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1 Introduction

It is well-known that individuals’ spending on medical care is not solely comprised of

necessary expenses but is to some extent discretionary. What this means for health insurance

is that the insurable events (medical expenses) are not completely exogenous: although an

illness itself is a risk, individuals can control how much to spend on a cure. In the first-

best world, individuals should be fully insured against necessary medical expenses (which

represent a risk) and fully responsible for discretionary medical spending (which represents

consumer choice). However, the composition of medical spending in terms of necessary and

discretionary parts is not (perfectly) observable. As pointed out by Arrow (1963), this makes

full insurance no longer optimal: it protects individuals against financial loss but creates

excessive discretionary medical consumption. In this paper, we construct a framework where

both discretionary and necessary components of medical spending are explicitly modeled in

order to understand how we can improve upon existing public health insurance policies.

Our analysis has two parts: theoretical and quantitative. Our theoretical analysis builds

on the optimal taxation literature pioneered by Mirrlees (1971). In the environment con-

sidered by this literature, a social planner who does not have information about individual

types has to choose incentive-compatible policies: i.e., such policies that individuals do not

have incentives to lie about their type.

In a similar spirit, we construct a theoretical model in which individuals differ in their

(unobservable) medical needs. Medical need requires some unavoidable medical consump-

tion, but individuals may choose extra (discretionary) medical care on top of that because

it increases their utility. In this environment, a social planner allocates bundles of medical

and non-medical consumption conditional on an individual’s self-reported medical needs.

Because an individual who reports having a high medical need is allocated higher medical

consumption and medical consumption is valuable, everyone has an incentive to report his

medical need as being high. We show that to correct incentives, the planner has to offer

high medical consumption in combination with low non-medical consumption. Moreover,

the medical consumption of individuals who report having the lowest medical need should

be undistorted.

We quantitatively evaluate the effect of this type of policy with an application to non-

elderly Medicaid beneficiaries. Medicaid is a means-tested public health insurance program

in the US that charges its beneficiaries no premiums and provides them with nearly free

health care. Medicaid represents a challenging case for studying the trade-off between moral

hazard and risk-protection. On the one hand, the publicly insured face almost zero price for

their medical care and this can potentially increase their discretionary medical consumption.

In the data, Medicaid beneficiaries’ average medical spending per person is substantially
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higher than that of either the privately insured or the uninsured (Figure 1). This may

be partially due to the selection of unhealthy people into Medicaid (see Pashchenko and

Porapakkarm, 2017 for a discussion on the composition of Medicaid beneficiaries). However,

there is evidence that people who enroll in Medicaid increase their medical care utilization

even though this does not improve their subsequent health outcomes (Baicker et al., 2013).

On the other hand, policies that address the moral hazard problem can substantially increase

risk exposure of Medicaid beneficiaries and, consequently, be detrimental to the welfare since

most beneficiaries are relatively poor.
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Figure 1: Total medical expenses by insurance status (normalized by average income). Source: Medical

Expenditure Panel Survey (MEPS), 1999-2012. Sample: heads of households aged 25 to 64 years old. (More

details on sample selection are available in Section 5.1). ESI stands for “employer-sponsored insurance”.

For our quantitative analysis, we construct a rich structural life-cycle model that reflects

key institutional aspects of the US health insurance system and captures the selection of

unhealthy people into Medicaid. More specifically, individuals who are heterogeneous in

income, health and medical need shocks choose their labor supply and how to allocate their

resources between non-medical consumption, medical consumption and savings. Medical

consumption is composed of non-discretionary spending (generated by medical need) and

discretionary spending.

The model features both private and public insurance. Private insurance is available from

employers for workers with relatively high-income. Low-income individuals can enroll in

Medicaid (if eligible) or remain uninsured (self-insure through savings). However, Medicaid

imperfectly targets low-resource individuals: even though there is an income test and an

asset test, a high-productivity individual can still enroll by decreasing his labor supply so

that he passes the income test. This is important for capturing the potential changes in the
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composition of Medicaid beneficiaries in response to changes in the program design. We also

include a means-tested cash assistance program to capture other parts of the US safety net.

We calibrate/estimate the model using the Medical Expenditure Panel Survey dataset

(MEPS) by targeting many important features of the data. In particular, the model repro-

duces the following life-cycle profiles for each health group: the mean, median and variance

of medical expenses, the fraction of people with zero medical expenses, average labor income,

employment and insurance take-up rates. We identify discretionary versus non-discretionary

medical spending by matching the difference in medical spending profiles between the unin-

sured and the privately insured, while controlling for the different composition of these two

groups in terms of income and health.

We first use our model to construct the full information benchmark in which the govern-

ment can observe the medical need of each Medicaid beneficiary. In this case, it is possible

to fully insure individuals without creating excessive discretionary medical consumption. To

do this, the government covers 100% of non-discretionary spending and the remaining Med-

icaid budget is allocated as lump-sum transfers. Under this arrangement Medicaid enrollees

are fully protected against medical need shocks while facing full price for their discretionary

medical consumption.

Next, we conduct an extensive policy analysis where the success of each policy is measured

by benchmarking it against the full information case. Importantly, all policies that we

consider are revenue-neutral, i.e., the size of the welfare budget is unchanged. We first show

that just an increase in coinsurance is an ineffective tool to achieve the full information

benchmark. Following the intuition developed in our theoretical analysis, we then show

that an outcome close to the full information case can be achieved by introducing a trade-off

between medical and non-medical consumption. This can be done by giving Medicaid-eligible

individuals a choice between the following two options: i) regular or traditional (in-kind)

Medicaid benefits, i.e., health insurance; ii) lump-sum cash transfers, the amount of which is

adjusted to preserve revenue-neutrality. This trade-off induces individuals with low medical

need to self-select into the cash subprogram of Medicaid, where they face full price for their

medical care, thus substantially decreasing their discretionary medical spending.

It is important to note that several states have experimented with partial cashing-out

of benefits in their Medicaid programs (Cash and Counseling Demonstrations). In particu-

lar, Arkansas, Florida and New Jersey conducted randomized experiments in which in-kind

provision of home health care benefits was partially converted into cash transfers for some

beneficiaries. Lieber and Lockwood (2017) find that those participants who were randomized

to receive in-kind benefits had significantly higher consumption of formal home health care,

which is consistent with our findings.
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The rest of the paper is organized as follows. Section 2 reviews the literature. Section

3 details our theoretical analysis. Section 4 describes our quantitative model. Section 5

describes the data and estimation. Section 6 compares the performance of the model with

the data. Section 7 discusses the results, and Section 8 concludes.

2 Related literature

Our paper is related to several strands of literature. The first strand includes studies on

ex post moral hazard in the use of medical care.1 Two major questions in this field are i)

how quantitatively important is moral hazard in health insurance, and ii) how to design an

insurance contract that mitigates the incentive problem.

A common approach to measuring the prevalence of moral hazard is to use the price

elasticity of medical consumption.2 Although the exact measure of this price elasticity varies

by study, a common finding is that a change in cost sharing affects the demand for medical

care (for a detailed review of related studies see Zweifel and Manning, 2000). The “gold

standard” in this literature is the RAND Health Insurance experiment, where the reported

price elasticity was of the order of -0.20 (Keeler and Rolph, 1988, Manning et al., 1987, see

also Aron-Dine et al., 2013 for a recent reevaluation).

On the normative side, an important implication of the existence of ex post moral hazard

is that full insurance is not optimal. This was first pointed out by Arrow (1963) and later

formalized by Spence and Zeckhauser (1971). The latter two authors also recognized the

similarity between the optimal health insurance problem and the optimal taxation problem:

in both cases, a principal (insurance company or the government) aims to provide insurance

to agents (against health shocks or income) while realizing that insurance affects incentives

(either to use medical care or to work). A number of studies have examined the trade-off

between moral hazard and risk protection in health insurance in the context of linear co-

insurance functions (e.g., the theoretical study of Besley, 1998, or the quantitative studies of

Buchanan et al., 1991, Feldman and Dowd, 1991, Manning and Marquis, 1996). Blomqvist

(1997) formulates a more general problem of optimal health insurance contract that allows

for an arbitrary non-linear relationship between the coinsurance rate and medical spending.

In his numerical simulations, he shows that the coinsurance rate should vary considerably

with the level of medical spending.

1The term ex post moral hazard refers to a situation where an insured individual chooses how much to
spend on medical care and his insurance company cannot observe which part of this spending is necessary
versus discretionary.

2Vera-Hernandez (2003) provides an alternative measure based on the correlation between medical spend-
ing observed by an insurance company and unobserved health shocks.
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Our paper is related to both the positive and normative questions outlined above. First,

we use the Mirrlees approach to characterize optimal health insurance policies in an envi-

ronment with both discretionary and non-discretionary spending and then quantitatively

evaluate the impact of these policies. Second, using the calibrated life-cycle model we con-

struct the full information case with no moral hazard. Comparing this case with the baseline

economy provides another angle to measure existing moral hazard.

Methodologically, we relate to life-cycle structural models featuring health and medical

expenses uncertainty. In these studies, two approaches exist to model medical spending.

The first approach is to treat medical spending as an exogenous shock, i.e., assume that all

medical spending is non-discretionary or necessary (Capatina, 2015, De Nardi et al., 2010,

French, 2005, Nakajima and Telyukova, 2012, Pashchenko and Porapakkarm, 2013). The

second approach is to assume that all medical spending is discretionary. A common modeling

framework for the latter approach is to assume medical spending represents investments in

health (Fonseca et al., 2009, Ozkan, 2013, Scholz and Seshadri, 2010).3 Our paper bridges the

gap between these two approaches by explicitly modeling medical spending as a combination

of discretionary and non-discretionary components, and estimating the relative importance

of these two components using our structural model.4

It is also important to note that our study allows for endogenous medical spending,

endogenous labor supply and endogenous health insurance purchase decisions. With the

exception of Jung and Tran (2016) and Jung et al. (2017), to the best of our knowledge, no

structural life-cycle model has all of these features. This is, however, an important method-

ological development for two reasons. First, in the US institutional framework, health insur-

ance and employment decisions are linked, e.g., individuals typically cannot buy employer-

sponsored health insurance if they are not working. Second, many working-age individuals

switch between different types of health insurance (private and public) over their life course

or spend some time being uninsured. Policies that aim to decrease distortions in medical

care consumption can also affect labor supply and insurance decisions, and it is important

to consider a framework where these decisions are endogenous.

3One exception is De Nardi et al. (2016), who assume that medical spending affects utility but not future
health and is entirely discretionary while the marginal utility from medical consumption is exogenous and
stochastic.

4A somewhat similar approach is implemented by Ameriks et al. (2017) who model spending on long-term
care as consisting of necessary and discretionary components.
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3 Theoretical model

Consider the following static model where individuals differ in their medical need ηi,

i = {L,H}, ηL < ηH . The measure of individuals of type L is π and of type H is 1 − π.

Individuals derive utility from non-medical consumption ci and discretionary medical con-

sumption defined as the difference between total medical consumption mi and medical need:

mi − ηi. We denote utility from non-medical consumption as u(c) and from discretionary

medical consumption as v(m− η). We assume that both u(·) and v(·) are strictly increasing

and strictly concave: u′(·) > 0, u′′(·) < 0, v′(·) > 0, v′′(·) < 0. In addition, v(m−η) −→ −∞
if m < η, i.e., total medical consumption cannot be lower than medical need. A social plan-

ner has a fixed amount of resources B that he allocates to maximize aggregate welfare. We

assume that πηL + (1 − π)ηH < B < ηH , i.e., B is enough to cover medical need of all

individuals but not enough to provide all individuals medical consumption equal to ηH .

Full information case We start by considering the full information case where the social

planner observes the type of each individual. The social planner’s problem can be written

as follows:

max
{ci,mi}i=L,H

π [u(cL) + v(mL − ηL)] + (1− π) [u(cH) + v(mH − ηH)] (1)

s.t.

π [cL +mL] + (1− π) [cH +mH ] = B (2)

Denoting the Lagrange multiplier on the resource constraint Eq.(2) as λ, we can write

the Lagrangian as follows:

L = π [u(cL) + v(mL − ηL)] + (1− π) [u(cH) + v(mH − ηH)] +

λ
(
B − π [cL +mL]− (1− π) [cH +mH ]

)
This results in the following first-order conditions:

u′(cL) = v′(mL − ηL) = λ

u′(cH) = v′(mH − ηH) = λ

From these conditions, it follows that cL = cH and (mL− ηL) = (mH − ηH), i.e., the planner

equalizes non-medical and discretionary medical consumption of individuals.
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Asymmetric information case Next, we assume that the social planner cannot observe

the medical need of an individual. Instead, he allocates non-medical/medical consumption

bundles based on individuals’ self-reported types. To ensure that individuals do not lie about

their types, we need to add incentive compatibility constraints (ICC) to the social planner’s

problem. Note that the H-type will never choose to lie about his type.5 Because of this we

have only one ICC for the L-type:

u(cL) + v(mL − ηL) ≥ u(cH) + v(mH − ηL) (3)

The social planner in the asymmetric information environment solves Problem (1) subject

to the constraints (2) and (3). Denoting the Lagrange multiplier on Eq.(3) as µ, we can write

the Lagrangian as follows:

L = π [u(cL) + v(mL − ηL)] + (1− π) [u(cH) + v(mH − ηH)] +

λ(B − π [cL +mL]− (1− π) [cH +mH ]) +

µ(u(cL) + v(mL − ηL)− u(cH)− v(mH − ηL))

This results in the following first-order conditions:

u′(cL) =
πλ

π + µ
(4)

u′(cH) =
(1− π)λ

1− π − µ
(5)

(π + µ)v′(mL − ηL) = πλ (6)

(1− π)v′(mH − ηH)− µv′(mH − ηL) = (1− π)λ (7)

Denoting the optimal allocation as (c∗L, c
∗
H ,m

∗
L,m

∗
H), the solution to the social planner’s

problem can be characterized as follows:

v′(m∗L − ηL) = u′(c∗L) (8)

v′(m∗H − ηH) = u′(c∗H)

u′(c∗L) +
v′(m∗H−ηL)
u′(c∗H)

π(u′(c∗H)− u′(c∗L))

u′(c∗L) + π(u′(c∗H)− u′(c∗L))

 (9)

5This happens because if the H-type does lie, he receives medical consumption mL. However, due to the
assumption that B < ηH it must be that mL < ηH . Otherwise the total spending of the social planner on
medical consumption for both types will be equal to πmL + (1 − π)mH > πηH + (1 − π)ηH = ηH . Thus,
if the H-type chooses to mimic the L-type, he will receive medical consumption below his medical need ηH
resulting in infinite negative utility.
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It is important to stress several results. First, since m∗L < m∗H , from Eq.(3) it follows that

c∗L > c∗H . In other words, individuals who report low medical need are rewarded with higher

consumption of non-medical good (c∗L > c∗H). Second, the non-medical versus medical con-

sumption allocation of individuals with low medical need is undistorted (Eq. (8)). Third, the

ratio in the bracket on the right hand side of Eq.(9) is less than one, meaning that compared

to the first-best case, H-type individuals’ decisions are distorted towards consuming more

medical consumption and less non-medical consumption.6

Implementation Next, we consider an implementation of the optimal allocation in a

decentralized setup. Consider the insurance system offering individuals two options, each

option is characterized by a bundle (Ti, qi(m), i = {1, 2}), where Ti is cash transfers and

qi(m) is the price of medical services for an individual who chooses option i. These transfers

and prices are determined as follows:

T1 = c∗L +m∗L

q1(m) = 1 for any m

T2 = c∗H + q2(m
∗
H)m∗H

q2(m) =


u′(c∗L) +

v′(m∗H−ηL)
u′(c∗H)

π(u′(c∗H)− u′(c∗L))

u′(c∗L) + π(u′(c∗H)− u′(c∗L))
< 1 if m ≥ m∗H

1 if m < m∗H

We now show that if T1 ≥ T2, the insurance system (Ti, qi(m), i = {1, 2}) implements the

optimum. The condition T1 ≥ T2 requires some restrictions on the parameters of the model,

which we discuss further in Appendix A. Note that the L-type who chooses the first option

solves the following problem:

max
cL,mL

u(cL) + v(mL − ηL) (10)

s.t. cL +mL = T1,

6This can be seen as follows: 1 =
v′(m∗L−ηL)
u′(c∗L) >

v′(m∗H−ηL)
u′(c∗H) . The first inequality follows from Eq.(8) and

the second from the fact that m∗L < m∗H and c∗L > c∗H and the fact that both u(·) and v(·) are concave

functions. Since
v′(m∗H−ηL)
u′(c∗H) < 1, we have

u′(c∗L) +
v′(m∗H−ηL)
u′(c∗H) π(u′(c∗H)− u′(c∗L))

u′(c∗L) + π(u′(c∗H)− u′(c∗L))
< 1.
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while the problem of the H-type who chooses the second option is as follows:

max
cH ,mH

u(cH) + v(mH − ηH) (11)

s.t. cH + q2(mH)mH = T2.

By construction, (c∗L,m
∗
L) and (c∗H ,m

∗
H) are feasible for Problem (10) and (11) respec-

tively. Total spending on transfers satisfies the aggregate resource constraint because

πT1 + (1− π) [T2 + (1− q2(m∗H))m∗H ] = π [c∗L +m∗L] + (1− π) [c∗H +m∗H ] = B.

We need to show that (c∗L,m
∗
L) solves Problem (10) and (c∗H ,m

∗
H) solves Problem (11).

Based on Eq.(8), (c∗L,m
∗
L) satisfies the first-order conditions and therefore solves the opti-

mization problem for the L-type.

To see that (c∗H ,m
∗
H) solves the optimization problem for the H-type agent, note that

based on Eq.(9) he will never choose to deviate from this point in the direction to increase

m (and decrease c). Conversely, if he chooses to deviate in the direction to decrease m,

he would face the price of medical consumption equal to one. Assuming a small deviation

and given that his cash transfers T2 = c∗H + q2(m
∗
H)m∗H , this would result in a new bundle,

≈ (c∗H , q2(m
∗
H)m∗H), which is clearly dominated by (c∗H ,m

∗
H) since q2(m

∗
H) < 1.

Next, we need to show that the L-type will not choose the second option and the H-type

will not choose the first option. For the latter case, the H-type will never choose the first

option because T1 < c∗H +m∗H .7 Consider now the problem of the L-type agent who chooses

the second insurance option:

max
cL,mL

u(cL) + v(mL − ηL)

s.t. cL + q2(mL)mL = T2

Note that if the L-type individual chooses mL < m∗H , he is weakly worse off than under

the first option because he still faces a price of medical care equal to one but receives fewer

cash transfers (because T1 ≥ T2). The question is whether choosing mL ≥ m∗H will bring

the L-type agent higher utility than the bundle (c∗L,m
∗
L). Because the ICC is binding at

the optimum, the utility from consuming bundle (c∗L,m
∗
L) is the same as the utility from

consuming bundle (c∗H ,m
∗
H). The latter bundle also maximizes the utility of the H-type

choosing the second insurance option. Because at any givenm, the marginal utility of medical

7This can be shown as follows: Suppose c∗H + m∗H < T1 = c∗L + m∗L, thus, from the aggregate resource
constraint B > c∗H + m∗H > ηH . The latter inequality follows from the fact that m∗H > ηH . However, this
contradicts the assumption that B < ηH .
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expenses of the L-type is less than that of the H-type, choosing mL > m∗H cannot bring the

L-type agent higher utility than (c∗H ,m
∗
H). Thus, the first option (only cash transfers) is at

least as good as the second option (cash transfers+insurance).8

Overall, these results show that one way to achieve the optimal allocation is to allow

individuals to choose between a cash option and an insurance coverage (accompanied by

smaller cash transfers). We will use this intuition in our quantitative policy analysis below.

4 Quantitative Model

The theoretical model described in the previous section highlights the importance of the

trade-off between medical and non-medical consumption in providing efficient insurance. The

analytical tractability of the model comes at the cost of making some strong assumptions,

but these can be relaxed in the quantitative analysis presented in this section.

Before describing the quantitative model, however, it is important to outline what features

of reality are missing in the theoretical analysis but can be included in our quantitative

analysis. First, our theoretical model has no saving decisions which can be important as they

allow individuals to self-insure. Second, medical/non-medical consumption choice is the only

decision individuals make in the theoretical model; however, health insurance arrangements

may affect other decisions such as labor supply and savings. Third, the only (ex-ante) risk

in the model is medical need realization; more generally, high medical spending can be a

consequence of bad health which also affects other outcomes such as earnings, employment,

and life expectancy. Finally, the theoretical model abstracts from the life-cycle dimension

which is important as medical spending changes considerably with age.

Our quantitative model presented below overcomes all of these limitations while main-

taining the key feature of the theoretical model: medical spending has both discretionary

and necessary components. We will use this quantitative model to examine the implications

of our theoretical analysis in a richer setup. Even though our focus is public health insur-

ance, we model in detail various institutional features that are not directly related to public

health insurance. We do this for the following reasons.

First, unlike in other developed countries, in the US there is substantial heterogeneity in

terms of insurance coverage among working-age adults. We use this observation to identify

discretionary versus non-discretionary medical spending by matching the difference in med-

ical spending profiles between the privately insured and the uninsured, while controlling for

8Note that this is not the case if the price of medical care for those who choose the second option is equal

to
u′(c∗L) +

v′(m∗H−ηL)
u′(c∗H) π(u′(c∗H)− u′(c∗L))

u′(c∗L) + π(u′(c∗H)− u′(c∗L))
when m < m∗H .

11
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the composition of these two groups. Second, the source of insurance coverage in the US

varies significantly over the life-cycle and is, to a certain extent, endogenous. Thus, when

studying changes in public health insurance, it is important to capture how people self-select

into different types of insurance.

4.1 Households

4.1.1 Demographics and preferences

The economy is populated by overlapping generations of individuals. An individual lives

for a maximum of N periods. During the first R− 1 periods of life, an individual can choose

whether to work or not; at age R, all individuals retire.

At age t, an agent’s health condition ht can be either good (ht = 1) or bad (ht = 0).

His health condition evolves according to an age-dependent Markov process, Ht(ht|ht−1).
Health affects one’s available time, productivity and survival probability. Agents discount

the future at rate β and survive until the next period with conditional probability ζht , which

depends on age and health.

An individual is endowed with one unit of time that can be used for either leisure or

work. Labor supply (lt) is indivisible: lt ∈
{

0, l
}

. Working brings disutility modeled as a

fixed cost of leisure. This disutility depends on health status: healthy individuals have fixed

cost of working φw, and unhealthy individuals have a higher fixed cost equal to φw + φUHt ,

where the latter component can increase with age. We assume a Cobb-Douglas specification

for preferences over consumption and leisure:

u(ct, lt, ht) =

(
cχt
(
1− lt − φw1{lt>0} − φUHt 1{ht=0, lt>0}

)1−χ)1−σ
1− σ

,

where 1{·} is an indicator function equal to one if its argument is true. Here, χ is a parameter

determining the relative weight of consumption, and σ is the risk-aversion coefficient over

the consumption-leisure composite.

Each period an individual chooses medical consumption mt that brings utility v(mt, η
h
t ),

where ηht is an age- and health-dependent medical need shock. The medical need shock

represents non-discretionary medical spending, i.e., total medical consumption mt cannot be

less than medical need (mt > ηht ). The parametrization of the utility of medical consumption

is discussed in more details in Section 4.2.

It is important to note that we do not explicitly model the link between medical spending

and future health, and in this approach, we follow De Nardi et al. (2016). In our model,

the utility that individuals get from additional discretionary medical consumption can be

12
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considered as a reduced form representation of all potential benefits that this spending can

bring. In the empirical literature, the extent to which medical spending can improve future

health is often found to be insignificant.

Two important pieces of evidence come from the RAND Health insurance experiment and

the more recent Oregon Health Insurance experiment. In the first experiment, as summarized

in Newhouse et al. (1993), individuals with access to free health care increased their use

of medical care but did not have significantly different health outcomes (using a variety

of measures) compared to individuals who faced out-of-pocket costs for their care. In the

Oregon experiment, as summarized by Baicker et al. (2013), individuals who got access to

Medicaid through a lottery did not exhibit statistically significant improvements in physical

health measures despite an increase in health care use. Importantly, the latter study also

finds that individuals who got access to Medicaid had improved mental outcomes (reduced

depression). This can be interpreted as an additional utility from health care consumption,

which is consistent with our formulation.

4.1.2 Health insurance

Every period with some probability Probt, a working-age agent receives an offer to buy

employer-sponsored health insurance (ESHI).9 The variable gt characterizes the status of

the offer: gt = 1 if an individual receives an offer, and gt = 0 if he does not. We assume

that an individual who has an offer always buys health insurance.10 Participants of the

employer-based pool face an out-of-pocket premium p.11

Low-income individuals of working age can obtain free health insurance from Medicaid.

An individual is eligible for Medicaid if his total income is below the threshold ycat and his

assets are less than kcat.12

9In the data, unhealthy people are less likely to work at firms that offer ESHI. In addition, people with
higher incomes are more likely to be offered ESHI. Based on these facts, we allow Probt to depend on an
individual’s health condition and income.

10In our sample from the MEPS, 96% of people with an offer of ESHI take it.
11We refer to p as the out-of-pocket premium because the actual employer-based premium is higher but

the employer contributes a significant fraction of it, so employees only pay the remainder of the cost.
12The institutional framework described in the model corresponds to the situation before the Affordable

Care Act (ACA) became effective. Prior to the ACA, federal regulations only required states’ Medicaid
programs to cover certain categories of the population - individuals with dependent children and low-income
disabled individuals. We abstract from these eligibility criteria because many states had additional pathways
for childless adults through Medicaid expansion programs. In 2008, 23 states and the District of Columbia
operated programs for low-income childless adults (Klein and Schwartz, 2008). The financing of these
programs comes from state funding or through Medicaid §1115 waivers. As a result, introducing a tight
link between Medicaid eligibility and family/disability status may significantly underestimate the extent
to which this program is available to other categories of the population. In addition, modeling family or
disability status even in a simplistic way would require us to introduce an additional state variable which
would significantly increase our computational costs.
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We denote by it an individual’s health insurance status. If an individual is uninsured,

it = U ; if an individual has ESHI, it = G; if an individual has Medicaid, it = M . All types

of insurance contracts - both private and public - cover only a portion of each individual’s

medical spending. We denote by dedESI and dedMCD the deductibles for employer-based in-

surance and Medicaid, respectively, while denoting by qESI and qMCD the fractions of medical

expenditures above the deductibles paid by private and public insurance, respectively.

All retired households are enrolled in the Medicare program. The Medicare program

charges a fixed premium pMCR and covers a fraction qMCR of medical costs above the de-

ductible level dedMCR.

4.1.3 Labor income

Individual earnings are equal to zht lt, where zht is the idiosyncratic productivity that

depends on age (t) and health status (ht). The latter modeling assumption is motivated by

the observation that the average labor income of unhealthy workers is much lower than the

average income of healthy workers in the data.

4.1.4 Taxation and social transfers

Individuals pay three types of taxes. First, there is an income tax T (yt), where taxable

income yt includes both labor and capital income. Second, there is a consumption tax τc.

Third, working individuals pay payroll taxes: Medicare tax (τMCR) and Social Security tax

(τss). The latter tax does not apply to earnings above the level yss. We also model several

health-related deductions existing in the US tax code. In particular, out-of-pocket medical

expenditures exceeding 7.5% of households’ income and ESHI premium (p) can be excluded

from taxable income.

There are two types of cash transfers. First, all retired households receive Social Security

benefits ss. In practice these payments depend on an individual’s history of earnings, but

to avoid the computational cost of introducing an additional state variable, we model ss as

fixed payments which depend on average income in the economy.

Second, poor individuals can rely on the safety-net program, T SIt . This program guar-

antees each individual a minimum subsistence level equal to c by giving transfers to people

with low disposable resources. This minimum consumption floor is a stylized representation

of means-tested public transfer programs such as food stamps, the Medically Needy part of

Medicaid, Supplemental Security Income, disability insurance, and uncompensated medical

care.
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4.1.5 Timing in the model

The timing in the model is as follows. In the beginning of the period, an individual learns

his productivity, health status, ESHI offer, and medical need shock. Next, an individual

chooses his labor supply (lt). An individual who chooses not to work cannot access ESHI. An

individual without ESHI and whose total resources allow him to be eligible for Medicaid gets

public insurance. Then an individual chooses his medical consumption (mt), non-medical

consumption (ct) and savings (kt+1).

4.1.6 Optimization problem

Working-age individuals (t < R) The state variables for working-age individuals’ opti-

mization problem at the beginning of each period are capital (kt ∈ K =R+ ∪ {0}), health

status (ht ∈ H = {0, 1}), medical need shock (ηht ∈ R), idiosyncratic labor productivity(
zht ∈ Z =R+

)
, ESHI offer status (gt ∈ G = {0, 1}), and age (t ∈ T = {1, 2, ..., R− 1}).

The value function of a working-age individual can be written as follows:

Vt
(
kt, ht, η

h
t , z

h
t , gt

)
= max

ct,lt,mt,kt+1

u (ct, lt, ht)+v(mt, η
h
t )+βζht EtVt+1

(
kt+1, ht+1, η

h
t+1, z

h
t+1, gt+1

)
(12)

subject to

kt (1 + r) + zht lt + T SI = kt+1 + (1 + τc) ct + Tax+ Pt +X(mt) (13)

Pt =

0 ; if it ∈ {U,M}

p ; if it ∈ {G}
(14)

T SIt = max
(
0, c+ Tax+ Pt +X(ηht )− kt (1 + r)− zht lt

)
(15)

Tax = T (yt) + τMCR

(
zht lt − p1{it=G}

)
+ τss max

(
zht lt − p1{it=G}, yss

)
(16)

yt = max
(
0, ktr + zht lt − p1{it=G} −max

(
0, X(mt)− 0.075(ktr + zht lt)

))
(17)

X(mt) =

mt if it = {U} or mt ≤ dedit

dedit + (1− qit)(mt − dedit) if it = {M,G} and mt > dedit
(18)

An individual is enrolled in ESHI (it = G) if lt = l and gt = 1. An individual is enrolled
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in Medicaid (it = M) if:

ktr + zht lt ≤ ycat and kt ≤ kcat

The conditional expectation on the right-hand side of Eq.(12) is over
{
ht+1, η

h
t+1, z

h
t+1, gt+1

}
.

Eq.(13) is the budget constraint. Eq.(15) describes how the transfers of cash assistance pro-

grams are calculated. In Eq.(16), the first two terms are income taxes and the last two terms

are payroll taxes. Eq. (17) defines taxable income. Eq.(18) describes out-of-pocket medical

expenses X(mt) as a function of total medical expenses mt.

Retired individuals For a retired individual (t ≥ R), the state variables are capital (kt),

health (ht), medical need shock
(
ηht
)
, and age (t). The value function of a retired individual

is:

Vt
(
kt, ht, η

h
t

)
= max

ct,kt+1

u (ct, 0, ht) + v(mt, η
h
t ) + βζht EtVt+1

(
kt+1, ht+1, η

h
t+1

)
(19)

subject to:

kt (1 + r) + ss+ T SI = kt+1 + (1 + τc) ct + T (yt) + pMCR +X(mt) (20)

T SIt = max
(
0, c+ T (yt) + pMCR +X(ηht )− kt (1 + r)− ss

)
(21)

yt = ktr + ss−max
(
0, X(mt)− 0.075 (ktr + ss)

)
(22)

X(mt) =

mt if mt ≤ dedMCR

dedMCR + (1− qMCR)(mt − dedMCR) if mt > dedMCR
(23)

4.2 Utility from medical consumption

When specifying the functional form of the utility from medical consumption we require

it to satisfy three properties. First, there should be a large disutility from consuming less

than one’s medical need. This property ensures that medical need represents unavoidable or

necessary medical consumption.

Second, it should allow for varying compositions of necessary and discretionary medical

spending. The key intuition underlying our identification strategy is that health insurance

affects only the discretionary part of medical spending. Consider, for example, two extreme

cases. If the entire amount of medical spending is necessary, health insurance does not affect

medical spending because the latter is a shock. On the other hand, if medical spending

is entirely discretionary, i.e., it is not a shock but a choice, health insurance is important

16
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because it affects its price. We want our utility specification to parsimoniously represent

various intermediate scenarios between these two extreme cases.

Third, the utility specification should be such that even though discretionary medical

consumption is valuable, the demand for medical care is income inelastic. A number of

studies have documented that the elasticity of medical spending with respect to income is

very small (for an extensive review, see Ringel et al., 2002, and OECD, 2006) and we require

our model to be consistent with this observation.

Based on these considerations, we use a specification which combines CRRA utility over

discretionary medical spending (mt − ηht ) with a quadratic component:13

v(mt, η
h
t ) =

(mt − ηht )1−σ

1− σ
− 1

2
m2
t + γh1,tmt (24)

Note that this functional form has the property that the marginal utility of medical

consumption is not always positive; i.e., medical consumption can reach a saturation point.

We denote by ∆ the maximum amount of discretionary medical consumption on top of the

medical need that an agent can consume before marginal utility becomes negative (medical

consumption reaches the saturation point), i.e., an agent’s medical consumption always lies

within the bracket (ηht , η
h
t + ∆]. We can rewrite γh1,t as a function of ∆ and ηht , so our utility

function depends only on these two parameters.14

Note that our specification satisfies all three properties listed above. The CRRA compo-

nent ensures that medical spending is always above medical need. By changing the saturation

point we can change the composition of spending into necessary and discretionary parts (this

is discussed in Sections 5.4.2 and 6.3). Finally, the fact that the marginal utility of medical

spending is not always positive works towards decreasing the income elasticity of medical

consumption.15

13An alternative specification is the CRRA function with a multiplier θ: θ
(mt − ηht )1−σ

1− σ
. This specification

was used in Ameriks et al. (2017) with application to spending on long-term care. This specification satisfies
the first two properties but not the third one. We have tried to re-estimate our model using this functional
form; in Appendix B we show that this alternative model can capture many features of the data but it
significantly overestimates the empirical price and income elasticities of the demand for medical care.

14Specifically, because at the saturation point

∂v(mt, η
h
t )

∂mt
|mt=ηht +∆ = 0,

we have γh1,t = ηht + ∆−∆−σ.
15If the marginal utility of medical consumption is always positive, a fraction of every additional dollar of

income will be allocated towards medical spending thereby resulting in high income elasticity.
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5 Model parameters estimation

5.1 Data and estimation procedure

The main dataset we use in our estimation is the Medical Expenditure Panel Survey

(MEPS). The MEPS is a nationally representative survey of households that collects detailed

records on demographics, income, employment, medical costs and insurance. Each individual

is interviewed at most five times over a two-year period. The medical spending reported in the

MEPS is cross-checked with insurers and providers, which improves the accuracy.16 We use

fourteen waves of the MEPS (1999-2012) to estimate the distribution of medical spending,

health dynamics, parameters related to health insurance, labor earnings and employment

profiles.

In our sample, we include heads of households who are older than 20 years old and do

not have missing information on medical spending. In the MEPS, a family (or a household)

is defined based on eligibility for coverage under a typical family insurance plan (refereed to

in the MEPS as Health Insurance Eligibility Unit, HIEU). We define the head as the person

with the highest income in the HIEU. We choose to include only HIEU heads because in our

model we abstract from modeling families.

The MEPS does not contain information about wealth and survival, because of this we

also use the Panel Study of Income Dynamic (PSID) and the Health and Retirement Study

(HRS) to construct these related moments. The PSID is a nationally representative panel

that surveys individuals and their families. We use the PSID to construct the moment for

wealth. The PSID collected wealth information every five years before 1997 and every two

years after that, and we use the 1994 and 1999-2011 waves.17

The HRS is a bi-annual panel that surveys a nationally representative sample of in-

dividuals over the age of 50. We use the HRS to estimate the health-dependent survival

probabilities.

We estimate/calibrate our model in two steps. In the first step, we set parameters

related to demographics, taxes, social security benefits, labor productivity shocks, and health

insurance and estimate the health transition probabilities directly from the data. In the

second step, we calibrate the remaining parameters using our model to match the targeted

moments from the data. We convert nominal values to constant 2003 dollars using the CPI

as a deflator.

16Pashchenko and Porapakkarm (2016) provide more details on the MEPS dataset.
17Our measure of net worth controls for family size and year effects.
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5.2 Parameters set/estimated in the first step

5.2.1 Demographics and preferences

In the model, agents are born at age 25 and can live to a maximum age of 99. The model

period is one year; thus, the maximum lifespan N is 75. Agents retire at the age of 65, so R

is 41.

To adjust conditional survival probabilities ζht for health, we follow Attanasio et al.

(2011). More specifically, we first use the HRS to estimate the survival probabilities by

health, and we use the MEPS to estimate the fraction of healthy and unhealthy individuals

by age. Then we combine these estimates to compute the difference in survival probabilities

for people in different health status and use it to adjust the Social Security Administration’s

male life tables.

We set the consumption share (χ) in the utility function to 0.6 using the estimates of

French (2005).18 The risk aversion parameter σ is set to 3. This corresponds to the risk-

aversion over non-medical consumption equal to 2.3, which is within the range commonly

used in structural life-cycle and macroeconomic models. The interest rate r is set to 2%.

We set labor supply of those who choose to work (l) to 0.4. Individuals’ initial wealth is set

to the median wealth of people aged 20 and 25 years old in the PSID.

5.2.2 Government policies

In specifying the tax function T (y), we use a nonlinear functional form as in Gouveia

and Strauss (1994), together with a linear income tax τy:

T (y) = a0
[
y − (y−a1 + a2)

−1/a1
]

+ τyy

In this functional form, a0 controls the marginal tax rate faced by the highest income

group, a1 determines the curvature of marginal taxes, and a2 is a scaling parameter. We

set a0 and a1 to 0.258 and 0.768, respectively, as in Gouveia and Strauss (1994), and the

parameters a2 and τy are set to 0.616 and 0.067, respectively, based on Pashchenko and

Porapakkarm (2017).

For retired individuals, Social Security pension payment ss is the average labor income

over working ages (25-64) multiplied by the replacement rate. The Social Security replace-

ment rate is set to 40%.

The Medicare, Social Security and consumption tax rates are set to 2.9%, 12.4%, and

5.67%, respectively. The maximum taxable income for Social Security is set to $87,000 as

18Given that we have indivisible labor supply, we cannot pin down this parameter using a moment in the
data.
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in 2003.

5.2.3 Health insurance, health, and health transition probability

In the MEPS, the question about the source of insurance coverage is asked retrospectively

for each month of the year. We define a person as having employer-based insurance if he

reports having ESHI for at least six months of the year; the same criterion is used when

defining individuals insured by Medicaid. We reclassify individuals as being insured by

Medicaid even if they report another type of coverage (or no coverage) in two cases. First, if

they report receiving Supplemental Security Income (SSI). Second, if more than 30% of their

total medical spending is covered by Medicaid. We define a person as uninsured if he has

no insurance coverage for six months or more out of the year. We exclude from our sample

individuals who are covered by individual insurance or any other type of health insurance

which cannot be categorized into Medicaid, individual or employer-based insurance.

We construct our measure of health based on self-reported health status. In the MEPS,

a person’s self-reported health status is coded as 1 for excellent, 2 for very good, 3 for good,

4 for fair, and 5 for poor. We define a person as being in bad health if his average health

score over a given year is greater than or equal to 3.

To construct the age-dependent health transition matrix, we start by computing the

health transition probabilities for ages 30, 40,...,70. In each case, we use a sample within a

10-year age bracket. For example, to construct the transition probabilities for age 40, we

pool individuals between ages 35 and 44. Then we construct the health transition matrix by

fitting these estimates with quadratic functions of age.

5.2.4 Insurance policies

The coinsurance for each type of insurance was computed as the median ratio of out-

of-pocket medical expenses to total medical expenses for people within a corresponding

insurance group who have positive medical spending and positive insurance payouts. The

resulting coinsurance rates are 23%, 3%, and 20% for private insurance, Medicaid and Medi-

care, respectively.

The deductibles for private insurance are set to $143, which corresponds to the median

out-of-pocket costs for people with private insurance whose medical expenses are positive but

insurance payments are zero. The deductibles for Medicaid are set to zero since the absolute

majority of Medicaid beneficiaries have positive insurance payout and very small out-of-

pocket payments. The deductibles for Medicare are set to be the same as the deductibles for

private insurance. We cannot compute this number from the data as very few individuals

above the age of 65 have positive total medical spending but zero insurance payouts.
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We set the out-of-pocket part of ESHI premium p to $508 based on Kaiser (2002). The

premium for Medicare pMCR is set to $704 which was the Medicare Part B premium in

2003.19

5.3 Labor income

We specify labor productivity as follows:

zht = λht exp(ωt) exp(ξ) (25)

where λht is the deterministic function of age and health. The stochastic component of

productivity consists of the persistent shock ωt and a fixed productivity ξ:

ωt = ρωt−1 + εt, εt ∼ N(0, σ2
ε) (26)

ξ ∼ N(0, σ2
ξ )

Fixed productivity is discretized into two grids with equal measure, referred to as low

(ξ1) and high (ξ2) fixed productivity types (ξ1 < ξ2). For the persistent shock ωt, we set ρ

to 0.98 and σ2
ε to 0.02 following the incomplete market literature (Storesletten et al. (2004);

Hubbard et al. (1995); French (2005)). We set the variance of the fixed productivity type

(σ2
ξ ) to 0.242 as in Storesletten et al. (2004). In our computation, we discretize ωt using the

method in Floden (2008).20 To construct the distribution of newborn individuals, we draw

ω1 in Eq.(26) from the N(0, 0.3522) distribution, following Heathcote et al. (2010).

To estimate the deterministic part of productivity λht , we need to take into account that

in the data, we only observe labor income of workers and we do not know the potential labor

income of non-workers. To avoid the selection bias, particularly among the unhealthy, we

estimate the labor income profiles inside the model. The estimation approach is described

in Section 5.4.5.

5.4 Parameters estimated inside the model

In this section, we explain how we calibrate the remaining parameters inside our model

by targeting the moments from the data.

19Most Medicare beneficiaries do not pay a premium for Part A.
20We use 9 gridpoints for ωt, and the grid of ωt is expanding over ages to capture the increasing cross-

sectional variance. Our discretized process for ωt generates an autocorrelation of 0.98 and 0.0173 for its
innovation variance.
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5.4.1 Discount factor and institutional parameters

The discount factor β is set to 0.968 to match the ratio of median assets of people aged

60-64 to median assets of people aged 35-39 in the PSID.

The minimum subsistence level c is set to $2,000 to match the average employment among

Medicaid beneficiaries. The income eligibility threshold for Medicaid (ycat) is set to 94% of

Federal Poverty Line (FPL) and the asset test is set to $17,000 to match the life-cycle profile

of people with public insurance.

5.4.2 Saturation point

In our model, the marginal utility of medical consumption becomes zero when medical

spending reaches the saturation point, ηht + ∆. As explained in the next subsection, medical

need ηht is estimated to match the total medical spending in the data. The parameter ∆

determines the proportion of discretionary medical expenses within the total.

We identify ∆ by matching the difference in medical spending profiles between the

uninsured and the privately insured. The model where medical expenses are mostly non-

discretionary (∆ is rather small) will underestimate this difference, while the model where

medical consumption is mostly discretionary (∆� ηht ) will overestimate it.

It is important to point out that our estimation strategy is to match the average and

median medical spending by health, while simultaneously matching the health composition

of individuals in different insurance groups (as will be shown in Section 6). In addition, we

match the average labor income of people with private insurance. Thus, we identify ∆ from

the difference in medical spending between the privately insured and the uninsured, which

is not accounted for by the difference in composition between these two groups. In Section

6.3, we illustrate how changing ∆ affects the difference in medical spending between the

privately insured and the uninsured.21

5.4.3 Medical need shock process

We assume that the medical need shock ηht has a shifted lognormal distribution

ηht = exp(κht )− exp(bht )

κht = µht + δht ζt

21We have also considered the case where ∆ is age-dependent, but the resulting estimate varies little by
age.
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ζt = ρmζt−1 + εt, εt ∼ N(0, 1)

We assume a lognormal distribution to capture the empirical fact that the medical expenses

distribution is highly skewed.

Note that in the data, there is a large fraction of people with zero medical spending,

especially among the young. Without the shift parameter bht , η
h
t is always positive, and

all individuals in our model have positive medical expenses, which is counterfactual. We

parametrize bht as follows:

bht = bh0 + bh1t+ bh2t
2 + bh3t

3 + bh4t
4

Similarly, we parameterize µht and δht as:

µht = µh0 + µh1t+ µh2t
2 + µh3t

3

δht = δh0 + δh1 t+ δh2 t
2 + δh3 t

3

The process of medical need shock ηht is estimated inside the model in the following

way. Given ∆, the health-dependent coefficients µh0 , µ
h
1 , µ

h
2 , and µh3 are set to match aver-

age medical expenses at ages 30, 50, 70, and 85 for each health group. The coefficients

δh0 , δ
h
1 , δ

h
2 , and δh3 are set to match the variance of medical expenses at ages 30, 50, 70, and 85

for each health group. The coefficients bh0 , b
h
1 , b

h
2 , b

h
3 , and bh4 are used to match the fraction of

people with zero medical expenses at ages 25, 40, 50, 64, and 97 for each health group. The

persistence parameter ρm is set to match the autocorrelation of total medical expenses in

the data (0.3).22 Since all of the parameters governing the evolution of medical need depend

on ∆, we estimate the parameters bht , µ
h
t and δht jointly with ∆.

5.4.4 ESHI offer rate

We assume that the probability of receiving an offer of ESHI coverage is a logistic function

Probt =
exp(ut)

1 + exp(ut)
,

where the variable ut is an odds ratio that takes the following form:

ut = η0,t + κ1,t1{ht−1=0} + κ2,t log(inct ) + κ3,t log(inct )1{ht−1=0} + κ41{gt−1=1}1{t>25} (27)

22This number is computed as the correlation of medical spending between two consecutive years for those
individuals in our sample that we observe for two years.
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Here, κ0,t,κ1,t,κ2,t, and κ3,t are age-dependent coefficients, and inct is individual labor in-

come. This specification allows us to match the life-cycle profile of ESHI coverage and the

average labor income of workers with ESHI. We include dummy coefficients for bad health

to capture decreased opportunity to access ESHI for the unhealthy.

In general, estimating Eq.(27) directly from the data can give biased results because of the

selection into employment: individuals with an ESHI offer are more likely to work than those

without an ESHI offer.23 To avoid this problem, we follow Pashchenko and Porapakkarm

(2013) by estimating Eq.(27) inside the model together with the labor income as described

in the next subsection.

5.4.5 Disutility from work and labor income

We estimate the fixed leisure costs of work φw, the loss of time due to bad health φUHt , the

deterministic part of productivity λht and the parameters in Eq.(27) using a method similar

to French (2005) and Pashchenko and Porapakkarm (2013).24 Our estimation algorithm

searches for these parameters until our model produces the following outcomes: i) the labor

income profiles generated by our model are the same as in the data for all workers as well

as for only workers covered by ESHI for each health group; ii) the profiles of ESHI coverage

and employment in the model are the same as in the data for each health group, iii) the

probability of being insured by ESHI in the current period conditional on being insured by

ESHI in the previous period is the same in the model and in the data.25

5.5 Parameters’ values

Table 1 summarizes the parametrization of our model. The top panel lists parameters set

or estimated outside the model and the bottom panel lists parameters estimated/calibrated

inside the model.

23See French and Jones (2010) for an investigation of the effect of employer-based health insurance on
decisions to work.

24In our estimation, for each health group, we parametrize λht as a polynomial degree three of age.
25In our estimation, we define a person as employed if he works at least 520 hours per year, earns at least

$2,678 per year in base year dollars (this corresponds to working at least 10 hours per week and earning a
minimum wage of $5.15 per hour) and does not report being retired or receiving Social Security benefits.
Household heads’ labor income is defined as the sum of wage/salary income and 50% of the income from
business.
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Parameter name Notation Value Source

Parameters set outside the model
Consumption share κ 0.6 French (2005)

Labor supply l 0.4
Risk aversion σ 3
Tax parameters a0 0.258 Gouveia and Strauss (1994)

a1 0.768 ”
a2 0.616 Pashchenko and Porapakkarm (2017)
τy 0.067 ”

Social Security replacement rate − 40%
Medicare premium pmed $704 Data (2003)
Out-of-pocket ESHI premium p $508 Kaiser (2002)
Labor productivity

- Persistence parameter ρ 0.98 Storesletten, et al. (2004)
- Variance of innovations σ2

ε 0.02 ”
- Fixed effect σ2

ξ 0.24 ”
Deductible and cost-sharing

- ESHI dedESI , qESI $143, 77% MEPS
- Medicaid dedMCD, qMCD $0, 97% MEPS
- Medicare dedMCR, qMCR $143, 80% MEPS

Parameters used to match some targets
Discount factor β 0.968 Ratio of median assets 60-64 to 35-39
Consumption floor c $2,000 % employment among public insurance
Medicaid

- Income test ycat 0.94FPL publicly insured profile
- Asset test kcat $17,000 ”

Fixed costs of work φw 0.315 employment profiles (healthy)
Time loss due to bad health

- age 25-40 φUHt 0.001 employment profiles (unhealthy)
- age 64 φUHt 0.003 ”

Saturation point ∆ 0.329 difference in medical spending ESHI/uninsured

Table 1: Parameters in baseline model

6 Model performance

6.1 Employment, labor income and health insurance

Figure (2) compares the average labor income of workers and employment profiles by

health in the data and in the model. The model closely tracks the data. The average

labor income profiles and employment profiles by health were targeted in our calibration by

adjusting the exogenous productivity and the disutility from work parameters.

Table 2 shows how the aggregate health insurance statistics in the model compare to

the corresponding ones in our sample. We are able to replicate the empirical distribution of

people by health insurance status. Figure (3) shows that we can also capture the life-cycle

insurance profiles for individuals in different health statuses.
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Figure 2: Left panel: employment by health. Right panel: average labor income among workers by health

(normalized by average income). Solid lines (lines with round markers): data for the healthy (unhealthy)

from the MEPS. Dashed (dash-dotted) lines: model for the healthy (unhealthy).

Finally, our model can replicate the selection of unhealthy people into different health

insurance groups (the last row of Table 2). Specifically, the fraction of unhealthy individuals

among the uninsured is higher than the fraction among those with ESHI and our model

captures this observation, which is important in our estimation of the saturation point. The

highest fraction of unhealthy individuals is observed among the publicly insured: 54.4% of

Medicaid beneficiaries are unhealthy, which is more than twice the corresponding number for

other insurance categories. In our model, the fraction of unhealthy Medicaid beneficiaries is

52.7%.

Data Baseline model
ESHI uninsured public ESHI uninsured public

all 68.3 22.3 9.3 71.6 19.5 8.9
healthy 73.7 21.0 5.3 75.9 19.1 5.0
unhealthy 47.8 27.0 25.2 48.9 21.3 29.7
% unhealthy by insurance 14.0 24.4 54.4 10.8 17.3 52.7

Table 2: Insurance coverage among individuals aged 25 to 64: data (MEPS) versus baseline model

6.2 Medical expenses

Figure (4) shows that our calibration strategy allows the model to replicate the life-

cycle profiles of the mean, median and standard deviation of medical expenses, as well

as the fraction of people with zero medical expenses for each health group. The mean,

standard deviation, and fraction of people with zero expenses were explicitly targeted by our

calibration, whereas the median was not.
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Figure 3: Insurance profiles for the healthy (top panel) and the unhealthy (bottom panel). Solid lines and

lines with triangle markers are from the MEPS data. Dotted and dash-dotted lines are from the baseline

model.

Figure (5) shows that our model captures the large disparities in medical expenses ob-

served for people with different health insurance statuses. The difference in medical spending

between the privately insured and the uninsured was targeted in our calibration. Although

we did not explicitly target the medical spending profile of Medicaid beneficiaries, our model

captures the fact that the publicly insured spend considerably more compared with the other

groups.

It is also important to evaluate how well the model matches the price elasticity of the

demand for medical care. The “gold standard” in empirical studies of price elasticity is

the RAND health insurance experiment (Keeler and Rolph, 1988, Manning et al., 1987).

This experiment was a randomized trial conducted in the 1970s. Individuals were enrolled

in health insurance plans that differed in generosity, and the elasticity was computed by

comparing medical care utilizations across plans. The results of this experiment have recently

been reevaluated and adjusted by Aron-Dine et al. (2013).
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Figure 4: Top left panel: average medical expenses by health. Top right panel: median of medical expenses

by health. Bottom left panel: standard deviation of medical expenses by health. Bottom right panel: fraction

of people with zero medical expenses by health. Solid lines (lines with round markers) are from the MEPS

data for the healthy (unhealthy). Dashed (dash-dotted) lines are from the model for the healthy (unhealthy).

All level variables are normalized by average income.

To construct an elasticity measurement comparable to the RAND experiment, we con-

sider the following two experiments. In the first one, we introduce universal health insur-

ance with no coinsurance and no deductibles (analogous to control group A in the RAND

experiment). In the second experiment, we introduce universal health insurance with no

deductibles but a 25% copay rate (analogous to group B). The aggregate medical spending

of working-age individuals in the second experiment constitutes 82% of the corresponding

spending in the first experiment. This is very close to the result of 84% from the RAND

experiment based on the adjusted estimates from Aron-Dine et al. (2013), Table 3.26

Another important dimension to consider is the income elasticity of medical spending.

To measure this elasticity, we consider an experiment where we introduce a permanent

increase in individual productivity equal to 1% and then compute the resulting change in

26The original number from the RAND experiment is 71%.
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Figure 5: Average medical expenses by insurance status (normalized by average income). Solid lines (with

or without markers) are from the MEPS data. Dashed and dash-dotted lines are from the model. ESI stands

for employer-sponsored insurance.

the aggregate medical spending of working-age individuals. The results suggest that medical

spending is income inelastic: the elasticity is equal to 0.13. This is consistent with empirical

evidence. Ringel et al. (2002) review a large number of studies and conclude that the

estimates of income elasticity are in the range of 0 to 0.2. In another large review, OECD

(2006) also concludes that income elasticities are usually found to be small or negative. The

income elasticity in the RAND health insurance experiment was found to be 0.22 (Manning

and Marquis, 1996).

6.3 The role of the saturation point

Because the saturation point (controlled by the parameter ∆) plays an important role in

determining the relative importance of discretionary versus non-discretionary medical spend-

ing, in this section we provide additional discussion on the identification of this parameter.

To illustrate the role of the saturation point in our estimation strategy, we consider two ex-

periments. In the first experiment, we decrease the parameter ∆ by 50%, and in the second,

we increase it by 20%.27 In both experiments, we re-estimate the medical need shock process

so that total medical spending profiles by health are the same as in the data.

Figure (6) shows how the difference in medical expenses between the privately insured and

the uninsured in the two experiments differ from the baseline. When the saturation point is

lower, a larger share of medical spending is non-discretionary, and therefore, the difference in

spending between the privately insured and the uninsured decreases. In contrast, when the

27Increasing ∆ by more than 20% does not allow us to match the total medical expense profiles in the
data.
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saturation point increases, the gap between the two profiles increases because discretionary

spending now makes up a larger part of the total spending.
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Figure 6: Average medical spending of the uninsured and individuals with employer-based insurance

(normalized by average income). Top panel: baseline. Bottom left panel: ∆ decreased by 50% of the baseline

value. Bottom right panel: ∆ increased by 20% of the baseline value. ESI stands for “employer-sponsored

insurance”.

7 Policy Simulations

This section is organized as follows. We start by constructing the full information bench-

mark where the government can observe medical needs of Medicaid beneficiaries. We show

that in this case, the government can substantially reduce their medical spending by fully

covering their medical needs and allocating the rest of the Medicaid budget as lump-sum

transfers.

Next, we construct a number of policy experiments in an environment where the division

of medical spending into discretionary and non-discretionary parts is unobservable. To ab-

stract from any change in the composition of Medicaid beneficiaries and to better illustrate
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the mechanism, we first conduct the analysis as a one-time policy change. We show that to

move close to the full information benchmark, it is important to introduce a trade-off be-

tween non-medical and medical consumption by allowing Medicaid beneficiaries to substitute

health insurance coverage with cash transfers.

Then we remove the one-time policy change assumption and allow for a full adjustment

to policy changes. We show that although the cash-out option remains an effective tool

to reduce medical spending, there is a change in the composition of Medicaid beneficiaries

because the cash-out option lowers the target efficiency of Medicaid: health insurance is most

valued by the unhealthy, whereas cash transfers are valued by everyone. In the last part of

this section, we show that this problem can be addressed by implementing work-dependent

cash transfers.

7.1 Observable medical need

In this section, we construct an experiment where the government can observe the medical

need (ηht ) of Medicaid beneficiaries. In this case, the government can fully insure individuals

against their medical need shock by covering 100% of their non-discretionary spending and

making them fully responsible for their discretionary spending.28 In other words, individ-

uals face the full price of their discretionary medical spending. Since we preserve revenue-

neutrality, we allocate the Medicaid budget that remains after covering non-discretionary

spending to all beneficiaries as lump-sum transfers. The size of these transfers is adjusted

until the total welfare budget is the same as in the baseline economy.29

In this full information economy, the aggregate medical spending of all individuals younger

than 65 years old represents 92.5% of the baseline level. Thus, if Medicaid beneficiaries face

the full price of their discretionary medical consumption, they substantially reduce their

medical spending.

We also compute the welfare effects of this experiment. Our welfare measure is the

compensation equivalent variation (CEV), which is equal to the lump-sum compensation per

year needed to make an individual indifferent between being born in the baseline economy

and in the economy with observable medical need. We report this number as a percentage

of average consumption in the baseline economy. A positive number means welfare gains.30

28More specifically, since the CRRA part of medical spending goes to negative infinity when medical
spending exactly equals medical need, we assume that the government covers medical need plus $900. The
results are robust to changes in this parameter.

29We consider the total welfare budget as opposed to the Medicaid-only budget because many low-income
people are eligible for both Medicaid and cash assistance, and major changes in the former program affect
the budget of the latter program.

30We compute the CEV as follows. First, we compute the ex-ante welfare at age 25 in the baseline and
the experimental cases, denoting them V B and V E , respectively. Then we give a lump-sum transfer x to
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We find that the CEV is equal to 1.48%, meaning that individuals are substantially better

off in the full information economy.

Individuals in our model are ex-ante heterogeneous by fixed productivity type. The ex-

ante welfare computed by type shows that the welfare gains are not uniform: the CEV for

individuals with low fixed productivity is 3.15% while for those with high fixed productivity

it is -0.75%. The elimination of distortions and the shift from medical to non-medical

consumption benefit low fixed productivity individuals because they have low income and

a relatively high marginal utility of non-medical consumption. In contrast, the welfare

loss incurred by individuals with high fixed productivity happens because given their high

resources (i) they are prone to over-consume medical care once on Medicaid; (ii) they value

cash transfers and the resulting increase in non-medical consumption less.

Another important result from the full information economy is that the lump-sum trans-

fers used to balance the welfare budget ($3,267 per beneficiary) draw more people into

Medicaid, with the percentage of beneficiaries increasing from 8.9% (baseline) to 14.4%.

This happens because in-kind transfers (medical consumption) are primarily attractive to

unhealthy people, whereas cash transfers are equally attractive to all. Because Medicaid

eligibility depends on labor income, some individuals now choose to stop working so that

they can enroll in the program and receive cash transfers.31 We discuss how to address this

problem in Section 7.4.

To abstract from the increase in the number of Medicaid beneficiaries, we also construct

the full information experiment as a one-time policy change. More specifically, we assume

that the government can only observe each individual’s medical need for one period and that

new enrollees into Medicaid are not allowed. The one-time policy change assumption allows

us to fix the distribution of agents across the state variables, and thus identify a person

who was enrolled in Medicaid in the baseline economy. In contrast, when we allow for the

full adjustment, individuals change their behavior over the life-cycle and this changes the

distribution of agents.

The result from the full information economy under a one-time policy change is reported

in Row 1 of Table 3. Note that the reduction in aggregate medical spending (93.2% of the

baseline level) is slightly less compared with the full adjustment case (92.5%), but the size

of the lump-sum cash transfers is significantly larger ($5,254 versus $3,267). This happens

because in the one-time policy change case new Medicaid enrollees are not allowed, so lump-

everyone in the baseline economy in each period, resolve the model, and recompute welfare V B . We adjust x
until V B = V E . The interpretation of x is how much a newborn in the baseline case has to be compensated
to be indifferent between the baseline and experimental economies.

31See Nichols and Zeckhauser (1982) for a more detailed discussion of the effect of in-kind versus cash
transfers on target efficiency. See Pashchenko and Porapakkarm (2017) for further discussion of the effect of
Medicaid on labor supply decisions.
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sum transfers are allocated to a smaller group of people.

7.2 Asymmetric information environment: one-time policy change

In the previous subsection, we showed that the discretionary medical consumption of

Medicaid beneficiaries can be considerably reduced if they face the full price of their care.

Our goal in this section is to explore how discretionary medical consumption can be reduced

in asymmetric information settings, i.e., when medical need is unobservable. We first restrict

our analysis to one-time policy changes.

We start by considering increases in the coinsurance rate: we consider experiments where

the Medicaid program covers less of total medical spending and allocates the “saved” money

as lump-sum transfers to all beneficiaries. We show that this policy has a limited effect on

medical spending. Next, we use the insights from our theoretical model and show that much

better outcomes can be achieved if Medicaid enrollees are allowed to choose between cash

transfers and in-kind Medicaid benefits.

Lump-sum Medical spending
transfers ($000) (% BS)

Baseline (BS) - 100.0

1. Observable medical need 5.3 93.2

Increasing Medicaid coinsurance

2. Medicaid covers 90% 2.0 97.8
3. Medicaid covers 80% 3.0 96.3
4. Medicaid covers 70% 3.9 95.3
5. Medicaid covers 60% 4.5 94.7
6. Medicaid covers 50% 5.1 94.3
7. Medicaid covers 40% 5.5 93.9

Table 3: The effects of increasing Medicaid coinsurance, one-time policy change.

Rows 2 to 7 of Table 3 show the aggregate medical spending of individuals younger than

65 years old when Medicaid coinsurance is increased. In each experiment, the increase in

Medicaid coinsurance is compensated by lump-sum cash transfers equally distributed among

all beneficiaries. The size of the transfers is adjusted so that the total welfare budget in each

experiment is the same as in the baseline economy.

The results in Table 3 show that to achieve a reduction in the aggregate medical spend-

ing similar to the full information case, the Medicaid coinsurance rate must be drastically

increased: the percentage of medical spending covered by Medicaid should decrease from

97% (baseline) to 40%. This is because the policy is applied uniformly to all beneficiaries
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regardless of their medical need. Individuals with low medical need still pay less than full

price for their medical care, consequently they have higher medical consumption than in the

full information case. At the same time, individuals with high medical need have little room

to decrease their medical spending.32

Next, we consider a more flexible policy. Two important theoretical implications from

Section 3 are that in the second-best economy, (i) individuals with low medical consumption

should be rewarded with high non-medical consumption, (ii) individuals with low medical

need should not face distortions on their medical versus non-medical consumption choices.

Following this intuition, we introduce an option for Medicaid beneficiaries to substitute their

medical coverage with cash transfers. In other words, each beneficiary is given a choice to

either enroll in the traditional Medicaid program (with the same coverage as in the baseline

economy) or the cash subprogram. The latter provides beneficiaries lump-sum transfers but

leaves them fully responsible for paying their medical consumption.33

This policy introduces a trade-off between obtaining higher non-medical consumption (by

receiving cash transfers) at the cost of reducing medical consumption (forgoing insurance

coverage). Obviously, the cash program is only attractive to people with low medical need.

Importantly, once an individual chooses the cash option, he faces the full price of his medical

care, i.e., his choice between non-medical and medical consumption is undistorted. As before,

we adjust the size of the cash transfers so that the total welfare budget remains the same as

in the baseline economy. Thus, the higher the reduction in medical spending by Medicaid

beneficiaries, the larger the transfers will be to people who choose the cash-out option. As

with all experiments in this subsection, we only consider one-time policy changes.

Lump-sum Medical spending
transfers ($000) (% BS)

Baseline (BS) - 100.0

1. Observable medical need 5.3 93.2

Increasing Medicaid coinsurance

2. Medicaid covers 97% 2.8 96.9
3. Medicaid covers 90% 3.9 95.2
4. Medicaid covers 80% 5.2 93.9
5. Medicaid covers 70% 5.9 93.4

Table 4: The effects of introducing a cash-out option into Medicaid, one-time policy change.

32Table 7 in Appendix C reports the change in the mean and standard deviation of out-of-pocket medical
spending as a result of these experiments.

33Note that individuals who choose the cash subprogram of Medicaid can still rely on other means-tested
programs that guarantee a minimum subsistence level, so that they are not entirely uninsured against medical
shocks.
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Row 2 of Table 4 displays the results of this experiment. As a reference, we report

the corresponding results from the full information case in Row 1. The aggregate medical

spending of all non-elderly decreases by around 3%. These savings in medical costs are

reallocated as a transfer of $2,800 per beneficiary to those who choose the cash-out option.

The introduction of the cash-out option creates a trade-off between non-medical and

medical consumption, however, the experiment above shows that this trade-off is not strong

enough to achieve the reduction in medical spending similar to the full information case.

This is because the size of the cash transfers is too small. To reinforce this trade-off, in the

next set of experiments we also increase the coinsurance of regular Medicaid coverage.

Rows 3 to 5 of Table 4 show that the cash-out option combined with an increase in

Medicaid coinsurance is an effective tool to decrease aggregate medical spending: to reduce

the spending to 93.4% of the baseline case, the percentage of medical expenses covered by

Medicaid should be reduced to 70%. In comparison, to achieve a similar result without the

cash-out option, we would need to decrease Medicaid coverage to 40% (Table 3). This is

because decreased traditional (in-kind) Medicaid generosity in the presence of a cash-out

option triggers a “virtuous spiral”. As more people switch to the cash plan, thereby lowering

the aggregate medical spending, more resources can be allocated as cash transfers. At the

same time, higher cash transfers induce more people to move from the traditional (in-kind)

Medicaid plan to the cash option, further reducing the aggregate medical spending. Note

that transfers received by people who opt for the cash plan increase from $2,800 in the case

when traditional Medicaid covers 97% of medical costs to $5,900 when this number is reduced

to 70%.34

7.3 Asymmetric information environment: full policy adjustments

Table 5 shows the results of introducing the cash-out option when we allow for a full

adjustment to this policy change. Row 1 of this table includes the full information case

discussed in Section 7.1 as a benchmark for comparison.

As reported in the fourth column of Table 5, there are now more people enrolling in the

Medicaid program. For example, Medicaid enrollment constitutes 9.4% and 14.1% for cases

when traditional Medicaid covers 97% and 70% of medical spending, respectively (compared

with the baseline enrollment of 8.9%). This is due to an inflow of healthy enrollees attracted

by cash transfers.35

34Table 8 in Appendix C reports the change in the mean and standard deviation of out-of-pocket medical
spending for these experiments. Table 9 reports additional statistics to illustrate sorting between the two
Medicaid subprograms.

35The fifth and sixth columns of Table 5 report Medicaid enrollment by fixed productivity type. In all
experiments, the majority of Medicaid beneficiaries are of low productivity type. Only around 1-1.5% of
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Medical
spending

Lump-sum
transfers

Medicaid(%)a Welfare (%)b

(% BS) ($000) all ξ1 ξ2 all ξ1 ξ2

Baseline (BS) 100 - 8.9 16.4 1.3 - - -

1. Observable medical need 92.5 3.3 14.4 27.6 1.2 1.48 3.15 -0.75

Increasing Medicaid coinsurance

2. Medicaid covers 97% 98.6 1.1 9.4 17.3 1.5 0.62 1.22 0.03
3. Medicaid covers 90% 95.5 2.5 11.9 22.2 1.5 1.32 2.68 -0.34
4. Medicaid covers 80% 94.2 3.0 13.4 25.5 1.3 1.10 2.51 -0.94
5. Medicaid covers 70% 93.5 3.3 14.1 27.0 1.2 0.62 1.86 -1.59

a Percentage of working- age people insured through Medicaid.
b Welfare is measured as dollars compensation and reported as a percentage of average consumption.

Table 5: The effects of introducing a cash-out option for Medicaid beneficiaries, full policy adjustment.

ξ1 denotes individuals with low fixed productivity and ξ2 denotes individuals with high fixed productivity.

The reduction in aggregate medical spending with the full policy adjustment is similar

to the one-time policy change.36 However, due to the increase in the number of Medicaid

enrollees, individuals in the cash subprogram receive significantly lower transfers. For exam-

ple, when Medicaid covers 70% of medical spending, cash transfers are equal to $3,300 while

this amount was $5,900 in the case of a one-time policy change.

The last three columns of Table 5 display the welfare effects of these experiments. The

highest welfare gains (1.32%) are achieved when traditional Medicaid covers 90% of med-

ical costs. In this case, every Medicaid beneficiary who chooses the cash option receives

$2,500, and aggregate medical spending of the non-elderly constitutes 95.5% of the baseline

level. Similar to the results in the full information case, the welfare gains are not uniform:

individuals with low fixed productivity gain while those with high fixed productivity lose.

7.4 Medical consumption distortions and target efficiency

As shown in the previous subsection, the cash option is an important mechanism to

mitigate distortions in the medical consumption of Medicaid beneficiaries. However, this

policy has a drawback: it induces some people to stop working to gain Medicaid eligibility

and receive cash transfers. The left panel of Figure (7) shows the fraction of people enrolled

in Medicaid by age for the baseline case, and for the case when there is a cash-out option

and traditional (in-kind) Medicaid covers 90% of medical spending (the case with the highest

welfare).

individuals with high productivity type are Medicaid enrollees.
36The larger number of Medicaid beneficiaries does not lead to an increase in aggregate medical spending

because most new enrollees are healthy and choose the cash option; thus, they face the full price of their
medical care.
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In the latter case, the number of people enrolled in Medicaid is higher than in the baseline

at every age, but the largest difference is observed among the young. This group has relatively

low productivity, so their opportunity costs of not working are not as high as middle-aged

people. Moreover, the fact that they have not accumulated much assets makes it easy

for them to meet the asset testing requirement of the Medicaid program. As a result,

the employment rate among relatively young Medicaid beneficiaries decreases considerably.

Among beneficiaries aged 25 to 29 years old, 49.1% work in the baseline economy but only

33.7% work in the economy where there is a cash-out option and traditional Medicaid covers

90% of medical expenses.
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Figure 7: Fraction of people enrolled in Medicaid. Left panel: baseline economy and economy with two

Medicaid subprograms: cash plan + traditional insurance that covers 90% of medical spending. Right panel:

baseline economy and economies with two Medicaid subprograms: cash plan + traditional insurance that

covers 90% of medical spending with three variations: i) cash plan offers work-independent transfers, ii) cash

plan offers transfers to workers that are twice as high as those for non-workers, iii) cash plan offers transfers

to workers that are three times as high as those for non-workers.

To alleviate labor supply distortions created by the cash-out option, we introduce work-

dependent cash transfers: those beneficiaries who choose the cash option receive larger trans-

fers if they are working. We increase cash transfers for workers by a factor of 2 and 3. The

cash transfers are adjusted until the total welfare budget in each experiment is the same as

in the baseline economy. We allow for a full adjustment to these policies. The results of

these experiments are reported in Rows 6 and 7 of Table 6. To ease the comparison, Row 5

shows the corresponding results when the transfers are independent of working status.

Increasing the gap between cash transfers for workers and non-workers is effective in

decreasing the number of Medicaid beneficiaries: when working Medicaid beneficiaries who

choose the cash option receive three times more in transfers than non-working beneficiaries,

the percentage of people enrolled in Medicaid decreases to 9.8%, which is closer to the baseline
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Medical
spending

Lump-sum
transfers

Medicaid (%)a Welfare (%)b

(% BS) ($000) all ξ1 ξ2 all ξ1 ξ2

1. Baseline (BS) 100 - 8.9 16.4 1.3 - - -

Observable medical need

2. Uniform transfers 92.5 3.3 14.4 27.6 1.2 1.48 3.15 -0.75
3. Workers get 2 times more 93.3 2.8 12.3 23.7 1.0 2.33 4.84 -0.86
4. Workers get 3 times more 93.8 2.4 10.6 20.4 0.7 2.70 5.62 -0.97

Unobservable medical need

Cash option+Medicaid (90%)

5. Uniform transfers 95.5 2.5 11.9 22.2 1.5 1.32 2.68 -0.34
6. Workers get 2 times more 95.9 2.0 10.7 20.0 1.3 1.93 3.87 -0.36
7. Workers get 3 times more 96.1 1.5 9.8 18.4 1.2 2.10 4.20 -0.38

a Percentage of working- age people insured through Medicaid.
b Welfare is measured as dollars compensation and reported as a percentage of average consumption.

Table 6: The effects of introducing work-dependent transfers into cash plans, full policy adjustment.

ξ1 denotes individuals with low fixed effects and ξ2 denotes individuals with high fixed effects.

economy (8.9%). The right panel of Figure (7) shows that the age profile of the percentage

of Medicaid enrollees is close to this profile in the baseline economy. The size of the resulting

cash transfers is around $1,500 for non-workers and $4,500 for workers compared with around

$2,500 in the case of uniform transfers.

Note that when cash transfers are work-dependent more people choose traditional Med-

icaid over the cash option or choose to work and disenroll from Medicaid. As a result, the

aggregate medical expenses of working-age adults are slightly higher when cash transfers are

work-dependent compared to the case of uniform transfers (96.1% of the baseline level in the

former case versus 95.5% in the latter).

The policy with work-dependent transfers produces higher welfare gains: the CEV is

1.93% when workers receive transfers that are two times greater than those of non-workers,

and 2.09% when workers receive transfers that are three times greater. In other words,

reducing distortions on work incentives substantially improves the welfare effects of the

cash-out policy.

As a reference, we also construct a full information benchmark with work-dependent cash

transfers. Specifically, we construct an experiment similar to the one outlined in Section 7.1:

medical need is observable and fully insured, but the remaining welfare budget is allocated

as work-dependent transfers. Rows 3 and 4 of Table 6 show the results of this experiment

when workers receive transfers that are two and three times greater than transfers to non-

workers, respectively. Note that in the asymmetric information environment, a cash-out

policy with work-dependent cash transfers captures a substantial portion of the gains in the
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full information case with the same work-dependent transfers scheme.

Overall, these experiments illustrate that even when medical need is unobservable, it is

possible to substantially decrease distortions in medical spending of the publicly insured;

however, it is important to balance the trade-off between these distortions and distortions

on labor supply.

8 Conclusion

In this paper, we study how to improve upon existing public health insurance policies

in an asymmetric information environment, i.e., when the division of medical spending into

discretionary and non-discretionary parts is unobservable. We construct a simple theoretical

framework in the spirit of Mirrlees (1971), which allows us to derive two important prop-

erties of the optimal insurance contract. First, individuals who consume less medical care

should be rewarded with more non-medical consumption. Second, the non-medical/medical

consumption choice of individuals with the lowest medical need should not be distorted.

We evaluate the quantitative impact of this type of policy with application to the Medi-

caid program for non-elderly adults. More specifically, we construct and calibrate/estimate

a rich structural life-cycle model that reflects important institutional features of the US

health insurance system and captures key features of the data. We model medical spending

as a combination of discretionary and non-discretionary components, and then identify the

quantitative importance of each component by matching the difference in medical spending

profiles between the privately insured and the uninsured, while controlling for the composi-

tion of these two groups.

We use this model, first, to construct the full information economy where the government

can observe each individual’s medical need, and therefore can fully insure non-discretionary

medical spending and make individuals face the full price of their discretionary medical

spending. We show that in this case, the aggregate medical spending of non-elderly adults

substantially decreases.

Next, we show that to decrease distortions of medical consumption in the asymmetric in-

formation case, we need to introduce a cash-out option for Medicaid beneficiaries and slightly

reduce the generosity of the traditional Medicaid benefits. One key feature of this policy is

that it creates a trade-off between medical and non-medical consumption. Individuals with

relatively low medical need prefer to increase their non-medical consumption by choosing

the cash option and decreasing their discretionary medical spending.

Our analysis also highlights the important interaction between distortions of different

policies. Specifically, the cash-out option of Medicaid alleviates the distortions on medical
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consumption among the publicly insured but reduces the target efficiency of this program by

increasing distortions on labor supply. This happens because while in-kind transfers (health

issuance) are mostly attractive for the unhealthy, cash transfers are attractive to everyone.

Some individuals choose to reduce their labor supply (and thus income) to meet the eligibility

requirements for Medicaid. We show that this issue can be addressed by making transfers

in the cash subprogram of Medicaid work-dependent.
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Appendix

A Implementation of the optimal allocation

The example of the implementation of the optimal allocation suggested in Section 3 works

if T1 = c∗L + m∗L ≥ c∗H + q2(m
∗
H)m∗H = T2. To satisfy this condition, we need to put some

parametric restrictions on the problem. We consider the following parametrization:

u(x) = v(x) =


x1−σ

1− σ
; if σ > 1

log(x) ; if σ = 1

i.e., individuals’ preferences over non-medical and discretionary medical consumption can be

described by the CRRA (or log) function. In addition, we assume the medical need of the

L-type is zero, i.e., ηL = 0.

We introduce the following notation:

γ =
c∗H
c∗L

α =
m∗H
c∗L

Note that because c∗H < c∗L (see Section 3), we have γ ≤ 1. Also, because u(·) = v(·),
from Eq.(8) we have that c∗L = m∗L. Because m∗H > m∗L = c∗L, we have α ≥ 1. Expressing

m∗L, c
∗
H and m∗H in terms of c∗L, we can write the ICC (Eq.(3)) as follows: 2

c∗1−σL

1− σ
=

(γc∗L)1−σ

1− σ
+

(αc∗L)1−σ

1− σ
; if σ > 1

2 log(c∗L) = log(γc∗L) + log(αc∗L) ; if σ = 1


or {

α = (2− γ1−σ)
1/(1−σ)

; if σ > 1

α = γ−1 ; if σ = 1

}
Note that in the case of σ > 1, γ1−σ < 2 or γ > 21/(1−σ). We can rewrite the expression

for wedge q in terms of α and γ as follows:

q =


1 +

(
α
γ

)−σ
π(γ−σ − 1)

1 + π(γ−σ − 1)
; if σ > 1

1 +
(
α
γ

)−1
π(γ−1 − 1)

1 + π(γ−1 − 1)
; if σ = 1
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Next, we can rewrite the inequality of interest c∗L +m∗L ≥ c∗H + q2(m
∗
H)m∗H as follows:

2 ≥ γ +
1 +

(
α
γ

)−σ
π(γ−σ − 1)

1 + π(γ−σ − 1)
α ; if σ > 1,

2 ≥ γ +
1 +

(
α
γ

)−1
π(γ−1 − 1)

1 + π(γ−1 − 1)
α ; if σ = 1,


which can be rearranged as follows:

2− γ − (2− γ1−σ)
1/(1−σ)

2− γσ − γ−σ
≤ 2π ; if σ > 1

2− γ − γ−1

2− γ − γ−1
≤ 2π ; if σ = 1


Note that the inequality sign changes direction because we divide both sides by 2− γσ −

γ−σ (or 2− γ − γ−1 in the case of log-utility), which is negative.

For the case of log-utility (σ = 1), the condition c∗L + m∗L ≥ c∗H + q2(m
∗
H)m∗H is satisfied

when π > 1/2, i.e., there are more healthy individuals (with low medical need) than un-

healthy individuals. For a more general case (σ > 1), the expression
2− γ − (2− γ1−σ)

1/(1−σ)

2− γσ − γ−σ
is less than one except for values of γ close to 21/(1−σ), which implies a very high value of

α inconsistent with the resource constraint. Thus, for the CRRA function, the restriction

on π that makes the condition c∗L + m∗L ≥ c∗H + q2(m
∗
H)m∗H hold is less strict than for the

log-utility, i.e., it is true even for values of π < 1/2. Overall, when using the CRRA (or log)

parametrization of the utility from non-medical and discretionary medical consumption, our

implementation mechanism works provided that a large enough fraction of individuals are

healthy (at least more than half).

B Alternative model of utility from medical consump-

tion

In this section, we discuss the performance of the estimated/calibrated model where the

utility over medical consumption takes the following form:

v(m, η) = θ
(m− η)1−σ

1− σ
,

where θ is greater than zero.
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Apart from the functional form for the utility of medical consumption, the model is iden-

tical to the one described in the main text. We use the same approach to estimate/calibrate

the parameters of the model as described in Section 5. The only exception is that now

medical consumption does not have a saturation point, so instead of parameter ∆ we need

to estimate the multiplier θ. This parameter affects the marginal utility, and therefore deter-

mines the demand for discretionary medical consumption. We calibrate θ by targeting the

difference in medical spending between the privately insured and the uninsured, the same

moment we use to identify the parameter ∆ in the main text.

Figures (8), (9), (10), and (11) compare the moments related to health insurance, em-

ployment, labor income and medical spending by health and insurance constructed from the

data and the calibrated model. Overall, the alternative model can capture many salient

features of the data, but it produces income and price elasticities that are too high.

The implied income elasticity of medical spending in the alternative model is 1.17, which

is significantly higher than its empirical counterpart (0-0.2 as discussed in Section 4.2). Our

baseline model produces an elasticity of 0.13. The income elasticity was computed in the

same way as in Section 4.2.

As for the price elasticity, we cannot compute it in the same way as for the baseline

model in Section 4.2. In that section to reproduce the setup of the RAND health insurance

experiment, we compare medical spending between two experiments with universal health

insurance that cover 100% and 75% of spending. In the alternative model discussed in this

section, we cannot compute medical spending when health insurance provides full coverage.

The consumer optimization problem does not have a solution because the marginal utility of

medical consumption is always positive while the marginal costs are zero. To avoid this, we

compare two health insurance schemes that cover 95% and 75% of medical spending. The

resulting reduction in medical spending when moving from more to less generous coverage

constitutes a 53% decrease, while the corresponding decrease is 16% in the RAND experiment

and 18% in our baseline model. Because both price and income elasticities are important for

our policy analysis, we chose the model with the CRRA and a saturation point in the main

text.

Another possible way to model the utility from medical consumption is to use the CRRA

function with a different risk aversion. Specifically, we could consider

v (m, η) =
(m− η)1−σ

M

1− σM
, (28)

where σM can be different from the risk aversion over non-medical consumption σ. The

problem with this specification, however, is that σM is difficult to identify from the data.
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Figure 8: Left panel: employment by health. Right panel: average labor income among workers by health

(normalized by average income). Solid line (line with round markers): data for the healthy (unhealthy) from

the MEPS data. Dashed (dash-dotted) line: model for the healthy (unhealthy).
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Figure 9: Insurance profiles for the healthy (top panel) and the unhealthy (bottom panel). Solid lines and

lines with triangle markers are from the MEPS data. Dashed and dash-dotted lines are from the model.

ESHI is “employers’ sponsored insurance”.

46



 Electronic copy available at: https://ssrn.com/abstract=2890693 

25−29 35−39 45−49 55−59 65−69 75−79 85+
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Age

M
ea

n 
of

 m
ed

ic
al

 e
xp

en
se

s

 

 

Healthy, data
Healthy, model
Unhealthy, data
Unhealthy, model

25−29 35−39 45−49 55−59 65−69 75−79 85+
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Age

M
ed

ia
n 

of
 m

ed
ic

al
 e

xp
en

se
s

 

 

Healthy, data
Healthy, model
Unhealthy, data
Unhealthy, model

25−29 35−39 45−49 55−59 65−69 75−79 85+
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Age

S
D

 o
f m

ed
ic

al
 e

xp
en

se
s

 

 

Healthy, data
Healthy, model
Unhealthy, data
Unhealthy, model

25−29 35−39 45−49 55−59 65−69 75−79 85+
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Age

%
 w

ith
 z

er
o 

m
ed

ic
al

 e
xp

en
se

s

 

 

Healthy, data
Healthy, model
Unhealthy, data
Unhealthy, model

Figure 10: Top left panel: average medical expenses by health. Top right panel: median of medical

expenses by health. Bottom left panel: standard deviation of medical expenses by health. Bottom right

panel: fraction of people with zero medical expenses by health. Solid lines (lines with round markers) are

from the MEPS data for the healthy (unhealthy). Dashed (dash-dotted) lines are from the model for the

healthy (unhealthy). All level variables are normalized by average income.
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Figure 11: Average medical expenses by insurance status (normalized by average income). Solid lines

(with or without markers) are from the MEPS data. Dashed and dash-dotted lines are from the model. ESI

stands for employer-sponsored insurance.
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We use the following example as an illustration.

Consider the following static problem of an individual with medical need η who allocates

his endowment I between non-medical (c) and medical (m) consumption:

max
c,m

c1−σ

1− σ
+ v (m, η)

s.t.

c+m = I

The first-order condition for this problem when using the CRRA specification in Equation

(28) can be written as:

(I −m)−σ = (m− η)−σ
M

.

The utility from medical consumption depends on two parameters: η and σM . In our

calibration, we want to match two moments: observed medical spending mobs and the effect

of insurance on medical spending. The latter depends on the fraction of non-discretionary

spending in total medical spending, i.e., η
m

. Thus, we only have one free parameter, σM ,

to match the observed spending. Note that from the first order condition it follows that an

increase in σM can either increase or decrease total medical spending, which depends on the

value of medical need η.37 Because our model allows for heterogeneity in medical needs, the

effect of changing σM on total medical spending is undetermined.

C Additional statistics for policy simulations (one-time

policy change)

In Section 7.2 we compare the effects of two types of policies on total medical spending:

a uniform reduction in Medicaid generosity versus a division of Medicaid into in-kind and in-

cash subprograms. In this section, we consider the effects of these policies on out-of-pocket

medical spending for all individuals younger than 65 years old. In the analysis below, we

focus on the one-time policy change.

Table 7 reports the change in the mean and standard deviation of out-of-pocket medical

spending when Medicaid generosity is uniformly reduced. Table 8 reports the same statistics

when the cash-out option is introduced and the generosity of traditional (in-kind) Medicaid

37This can be shown by differentiating the first-order condition with respect to σM :

∂m

∂σM
= − ln (m− η)

σM

m−η + σ
I−m

.

The derivative can be positive or negative depending on whether m− η is greater or less than one.
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is reduced. Row 1 of each table reports the results for the full information case as a reference.

Both tables demonstrate a similar pattern: as Medicaid coinsurance increases, both the

mean and standard deviation of out-of-pocket spending grow larger. As Tables 3 and 4 in the

main text show, we can achieve the same reduction in total medical spending as in the full

information case by either increasing the Medicaid coinsurance rate to 60% or by increasing

it to 30% and introducing the cash-out option. In the former case the corresponding increase

in the average out-of-pocket spending is the same as in the full information economy (20%),

while in the latter case it is somewhat smaller (16%). The smaller increase in the average

out-of-pocket spending in the case of the cash-out option occurs for the following reason.

In the full information economy, all discretionary medical expenses are paid out-of-pocket

while all necessary expenses are covered. In the case with a cash-out option, those who enroll

in traditional Medicaid have only 70% of their necessary medical expenses covered (which

increases their out-of-pocket spending compared with the full information case) but they are

responsible for only 30% of their discretionary expenses (which decreases their out-of-pocket

spending). The latter effect quantitatively exceeds the former.

As for the change in the standard deviation, the full information case and the case with

a cash-out option and 30% Medicaid coinsurance rate are similar: the standard deviation

increases by 7.6% and 6.7%, respectively. In the case where the Medicaid coinsurance rate is

60% and there is no cash-out option, the increase in the standard deviation is higher at 9.7%.

This happens because people in this case are more exposed to the risk of high out-of-pocket

medical expenses.

Table 9 provides additional statistics to better illustrate the sorting created by the division

of Medicaid into the in-cash and in-kind subprograms. The second and third columns of the

table report the average out-of-pocket spending separately for enrollees of each subprogram.

Not surprisingly, people who opt out of traditional Medicaid have substantially lower out-

of-pocket spending. For example, when traditional Medicaid covers 90% of medical costs its

enrollees pay $1,177 out-of-pocket while this number is only $173 for the participants of the

cash subprogram.

Column 4 of Table 9 illustrates the composition of enrollees in the traditional Medicaid

subprogram. Specifically, it reports the percentage of enrollees who are in the bottom 75

percent of the medical need distribution among Medicaid beneficiaries. Note that since

medical need represents unavoidable or necessary spending, the top 25% of its distribution

can be roughly categorized as those with catastrophic expenses. Table 9 illustrates that as the

generosity of traditional Medicaid decreases and the size of transfers in the cash subprogram

increases, individuals with non-catastrophic medical spending switch to the cash plan. When

traditional Medicaid requires coinsurance of 30% and the cash plan offers transfers of around
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Change in out-of-pocket spending (%BS)

Average Standard deviation

Baseline (BS) 0.0 0.0

1. Observable medical need 20.2 7.6

Increasing Medicaid coinsurance

2. Medicaid covers 90% 4.8 0.6
3. Medicaid covers 80% 9.6 2.4
4. Medicaid covers 70% 13.4 4.6
5. Medicaid covers 60% 16.3 6.4
6. Medicaid covers 50% 18.7 8.1
7. Medicaid covers 40% 20.5 9.7

Table 7: The effects of increasing Medicaid coinsurance on out-of-pocket medical spending, one-time policy

change.

Change in out-of-pocket spending (%BS)

Average Standard deviation

Baseline (BS) 0.0 0.0

1. Observable medical need 20.2 7.6

Increasing Medicaid coinsurance

2. Medicaid covers 97% 0.4 0.0
3. Medicaid covers 90% 4.8 1.0
4. Medicaid covers 80% 11.3 3.8
5. Medicaid covers 70% 16.2 6.7

Table 8: The effects of introducing a cash-out option on out-of-pocket medical spending, one-time policy

change.

Out-of-pocket spending ($) ηht < 75th percentile
cash option Traditional Medicaid (Traditional Medicaid)

Medicaid covers 97% 75 341 24%
Medicaid covers 90% 173 1,177 10%
Medicaid covers 80% 494 2,258 2%
Medicaid covers 70% 882 3,143 0%

Table 9: Characteristics of Medicaid beneficiaries when the cash-option is introduced, one-time policy
change. The second and third columns show average out-of-pocket medical spending. The fourth column
shows the fraction of enrollees in the in-kind Medicaid subprogram whose medical need (ηht ) is below the
75th percentile of the medical need distribution among Medicaid enrollees.

$6,000, the in-kind Medicaid subprogram is composed exclusively of people in the top 25

percent of the medical need distribution.
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