history of the block grants to national universities (open and solid square)
and the competitive research grants (solid circle) after the establishment of the first Sci-
ence and Technology Basic Plan in Japan. Notice that the gap observed in 2004 is caused
by the change in the account system of Japanese national university corresponding to
the reorganization of national universities as independent administrative institutions. (b)
The growth of two typical competitive grant programs for fundamental research in Japan,
namely the Grant-in-Aid for Scientific Research (KAKENHI) and the Strategic Basic Re-
search Programs.
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Table 5.1: Properties of Japanese grant programs for fundamental research.

CREST KAKENHI

(SR-S) (SR-A) (SR-B)

Type of grant Mission-oriented Curiosity-driven

Grant ( JPY per proposal) 150-500M 50-200M 20-50M 5-20M

Term (years) 5.5 5 3-5 3-5

Adoption rate (FY2015) 9.6% 13.2% 23.1% 23.0%

Funding Agency JST JSPS

the public databases, such as the JST Project Database and the Database of Grants-in-Aid
for Scientific Research, utilized by the funding agencies. Those researchers were identi-
fied in the Scopus database by their name and affiliation. Then, we made the publication
list of each researcher from the database and counted their publications and citations as
well. The articles published by the identified researchers were also retrieved in the J-
Global database in order to obtain the JST classification codes given to each paper (see
also the next section).

In this study, we compared two grant programs, namely the Grants-in-Aid for Scien-
tific Research (KAKENHI) and the CREST program, as the typical examples of curiosity-
driven and the mission-oriented fundamental research grants, respectively. The research
subjects awarded in the CREST program are regulated in terms of the strategic target is-
sued by the government, especially the Ministry of Education, Culture, Sports, Science
and Technology (MEXT). The amount of the grant for the CREST program is larger than
that for the KAKENHI program, which has several types of grant depending on its pro-
posed budget and research terms, as listed with other properties in Table 5.1.

We identified the Japanese principal investigators (N0 = 348) who were awarded to
either the KAKENHI program (type (S), (A), or (B)) or the CREST program. In order
to avoid the fixed-effects on publication and citation preference, or culture of the spe-
cific research community, we retrieved the principal investigators only from the field of
nanotechnology and materials science. Both KAKENHI and CREST programs have sup-
ported these research areas for several decades.

5.3 The impact of grants on publication performance

Fundamental statistics of variables are shown in Table 5.2. The Probit regression of prob-
ability of participation to the CREST program indicated statistical significance on several
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Treatment:
CREST
(Mission-Oriented)

Control: 
KAKENHI
(Curiosity-driven)

Propensity Score 
Matching (PSM)

(N=348)

A
ps=80%

B
50%

C
30%

D
ps=80%

E
50%

F
30%

(N=128)

(N=128)
• Publication performance
• Richness, Gini-Simpson index

Difference
in Differences (DID)

Figure 5.2: Outline of analysis.
First, we identify 348 Japanese principal investigators who were awarded to either the
KAKENHI program (type (SR-S), (SR-A), or (SR-B)) or the CREST program. Then we
set 128 pairs of PIs according to the propensity score (i.e. the probability of participation
to the CREST program) calculated by Probit regression using the number of publication,
citation and the affiliation information. Finally, we compare publication performance by
the Difference in Differences (DID) methodology and also diversity indices (richness and
Gini-Simpson).
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dummy indices such as dUT, dFIU, dprof, and dkanto as well as the performance variables
such as pubave

before and citeave
before as shown in Table 5.3. The significant impact of the affilia-

tion and position reflected the skewed distribution of awardee of the grant. It should not be
understood as the result of the biased selection process. The negative coefficient for dUT

can be understood as a compensation for excessive dependence on dFIU and dkanto since
those dummy indices have value 1 simultaneously when dUT = 1, i.e. the University of
Tokyo is one of the former Imperial Universities (dFIU = 1), and located within the Kanto
region (dkanto = 1). The coefficient for pubave

before indicated negative dependence on the
publication although the peer-review selection process was thought to be performance-
based.

This negative dependence on publication implies that evaluation measures other than
the number of publications are considered in the selection process for the CREST pro-
gram. On the other hand, the average citation count in the three years prior to the ap-
plication to the grant program citeave

before was statistically significant. The coefficients for
other variables, such as dkansai, top10ave

before and cppave
before, were not statistically significant.

The log-likelihood test after the propensity score matching rejected the hypothesis that for
some variables there was a statistically significant difference between the control and the
treatment group in both the caliper and the kernel matching method (Table 5.4). The sta-
tistical difference was relaxed, i.e. the p-value increased, for many variables such as dUT,
dFIU, dprof, and citeave

before although the p-value for dkanto and pubave
before decreased slightly.

The average treatment effect on the treated (ATT) of the participation to the CREST pro-
gram was estimated by the difference in differences between control group and treatment
group:

Xs
b�g = Xs

going �Xs
before,

Xs
b�a = Xs

after �Xs
before

where X represents either pub, cite, top10, or cpp, and s stands for either ave or max.
As shown in Table 5.5, a positive impact on the publication and citation performance
was indicated. From the caliper matching samples, the ATT for publication count was
statistical significant, indicating that participation in the CREST program was relevant to
increase of publication by approximately one paper per year per single principal investi-
gator during five years of participation, and increased by a further half publication count
in three years after the end of the participation. This increase of the participation effect
is consistent with the intuitive understanding of the time lag between the research activity
and publication. The positive impact on citation count was estimated with relatively small
statistical significance, i.e. the p values of ATT during participation were 0.108 and 0.145
for the caliper matching and the kernel matching samples, respectively. The result also
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Table 5.2: Fundamental statistics.

variables N Mean Std. Dev. Min. Max.

ystart 350 2005.020 3.085 1997 2010

yend 350 2008.691 3.689 2000 2015

dUT 350 0.171 0.377 0 1

dFIU 350 0.471 0.500 0 1

dprof 350 0.549 0.498 0 1

dkanto 350 0.546 0.499 0 1

dkansai 350 0.186 0.389 0 1

treat 350 0.554 0.498 0 1

pubave
before 348 6.646 6.709 0 45.333

pubave
going 350 7.081 6.950 0 44.800

pubave
after 350 6.439 6.557 0 40.000

citeave
before 348 236.091 369.728 0 2819.333

citeave
going 350 191.304 291.838 0 1838.400

citeave
after 350 90.934 190.828 0 1878.667

top10ave
before 348 30.284 34.616 0 381.667

top10ave
going 350 23.665 48.357 0 828.400

top10ave
after 350 9.874 15.094 0 132.404

cppave
before 348 1.367 2.088 0 18.000

cppave
going 350 1.700 2.628 0 20.400

cppave
after 350 1.671 2.778 0 23.500

citemax
before 350 364.731 588.363 0 5320.000

citemax
going 350 356.389 599.496 0 7035.000

citemax
after 350 146.217 317.701 0 3233.000

87



Team-scale analysis

Table 5.3: Probit regression of probability of participation to the CREST program.

Coef. S.E.

dUT -0.893*** (0.301)

dFIU 0.655*** (0.220)

dprof 0.522*** (0.153)

dkanto 0.809*** (0.241)

dkansai 0.294 (0.215)

pubave
before -0.0448** (0.0192)

citeave
before 0.00131** (0.000664)

top10ave
before 0.0341 (0.0850)

cppave
before -0.00619 (0.00379)

N 348

Pseudo R squared 0.0659

log likelihood -223.17685

***p < 0.01, **p < 0.05, *p < 0.1, standard errors in parentheses.
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indicated that there was no significant effect on the citation after finishing the program.
The maximum count of citation during participation period also showed a positive ATT in
both the caliper and the kernel matching samples with statistical significance. Any other
of ATT was statistically insignificant.

5.4 Overview of popular research topics

We examined the diversity of research subject in the articles published between 1996 and
2013 by the researchers in the control and treatment groups, the scores being obtained
after propensity score matching (caliper matching). There were 128 researchers in each
group, as listed in Table 5.4. The ten most frequently occurring Scopus subject categories
in the papers published by both control group experimental group researchers are listed
in Table 5.6, with proportion and ranking indicated. The seven most common categories
for the treatment group were exactly same, and in the same order, as those for the con-
trol group. A high concentration of papers in the category Physics and Astronomy was
observed among the control group papers; this implies a smaller diversity index for the
control group papers. Indeed, the Gini-Simpson index 1�l (calculated from the distri-
bution of Scopus classification) for the control group papers was 0.62, smaller than that
for the treatment group (0.80). Note that the numerical value of the Gini-Simpson index
is strongly affected by classification scheme granularity. For example, if the papers in the
most popular category, Physics and Astronomy, are divided into two smaller categories
accounting for equal shares of the total, the diversity index for the control group papers
improves to 0.78. Thus, classification definition can interfere with detailed analysis using
the Gini-Simpson index. Moreover, the Gini-Simpson index is sensitive to concentration
but not dispersion. In the case reported here, the indices calculated for only the top seven
categories (0.58 and 0.76 for the control group and the treatment group papers, respec-
tively) were still within 10% of the values calculated from the whole list for both groups.
This reflects the fact that the cumulative proportion of the top seven categories is greater
than 90 % for both groups.

The fine structure of distribution of research subject retrieved from the J-Global database
is shown in Figure 5.3, where the size of the circle represents the number of articles, with
specific category codes listed in the left. The number of papers is the sum of six-year
periods, such as 1996 - 2001, 2002 - 2007, and 2008 - 2013. Here, we display only the 91
categories which occurred 100 times in total for both groups over the 18 year period. The
cumulative proportion of those 91 categories was 68.8% and 52.4% for the control and
the treatment group, respectively. The distribution pattern of categories for the treatment
group papers was different for all terms from that for the control group.
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Table 5.4: Balance test after the propensity score matching.

Before matching Caliper matching Kernel matching

dUT Mean (treatment) 0.165 0.180 0.164

Mean (control) 0.182 0.180 0.193

p value 0.680 1.000 0.466

dFIU Mean (treatment) 0.500 0.477 0.503

Mean (control) 0.429 0.445 0.507

p value 0.186 0.618 0.937

dprof Mean (treatment) 0.613 0.500 0.608

Mean (control) 0.461 0.516 0.588

p value 0.004 0.803 0.684

dkanto Mean (treatment) 0.557 0.547 0.556

Mean (control) 0.539 0.594 0.593

p value 0.742 0.451 0.465

pubave
before Mean (treatment) 6.851 7.051 6.583

Mean (control) 6.386 6.324 6.249

p value 0.522 0.393 0.607

citeave
before Mean (treatment) 271.930 210.610 219.490

Mean (control) 190.950 201.480 220.620

p value 0.042 0.793 0.967

N(treatment) 194 128 189

N(control) 154 128 154

Pseudo R squared 0.056 0.009 0.002

LR test (p value) 0.000 0.877 0.990
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Table 5.5: Average treatment effect of participation in the CREST program.

Before matching Caliper matching Kernel matching

pubave
b�g ATT 1.469*** 1.048** 1.244**

SE (0.415) (0.512) (0.572)

p value 0.000 0.040 0.030

pubave
b�a ATT 1.776*** 1.536** 1.3**

SE (0.574) (0.621) (0.648)

p value 0.002 0.013 0.045

citeave
b�g ATT 17.387 44.52 68.154

SE (27.475) (27.695) (46.755)

p value 0.529 0.108 0.145

citeave
b�a ATT -43.148 9.163 13.636

SE (34.686) (28.579) (47.141)

p value 0.216 0.749 0.772

top10ave
b�g ATT 0.34** 0.232 0.423*

SE (0.166) (0.213) (0.254)

p value 0.041 0.276 0.096

top10ave
b�a ATT 0.169 0.253 0.147

SE (0.209) (0.247) (0.276)

p value 0.418 0.306 0.595

(to be continued)
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Before matching Caliper matching Kernel matching

cppave
b�g ATT 5.138 9.477 9.761*

SE (5.71) (7.549) (5.814)

p value 0.369 0.209 0.093

cppave
b�a ATT -1.69 3.723 6.496

SE (3.448) (2.775) (4.441)

p value 0.624 0.180 0.144

citemax
b�g ATT 58.887 116.672* 144.034**

SE (61.8) (65.258) (72.837)

p value 0.343 0.074 0.048

citemax
b�a ATT -50.216 30.703 71.184

SE (57.921) (49.73) (76.865)

p value 0.385 0.537 0.354

N 348 282 343

***p < 0.01, **p < 0.05, *p < 0.1
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Table 5.6: Popular research subjects retrieved from the Scopus database.

Control group Treatment group

Scopus Subject Category Rank Proportion (%) Rank Proportion (%)

Physics and Astronomy 1 57.10 1 34.18

Materials Science 2 20.65 2 18.84

Chemistry 3 8.58 3 17.34

Engineering 4 5.50 4 10.86

Biochemistry, Genetics and Molecular Biology 5 1.55 5 4.56

Chemical Engineering 6 1.25 6 4.40

Medicine 7 1.00 7 1.49

(Cumulative proportion of top seven categories) 95.63 91.66

Mathematics 8 0.98 12 0.95

Energy 9 0.92 9 1.17

Multidisciplinary 10 0.84 15 0.43

(Cumulative proportion of top ten categories) 98.37 94.21
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BD: Electricity, magnetism, and optics
BD04010X
BD04070L
BD05000T

BH: Atoms and molecules
BH03060F
BH05010Q
BH09030O

BK: Structure of condensed matter and 
radiation physics

BK01040E
BK07020Y
BK09030X
BK09050T
BK12040Q
BK14030T
BK14040E
BK14050P
BK14060A
BK14070L
BK15030A

BL: Mechanical and thermal properties of 
condensed matter

BL01021C
BL03020Z
BL04020G
BL06021L

BM: Electronic structure, electrical, magnetic 
and optical properties

BM02010K
BM02050C
BM02060N
BM02070Y
BM02080J
BM02110T
BM02120E
BM03020C
BM03033M
BM03043X
BM03044O
BM03045F
BM03081H
BM03082Y
BM03085X
BM04021A
BM04022R
BM04023I
BM04024Z
BM04025Q
BM04043E
BM05030B
BM06020X
BM06040T
BM06050E
BM06060P
BM06070A
BM07043Z
BM08010A
BM08020L
BM08063C
BM08092S
BM08093J
BM08101P
BM09060K

CB: Physical chemistry

CB01030T
CB03012T
CB07040U
CB07050F
CB08010U
CB08020F
CB11010C
CB12043P

CC: Analytical chemistry, separation methods CB12050B
CC02020S

CD: Inorganic chemistry
CD01010D
CD01030Z
CD01050V

CE: Complex chemistry
CE01050Y
CE01092Y
CE01100E
CE02000C

CG: Polymer chemistry
CG02022M
CG02024U
CG02025L

EB: Biochemistry EB03010N
EB04010U

GA: Medicine in general EB09010D
GA05040H

NA: Electrical engineering in general NA04040H
NC03030V

NC: Electronic engineering
NC03070N
NC03082G
NC03162T

WB: Science of metals WB02020J
YB02060D

YB: Inorganic chemical industry YB04030K
YB04040V

YC: Ceramic industry YC03020V
YC03030G

JST classification code n=3 30 300

control
‘96-01 ‘02-07 ‘08-13

treatment
‘96-01 ‘02-07 ‘08-13

Figure 5.3: Distribution of popular research subjects in the J-Global database.
The distribution of research subject for the control and treatment group retrieved from
the J-Global database. The size of the open circle represents the number of articles with
specific classification codes listed in the left. Those number of papers are the sum of six-
year periods, 1996 - 2001, 2002 - 2007, and 2008 - 2013. We display here only the 91
classification codes attached more than 100 articles in total for both groups over the 18
year period.
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The mid-level categories BK (structure of condensed matter and radiation physics)
and NC (electrical engineering) were dominant among the treatment group papers, al-
though for the control group a very large concentration was observed for category BM
(electronic structure, electrical, magnetic and optical properties). The size of the above
categories seems to be stable over time, which implies that the impact of the funding
program on the distribution of popular research subjects is small. The observed posi-
tive impact of mission-oriented grants on publication count may reflect an increase in the
number of studies on relatively minor research subjects. This difference in the distribu-
tion of research areas suggests some complementarity of role between the curiosity-driven
KAKENHI and the mission-oriented CREST grant programs. The framework of a sim-
ple linear model, in which the curiosity-driven grant covers fundamental research and
the mission-oriented grant covers research of a more applied nature, does not afford an
understanding of the difference among research subject concentrations.

5.5 Time-series change in diversity of research subjects

In this study, we quantitatively compare the impact of mission-oriented research grants
and curiosity-driven grants on the diversity of research subjects in Japan. More specifi-
cally, we identify groups of researchers whose publication performance is positively af-
fected by mission-oriented grants (with statistical significance) and evaluate the diversity
of research subjects through analysis of the distribution of the classification codes over
groups of papers.

The cumulative distribution of JST classification code

C(k) =
•

Â
n=k

p(n) (5.1)

where p(n) represents the proportion of classification code with abundance ni = n, showed
heavy-tailed distribution for both control and treatment groups in all time intervals (Figure
5.4). A few categories with large popularity occupied a relatively large share of the distri-
bution as compared with that for normal distribution. Concentration in specific categories
with large abundance, e.g. k > 50, was observed for the control group for all terms. Those
distributions were well fitted by lognormal distribution function with two fitting param-
eters m and sv. The lognormal distribution is widely observed in many fields of natural
science and is understood as the result of a multiplicative process (Limpert et al. (2001)),
and has been applied in studies of citation pattern (Albarrán et al. (2011); Radicchi et al.
(2008)). The observed skewed distribution of research subjects implies that the recipients
of both KAKENHI and CREST grants choose their research subjects freely. Their choice
is perhaps influenced by surrounding conditions such as availability of resources, priori-
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Figure 5.4: Cumulative distribution of research subjects as a function of abundance
of category.
The distribution of the number of articles (i.e. abundance k) with each classification codes
for the six-year periods, 1996 - 2001, 2002 - 2007, and 2008 - 2013 for the control and
treatment groups. We display here only the 91 classification codes attached more than
100 articles in total for both groups over the 18 year period. The inset shows the fitting
parameter sv of the lognormal function (see Chapter 2).

ties set in a research community, success in previous research, and government mission
statement.

As shown in the inset in Figure 5.4, the parameter sv was always larger for the con-
trol group than the treatment group, and both decrease with time. This is interpreted as
flat distribution, i.e. better diversity, of research subjects for the treatment group than for
the control group, although the diversification appears to have occurred for both groups.
The lognormal distribution robustly retained its shape over almost two decades of ob-
servations, for both mission-oriented and curiosity-driven research. The distribution for
mission-oriented research changed slightly over time but remained well fitted to lognor-
mal function, although the mission-oriented grant appears to have mitigated such skew
distribution.

This implies that implemented investment in this area of science is less concentrated
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or less effective to vary the behavior of scientists. Diversification of science resulting from
socioeconomic demand is rather quite limited here. Regardless of the type of research,
the volume of research on most core subjects grew less concentrated, as can be seen in
Figure 5.4. This does not necessarily imply a skew distribution of resource allocation:
diversification of science may reflect the presence of studies in a wide range of research
subjects but limited to a small number of papers for each subject. The results confirm that
those relatively infrequently addressed research subjects are better served by mission-
oriented grants than curiosity-driven ones.

Time-series change in richness R and Gini-Simpson index 1� l are shown in Fig-
ure 5.6(a) and (b), respectively. It is clear that richness R, as indicated by circle makers
was proportional to the total publication count for both sample groups, depicted by solid
and dashed lines plotted using the right y-axis. Richness of the research subject for the
treatment group was always larger than that for the control group, reflecting greater publi-
cation volume. This strong correlation between publication and richness cannot be taken
to mean that diversity of subjects makes researchers more productive. There may be a
third factor that correlates strongly with both publication and richness and thus gives rise
to the apparent correlation between diversity and productivity. The most likely candidate
is the availability of resources, which is allocated in somewhat skewed distribution as a
result of funding agency policy.

Evenness of the treatment group samples is indicated by the Gini-Simpson index for
all years in Figure 5.6(b). The improvement of control group diversity discussed in terms
of the parameter sv in the inset in Figure 5.4 was confirmed by the increase of the Gini-
Simpson index observed in around 2003. For the treatment group, in spite of a gradual
increase of publication numbers around 2003, the Gini-Simpson index increased only
slightly per year, in contrast with the observed minute change in publication and the
relatively large increase in the index for the control group. This difference in diversi-
fication pattern, i.e. improved richness among the mission-oriented grant-funded studies
and improved evenness among curiosity-driven grant funded-studies, is also suggestive of
compartmentalization between the two types of grant.

5.6 Diversity difference between two types of grants

The linear dependency of richness R on publication number can be seen in Figure 5.7(a).
The slope of the linear correlation for the treatment group sample was slightly steeper
than that for the control group, indicated in solid and dashed lines, respectively, in Figure
5.7(a). However, this publication-richness linear relation can be a spurious correlation be-
tween time series data. As shown in Figure 5.7(b), there seems weak correlation (adjusted
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Figure 5.5: Parameter dependency of p-value of the likelihood-ratio test and number
of PIs in the treatment group.
(a) The p-value of the LR test after caliper matching with respective calipers is shown by
red marks and line (read in the left axis). The p-value drops with increase of the caliper
size, while the number of PIs of the treatment group (shown by blue marks and line, read
in the right axis), who are matched with PIs in the control group, merely change with
the change of caliper between 0.01 and 0.1. (b) The p-value of the LR test after kernel
matching with respective calipers is shown by red marks and line (read in the left axis).
The p-value steeply drops at around the bandwidth 5⇥ 10�2. The number of PIs of the
treatment group keep its value with the bandwidth between 10�3 and 10�1.
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Figure 5.6: Time dependence of the richness and the Gini-Simpson index.
Time-series change in richness R (a) and Gini-Simpson index 1�l (b) between 1996 and
2013 for the treatment (shown in the red solid circles) and the control groups (shown in
the blue open circles). The number of papers for the treatment and the control groups are
plotted (read in the right axis) )in the red solid and the blue dashed lines, respectively in
the panel (a).
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coefficient of determination R2) between the first differences of richness and publication.
The difference in the slope of the regression line between the control and the treatment
groups (plotted in dashed and solid lines, respectively, in Figure 5.7(b)) is not statistically
significant. Therefore, the treatment group (CREST) has greater richness than the control
group (KEKENHI) perhaps because of the large number of papers of the treatment group,
and density of research subject, i.e. richness divided by the number of articles, are almost
same between them. This suggests that CREST program cannot be said to be a simple
concentrated investment as contrary to the expectation that mission-oriented grant invests
in specific research themes. Future studies will extend the analysis to a detailed exami-
nation of the publication list of each scientist; this is expected to reveal some changes in
research theme in personal research histories.

The relation between richness and the Gini-Simpson index is shown in Figure 5.8. It
is clear that the treatment group papers were more diverse than the control group papers
in terms of both richness and evenness. The dashed line represents the maximum value of
the Gini-Simpson index for each R. The relatively large deviation between the maximum
(line) and the present value for the control group papers (open circles) means that there is
considerable opportunity for improvement of diversity, even for the same richness. Notice
that the observed low richness is not itself problematic, but maybe a matter of inefficient
resource allocation, i.e. surplus and deficit are problematic from the viewpoint of public
policy. Although the optimal allocation of resources over whole scientific subjects cannot
be realized easily, public investment should follow a strategy based on the observation
of distribution of research papers as well as measurement of diversity indices such as
richness, evenness, and disparity. If publication count is regarded as a proxy measure of
the amount of invested resources, our results suggest that the mission-oriented grant is
the preferred tool for enhancing the diversity of science. However, our results also show
complementarity of investment by the two types of grant over different research subjects,
so it is unlikely that the optimal distribution of resources can be achieved by means of
mission-oriented grants alone.

Agenda setting and investment tied to specific research subjects are often performed
as the responsibility of the research funding agencies, but consideration is rarely given
to overlapping between research subjects. The observed complementarity is merely im-
plemented as a result, not as a design element. Hence research funding agencies should
give greater consideration to the diversity of science when determining the distribution of
research subjects for the creation of effective and efficient policy.
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Figure 5.7: Linear dependence of richness on publication.
(a) The richness as a function of the number of paper for the treatment and the control
groups between 1996 and 2013. The spurious correlation between time-series data are
indicated by solid and dashed lines for the treatment and the control groups, respectively.
The intercepts are set to zero for both cases. (b) The first differences of richness as a
function of the first differences of publication. The difference in the slope of the regres-
sion line between the treatment and the control groups (plotted in solid and dashed lines,
respectively) is not statistically significant.
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Figure 5.8: Plot of Gini-Simpson index vs. richness.
The Gini-Simpson index as a function of richness for the treatment (red solid circles) and
the control groups (blue open circles) between 1996 and 2013. The dashed line represents
the theoretical maximum 1� 1/R of the Gini-Simpson index for each R. The observed
advantage of the Gini-Simpson index for the treatment group may be associated with
larger R for the group.
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5.7 Conclusions and policy implications

The impact of mission-oriented research grants and curiosity-driven grants on the diver-
sity of research subjects in Japan has been quantitatively compared.

First, the estimation of the probability of adoption has been performed by means of
Probit regression using affiliation and position of applicants as well as publication perfor-
mance. It should be noted that the skewed distribution of awardees in specific institutions
and positions underlies the success of propensity score matching. The average treatment
effect on the treated after propensity score matching strongly suggests that participation
in the CREST program had a positive impact on publication performance during and after
completion of the award period. This positive effect improved publication performance by
more than 10% over initial publication count, perhaps reflecting an increase in the num-
ber of researchers working in teams. Citation count also increases with the participation
to the CREST program. The difference between average and maximum citation number
increased in proportion to the participation. Our results also suggest that the publication
count of the top 10% of citations (a proxy indicator of the quality of published papers)
did not correlate significantly with program participation.

Second, we have evaluated the diversity of research topics through analysis of the
distribution of the classification codes applied to articles published by awardees of both
grants. The group of articles published by the treatment group researchers displayed the
wider variety and more equal distribution over categories of research subject than that
of the control group researchers, as defined by propensity score matching. The better
diversity indices are confirmed with the lognormal distribution with a smaller sv for the
treatment group. The number of categories was higher for the treatment group mainly
because of its larger number of articles. This implies that the treatment group, i.e. es-
pecially CREST program (and not mission-oriented research in general), was prone to
diversification.

Contrary to an intuitive understanding of curiosity-driven research grants as a source
of diversity in research, the diversity observed here appears to have been fostered by
mission-oriented grants. This would imply that the concentrated investment by the CREST
program in specific research targets effectively incentivized researchers to take up new
research themes rather than continuing with their established research subjects, usually
funded by the curiosity-driven KAKENHI program.

From the perspective of the diversification of science, research grants provide incen-
tives for researchers to take up new research topics rather than persist with their already
developed, conventional topics. Diversification of science requires certain changes in
the behavior of scientists. The simplest incentive model assumed in this study is that in
which allocation of budget induces a certain proportion of scientists to perform research
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in specific subjects. Shifts in research theme should be invoked, but the speed of change
should be regulated by its own viscosity, as a reflection of individual preferences and
social norms in the research community to which the researcher belongs. Our findings re-
veal limited diversification of science in Japan, especially in the fields of nanotechnology
and materials science. The central subjects addressed by researchers appear to change
little over time and to be robust against grant-based incentives. However, our results also
demonstrate that the number of subjects increases with increased number of publications,
thus detailed analysis on the shift of research subject by individual basis will be beneficial
for understanding the mechanism of incentive.

In this survey, we only investigated the relatively large programs in KAKENHI such
as SR-S, A, and B as listed in table 5.1, although these are still much smaller in budget
size than CREST program. Therefore, this research will not answer how the difference
between CREST and KAKENHI’s allocation strategy (i.e. allocate a large research bud-
get to one researcher or allocate a small budget to many researchers) affects the paper
productivity and scientodiversity. Future research will be necessary. Notice that since we
retrieved articles by the name of researchers, our dataset included the articles that are not
related to CREST and KAKENHI grants. However, with assuming that the number of
those unrelated articles to both CREST and KAKENHI are of the same level and their
time change is on the same trend, it will be removed by the DID methodology to some
extent.

According to this study on the impact of research grants on publication performance
and topic diversity, several policy implications can be proposed as the followings.

First, scientists and funding agencies should consider the distribution of high-performers
when they worry about the concentration of grants into a specific institution or research
topic. The observed strong correlation between affiliation and awarding of a grant, i.e.
concentrated resource allocation, is not immediately problematic because the concentra-
tion of researchers with relatively higher performance, i.e. high probability of awarding,
in a specific institution provides an alternate explanation for the skewed distribution of
awardees. On the other hand, performance distribution over topics cannot be easily man-
aged in the peer review within a single discipline, thus it would be advisable for funding
agencies to incorporate some sort of balance mechanism over research areas both in the
agenda-setting and the selection process.

Second, the efficiency of grant programs should be evaluated after normalization; at
least publication should be divided by an effective number of participating researchers. A
simple explanation for the increase in publication numbers associated with the participa-
tion of grant programs is the increase of resources, especially human resources, resulting
from the larger amount of research grant (the CREST program awarding more than the
KAKENHI program). The increase in the number of collaborators and post-docs may
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have had a significant effect on the increase in the number of papers by the principal
investigator, due to co-authoring.

Third, government research targets must be carefully designed based on the quantita-
tive analysis of the current diversity of research subjects and evidence-based estimation
of policy effect on diversity. To the best of our understandings, mission-oriented grants
more promote diversity of science than curiosity-driven grants. However, the difference
in the number of popular subjects, as presented in Figure 5.3, indicates the importance of
complementarity between the two types of grant. Intensive discussion and development
of appropriate indicators for program evaluation are clearly needed.

Furthermore, the principle of design (developed here) of incentives for researchers to
focus in a specific research area should contribute to implementation work in the indus-
try cluster. Concentrated investment in a specific research domain, i.e. mission-oriented
grants, evokes urban economics and industry clustering (Delgado et al. (2012); Feldman
and Kogler (2010)). This concentration improves the efficiency of transaction, transfer,
and communication cost, and knowledge spillover can be expected. The observed co-
occurrence of rich diversity and high productivity in mission-oriented research must be
understood in the framework of the economy of urbanization (Jacobs (1969)) which uti-
lizes diverse entities with different expertise and function.
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Chapter 6

Discussion and Conclusions

6.1 Three aspects of scientodiversity

Management and promotion of scientodiversity have long been a prominent issue in the
context of sociology and economics of science. Despite years of research, the precise
formulations of scientodiversity and understandings of the relationship between resource
allocation and scientodiversity are still limited, while the decline of research diversity of
Japanese science has emerged as a policy concern in Japan.

This study has investigated the relationship between the diversity of research subjects,
or scientodiversity, and resource allocation on science aiming a new design of diversity-
aware resource allocation, especially as a research grant program. Our approach based
on three different aspects of resource allocation, such as total amount, distribution, and
types, has revealed positive and negative impacts of resource allocation on scientodiver-
sity in the corresponding three scales, i.e. country, university, and research team. It has
also been established quantitatively methodology to measure scientodiversity inspired by
biodiversity studies through this research.

Diversity, in general, represents three different aspects, such as variety, balance, and
disparity. This study mainly focused on variety and balance aspects of scientodiversity
measured by the richness, i.e. the total number of research subjects, and Gini-Simpson
index, corresponding to the shape of the distribution function of subject classification
codes attached to research articles. Promotion of scientodiversity is intuitively understood
as an increase in variety, but it does not mean improvement in balance. On the contrary, an
excessively skewed distribution is often regarded as problematic implicitly, but skewness
can be necessary to some extent from the viewpoint of overall optimization.

From this viewpoint, this chapter first discusses two aspects of diversity, i.e. variety
and balance, separately, then considers policy implications by the integrated view. The
third aspect, disparity, is discussed as a limitation in section 6.5.
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Figure 6.1: Multi-scale comparison of scientodiversity.
The richness as a function of the number of publication. The purple and pink solid circles
represent the number of publication and richness for for each countries. All values are
averaged over 10 years between 2001 and 2010. The solid squares represent the number of
publication and richness for each Japanese national university in a specific year between
2002 and 2011. The colors of square are corresponding to the classification of university
discussed in Chapter 4. The red solid and blue open circles represent the number of papers
and richness in a specific year between 1996 and 2013 for the treatment and the control
groups, respectively. Both values are the average over corresponding PIs.

6.2 How to increase richness?

Richness is determined by the total amount of resources. This is observed remarkably on
the country scale as discussed in Chapter 3. Figure 6.1 shows a comprehensive summary
of richness-publication plots for the scale of the country, university, and research teams.
The richness shows the exponential dependence of publication like the richness-ERD plot
(Figure 3.6). The slope varies with an increase of the scale. It can be understood as
the diminishing return to scale for richness production (with regarding publication as an
input). Therefore, in order to improve richness, basically it is only necessary to increase
the total amount of resources, but concentrating resources into specific universities/teams
and/or research fields becomes inefficient.
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As shown in Figure 6.1, the observed richness of Japanese national universities is al-
ways smaller than that of the countries having a comparable amount of publication. While
the richness-publication curve of Japanese national universities is always below that of
countries, the slope of them is relatively similar. This implies the density of research sub-
jects is almost universal, i.e. the macroscopic mechanism for fertilizing scientodiversity
may be independent of whether the considering group is university or country.

The gap between country’s curve and university’s one implies a possible improve-
ment of richness without increase publication. However, since the richness of the whole
system cannot be improved by the summation of local richness for each elemental units,
improvement of Japan’s (or the whole Japanese national university’s) richness cannot be
accomplished by just increasing the richness of individual university as an average. This
observed gap (Figure 6.1) perhaps reflects the university’s scientific role sharing. In the
industrial cluster policy, the role sharing is regarded as an implementation of the econ-
omy of scale. In this sense, variety within each cluster is not so important but overall
necessary role must be shared by each cluster. Thus, richness within a specific cluster can
be much smaller than that of an entire system of clusters. On the other hand, the cross-
fertilization within a cluster is also regarded as an essential mechanism for the successful
cluster. Therefore, it is necessary to consider scientodiversity, in particular, the variety of
research topics, in terms of both the role sharing and interdisciplinarity. The role share
behavior of Japanese national universities is also evident as shown in Figure 4.5.

The sum of budgets for individual universities is equal to the overall budget, but rich-
ness cannot be summed in the same manner. Because there are many overlapping research
subjects among universities, the university’s overall richness is always smaller than the
sum of the richness of individual universities. In other words, the overall diversity is
represented by both diversity in individual universities and diversity among those univer-
sities. Such a situation can be formalized by the concept called b -diversity in biodiversity
studies. In ecology, the species diversity in a specific ecosystem as a whole is often re-
garded containing diversity at the habitat level and the variety among those habitats. The
former diversity is called a-diversity and the latter is called g-diversity. The b -diversity
(or so-called "absolute species turnover") is quantified as the difference between g and a-
diversity. In our case, the richness of individual university represents a-diversity, and that
of the whole country is g-diversity. In order to promote g-diversity (diversity at country
level), we must consider a and b diversity at the same time.

The role of the university is not only research, as intensively investigated and dis-
cussed in this thesis, but also education. In many countries, higher education is a top
priority of the university’s role. Japanese national universities have been established in all
prefectures as shown in Table 2.7 and are responsible for an equal opportunity for higher
education. In this thesis, we mainly focused on the aspect of research (see also Table 2.8),
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but variety and balance of education should also be discussed at the same time. From
this viewpoint, the observed role-sharing over research subjects may prevent the equal
opportunity for higher education. Although the paper productivity or employment rate of
graduates can be one metric for evaluation of outcome, it still needs to measure by other
metrics. The b -diversity among universities is such candidate index for understanding
and monitoring of the activity of universities as an ecosystem.

The type of budget may also associate with the richness. The importance of external
grants from private companies has been pointed out because of the limitation of govern-
ment’s investment in particular for Japanese national universities ( National Institute of
Science and Technology Policy (2015); Sunami (2017)). However, in many cases about
Japanese universities, the motivation for obtaining external grants from companies derives
from the limited investment by the government.

The result of this study implies that the acquisition of external budget has a great
influence on the promotion of scientodiversity. In the university scale analysis, a statisti-
cally significant correlation was found between the DEA efficiency of diversification and
the ratio rcom of external grants from private companies. This should be understood as a
bi-directional relationship, not as a one-directional causal relationship. It can be the di-
rection that the external funds promote scientodiversity and the direction that universities
with diverse research portfolio are more likely to acquire external funds from companies.
Also seen in the team scale analysis, the mission-oriented grant is found to be more effec-
tive in promoting scientodiversity than the curiosity-driven grant. This study suggested
that external funds play an important role in promoting scientodiversity, not just for the
amount of budget.

6.3 How to ease skewed distribution?

As introduced in Chapter 2, the relationship between resource allocation and scientodi-
versity can be written as a simple binomial distribution process. The balance of research
subject is represented by a lognormal parameter sigma, which can also be measurable by
Gini-Simpson index as discussed in Appendix A.

In order to improve balance, the program design of (A) increasing the adoption rate
or (B) decreasing difference between awardee and non-awardee (like a basic income) are
considered as a possible policy option. Using the simple binomial distribution effective
model introduced in Chapter 2, we set the operational design parameters z1, z2, and p of an
effective grant program, and change of those parameters so that the lognormal parameter
s decrease (i.e. balance is improved) by keeping the total allocation budget constant (i.e.
the average X̄ is constant).
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Figure 6.2: Possible improvement of evenness by (a) constant z2 and (b) constant p.
(a) With keeping z2 = 1 and X = 4, the increase of probability p from 0.288 to 0.385
and the decrease of the value z1 from 1.521 to 1.387 at the same time can decrease the
lognormal parameter s from 0.601 to 0.503 shown as the point A and A’. (b) As an
alternative option, we consider the increase of z2 instead of p from 1 to 1.074 and the
decrease of z1 from 1.499 to 1.323 at the same time may reduce s from 0.578 to 0.302
with keeping p = 0.3 and X̄ = 4.
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The increase of adoption rate is equivalent to increase of probability p. For example,
when one increase p from 0.288 to 0.385 and the realization value z1 is reduced to 1.521
to 1.387 at the same time to keep X = 4, the lognormal parameter sigma decrease from
0.601 to 0.503 shown as the point A and A’ in Figure 6.2(a) (see also Figure 2.4). As an al-
ternative option, we consider the increase of z2 instead of p. Figure 2.5 shows the average
X̄ , the median X̃ , and sigma are plotted by changing z1 and z2 with p = 0.3. The hatched
area in Figure 2.5 is excluded by definition z2 > z1. By increasing z2 without changing,
the lognormal parameter s will decrease, but the average X̄ also increases unintendedly.
Thus, z1 should be reduced to keep X̄ constant. If one increase z2 from 1 to 1.074 and
decrease z1 from 1.499 to 1.323 at the same time, s will be reduced from 0.578 to 0.302
with constant adoption rate p = 0.3 and average X̄ = 4. This situation (z2 > 1) means that
a certain (relatively small) grant will be granted to all applicants from any area of science,
even their proposal is not accepted by a funding agency. In other words, a part of the re-
source originally planned to be allocated to awardees will be distributed to non-awardees,
and thus skewness of the distribution is mitigated. This design options (B) contributes
more effectively to the improvement of balance than that an option (A) does, and it can
be expected to promote research activity in the relatively unpopular research subjects, i.e.
the research area where the number of articles is small at present. Although criticism on
the apparent inefficiency of resource allocation (so-called "baramaki" in Japanese) may
not be avoidable, the establishment of a funding program that supports a few research
expenses but holds a high adoption rate is strongly required for promotion of sciento-
diversity. Such (almost) unconditional allocation of research grants can also reduce the
management cost of the funding agency. The institutional grant scheme represented by
the Management Expenses Grants for Japanese national university should be an option to
be reevaluated from the scientodiversity viewpoint.

This model simulation and results from our empirical study in team-scale suggest that
the program design and investment strategy by the government and/or funding agencies
have a great influence on scientodiversity. In the case of Grants-in-Aid for Scientific
Research (KAKENHI), a key program design that affects scientodiversity is that they
provide constant acceptance rate for all research disciplines.

This constant-rate strategy, i.e. pi = p for all subject i in our model (see Chapter 2),
seems quite fair for all research subjects but is eventually becoming a strategy to focus
on the popular research areas. As discussed in Chapter 2, the random multiplicative pro-
cess with assuming pi = p makes the distribution log-normal shape even starting from
the flat or normal distribution. If one can change acceptance ratio p by some broad cat-
egory (not necessary to be equivalent to scientific discipline), the skewed distribution of
research subjects can be manageable. Of course, heavily skewed distribution of pi should
be problematic because it can again generate a skewed distribution of subjects as a result.
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Table 6.1: Possible improvement of evenness.

The example parameter set discussed in Figure 6.2. The points A, A’, B, and B’
represent each possible parameter sets. The lognormal parameter s can be improved

from 0.601 to 0.503 by the increase of probability p from 0.288 to 0.385 (and the
decrease of the value z1 from 1.521 to 1.387) with keeping z2 = 1 and X = 4 as described
by the point A and A’. The lognormal parameter s can also be improved from 0.578 to
0.302 by the increase of z2 from 1 to 1.074 (and the decrease of z1 from 1.499 to 1.323
simultaneously to keep p = 0.3 and X̄ = 4) as shown in the point B and B’. Notice that
this analysis is a simulation study under specific conditions. Thus the interpretation of

the result needs special care on the definition of each parameters. In particular, the
parameter p is not the adoption rate of a grant but the effective adoption rate parameter in

our model.

Point z1 z2 p X̄ X̃ s

A 1.521 1.000 0.288 4.00 3.34 0.601

A’ 1.387 1.000 0.385 4.00 3.52 0.503

B 1.499 1.000 0.300 4.00 3.37 0.587

B’ 1.323 1.074 0.300 4.00 3.82 0.302

Therefore, a program with a large ratio between z1 and z2 and a small acceptance rate p,
like JST CREST program (see Table 5.1) should be careful not to be fixed priority field
in terms of scientodiversity. To evaluate those funding activities and program designs, it
is necessary to monitor both inputs and outputs by the scientodiversity indicators such as
richness and Gini-Simpson index.

The model used in the above discussion relies on many assumptions. The model
assumes the linear relationship between R&D expense and publication, i.e. the constant
returns to scale. In a real situation, the production function often shows decreasing returns
to scale as shown in Figure 3.6 in the country-scale analysis. Moreover, the research
productivity, which may be measured by the proportionality coefficient between R&D
expenses and the number of articles, may vary depending on the field. For example, it is
easy to imagine that paper productivity of pure mathematics is much smaller than that of
experimental molecular biology as illustrated in Figure 4.4.

Given decreasing returns to scale, the skewness of the distribution of research subjects
generated by a certain random multiplicative process will be more moderate. Thus, the
above discussion presents an upper bound of change in sigma, while keeping its lognormal
shape. But, the difference in productivity among research subjects, in some case, may
contribute in the opposite direction. If a specific subject has much better productivity
than that of others and simultaneously shows weaker decreasing returns to scale, the real
distribution may be more skewed one than the above discussion.
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6.4 Comprehensive policy implication

This research aims to explore the new design of resource allocation by revealing and
understanding the relationship between scientodiversity and resource allocation on three
different scales. In this section, we introduce possible policy implications on the total
amount, distribution, and types of resource allocation through an integration of our con-
siderations on variety and balance discussed in previous sections.

For the impact of the total amount of resource allocation, the country-scale analy-
sis (Chapter 3) tested the analogy between biodiversity and scientodiversity in terms of
the lognormal distribution function. The result showed the positive linear relationship be-
tween richness and the total R&D expenditure in a log-log plot. Therefore, the increase of
the total amount of resource, e.g. research budget and/or the number of researchers could
be the simplest policy option to increase richness in a country-scale. The relationship be-
tween the total resource and the balance of research subjects has not been so clear in this
study, but our observations suggest that the total budget may not change the balance so
much, i.e. the shape of distribution function will be kept as lognormal form. Therefore,
an increase in R&D expenditure may be a promising approach that can increase richness
without affecting the balance so much.

However, it may not be easy for the Japanese government to increase total R&D in-
vestment, because they especially have to care expenditures on other than science. Thus,
the efficient distribution of resource within a given total is (only) a feasible option, al-
though the richness of country scale may not increase without increasing of the total
budget in a macroscopic viewpoint. This problem setting can be formulated as a ques-
tion of how the budget should be allocated to each Japanese national university in a given
total R&D budget. This may be justified by the fact that national universities have quite
a large part of the production of scientific articles throughout the country in particular
in fundamental research. One possible approach would be the facilitation of the variety
among national universities (b -diversity). Even if the sum of budgets is constant, the sum
of richness (g-diversity) may increase when the role-sharing on research subject properly
happens to all national universities. The gap between the country-scale curve and the
university-scale one shown in Figure 6.1 suggests that there is a room for an increase in
richness for Japanese national universities even if the number of papers is constant (that
is, the budget is constant). Then, the next problem should be how can we stimulate such
a role-sharing (by grants)?

In order to ease the skewness of the balance of research subjects, it is necessary to
reconsider the resource allocation as a system. From this study, we saw that lognormal
distribution appears when we repeatedly allocate resources proportional to the number
of papers, regardless of whether it is intended or not. To mitigate the skewness of this
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lognormal distribution, the previous section proposed two types of change in grant system.
Both of the proposals reduce the difference between awardee and non-awardee. Changing
the type of resource may be another promising option to change scientodiversity under the
condition that the total amount of resources is fixed.

The results of chapter 4 and 5 suggest that subsidies from private companies and
mission-oriented grants from the government may be associated with the promotion of
scientodiversity. However, the result we have shown in this thesis is about the relation-
ship between a specific grant program (CREST) and scientodiversity, and thus there is no
guarantee that the general mission-oriented grants promote scientodiversity as well. The
funding by the private company to Japanese national universities and the research effi-
ciency in terms of publication and scientodiversity showed a positive correlation, but it is
not a causal relationship. Therefore, there is no guarantee that the increase of the ratio of
grants from the private company promote scientodiversity. Further research is necessary
to reveal the relationship between fundings and scientodiversity in detail.

6.5 Limitation

In this research, we investigated the impact of the research funding on scientodiversity.
This diversity here refers to the diversity of research subjects as indicated in Chapter 1
and we have not investigated the balance of the research team’s interdisciplinarity in their
expertise and the geographical and gender balance. In this respect, the policy implications
suggested from this study are effective only for specific "diversity". Even about the di-
versity of the research subjects, or scientodiversity, various factors other than the research
funding, such as the researcher’s mentality, the national character, academic customs in a
specific discipline, and the level of higher education, can influence scientodiversity. As a
result, the effectiveness of the policy option proposed by this thesis may vary from coun-
try to country or from the field to field. In this research, we observed the inter-university
diversity (or b -diversity) in the survey of 69 Japanese national universities as discussed
in Chapter 4. This suggests the possibility of a new strategy to promote scientodiversity
other than the resource allocation or the grant programs.

For the country-scale analysis, observed scientodiversity of Japanese science, by means
of the richness of research subject, is not inferior to that of Germany and the UK from
the result of this study as contrastive to the result of previous research (Igami and Saka
(2016)). This difference perhaps due to the difference of dataset. In this study, the num-
ber of articles is counted based on the articles in the journals recorded in both J-Global
and Scopus. The difference of the collection among three databases is shown in Figure
2.1. The counting only highly-cited articles also make dataset so different. Therefore, the

115



Discussion and Conclusions

analysis applying our method proposed in this thesis to the dataset that other research use,
i.e. highly-cited articles only and the whole Scopus dataset, is worth to be investigated in
the future.

In this research, we focused on variety and balance among three aspects of diversity
(Stirling (2007)). The remaining aspect, disparity, which represents difference and sim-
ilarity among research subjects. For disparity aspect of diversity, this study implicitly
assumes di j = 1 (Table 2.1) for all subject i and j, by given classification code in J-Global
database. However, same as Linnaean taxonomy sometimes differs from the gene-based
classification, the JST classification code of the database is somewhat subjectively at-
tached and its classification schema may not necessarily be objectively justified. Notice
that the research subjects and biological species are quite different in their definitions
in terms of its subjectiveness. The question "how to evaluate disparity?" is equivalent
to "how to objectively classify research subject?". Methodologies to measure similarity
based on co-citation and text-mining have been proposed and compared with each other
recently (Dias et al. (2018)). The results of our preliminary study are shown in the Ap-
pendix C.

6.6 Future works

It is necessary to develop high-resolution classification scheme and to systematically as-
sign them to large datasets. Text-mining of article titles and abstract is a promising ap-
proach to create a fine-granular classification code from an objective viewpoint. At the
same time, this technology also enables classification of any text other than papers. The
text-mining analysis of research proposals and project descriptions should be explored as
a scientometric study. Fine classification of these non-articles including policy document
is well expected to give important information to reveal the relationship between resource
allocation and scientodiversity.

Such high-definition classification codes will also raise the problem on "species def-
inition" in science. As seen in Chapter 3, the statistical behavior of research subjects is
somewhat analogous with biological species. However, this is not trivial. Rather, it is
strange that an analogy is established in the statistical distribution obtained as a result of
dynamics, although there is a clear big difference between species and subject. For exam-
ple, the biological species may produce another new species, but the counterpart of this
biological feature has not been mentioned in this thesis. Difference between multi- and
inter-disciplinary research may explain the difference between biological species and the
research subject.

In this study, we did not pay much attention to the interaction between research sub-
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jects, i.e. we focused only on the dynamics of each subject which is assumed to be deter-
mined independently from other subjects. The dynamics through inter-subject interaction
between subject i and j may be reflected in the off-diagonal components of disparity ma-
trix di j. Thus, the interactive activity of research subjects perhaps has great influence on
the distribution shape. This direction should be focused as the modeling of dynamics in
interdisciplinarity.

In this study, we did not pay attention to the interaction between species but focused
only on the dynamics of the diagonal components. As the result of the interaction between
the subjects is statically reflected in disparity di j, the influence on the distribution shape
is not small at all. This direction should focus on modeling dynamics as science ecology.
In ecology, such species-species interaction is regarded as a key clue to understanding
the stability of the ecosystem. In particular, a specific species called keystone species,
which is defined as a species that is relatively rare but showing a large effect on the whole
ecosystem (Paine (1995)), has attracted many attentions from the viewpoint of conserva-
tion of biodiversity and research and discussion on keystone species is also flourishing.
In terms of scientodiversity, finding keystone science may be an important policy target
at the national level.

In addition, it would also be worthwhile to consider the concept of the concentration
and dispersion in the temporal dimension, not in the spatial dimension (i.e. the distribution
among universities or research teams) and the semantic dimension (i.e. the distribution
over research subjects). For example, even if a resource allocation is concentrated on a
specific university and/or research area at some time, the average resource allocation over
10 years may not so skewed. Indeed, the priority area of CREST program, which is an
iconic concentrated investment, seems to be changed periodically and covers the certain
variety of research topics to some extent when looking at the 10-year span. It will be
necessary to cultivate such policy options based on the evidence.
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Appendix A

Distribution and diversity indices

A.1 Lognormal distribution

The lognormal distribution of research subject is written in a standard form as

S(n) = S0 exp

�(lnn�µ)2

2s2

�
, (A.1)

where n represents number of paper, and S0, µ , and s are parameters. Following Preston’s
works, using logarithms to the base 2 is convenient for consistent discussion with studies
of ecology. The distribution, in practice, lies between log2 nmin and log2 nmode as shown
in Figure A.1. The number of papers in the specific research subjects can be written as

nS(n) = nS0 exp

�(lnn�µ)2

2s2
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where n0 = exp µ , r ⌘ log2 (n/n0) and a ⌘ ln2/
p

2s2. This distribution should be seen
to be a Gaussian function with a peak displaced a distance ln2/2a2 to the right of S(n)
distribution.

The parameter g is defined as the ratio between log2 nmode and log2 nmax :

g ⌘ log2 nmode

log2 nmax
=

sp
2
p

lnS0
. (A.2)
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Figure A.1: Three types of distribution function.

A.2 Diversity indices

The richness is computed as a function of S0 and s ;

R =
Z •

0
S(n)dn

= S0

Z rmax

rmin

exp
�
�a2r2�dr

=

p
p

a
exp
�
D2�erf(D) ,

where D ⌘
p

lnS0 and the error function erf(x) defined as

er f (x) =
2p
p

Z x

0
exp
�
�t2�dt. (A.3)

For the asymptotic case of D > 1, the richness can be written as

R '
p

2ps2

ln2
(A.4)

since the error function is almost equal to unity (erf(D)' 1).
The Gini-Simpson index can be written in analytical form as
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1�l = 1�
Z •

0

⇣ n
N

⌘2
S(n)dn

= 1�
p

p exp
⇥
D2(1+2g)2⇤

2aJ2 {erf [D(2g +1)]� erf [D(2g �1)]} ,

where a parameter J is defined as

J ⌘ N
m

=

p
p

2a
exp
⇥
D2(1+ g)2⇤{erf [D(1� g)]+ erf [D(1+ g)]} , (A.5)

where m represents the expected number of papers in the most unpopular research sub-
jects.

For g < 1, the Gini-Simpson index can be approximated as

1�l ' 1� a
2pD(2g �1)

exp
⇥
�2D2(1� g)2⇤ . (A.6)

Then, by using eq. A.4, one can write l as a function of R,

l µ R�2(1�g)2
. (A.7)

A.3 Subject-budget relationship

For the limit R � 1, the eq. A.4 can be written as

lnR ' D2


1+
1

D2 ln
✓p

p
a

◆
+ · · ·

�
⇠ D2. (A.8)

In the same manner, we have the asymptotic approximation of J (eq. A.5) for g < 1 as

lnJ ' D2(1+ g)2


1+
1

D2(1+ g)2 ln
✓p

p
a

◆
+ · · ·

�
⇠ D2(1+ g)2, (A.9)

since erf [D(1� g)] lies between 0 and 1. For g > 1, erf [D(1� g)] will be negative. Then
eq. A.9 takes

lnJ ' 4D2g


1� 1
4D2g

ln
✓
(g �1) ln2

g

◆
+ · · ·

�
⇠ 4D2g. (A.10)

From the eqs. A.8, A.9 and A.10, we have an approximate relationship between R
and J by means of one parameter g as R ⇠ Jz, where z = 1/(1+ g)2 for g < 1 or z =
1/4g for g > 1. The subject-budget curve is obtained from the additional assumption
J = rB which represents equal accessibility of resource, where r and B represent density
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Distribution and diversity indices

of budget per research subjects and budget, respectively. Then, one can obtain the power-
law relationship R µ Bz. Notice that all approximations discussed above have been done
by assuming large R. For small R, e.g. R < 10, the subject-budget curve is expected to be
steeper than z = 1/4. From eqs. A.4 and A.5, a linear relation R ' J, i.e. z = 1, is roughly
estimated.

A.4 Canonical lognormal distribution

For the special case of g = 1, the richness R and the parameter J can be calculated by the
single parameter D:

R ' 2
p

p
ln2

Dexp(D2), (A.11)

and

J '
p

p
ln2

Dexp(4D2)erf(2D). (A.12)

Then, the subject-budget relationship can be written as

R µ B1/4 (A.13)

with assuming J = rB.
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Appendix B

Scale economy and distributions

B.1 Lognormal distribution

The shape of production function Y = F(X), which represents the relationship between
input X and output Y , is determined by the shape of distribution function of X and Y.
Let the cumulative distribution function of X and Y be represented with at most two
parameters m and s as follows:

P(X � x) = FX(x;mX ,sX), (B.1)

P(Y � y) = FY (y;mY ,sY ). (B.2)

Then, assuming that the production function F(X) monotonically increase with increase
of X , the distribution function of Y can be rewritten as

P(Y � y) = P(F(X)� y) (B.3)

= P
�
X � F�1(y)

�
. (B.4)

by use of the inverse function of production function F�1(y). Then, the relationship
between two distribution functions is defined as

FY (y;mY ,sY ) = FX(F�1(y);mX ,sX). (B.5)

When both FX(x;mX ,sX) and FY (y;mY ,sY ) are lognormal distribution with parameter µ
and s , the cumulative distribution function can be explicitly wrote down as
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FX(x; µX ,sX) =
1
2

erfc
✓

lnx�µX

sX
p

2

◆
(B.6)

FY (y; µY ,sY ) =
1
2

erfc
✓

lny�µY

sY
p

2

◆
, (B.7)

where the complementary error function erfc(x) is defined as

erfc(x) = 1� erf(x) =
2p
p

Z •

x
e�t2

dt. (B.8)

Then, the equation B.5 can be written as

erfc
✓

lny�µY

sY
p

2

◆
= erfc

✓
lnF1(y)�µX

sX
p

2

◆
, (B.9)

thus

lny�µY

sY
p

2
=

lnF1(y)�µX

sX
p

2
. (B.10)

The inverse function of the production function can be formalized as

lnF�1(y) =
sX

sY
lny+

µX sY �µY sX

sY
, (B.11)

and then we have the production function F(X) as the Cobb–Douglas production function:

F(X) = exp
✓

µX sY �µY sX

sX

◆
X

sY
sX . (B.12)

B.2 Power-law and normal distribution

When both FX(x;mX ,sX) and FY (y;mY ,sY ) are power-law distribution as followings;

FX(x;AX ,kX) = AX x�kX (B.13)

FY (y;AY ,kY ) = AY y�kY . (B.14)

The inverse function of the production function can be formulated as

F�1(y) =
✓

AX

AY

◆ 1
kX

y
kY
kX (B.15)
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B.2 Power-law and normal distribution

by using

AY y�kY = AX
�
F�1(y)

��kX , (B.16)

which is computed from equation B.5. We have the production function F(X) again as
the Cobb–Douglas shape:

F(X) =

✓
AY

AX

◆ 1
kY

X
kX
kY . (B.17)

In the case that both FX(x;mX ,sX) and FY (y;mY ,sY ) are normal distribution, the
equation B.5 can be rewritten as

erfc
✓

y�cµY

csY
p

2

◆
= erfc

✓
lnF1(y)�cµX

csX
p

2

◆
, (B.18)

where cµX , csX , cµY , and csY are parameters of normal distribution, i.e. bµ and bs represent
the mean and the standard deviation, respectively. The inverse function of the production
function is written as

F�1(y) =
csX

csY
y+

cµXcsY �cµYcsX

sY
. (B.19)

Then, we have the production function in the linear shape, i.e. the constant return to scale;

F(X) =
csY

csX
X +

cµXcsY �cµYcsX

csX
. (B.20)

The shape of production function with given shape of distribution functions, including
the case where the functional shape of FX(x;mX ,sX) is different from that of FY (y;mY ,sY ),
are summarized in Figure B.1.
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Figure B.1: Summary of shape of production function.

126



Appendix C

Disparity

There are two possible methods to formulate disparity matrix di j in a quantitative manner.
One is to evaluate di j using the taxonomic distance of the classification code by using
hierarchy built in the JST classification codes (Kitai (2008)). The other is to compute the
similarity of co-occurrence patterns of the classification codes by using the fact that up to
three codes can be attached to a single article (Chapter 2). The calculated disparity matrix
di j by those two formalizations are shown in Figure C.1. Here di j = 1 represents subject i
and j are completely different and di j = 0 indicates the subject i and j are equivalent. By
using this disparity di j (3209⇥3209 matrix), it is possible to compute disparity-weighted
richness and evenness. This is equivalent to the Stirling’s general diversity index with
a = 1 (see Table 2.1).

The correction by disparity has been done in the team-scale analysis as shown in Fig-
ure C.2. The observed D00 ⇠ 105 is equivalent to R ⇠ 448 in this case. The diversity index
D10, which represents disparity-weighted variety, indicates disparity-correction of D00 as
D01 ⇠ 9⇥104, which is approximately equal to R ⇠ 425. So, the effect of disparity is at
most 5% correction in R. On the other hand, D01 ⇠ 0.5 is equivalent to the Gini-Simpson
index 1�l ⇠ 1 and disparity/variety-weighted balance index D11 becomes D11 ⇠ 0.45,
which corresponds to 1�l ⇠ 0.9. This correction of 0.1 at Gini-Simpson index is consid-
erably large for when one considers a certain amount of publication. This correction can
be converted to the change of 0.3 in the relative abundance of paper pi, i.e. for example,
150 out of 500 papers is actually a similar research topic and thus the distribution should
be estimated as more skewed shape.

Correction by the disparity index has no direct influence on the main conclusion of
Chapter 5. However, in considering the distribution of resource and research subjects, it
is necessary to be conscious of the underlying assumption.
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Classification

A Science and Technology in General

B Physics

C       Chemistry

D       Space Science and Earth Science

E Biological sciences

F       Agriculture, forestry and fisheries

G Medicine

H       Engineering in general

I       System and Control Engineering

J Information Engineering

K Management Engineering

L       Energy Engineering

M       Nuclear Engineering

N Electrical Engineering

P Thermal Engineering, Applied thermodynamics

Q Mechanical Engineering

R Construction Engineering

S Environmental Engineering

T Transport and Traffic Engineering

U Mining Engineering

W Metallurgical Engineering

X       Chemical Engineering

Y Chemical Industry

Z Miscellaneous Industries
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Figure C.1: Taxonomic distance dtaxo
i j and cosine similarity dcos

i j .
(a) The taxonomic distance of the JST classification codes normalized by the maximum
value of distance. The taxonomic distance are computed by the use of 5-class-hierarchy
structure of the JST classification system. (b) The distance of the JST classification
codes based on the cosine similarity of the co-occurrence patterns for each classifica-
tion codes. Here the cosine similarity between classification code i and j is defined as
1�Âk nikn jk/

q
Âk n2

ik

q
Âk n2

jk, where nik represents the number of papers taht both the
classification code i and k are atattched.
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Figure C.2: Comparison between disparity-weighted and non-weighted diversity in-
dices.
The correction by the disparity-weighted calculation for the team-scale analysis. The
Stirling’s general diversity index D00, which is corresponding to richness, is slightly re-
duced by the corrections by both of the taxsonomic distance (Dtaxo

01 ) and cosine similar-
ity (Dcos

01 ) shown in the upper panel. This disparity-correction of D00 is approximately
equivalent to 5% correction in R. The variety-weighted balance index D10, correspond-
ing to Gini-Simpson index, is reduced by the correction as shown in the lower panel.
The disparity/variety-weighted balance index computed based on both the taxsonomic
distance (Dtaxo

11 ) and cosine similarity (Dcos
11 ) suggest that 150 out of 500 papers in those

groups may be quite similar from the viewpoint of JST classification code.
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