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ABSTRACT 

This study analyzes how changes in overall wage inequality and gender-specific factors affected the 

gender wage gap in Chinese and Indian urban labor markets in the 1990s and 2000s. We observe the 

significant expansion of skilled workers and the increase of overall wage inequality in both countries 

over the period. Analyses of micro data present that contrasting evolutionary patterns in gender wage 

gap emerged over the period, showing a widened wage gap in China but a dramatically reduced gap in 

India. In both countries, female workers’ increased skill levels contributed to reducing the gender wage 

gap. However, increases in observed prices of education and experience worked unfavorably for 

high-skilled women, counterbalancing their improvement in labor market qualifications. Decomposition 

of changes in the gender wage gap shows that China’s widened gap was attributable to gender-specific 

factors such as deteriorated observable and unobservable labor market qualifications and increased 

discrimination, especially against low- and middle-skilled female workers. For India, gender-specific 

factors and relatively high wage gains of low- and middle-skilled workers reduced the male–female 

wage gap. Our study suggests that consideration of overall wage structure, unobserved skills, and 

gender-specific factors such as unobserved labor market qualification and discrimination against women 

should be included in designing policies to promote gender equity and inclusiveness in labor markets.  

JEL Code: J21, J24, J31 

Key words: gender earning differential; wage inequality; skill premium; China; India 
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HIGHLIGHTS 

 We analyze the evolution of gender wage gap in Chinese and Indian urban labor markets using 

micro data.  

 Gender wage gap widened in China but reduced dramatically in India in the 1990s and 2000s. 

 Female workers’ increased skills contributed to reducing the gender wage gap, but increases in 

observed prices of education and experience worked unfavorably for high-skilled women.  

 China’s widened gap was attributable to deteriorated observable and unobservable labor market 

qualifications and increased discrimination.  

 In India, gender-specific factors and relatively high wage gains of low- and middle-skilled workers 

reduced the male–female wage gap. 
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I. Introduction 

  

 Labor markets in the People’s Republic of China (China) and India experienced dramatic 

changes over the past two decades. In the 1990s and 2000s, the urban labor markets of both countries 

experienced significant increases in wage inequality and skill premium. Increased wage inequality is 

found to work against gender wage differentials in developed countries as female workers on average 

have lower level of skills than their male counterparts (Blau and Kahn 1997). Similarly, increasing wage 

inequality found in the two large developing countries can also aggravate the position of women in their 

labor markets. This paper makes contribution to existing literature by analyzing the effect of overall 

wage structure and unobserved characteristics on gender wage differentials in these countries using 

long-run microdata of two countries.  

The comparison of China and India—two of the world’s largest countries that have undergone 

significant economic and social transformations—contributes to understanding major developments in 

labor markets and gender gaps of developing countries over the past decades. The analyses based on 

cross-country comparison enable us to grasp the similarities and differences in labor market 

developments between China and India and draw useful implications for further improvement. The two 

countries had very different starting points in terms of gender gap in the labor market. In pre-reform 

China, almost all working age men and women were equally employed and also equally paid according 
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to the administratively determined wage structure (Meng 2012). On the other hand, India had stagnant 

female labor force participation rate and significant male-female wage gap for more than two decades. 

This paper contributes to understanding how the benefits of economic development were distributed 

between men and women in the two developing countries. 

A substantial body of literature has analyzed the evolution of gender wage gap and its sources 

in the United States and other advanced countries. Blau and Beller (1988) examined earnings 

differentials by gender from 1971 to 1981 and found increased female-male earnings ratio in the United 

States.  

 Blau and Kahn (1997), employing a technique developed by Juhn et al. (1991), found that 

females in U.S. had to counterbalance this unfavorable change in wage structure by improving their own 

human capital. They described this as “swimming upstream” and pointed out that the gender wage gap 

depends on overall wage structure as well as gender-specific factors. Blau and Kahn (2003) examined 

the change in gender wage gap in 22 countries during 1985-94 and found the inverse relationship 

between collective bargaining agreements and higher relative wage of women, suggesting the 

importance of wage-setting institution on gender wage gap. Datta et al. (2006) employed the same 

technique to U.S and Denmark and found that Denmark women experienced worsening wage gap due to 

increased returns to experience and deterioration of their relative position in residual. Also high-skilled 

women in Denmark experienced the greatest increase in the gender wage gap entirely due to their falling 
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behind men in unobservable characteristics. This paper implements the same technique to disaggregate 

the gender wage gap into gender-specific factors and general wage structure factors and assess the 

relationship between overall wage inequality and gender wage differentials in China and India.  

  A number of papers have analyzed wage inequality and skill premium in labor markets in 

China and India. In China, returns to schooling were very low compared to other developing countries 

until the mid-1990s. Since the mid-1990s, however, wages in China have increased significantly for 

each additional year of schooling (Fang et al. 2012). Empirical studies based on micro data from the 

China Urban Household Survey and the Chinese Household Income Project Series (CHIPS) have found 

that rates of return to education in China were higher than those in most industrialized economies, and 

have increased over time (Ding et al. 2012; Li and Ding 2003; Zhang et al. 2005).  

Rising education returns in China, beginning in the mid-1980s, have been partly attributed to 

the liberalization of labor markets and wage setting, particularly in urban areas (Zhang et al. 2005). 

Market-oriented reforms in China caused an upward shift in the demand for skilled workers and thereby 

increased the skill premium for educated workers (Meng 2012; Knight and Song 2003). Foreign-owned 

firms in China (Xu and Li, 2008) and trade liberalization (Han et al. 2012) are also found to be driving 

forces behind the rising skill demand in China.  

In India, there has been a steady increase in the skill premium and wage inequality since the 

early 1980s (Kijima 2006), with rising demand for skilled male workers (Chamarbagwala 2006). Some 
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studies point out that skill-biased technological changes in India have caused increasing returns to skills 

(Berman et al. 2005; Kijima 2006). According to Mehta and Hasan (2012), the increase in wage 

inequality between 1993 and 2004 was largely attributable to changes in industry wages and skill 

premiums.  

Using the 2005 India Human Development Survey, a nationally representative survey, Agrawal 

(2012) showed that private returns increased with the level of education in India due to an increasing 

demand for skilled workers and a limited supply of employable graduates. In India, graduates from 

quality colleges and universities can be hired by global firms and foreign enterprises, as well as call 

centers that provide significantly higher salaries than small-sized, domestic firms. On the other hand, 

Shastry (2012) suggested that globalization measured as costs of learning English across Indian districts 

increases education of workers and thereby mitigates the increase in wage inequality.  

There are a growing number of empirical studies on the gender earnings differential in each 

country, but they do not reach clear consensus. According to Gustafsson and Li (2000), the gender wage 

gap in urban China was relatively small, but increased between 1988 and 1995 as a result of the 

deterioration of wages paid to female workers with limited experience and skill. A more recent study by 

Zhang et al. (2008) found that the same trend continued across the earnings distribution, at least until 

2001, but the gap widened greatly at the upper end of the distribution during the years 2001–2004. They 

argued that the widening of the urban gender wage gap over this period reflected rapid increases in 
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returns to both observed and unobserved skills in China, which worked more favorably for men’s higher 

skill levels. Fang et al. (2012) also found a striking gender disparity in returns to education, with the 

returns for each additional year of schooling for males being higher than for females from 1997–2006. 

Gender differences in wage are quite pervasive in India. Women wage workers work fewer days 

per year, and are paid considerably less than men across educational levels (except those who have 

completed a secondary level education in urban areas), in both rural and urban areas (Desai et al. 2010). 

Bhalla and Kaur (2011) suggest that gender wage differences in India are partly due to gender 

differences in education and work experience. On average, compared to males, female workers are less 

educated and less experienced, which is partly due to childbearing. Chamarbagwala (2006) argued that 

during the 1980s and 1990s, despite a considerable widening of the skill–wage gap, the gender wage 

differential narrowed significantly among high school and college graduates, suggesting increased 

demand for skilled workers and especially for skilled women contributed significantly to the decline in 

gender disparity. Menon and Rodgers (2008) analyzed household data from India over the years 1983–

2004 and suggested that India’s trade liberalization increased women’s relative wages and employment 

as increased competition, caused by trade, diminished discrimination against female workers. 

Using micro data, this paper focuses on analyzing changes in wage inequality and gender 

earnings differentials in China and India during the 1990s and 2000s. We find significant increases in 

wage inequality and skill premium in urban areas of China as well as India. We also observe significant 
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gender earning differentials in both countries throughout the period. Interestingly, the gender wage gap 

evolved very differently in each country, as it increased in China while improving in India.1 Although 

there is ample literature on the labor markets and wage structures in these economies, as far as we are 

aware no paper has explicitly focused on comparing these two countries, especially on the striking 

differences in the evolution of their respective gender wage gaps.2 An important issue is to analyze the 

role of wage structure and skill premium in influencing the gender wage gap. Since an increasing skill 

premium tends to widen the gender wage differential if females, on average, have lower skill levels and 

less experience, the trend in decreasing gender wage differentials in India is more surprising and needs a 

more thorough analysis.  

Women’s education and experience levels have steadily increased over the last two decades, 

contributing to a declining gender wage gap in both the Chinese and Indian economies. However, 

increasing skill premium can negatively affect women since they are relatively less skilled and 

experienced. If the price of observed and unobserved skills increases, it not only affects overall wage 

inequality, but also widens the gender wage differential by punishing relatively unskilled female workers. 

Also, changes in unobserved qualification or discrimination can play a major role in gender wage gap 

over time. 

  The remainder of this paper is organized with Section II describing our micro data sources and 

presenting an overview of recent trends in wage structure and gender wage differentials in China and 
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India. In Section III, we examine whether change in supply and demand of labor inputs in different 

categories can explain change in the gender gap over two decades by utilizing the methodology of Katz 

and Murphy (1992). Section IV adopts the methodology of Juhn et al. (1991) and Blau and Kahn (1997) 

to decompose changes in the overall gender wage gap and explore the differences in the Chinese and 

Indian labor markets. Section V uses the same methodology to further examine changes in the gender 

wage gap by skill level and concluding remarks follow in Section VI. 

 

II. Data Overview and Recent Trends in Wage Structure and Gender Wage 

Differentials 

 

A. Trends in Wage Inequality and Skill Premium 

 

1. Data Descriptions  

An examination of the evolution of the wage structure and its relationship with skill level 

requires good quality micro data with detailed information on workers’ wage and skill levels. 

Availability of longitudinal data that is consistent over time is crucial in order to determine whether the 

changes in wage structure are a secular trend and not caused by temporary shocks in the economy.  

For India, we use the National Sample Survey’s (NSS) Employment and Unemployment data, 
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which is considered to be reliable and consistent over time. To examine long-run wage trends by worker 

skill level, the dataset covers five waves of the survey (1987–1988, 1993–1994, 1999–2000, 2005–2006, 

and 2009–2010). Each wave has more than 100,000 observations and contains both employed workers 

in the formal sector and self-employed or unpaid workers in the informal sector.  

For China, four rounds (1988, 1995, 2002, and 2009) of the CHIPS datasets are analyzed, 

focusing on urban areas. These datasets contain labor force information over a large, nationally 

representative sample of around 60,000 to 80,000 individuals, covering more than 16 provinces in the 

major regions of China. Each wave of CHIPS data has a different sample of provinces. To maximize 

consistency of data over time, we only use a set of provinces that are included in all four waves of the 

data set.3  

Throughout our analyses, we focus on the urban areas of the two countries in order to achieve a 

direct comparison.4 We exclude the rural area of China, as more than 90 percent of observations do not 

report their wage information. We restrict the sample to full-time workers aged 18–60 years. In the 

CHIPS dataset, we identify full-time workers as people who have worked for more than 170 hours per 

month in their primary job.5 In India, we apply a more restrictive criterion as the NSS data set has more 

information about workers, and define a full-time worker as a person who works more than five days per 

week without holding a second job. We exclude workers who are self-employed or engaged in unpaid 

family business and also exclude individuals with reported wages of zero despite their full-time paid 
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working status. We use real weekly earnings from the primary job for NSS data and monthly earnings 

from the primary job for CHIPS data to avoid measurement errors from computing hourly wage.6  

One caveat of using standard labor force data is that we cannot identify exact years of 

experience for female workers. Women tend to have career interruptions in their lifetimes, making it 

difficult to measure years of experience accurately. However, our results are robust by using different 

measures of experience7, indicating that measuring experience would not affect analyses in any specific 

direction.  

 

2.  Trends in Skill Premium and Wage Inequality 

Using our micro data, indicators for wage inequality, skill premium, and gender wage 

differentials are constructed. As change in returns to skill is a key factor in understanding the structure of 

wage and its effect on gender inequality, the evolution of wage inequality is investigated by skill group, 

with the source of change in the skill premium being identified.  

<Figure 1, A& B Here> 

The period of rapid development in China and India is characterized by increasing wage 

inequality. As shown in Figure 1.A, average real wages in urban China increased at an accelerated pace 

over 1988–2009, especially 2002–2009. Economic growth was of greatest benefit to the skilled group, 

proxied here by the 90th percentile. Among the median group (50th percentile) real wages rose, albeit 
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less rapidly than that of the skilled group. The unskilled group (10th percentile) gained the least benefit 

from economic growth over the same period.  

Average real wages and wage inequality in urban India also rose over the period 1988–2010. 

Figure 1.B shows average real wages in urban India continued to rise over 1988–2010, although they 

grew at slower rates than in urban China. Unlike in China, the median group (the 50th percentile) gained 

the least benefit from economic growth. Meanwhile the gap in real wages among the skilled and 

unskilled groups (proxied here by the 90th and the 10th percentiles) increased significantly.  

In urban China, we assess recent changes in the skill premium by classifying workers into four 

categories. Figure 2.A shows that most skill premiums increased except the premium for workers who 

graduated senior high school relative to workers whose educational attainment is lower than primary 

school. It is important to note that the premium for college graduates increased sharply during the period 

1995–2002. These trends imply that an increase in the skill premium can be a significant source of rising 

wage inequality in China. In urban India, skill premiums for secondary and college graduates were kept 

quite high throughout the period, compared to those in China (Figures 2.A and 2.B), which may reflect 

the conditions in the supply of and demand for skilled labor. The premium for workers having a college 

degree over those with lower education increased significantly.  

<Figure 2, A& B Here> 

Many factors other than changes in the skill premium can also contribute to increasing wage 
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inequality, so we examine whether the inequality level in unobserved characteristics also changes over 

time. Log real wage is regressed on experience and its square and on education (i.e., years of schooling). 

The residual from this regression captures the dispersion in wages within each demographic group. The 

difference in the log wages of those at the 90th and 10th percentiles in the wage distribution is then 

calculated. 

<Figure 3, A& B Here> 

Figure 3.A shows that residual wage differentials increased for both male and female workers in 

urban China from 1988 to 2009. Not only has overall wage inequality expanded but within-group wage 

inequality also increased at the same time, except for females, during the period from 2002 to 2009. The 

rise of within-group wage inequality implies that low-skilled workers within each category benefited 

less than the high-skilled ones.  

Figure 3.B shows steady increases in residual wage differentials for both male and female 

workers in urban India. The within-group wage inequality for males increased more rapidly than that for 

females over the period. While the gap had reduced over time, the wage differentials for males remained 

below that for female workers in 2009.  

 

B.  Trends in Gender Wage Differentials 
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1. Trends in Gender Wage Differentials  

Table 1 shows trends in male and female wages for the past two decades in urban labor markets 

of China and India. In China, women’s relative wages deteriorated during its fast economic development, 

with the average wage for females decreasing from about 85 percent in 1988 to about 72 percent of the 

average male wage in 2009. The male–female differential of the log average real wage almost doubled 

from 0.163 in 1988 to 0.298 in 2009. We also calculate the relative position of females in the male wage 

distribution. The mean female percentile in the male wage distribution deteriorated from 42.2 in 1988 to 

38.1 in 2009.  

<Table 1 Here> 

On the contrary, in India, the average real wage for females increased from 68 percent in 1988 

to about 82 percent of the average male wage in 2010. The differential of the log real wage dropped 

from 0.590 in 1988 to 0.382 in 2010. The mean female percentile in the male wage distribution was only 

32.8 in 1988 but rose to 39.5 in 2010. All these indicators show that the gender wage differential 

decreased sharply over the two decades in India. While the magnitude of the gender wage gap remains 

large both in China and India, recent movement of the gap in each country shows a sharp contrast.  

<Figure 4, A& B Here> 

We also examine whether the change in the gender wage gap is universal across wage 

distribution. Figure 4.A shows that in urban China, the gender gap in log monthly earnings increased in 
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all selected percentiles of wage distribution. The magnitude of increase was large, particularly among 

the top percentile (high-skilled) groups. In contrast, the gender gap in the log weekly earnings declined 

in all selected percentiles of wage distribution in India. The magnitude of decline was particularly large 

in the middle percentiles and small at the top percentile. 

 

2. Labor Force Composition and Gender Wage Gap  

 Change in the labor force composition of female workers can influence the estimated gender 

wage gap. If more educated women are likely to stay in the labor force over time, the magnitude of the 

gender gap would be underestimated. On the other hand, if labor force participation of women starts 

from the most educated women and then expands to less educated women, widening of the gender wage 

gap would be overestimated due to the change in the labor force composition.  

<Figure 5, A& B Here> 

 Figure 5.A shows that the female labor participation rate sharply declined in urban China over 

two decades; this change in labor force composition may affect the gender wage gap. In India, the 

overall labor force participation rate of female workers hovered at around 20 percent over the period 

(Figure 5.B). India’s female labor force participation rate ranks among the lowest in the world.8 While 

the labor participation rate remained relatively stable over time, composition of the female labor force 

changed significantly over two decades; the share of skilled women increased while that of the least 
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skilled women declined at the same time. 

 To acquire a selection-corrected gender wage gap, we adopt techniques such as Heckman’s 

(1979) two-step estimation and selectivity corrected estimation according to probability of being in the 

labor force. Our results show that changes in labor force composition of women did not significantly 

affect the secular trends of the gender wage gap.   

 First, we apply Heckman’s two-step estimation. Our sample consists of full-time workers 

between ages 18 and 60. We classify all persons as either working full-time or not. Using all prime-age 

women in our labor force surveys, we estimate the following first step equation: 

(1)    𝑃𝑡(𝑧) = 𝑃𝑟𝑜𝑏(𝐿 = 1|𝑧, 𝑔 = 1) = Φ(𝑍δ𝑡)   

where 𝑃𝑡(𝑧) indicates the probability of being in the labor force and g is a dummy variable indicating 

women. Z includes years of education, years of experience, and our instrumental variables. The set of 

instrumental variables includes number of children aged 0–6, number of minor children, and marital 

status. We assume that 𝑃𝑡(𝑧) is 1 for men.  

 In the second stage, we include the inverse Mills ratio in the regression to control for selection 

into the labor force:  

 (2)     𝑤𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑡 + 𝑔𝑖𝑟𝑡 + 𝑔𝑖𝜃𝑡𝜆(𝑍𝑖𝑡𝛿𝑡) + 𝑢𝑖𝑡   

where 𝑤𝑖𝑡 denotes log wage and 𝜆(𝑍𝑖𝑡𝛿𝑡) 𝑡ℎ𝑒 inverse Mills ratio. In this equation, 𝑔𝑖𝑟𝑡 captures the 

selection-corrected gender wage gap.  
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<Table 2 Here> 

 Table 2 demonstrates estimates of the gender wage gap based on ordinary least squares (OLS) 

and two-step estimation techniques. It shows that OLS and two-step estimates are not so different in 

urban China, indicating that selection is not a major driving force of the gender wage gap. In urban India, 

the results show that there is a sizable negative effect to selection into the labor market. The 

selection-corrected gender wage gap is much smaller than that of OLS; however, it still shows declining 

trends over two decades. 

 We adopt alternative specifications to correct for the selection of working women and further 

examine the robustness of the estimated change of the gender wage gap. As discussed earlier, change in 

the selection into the workforce can bias our estimated gender wage gap. First, we estimate probability 

to work for women by year and area. In China, the labor force composition sharply increased; therefore, 

we eliminate a set of women who are the least likely to work so that we can have a common set of 

women in our sample across years. In India, labor force participation did not change much over the two 

decades. However, there was compositional change; less-skilled women dropped out of the workforce 

while higher-skilled women entered the labor market. Therefore, we again exclude women with the 

lowest probability to remain in the labor force. 

 Second, we take into account the potential effect of women’s marital status on their labor force 

participation decision. If more women delay marriage to receive different treatment in the labor market, 
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change in the composition of the women’s labor force by marital status may drive the gender wage gap 

regardless of other factors. Therefore, we exclude non-married women as well as women with low 

probability to remain in the market.  

<Table 3 Here> 

 Table 3 shows that even after excluding women with a low probability to work in the labor 

force, the gender wage gap increased in urban China while it declined in India. Not only the direction of 

change in the gender gap, but also the magnitude of the estimated gender wage gap is quite similar with 

what was estimated using the simple OLS technique. In India, the magnitude of decrease in the gender 

wage gap is smaller when we include only married women in our sample, implying that much of the 

gender wage gap decrease was driven among young, unmarried women in the labor force.   

In sum, the experiments in this section show that there is an increasing gender wage gap in 

China and a decreasing gender wage gap in India, even after labor force selection is controlled.  

 

III. Supply–Demand Analyses of Two Labor Markets 

 

A. Data Construction and Empirical Strategy 

 In this section, we examine whether change in relative supply and demand of labor inputs can 

explain change in the skill premium and gender wage differential in China and India. We utilize the 
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methodology of Katz and Murphy (1992) to analyze the changes in relative wages and relative supplies 

of the two countries. Katz and Murphy (1992) use a simple supply–demand framework to explain 

changes in the wage structure of the United States in the 1980s. 

 We construct two samples: a wage sample and a count sample. The wage sample includes 

full-time workers who are reported to work more than 170 hours per month at their main job in China or 

five days per week in India. The count sample is constructed to calculate the measure of relative labor 

supply in urban areas of China and India. The count sample uses all workers whose wages and education 

levels could be identified.  

 To examine the movement of relative supply and relative wage of various demographic groups, 

both count sample and wage sample are divided into 32 categories by workers' gender, education level, 

and experience level. The fixed weight of the average employment share for 32 cells among all workers 

during the entire sample period is used to construct aggregate measures in the wage sample, while the 

count sample uses the fixed weight of the average relative wage for 32 cells. 

 

B. Results from China 

 Table 4 shows changes in relative wages across different demographic groups from 1988 to 

2009 and two sub-periods, 1988–2002, and 2002–2009. Overall, relative wages showed a sharp increase 

during the period, reflecting fast economic growth. Both male and female workers acquired higher 
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wages; however, male workers gained more than female workers. 

<Table 4 Here> 

 Over the two decades analyzed, more educated workers gained the most among both females 

and males. The period 2002–2009 was an exception, where female workers with high school degrees 

gained the least while female workers with elementary school educations gained the most. Less 

experienced workers also gained the most, which reflects that many of these young workers had higher 

educational achievement.  

<Table 5 Here> 

 Can change in the relative supply of workers in different education categories explain changes 

in skill premium trends by gender? Tables 4 and 5 show that relative supply alone cannot fully explain 

change in relative wage. The relative supply of workers with college degrees increased the most 

throughout the sample period; however, their relative wages increased the most at the same time. It 

indicates that there was a demand shift toward more educated workers, both female and male. The 

relative supply of less experienced workers decreased from 1988 to 2002, which partly explains an 

increase in premium for younger workers at the same time. However, the supply of less experienced 

workers as well as their wages increased sharply from 2002 to 2009, implying there was also growing 

demand for younger workers.  

 What about gender differences in wage gain? Female workers’ wage gains were generally 
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smaller than that of male workers across all education levels over the two decades except for elementary 

and junior secondary education in the 2002–2009 period (Table 4). On the other hand, relative supply of 

workers with college degrees increased more sharply among female workers than male workers, which 

may explain why relative wage gains of female workers with college degrees is smaller than that of male 

workers with college degrees. However, for other groups of workers, relative supply changes cannot 

explain the movement of relative wages. For example, despite the fact that relative supply of 

low-educated workers decreased by a greater magnitude among female workers than male workers, 

relative wage gains were even smaller for females than that of their male counterparts in 1988–2002. 

This may indicate a demand shift from less educated workers toward more educated workers was more 

prominent for female workers than males.  

 The movements in relative wage and relative supply show that there were demand shifts toward 

more skilled, younger workers. However, the differentials in the magnitude of change by gender cannot 

be explained simply by gender differential in relative supply and demand shifts. Some other factors can 

also affect male and female workers in different ways.  

 

C. Results from India 

Table 6 shows changes in real wages of Indian workers across different demographic groups for 

periods 1988–2000, 200–2005, and 2002–2009. There was an increasing trend in real wages over two 
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decades, but the magnitude of increase is much smaller than that in China. However, in India, the 

increase in real wages was greater among female workers than male workers, especially from 2005 to 

2010.  

<Table 6 Here> 

Similar to China, workers with university degrees or above gained the most among females and 

males over the overall period. The next group to benefit the most was the least educated group, including 

workers without literacy. Less experienced and younger workers gained the most, possibly due to their 

higher education levels.  

Table 7 shows that there was a sharp decrease in the number of least educated workers implying 

that decline of relative supply can explain an increase in their wages. However, as relative supply of 

college-educated workers increased sharply over two decades, an increase in their education premium 

suggests demand shifted more favorably to this group. Hence, the overall pattern of relative wage 

changes seems to support relative supply changes and demand shifts toward more educated workers.  

<Table 7 Here> 

However, gender differences in wage gain suggest that factors aside from simple demand and 

supply changes were working in the Indian labor market. While relative supply of college-educated 

workers increased more rapidly among female workers than male workers, their relative wages 

increased by almost the same magnitude. Among the workers with primary educations or lower, the 
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decrease in relative supply of male workers was much greater than that of female workers. However, 

female workers experienced greater increases in their relative wages.  

The evolution of relative wage and relative supply show that there were demand shifts toward 

more educated workers in urban India. In addition, the least skilled group experienced a sizable increase 

in their wages with a sharp decline in their relative supply. However, some gender-specific factors other 

than relative supply and demand changes can influence gender wage differentials.  

 

IV. Decomposition of the Gender Wage Gap 

 

A. Model Specification and Implementation 

In order to analyze change in the gender wage gap in the United States, Blau and Kahn (1997) 

adopt the technique developed by Juhn et al. (1991) in their analysis of the trends in the U.S. black–

white wage differential. Their technique allows us to decompose the residual wage differential into 

changes in unmeasured skills (calculated as percentile position in residual distribution) and prices of 

those unmeasured skills (dispersion of residual). As Figure 3 shows, China and India experienced 

different evolutions of residual inequality during the sample period. Using June et al. (1991) and Blau 

and Kahn (1997)’s technique, we can decompose changes in gender wage gap into price and quantity 

effects of both observed and unobserved parts.  
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Assume the following male wage equation: 

(3)    𝑌𝑖𝑡 = 𝑋𝑖𝑡𝐵𝑡 + 𝜎𝑡𝜃𝑖𝑡  

where i indicates each male worker and t denotes year. 𝑌𝑖𝑡 denotes the log of wages while 𝑋𝑖𝑡 indicates 

observable variables and 𝐵𝑡 indicates a vector of coefficients. 𝜎𝑡 indicates the level of male residual 

wage inequality while 𝜃𝑖𝑡 is standardized residual. The male–female log wage gap for year t is defined 

as: 

(4)    𝐷𝑡 ≡ 𝑌𝑚𝑡 − 𝑌𝑓𝑡 = ∆𝑋𝑡𝐵𝑡 + 𝜎𝑡∆𝜃𝑡  

,where subscripts m and f denote male and female averages respectively and prefix ∆ denotes average 

male–female differences for the variables immediately following. Equation (4) shows the gender wage 

differential can be decomposed into two parts: difference in observed labor market qualifications (𝑋𝑡) 

weighted by their market prices (𝐵𝑡) and difference in the relative position in residual (𝜃𝑡 ) inflated by 

overall wage dispersion (𝜎𝑡).  

The change in the gender wage gap between two time points—year 0 and year 1—can then be 

decomposed as follows: 

(5)    𝐷1 − 𝐷0 = (∆𝑋1 − ∆𝑋0)𝐵1 + ∆𝑋0(𝐵1 − 𝐵0) + (∆𝜃1 − ∆𝜃0)𝜎1 + ∆𝜃0(𝜎1 − 𝜎0)   

 Now we have four components explaining the change in the gender wage differential. The first 

term represents a portion contributed by change in observed measures; specifically, it reflects the 

contribution of changing male–female differences in observed labor market qualifications such as 
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education and job experience. The second term reflects the effect of changing prices of observed labor 

market qualifications for males.  

 The third term is defined as gap effect and measures the effect of changing differences in the 

relative wage position of male and female after controlling for observed qualifications. If male wage 

inequality does not change, this term only shows the change in the percentile rankings of female wage 

residuals. For example, discrimination against women or lack of unobserved skills in female workers 

relative to males would change female workers’ position unfavorably in the residual distribution. This 

change in position would be captured by the gap effect. Finally, the fourth term measures change in the 

prices of unobserved characteristics. When this term gets larger, being in relatively low position in the 

residual distribution receives more punishment than before, thereby widening the gender gap if on 

average female workers’ position is relatively low in residual distribution.  

 The first and third terms measure the portion of the gender wage gap due to gender-specific 

factors such as labor market qualification or relative position in the residual distribution, while the 

second and fourth terms measure the portion due to change in overall wage structure.  

 We employ the human capital model and full model to estimate wage equality. Human capital 

model specification employs the education and experience variables of each worker. Full model 

specification adds one-digit industry and occupation codes, and regions. 9  Thus, the full model 

investigates whether specific occupations, industries, and regions are driving the changes in the 
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decomposition results. For instance, there can be entry barriers for women in certain industries or 

occupations.  

 To acquire the change in the observed qualifications, we estimate wage regression using male 

samples in year 1. Then, using estimated coefficients, we calculate estimated wages of female workers 

in year 1. We also calculate imputed wages of female workers and male workers in year 0. The first term 

is then calculated as the gender difference in average predicted wage of year 1 minus gender difference 

in average imputed wage of year 0.   

 The second term measures the effect of change in price on observed characteristics. We 

estimate wage regression using male workers in year 0 and the calculated predicted wage of males and 

females in year 0. Then, we calculate the second term as the difference in gender gap in the average of 

imputed wage of year 0 and the average of predicted wage of year 0.  

 To acquire the gap effect and change in unobserved characteristics, we run wage regression of 

male workers in year 0 and acquired female workers’ position in male workers’ residual distribution. 

Using the position of those female workers, we calculate the imputed residual of female workers in year 

1. The gap effect is calculated as the difference between the average of the actual residual of female 

workers in year 1 and their imputed residual of year 1. This term captures change in relative position of 

female workers in residual distribution. 

 Finally, we calculate the fourth term as the difference between the imputed residual of female 
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workers in year 1 and average residual of female workers in year 0. The term captures change in 

dispersion of unobserved characteristics where the female workers’ relative position is unchanged.  

 

B. Estimation Results of the Human Capital Model   

 Table 8 summarizes the decomposition results of the gender wage gap in urban China and urban 

India using the human capital model. 

 In Column 1, the mean value of female residual from male wage regression, which contains 

unobserved parts of the wage gap, more than doubled from 1988 to 2009 in urban China. The residual 

term represents unobserved characteristics and discrimination that cannot be explained by controlled 

explanatory variables. The mean female residual percentile decreased from 45.5 in 1988 to 38.5 in 2009 

in the human capital model. Estimation results consistently show that an unexplained gender gap 

widened in China over the period.  

<Table 8 Here> 

 Table 8, Column 1, Panel B shows how unexplained and explained characteristics contributed 

to the increasing gender wage gap in urban China over two decades. Presented as a log monthly wage, 

the gender wage gap increased by 0.135 log points over the period.10 Increased educational attainment 

of female workers contributed to reducing the gender wage gap, but its effect was dominated by the 

opposite price effect of education. The observed price effect is positive, indicating that the prices of 
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education and experience changed to the direction of expanding the male–female wage differential.  

 Unexplained characteristics drove most of the change in the Chinese gender wage gap. The gap 

effect is significant, amounting to 0.239. Thus, women’s position in residual distribution was aggravated 

significantly over the period, which is attributable to either deterioration in unobservable qualifications 

of female workers or an increase in discrimination against female workers.  

 The fourth term captures wage inequality based on the change in the dispersion of unobserved 

characteristics, interacting with female workers’ relatively unfavorable position in the distribution in the 

initial year. The estimate of the fourth term is positive, representing that the penalty for being in a 

relatively unfavorable position decreased over time.  

The estimated positive third term implies that female workers received more discrimination and 

found themselves in a more unfavorable position in the residual distribution over time. At the same time, 

however, according to the estimated fourth term, the wage gap between each position became smaller 

than before, thereby eventually contributing to a narrow wage gap between female and male workers 

 Column 2 of Table 8 summarizes the decomposition of the 1988–2010 gender wage gap using 

the human capital model in urban India. It shows that the mean value of female residual from the male 

wage equation slightly declined over time. The mean of female residual percentile also rose from 30.2 in 

1988 to 35.8 in 2010 over time. Hence, in contrast to China, an unexplained gender gap declined in India 

over the same period. 
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Panel B of Table 8 shows that the gender wage gap reduced by 0.208 log points in India, with 

further decomposition results showing the factors responsible for this sharp decrease. Increased human 

capital of female workers contributed significantly to the decline of the gender wage gap over time, 

amounting to about 30 percent of the total gender gap reduction in urban India.  

The estimated observed price effect is negative, indicating that the prices of skill and experience 

changed to the direction of reducing the male–female wage differential. As earlier figures indicate, the 

premium for high-skilled workers increased. However, the low-skilled group gained more than the 

medium-skilled. Since female workers are more likely than males to be in the least skilled group, the 

wage gain of the low-skilled group contributed to the reduction of the gender wage differential.  

 The estimated gap effect is large and negative, indicating that women’s position in residual 

distribution improved over the period. It could reflect improvement in unobservable qualifications of 

female workers or a decrease in discrimination against female workers, especially those who 

participated in urban labor markets. The estimated negative fourth term also indicates that as the penalty 

for being in a relatively unfavorable position becomes smaller, the gender wage gap narrows. 

 On the whole, our decomposition results show that the difference in the movements of the 

gender wage gaps in China and India comes from the difference in evolution of wage structures and 

relative positions of female workers in the residual distributions of both countries. In both China and 

India, female workers are catching up to their male counterparts by obtaining more education and work 
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experience.  

 However, in urban China, the relative position of female workers deteriorated, implying that 

they need further training in unobserved skills or need more bargaining power to prevent discrimination 

in the labor market. In India, on the other hand, wage inequality in the lower half of the distribution 

decreased and thereby contributed to narrowing the gender wage gap. Catching up of human capital, fast 

improvement of wages for low-skilled workers, and declining discrimination were important 

determinants in the declining gender wage gap.  

 

C. Estimation Results of the Full Model 

 

 Table 9 presents the estimation results of the full model. In urban China, there was a sizable gap 

effect when we estimated the human capital model. The estimation of the full model, which considers 

industry and province fixed effects, demonstrates that the magnitude of the gap effect reduces to about a 

half of that under the human capital model, but remains positive and sizable. It implies that unobserved 

skills of female workers within narrowly defined demographic groups deteriorated over the period. For 

example, among college graduates, female workers may have obtained lower-quality education and 

skills training that are not well matched with their jobs. Alternatively, female workers had lower 

bargaining power in the labor markets compared to their male counterparts over time. More detailed 
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micro data of the Chinese labor market would help analyze these conjectures in the future.  

<Table 9 Here> 

 In urban India, the estimation results of the full model confirm the main results of the human capital 

model. The gender-specific factors such as women’s improvement in skill, experience, and affiliated 

industry explain most of the reduction in the gender gap over the period. Further, observed price effect 

was favorable to female workers. Its contribution to the reduction of overall wage inequality becomes 

much larger in the full model because wage differentials by occupation, industry, and state fixed-effects 

constituted a great part of observed price effect. 

 The size of the gap effect in India was significantly smaller compared to the estimate in the 

human capital model. It suggests that relative improvement in women’s position in residual distribution 

was mainly caused by the inflow of female workers into better-treated industries, occupations, or regions. 

On the other hand, the effect of unobserved prices does not show much difference from those estimates 

in the human capital model.  

 

V. Gender Wage Differential and Skill Level 

 

A. Motivation 

 In analyzing gender wage gap trends by skill group, most of the increase in wage inequality 
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came from demand for more skilled workers in both countries. As both labor markets have common 

trends for skilled workers, examination of the gender wage gap by skill level can give us insights into 

common factors behind both markets.  

In addition, the labor market for skilled workers has its own importance worthy of analysis. If 

the overall wage structure effect becomes unfavorable for high-skilled women, it implies the gap 

between women and men widens as women improve their human capital and move up in the wage 

distribution. As more women acquire higher education, it may be more difficult for them to become 

equal to their male partners.  

 We estimate wage equations using the full model for a sample of pooled male workers in 1988 

and 2010 (2009 for China). Under the assumption that predicted wage from these estimations reflects 

labor market skill, we then divide men and women by gender into three skill categories in each year 

based on the percentile of predicted wages: 0–30, 30–70, and 30–100. Therefore, the concept of skill is 

relative and determined within year and by gender.  

  

B. Estimation Results  

 Table 10 demonstrates decomposition of the gender wage differential by workers’ skill level in 

urban China. Panel A shows that real wages of both male and female workers increased significantly for 

all skill levels. Over the two decades, rapid wage increase occurred with expansion of the gender wage 
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gap. Mean female residual from male wage regression also decreased in all skill levels, implying that 

unobserved qualifications or wage structure contributed to increasing the gender wage gap.  

<Table 10 Here> 

 Panel B of Table 10 describes differences of each factor affecting gender wage differentials 

across skill groups. There are some notable differences across skill groups. Increase in wage inequality 

worked especially against high-skilled women even though they tried hard to catch up to their male 

counterparts in terms of observed qualifications. For medium- and low-skilled groups, their 

improvement in observed skills was much smaller than that for the high-skilled group. For all skill 

groups, gaps in unobserved skills or discrimination were driving forces behind the increased gender gap. 

 Table 11 shows decomposition of the gender wage differential in urban India. Panel A shows 

that improvement in wage trends is different across the skill groups. Log real wage of male workers 

increased for low-skilled and high-skilled workers, while there was almost no change for 

medium-skilled workers. At the same time, women’s wages improved sharply for all skill levels, 

reducing the gap with male workers. Women’s relative position of residual in male distribution also 

improved over time.  

<Table 11 Here> 

 Panel B of Table 11 describes contributions of each factor to the gender wage differential across 

skill groups. In all skill levels, improvement of observed skills contributed to a decrease in the gender 
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wage gap. For low- and medium-skilled groups, both overall wage structure and unobserved price 

effects worked favorably to reduce the gender wage gap. In contrast, the positive gap effect implies that 

unobserved characteristics or discrimination factors worked unfavorably for female workers. However, 

its magnitude is much smaller than other factors.  

 For high-skilled workers, the story is very different. Female high-skilled workers caught up to 

their male counterparts by improving their human capital over the period. Further, discrimination or 

gaps in unobserved skills contributed to huge reductions for high-skilled female workers. However, the 

market premium for skill and experience was quite unfavorable for them, increasing the gender gap. In 

addition, overall wage inequality deteriorated their wages as they are in a relatively lower position at 

residual wages.  

 

VI.  Concluding Remarks 

 

 We examined the source of changes in the gender wage gap in urban areas of China and India 

over the past two decades. The evolution of wages in both countries showed common features such as 

increasing wage inequality and skill premium with the rising supply of skilled workers. In contrast, the 

changes in the gender wage gaps for each country showed dissimilar patterns over the same time period, 

as the wage gap deteriorated in China while being dramatically improved in India.  
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The decomposition of changes in the gender wage gap showed significant improvement of 

women’s qualifications contributed to gender wage gap reduction in both countries. However, the 

change in observed prices of skills worked unfavorably for high-skilled women, counterbalancing their 

improvement in labor market qualifications.  

In China, in spite of their fast wage growth, a sharp deterioration of women’s position in wage 

distribution, relative to males after controlling for observed qualifications, contributed significantly to 

widening gender wage inequality. This gender-specific gap effect is attributable to deterioration in 

unobservable qualifications of female workers, an increase in discrimination, and less favorable 

treatment than male workers due to their employment status and industry-specific factors.  

The sharp increase in gap effect in China can be found across different skill groups, implying 

that deterioration of Chinese women’s wage is pervasive. One possible driving force behind the 

increased gap effect would be the decrease in unmeasured qualification of Chinese women. As the 

Chinese economy grew, household income and housing availability were improved. Therefore, 

co-residence with parents declined in China. Increasing housework in nuclear family, scarcity of 

part-time job and decreased social stigma against not working forced women to experience more 

career-interruption and lower attachment to labor force than before (Maurer-Fazio, Connelly, Chen, and 

Tang, 2010). Chinese women’s weakening attachment to the labor market can lead lower wage and 

shorter on-the-job training (Barron, Black and Lowenstein 1993).  
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 Another possibility is the reduction of the state owned sector. More than 97% of urban workers 

were still employees in the state sector in 1991, but reduced to 50% in 2008-2009. Meng (2012) showed 

that state sector reform has shifted younger, less-educated, and female workers out of the state sector. As 

state sector workers enjoy wage premium in China, the reform could have caused increasing gender 

wage gap by disproportionally reallocating male and female workers in the state and private sectors.  

By contrast, in India both wage structure and improvement of women’s qualifications 

contributed to a decreased gender wage gap. Women’s position in residual wage distribution also 

improved over the period, reducing the gender wage gap. There must still exist a pervasive 

discrimination against women originating from social and religious stereotypes on women’s role and 

their status in the Indian society. However, India has shown a remarkable improvement of women’s 

empowerment for last two decades in several dimensions including political representation. In 1993, 

India implemented constitutional amendment to enact mandated political reservation for women by 

imposing gender quota (one-third for female) among village councils. The fraction of elected local 

female leaders rose from less than 5% in 1992 to over 40% by 2000. Beaman et al. (2009) showed that 

the gender quota for village leadership affected voter’s attitudes toward female leaders and weakened 

stereotypes about gender role in the public and domestic spheres. Beaman et al. (2012) also showed that 

increased representation of women positively influenced adolescent girls’ career aspirations and 

educational attainment. Our results may imply that women’s political empowerment contributed to 
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reduced discrimination they face in the labor market as well.  

 Analyses by skill group showed that there was a race between education and wage structure 

among high-skilled workers in both countries. The effect of increased skill premium was greater than 

that of narrowed education gap in China, thereby increasing gender wage differentials. On the other 

hand, in India the improvement in gender educational gap has a larger effect compared to the relatively 

slow increase of skill premium in the gap effect, causing the eventual decline in gender wage 

differentials. However, some studies point out that skill premium has been rising due to structural factors, 

and thus, by exceeding the speed of narrowing education gap, it can widen gender wage gap. According 

to Klasen and Pieters (2015), the majority of highly educated women in India worked in public 

administration, education and health industries in 1987. However, in 2011 many of them were working 

in financial and business services industries driven by declining share of public sector. As the share of 

women moving into those sectors increased, the effect of increasing wage inequality on gender wage 

gap would be greater.    

Our data show that the gender gap remains large in both China and India. A significant part of 

the gender earnings differentials is attributable to the gap in education and skills between males and 

females.  

However, our results also provide important implications that economic development does not 

guarantee improvement of gender gap in the labor market. The rapid economic development can be 
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accompanied with fast increase in inequality which can counterbalance improved education of women. 

The rapid economic development also does not guarantee improvement of unobserved qualification or 

decreased discrimination. An important policy priority should be promoting women’s empowerment in 

society in changing common perception of women workers in labor market. Furthermore, our research 

suggests policies to improve women’s unmeasured skill such as college major in STEM area, quality of 

education, and specific job training, in order to prepare women workers who face with increasing 

inequality. To conclude, as for the policy implications, China and India should consider specific policies 

to improve girls’ accessibility to higher education, provide vocational and technical training targeted at 

women, expand flexible work environment with affordable and good-quality child-care facilities, 

decrease discrimination and increase female empowerment 
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1 The gender wage gap further decreased in rural India and pertinent analyses are in the appendix. We do not have good 

quality data for rural China.   

2 Most existing studies are focused on the United States and find significant convergence in earnings between men and 

women in recent decades, although there still remains a gender pay gap based on occupation, employment status, and lifetime 

labor force experience. See Goldin (2014) and studies mentioned therein. 

3 The common set includes the following five provinces: Jiangsu, Anhui, Henan, Hubei, and Guangdong. The major findings 

from the decomposition technique in Tables 8-11 are robust when we use all 22 provinces in CHIPS data and include the 

province indicators.  

4 We perform the analyses using the sample of rural India and report the results in the appendix.  

5 The 170 hours identified is approximately equal to total working hours when an individual works 8 hours a day for 21 days 

per month. Indeed, many observations report 170 hours for monthly working hours in the survey.  
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6 NSS data contain only information about whether workers worked half day or whole day.  

7 Our results use the conventional measure of experience (age minus years of schooling minus 6). In some waves, the data 

sets include self-reported experience. When self-reported experience is used, our results are quite robust. 

8 See Pande (2015) for an analysis of India’s female labor force participation. 

9 In urban India, we add three occupational categories in the regression. We do not include occupation codes for China 

because of many missing values in earlier data sets. The regression controls province fixed effects in China and state fixed 

effects in India. 

10 Decomposition results by period show a sizable gender wage gap in both the 1990s and the 2000s, but the effect of an 

educational gap becomes smaller in the 2000s. This implies that the effects of unobserved skills dominating that of observed 

skills became more important for the gender wage gap evolution. The estimation results by period are available upon request. 
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TABLE 1. OVERVIEW OF REAL WAGE TRENDS 

 

PANEL A. China, 1988–2009 

 1988 2002 2009 

Log male real wage 
1.4026 

(0.0061) 

2.2589 

(0.0158) 

3.0496 

(0.0168) 

Log female real wage 
1.2395 

(0.0066) 

2.0094 

(0.0185) 

2.7514 

(0.0185) 

Differential 
0.1631 

(0.0090) 

0.2495 

(0.0243) 

0.2982 

(0.0255) 

Mean female percentile in the male wage distribution 
42.21 

(0.41) 

41.67 

(0.78) 

38.09 

(0.80) 

Ratio of average real wages between male and female  0.85 0.79 0.72 

Sample size 9733 3255 2880 

 

PANEL B. India, 1988–2010 

 1988 2000 2010 

Log male real wage 
1.7371 

(0.0100) 

2.1171 

(0.0135) 

2.2800 

(0.0159) 

Log female real wage 
1.1471 

(0.0257) 

1.6394 

(0.0293) 

1.8983 

(0.0362) 

Differential 
0.5900 

(0.0234) 

0.4777 

(0.0255) 

0.3817 

(0.0330) 

Mean female percentile in the male wage distribution 
32.83 

(0.82) 

36.75 

(0.99) 

39.51 

(1.12) 

Ratio of average real wages between male and female  0.68 0.76 0.82 

Sample size 273,525 260,037 351,213 

 

Notes: Sample consists of full-time paid workers between ages 18 and 60 in both countries. Mean female percentile in the 

male wage distribution was computed by assigning each woman a percentile ranking in the indicated years’ male wage 

distribution and calculating the female mean of these percentiles.  
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TABLE 2. SELECTION-CORRECTED GENDER WAGE GAP: 

HECKMAN’S TWO-STAGE ESTIMATION 

 

Year OLS Two-Step Bias 

PANEL A. Urban China 

1988 -0.1045 -0.1324 0.0279 

2002 -0.1813 -0.1352 -0.0461 

2009 -0.2718 -0.2573 -0.0145 

PANEL B. Urban India 

1988 -0.4810 -0.2186 -0.2624 

2000 -0.3339 -0.1712 -0.1627 

2010 -0.3477 -0.0266 -0.3211 

 

Notes: Regression sample includes urban women between the ages of 18 and 60. The set of selection variables includes 

number of children under 6, number of children under 18, and marital status. The selection equation of urban China in 1988 

does not contain marital status because of data limitations.  
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TABLE 3. SELECTION-CORRECTED GENDER WAGE GAP: 

SELECTION CONTROL 

 

PANEL A. Urban China 

Year 1988 2002 2009 

Excluding the least likely to work (Prob.<0.05) -0.1041 -0.1854 -0.2710 

Excluding the least likely to work (Prob.<0.1) -0.1041 -0.1854 -0.2706 

Rule 2 + using only married women -0.0891* -0.1734 -0.2541 

PANEL B. Urban India 

Year 1988 2000 2010 

Excluding the least likely to work (Prob.<0.05) -0.4810 -0.3997 -0.3714 

Excluding the least likely to work (Prob.<0.1) -0.4953 -0.4141 -0.3765 

Rule 2 + using only married women -0.4894 -0.4035 -0.4071 

 

Notes: All estimated gender gap model controls years of schooling, experience, and square term of experience.  

*Estimates in this case are from a sample of 1995, as CHIPS data in 1988 does not contain marital status.       
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TABLE 4. CHANGES IN REAL MONTHLY WAGES AMONG FULL-TIME URBAN WORKERS IN 

CHINA 

 

Group 1988–2009 1988–2002 2002–2009 

All 141.9 71.2 70.7 

By gender    

  Male 150.4 77.9 72.5 

Female 131.3 63.2 68.1 

By education    

Elementary school 119.3 48.2 71.0 

  Junior high school 126.7 53.7 73.0 

Senior high school 136.0 71.0 65.1 

University degree or above 171.5 93.7 77.8 

By experience    

1–10 years 169.4 83.0 86.4 

11–20 years 154.4 73.2 81.2 

21–30 years 125.0 64.4 60.6 

> 30 years 119.2 66.6 52.5 

Male workers by education    

Elementary school 119.4 67.5 51.9 

  Junior high school 132.2 61.9 70.3 

  Senior high school 146.1 74.0 72.1 

  University degree or above 177.4 98.2 79.2 

Female Workers by Education    

Elementary school 118.1 40.4 77.7 

Junior high school 120.5 44.4 76.0 

  Senior high school 124.6 67.5 57.1 

  University degree or above 161.6 86.2 75.4 

Male workers by experience    

1–10 years 175.9 90.0 85.9 

 11–20 years 170.3 82.9 87.4 

  21–30 years 136.6 72.0 64.6 

  > 30 years 122.9 69.9 53.0 

Female Workers by Experience    

  1–10 years 163.0 76.0 86.9 

  11–20 years 137.0 62.5 74.5 

  21–30 years 112.0 56.8 55.2 

  >30 years 110.0 58.6 51.3 
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Notes: Annual average monthly wages were computed for each of 32 gender-education-experience cells. Average wages for 

broader groups in each year are computed based on these cell averages using the average employment share per cell for the 

entire period as weights. All wages are deflated by the consumer price index.  
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TABLE 5. CHANGES IN REAL MONTHLY SUPPLY IN URBAN CHINA 

 

Group 1988–2009 1988–2002 2002–2009 

By gender    

Male 6.8 4.1 2.7 

Female -10.5 -6.2 -4.3 

By education    

Elementary school -159.9 -153.6 -6.3 

  Junior high school -83.0 -55.9 -27.1 

Senior high school -6.3 10.8 -17.1 

University degree or above 106.2 79.0 27.2 

By experience    

1–10 years -8.8 -43.8 35.0 

11–20 years 2.5 7.7 -5.2 

21–30 years 6.7 16.2 -9.5 

> 30 years -6.3 -2.6 -3.6 

Male workers by education    

 Elementary school -136.4 -131.1 -5.4 

   Junior high school -74.6 -47.1 -27.5 

   Senior high school 5.2 10.5 -5.3 

   University degree or above 90.7 68.6 22.1 

Female workers by education    

  Elementary school -187.6 -179.9 -7.7 

 Junior high school -96.1 -69.8 -26.3 

   Senior high school -23.1 11.2 -34.3 

   University degree or above 139.2 102.9 36.3 

Male workers by experience    

    1–10 years -10.6 -47.4 36.8 

    11–20 years 13.2 12.7 0.4 

    21–30 years 10.6 18.9 -8.2 

    > 30 years 6.5 4.8 1.7 

Female workers by experience    

    1–10 years -6.9 -39.9 33.0 

    11–20 years -12.8 0.9 -13.7 

    21–30 years 1.3 12.5 -11.2 

    >30 years -48.7 -24.4 -24.3 

 

Notes: The numbers in the table represent log changes in each group's share of total monthly labor supply measured in 
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efficiency units (annual working hours times the average relative wage of the group for the sample period) using CHIPS. 

Supply measures include all workers in the count sample described above.  
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TABLE 6. CHANGES IN REAL WEEKLY WAGES AMONG FULL-TIME URBAN WORKERS IN 

INDIA 

 

Group 1988–2010 1988–2000 2000–2005 2005–2010 

All 37.76 30.74 -5.99 13.01 

By gender     

  Male 36.93 30.08 -5.04 11.88 

Female 41.87 34.01 -10.71 18.57 

By education     

Illiterate 41.26 29.25 1.89 10.12 

  Literate or primary school 28.92 29.43 -1.16 0.66 

Secondary school 27.58 27.82 -13.43 13.20 

University degree or above 60.92 38.29 -4.32 26.95 

By experience     

1–10 years 43.48 25.73 -7.48 25.23 

11–20 years 38.36 30.96 -8.89 16.30 

21–30 years 34.76 32.10 -4.07 6.73 

> 30 years 34.65 33.86 -2.94 3.72 

Male workers by education     

Illiterate 36.73 25.46 5.34 5.93 

  Literate or primary school 26.78 27.32 0.07 -0.61 

  Secondary school 29.53 28.25 -11.30 12.58 

  University degree or above 60.90 39.15 -4.96 26.71 

Female workers by education     

Illiterate 49.29 35.97 -4.23 17.55 

Literate or primary school 42.12 42.44 -8.79 8.47 

  Secondary school 8.96 23.65 -33.80 19.11 

  University degree or above 61.06 33.89 -1.00 28.17 

Male workers by experience     

1–10 years 44.08 25.61 -6.29 23.77 

  11–20 years 38.07 30.03 -7.54 15.58 

  21–30 years 33.12 30.38 -3.75 6.48 

  > 30 years 32.00 33.49 -1.69 0.20 

Female Workers by Experience     

  1–10 years 39.90 20.48 -14.63 34.04 

  11–20 years 40.10 36.59 -17.14 20.65 

  21–30 years 42.62 40.34 -5.64 7.92 
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Group 1988–2010 1988–2000 2000–2005 2005–2010 

  >30 years 43.89 35.16 -7.30 16.02 

 

Notes: Annual average weekly wages were computed for each of 32 gender-education-experience cells. Average wages for 

broader groups in each year are computed based on these cell averages using the average employment share per cell for the 

entire period as weights. All wages are deflated by the consumer price index each year. 
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TABLE 7. CHANGES IN REAL WEEKLY SUPPLY OF EMPLOYED URBAN WORKERS IN INDIA 

 

Group 1988–2010 1988–2000 2000–2005 2005–2010 

By gender     

Male -1.80 -0.37 -2.09 0.66 

Female 13.32 2.92 14.85 -4.45 

By education     

Illiterate -89.23 -38.84 -35.05 -15.35 

  Literate or primary school -77.06 -47.88 -10.93 -18.25 

Secondary school -0.42 6.18 -42.10 35.51 

University degree or above 55.78 32.07 41.00 -17.30 

By experience     

1–10 years 11.76 -1.38 20.16 -7.02 

11–20 years -6.63 -3.26 -3.80 0.42 

21–30 years 5.92 12.13 -6.98 0.77 

> 30 years -7.42 -8.89 -3.31 4.78 

Male workers by education     

 Illiterate -86.85 -37.68 -40.03 -9.15 

   Literate or primary school -81.57 -49.49 -13.17 -18.91 

   Secondary school -1.69 5.14 -42.85 36.02 

   University degree or above 53.69 32.51 39.91 -18.73 

Female workers by education     

  Illiterate -97.21 -42.62 -19.92 -34.67 

 Literate or primary school -27.67 -27.07 11.83 -12.44 

   Secondary school 15.43 19.23 -33.68 29.88 

   University degree or above 67.65 29.37 47.60 -9.32 

Male workers by experience     

    1–10 years 5.02 -1.92 16.85 -9.90 

    11–20 years -8.03 -4.55 -5.87 2.39 

    21–30 years 5.48 12.16 -8.48 1.79 

    > 30 years -7.03 -8.52 -4.28 5.77 

Female Workers by Experience     

    1–-10 years 44.82 1.81 37.47 5.54 

    11–20 years 5.70 8.17 11.96 -14.43 

    21–30 years 9.55 11.86 4.82 -7.13 

    >30 years -10.51 -11.81 4.25 -2.96 

 

Notes: The numbers in the table represent log changes in each group's share of total monthly labor supply measured in 
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efficiency units (annual working hours times the average relative wage of the group for the sample period) using CHIPS. 

Supply measures include all workers in the count sample described above.  
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TABLE 8. DECOMPOSITION OF CHANGES IN THE GENDER WAGE GAP: HUMAN CAPITAL 

MODEL 

 

 (1) 

Urban China 

(2) 

Urban India 

A. Descriptive Statistics   

 Mean female residual from male wage regression   

  1988 -0.1101 -0.4888 

  2010 (2009 for urban China) -0.2713 -0.3768 

 Mean female residual percentile   

  1988 45.48 30.21 

  2010 (2009 for urban China) 38.49 35.80 

B. Decomposition of Change   

 Change in differential (D2010–D1988) 0.1351 -0.2082 

 All observed X’s -0.0254 -0.0625 

   Education variables -0.0342 -0.0745 

   Experience variables 0.0088 0.0120 

 All observed prices 0.0012 -0.0336 

   Education variables 0.0312 -0.0315 

   Experience variables -0.0300 -0.0021 

 Gap effect 0.2388 -0.1295 

 Unobserved prices -0.0776 0.0175 

Sum gender-specific 0.2134 -0.1920 

Sum wage structure -0.0764 -0.0161 
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TABLE 9. DECOMPOSITION OF CHANGES IN THE GENDER WAGE GAP: FULL MODEL 

 

 (1) 

Urban China 

(2) 

Urban India 

Period 1988–2009 1988–2010 

A. Descriptive Statistics   

Mean female residual from male wage regression   

 Year 0 -0.1047 -0.4921 

 Year 1 -0.2416 -0.4814 

Mean female residual percentile   

 Year 0 44.35 28.81 

 Year 1 38.29 31.58 

B. Decomposition of Change   

Change in differential (D2010-D1988) 0.1351 -0.2082 

Observed X’s -0.0204 -0.0522 

  Education variables -0.0336 -0.0507 

  Experience variables 0.0099 0.0103 

  Industry variables -0.0013 -0.0304 

  Province (State) indicators 0.0046 0.0086 

  Occupation  0.0103 

Observed prices 0.0177 -0.1441 

  Education variables 0.0278 -0.0405 

  Experience variables -0.0290 0.0012 

  Industry variables 0.0179 -0.0376 

  Province (State) indicators 0.0010 -0.0308 

  Occupation  -0.0362 

Gap Effect 0.1089 -0.0191 

Unobserved prices 0.0290 0.0085 

Sum gender-specific 0.0885 -0.0713 

Sum wage structure 0.0467 -0.1356 
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TABLE 10. DECOMPOSITION OF CHANGES IN THE GENDER PAY WAGE BY SKILL LEVEL: 

URBAN CHINA  

 

 

 

Low-Skilled Medium-Skilled High-Skilled 

A. Descriptive Statistics    

Mean log wage of male    

1988 1.0980 1.4791 1.5882 

2009 2.8217 2.9752 3.2025 

Mean log wage of female    

1988 0.9775 1.3049 1.3983 

2009 2.6022 2.6804 2.8233 

Mean female residual from male wage regression    

1988 -0.0649 -0.1319 -0.1346 

2009 -0.2515 -0.2843 -0.2301 

Mean female residual percentile    

1988 49.17 40.57 42.71 

2009 37.32 36.07 68.57 

B. Decomposition of Change    

Change in differential (D2009–D1988) 0.0990 0.1206 0.1893 

Observed X’s -0.0932 0.0305 -0.2623 

Observed prices 0.0052 -0.0632 0.3589 

Gap effect 0.2651 0.1914 0.1612 

Unobserved prices -0.0785 -0.0389 -0.0657 

Sum gender-specific 0.1719 0.221 9 -0.1011 

Sum wage structure -0.0733 -0.1021 0.2932 
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TABLE 11. DECOMPOSITION OF CHANGES IN THE GENDER PAY WAGE BY SKILL LEVEL:  

URBAN INDIA 

 

 Low-Skilled Medium-Skilled High-Skilled 

A. Descriptive Statistics    

Mean log wage of male    

  1988 1.1277 1.6292 2.2812 

  2010 1.4267 1.7631 2.7340 

Mean log wage of female    

  1988 0.3872 0.4592 1.3387 

  2010 0.8819 1.1855 2.2770 

 Mean female residual from male wage regression    

  1988 -0.3015 -0.5490 -0.6895 

  2010 -0.3264 -0.4910 -0.3912 

Mean female residual percentile    

  1988 30.81 22.22 25.15 

  2010 28.47 26.54 36.61 

B. Decomposition of Change    

 Change in differential (D2010–D1988) -0.1966 -0.5925 -0.4855 

 Observed X’s -0.1823 -0.2946 -0.5288 

 Observed prices -0.0403 -0.2392 0.3445 

 Gap effect 0.0589 0.0479 -0.3366 

 Unobserved prices -0.0340 -0.1059 0.0384 

Sum gender-specific -0.1234 -0.2467 -0.8654 

Sum wage structure -0.0743 -0.3451 0.3829 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 1. INDEXED WAGE INEQUALITY 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 2. TRENDS IN SKILL PREMIUM 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 3. RESIDUAL INEQUALITY 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 4. GENDER LOG WAGE GAP 
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PANEL A. China 

 

 

PANEL B. India 

 

 

FIGURE 5. FEMALE LABOR FORCE PARTICIPATION RATE 
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FOR ONLINE PUBLICATION ONLY 

Appendix 

Analyses of Rural India 

This appendix summarizes wage inequality changes and gender earnings differentials in rural 

India during the 1990s and 2000s. Figure A1 shows that real wages among the skilled group (the 90th 

percentile) decreased in the 2000s while they rose among the low-skilled and median groups, implying 

that wage inequality declined in the recent decade. Figure A2 shows that all indicators of skill premiums 

declined over the period. An exception is the rise of the premium for workers with tertiary education 

relative to secondary educated workers in the 1990s.  

<Figures A1& A2 Here> 

Figure A3 also indicates that the residual wage differential between the 90th and 10th 

percentiles for all workers declined in the 1990s, indicating the declining trends of wage inequality 

among narrowly defined demographic groups. The wage differential showed an increasing trend for 

rural males in the 2000s. While the gap increased, the wage differentials for males remained below that 

for female workers over the period.  

<Figure A3 Here> 

Table A1 shows trends in male and female wages for the past two decades in rural India. 

Women’s relative wages improved significantly. The average female wage increased from about 42 

percent in 1988 to about 61 percent of the average male wage in 2010. Mean female wage percentile in 

the male wage distribution rose from 15.6 to 27.1. Figure A4 shows the gender gap in log weekly 

earnings declined in all percentiles in wage distribution. 

<Table A1 Here> 

<Figure A4 Here> 
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 Figure A5 shows a slight decrease in female workers’ labor market participation rate over the 

period, implying the selection into the labor force could be associated with changes in the gender wage 

gap. Table A2 presents OLS estimates and two-step estimates of the gender wage gap for 1988, 2000, 

and 2010. The result shows that there is significant negative selection into the labor market. After 

correcting selection bias, the gender wage gap becomes smaller but still shows declining trends over 

time. We also adopted alternative specifications, which were applied to the analysis of urban India, to 

further examine the robustness of the estimated change of the gender gap. The results also support a 

decrease in the gender wage gap even after selectivity correction.  

<Figure A5 Here> 

<Table A2 Here> 

 Table A3 presents the estimation results of decomposition of change in gender wage 

differentials in rural India using both the human capital model and full model. In the human capital 

model, the negative price effect indicates that observed price change was favorable to rural female 

workers, just as with females working in the urban area (Table 8). Its magnitude is much greater in rural 

than in urban areas indicating that the favorable wage structure had a greater contribution in rural areas 

where more workers are low- and medium-skilled. The magnitude of the effect of observed 

qualifications contributing to a decreased gender wage differential is also greater in rural area as many 

female workers in the 1980s were less educated in rural than in urban areas.  

<Table A3 Here> 

The unobserved parts contributed significantly to reduction of the gender wage gap. The 

negative estimate of gap effect indicates that women’s position in residual distribution improved over 

the period in rural India. However, the contribution of the gap effect is relatively small compared to that 
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in urban areas. The estimated unobserved price effect is negative in rural areas, implying that being in a 

relatively unfavorable position did not cause as much wage loss in 2010 compared to 1988.  

In the full model, the results are similar with those in the human capital model. However, the 

size of change in overall wage inequality became much smaller in the full model, indicating that 

industry and state wage differentials constituted a great part of the effects of observed qualifications and 

observed prices.  

 The size of the gap effect in the full model declined more significantly compared to that in the 

human capital model. The estimate of the gap effect has a positive sign. The striking difference implies 

that relative improvement in women’s position in residual distribution was mainly caused by the inflow 

of female workers into better-treated industries and regions. On the other hand, the estimate of 

unobserved prices does not show the magnitude of difference from those in the human capital model.  
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TABLE A1. OVERVIEW OF REAL WAGE TRENDS IN RURAL INDIA, 1988–2010 

 

 1988 2000 2010 

Log male real wage 
1.3744 

(0.0236) 

1.4095 

(0.0108) 

1.5955 

(0.0100) 

Log female real wage 
0.3718 

(0.0115) 

0.7978 

(0.0123) 

1.0991 

(0.0169) 

Differential 
1.0025 

(0.0251) 

0.6117 

(0.0130) 

0.4964 

(0.0174) 

Mean female percentile in the male wage distribution 
15.58 

(0.33) 

23.89 

(0.51) 

27.14 

(0.71) 

Ratio of average real wages between male and female 0.42 0.51 0.61 

 

Note: Mean female percentile in the male wage distribution was computed by assigning each woman a percentile ranking in 

the indicated years male wage distribution and calculating the female mean of these percentiles.  
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TABLE A2. SELECTION-CORRECTED GENDER WAGE GAP IN RURAL INDIA: 

HECKMAN’S TWO-STAGE ESTIMATION 

 

Year OLS Two-Step Bias 

1988 -0.6180 -0.2423 -0.3757 

2000 -0.4006 -0.2226 -0.1780 

2010 -0.4351 -0.1113 -0.3238 
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TABLE A3. DECOMPOSITION OF CHANGES IN THE GENDER WAGE GAP IN 

RURAL INDIA 

 

 Human Capital 

Model 

Full Model 

A. Descriptive Statistics   

 Mean female residual from male wage regression   

  1988 -0.5965 -0.4937 

  2010 (2009 for urban China) -0.4226 -0.4468 

 Mean female residual percentile   

  1988 21.79 24.18 

  2010 (2009 for urban China) 28.28 26.98 

B. Decomposition of Change   

 Change in differential (D2010-D1988) -0.5044 -0.5044 

 All observed X’s -0.1592 -0.2019 

   Education variables -0.1707 -0.0923 

   Experience variables 0.0115 0.0092 

   Industry indicators  -0.2084 

   State indicators  0.0896 

 All observed prices -0.1719 -0.2562 

   Education variables -0.1865 -0.1573 

   Experience variables 0.0146 0.0220 

   Industry indicators  -0.0161 

   State indicators  -0.1048 

 Gap effect -0.0768 0.0406 

 Unobserved prices -0.0971 -0.0876 

Sum gender-specific -0.2360 -0.1613 

Sum wage structure -0.2690 -0.3488 

 

 

 

 



73 

 

 

 

FIGURE A1. INDEXED WAGE INEQUALITY IN RURAL INDIA 
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FIGURE A2. TREND OF SKILL PREMIUM IN RURAL INDIA 

 

  

1
2

3
4

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
Year

Secondary School/Illiterate Secondary School/Primary School

Primary School/Illiterate College/Secondary School

W
a

g
e

 R
a

ti
o

Sample: Full-time paid workers between ages 18 and 60



75 

 

 

FIGURE A3. RESIDUAL WAGE INEQUALITY IN RURAL INDIA 
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FIGURE A4. GENDER LOG WAGE GAP IN RURAL INDIA 
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FIGURE A5. FEMALE LABOR FORCE PARTICIPATION RATE IN RURAL INDIA 
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