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ABSTRACT

This paper develops a new methodology that decomposes shocks into homoscedastic and het-

eroscedastic components. This specification implies there exist linear combinations of heteroscedas-

tic variables that eliminate heteroscedasticity; a property known as co-heteroscedasticity. The het-

eroscedastic part of the model uses a multivariate stochastic volatility inverse Wishart process. The

resulting model is invariant to the ordering of the variables, which we show is important for volatil-

ity estimation. By incorporating testable co-heteroscedasticity restrictions, the specification allows

estimation in moderately high-dimensions. The computational strategy uses a novel particle filter al-

gorithm, a reparameterization that substantially improves algorithmic convergence and an alternating-

order particle Gibbs that reduces the amount of particles needed for accurate estimation. We provide

an empirical application to a large Vector Autoregression (VAR), in which we find strong evidence for

co-heteroscedasticity and that the new method compares favorably to previous ones in terms of fore-

casting from horizon 3 onward. A Monte Carlo experiment illustrates that the new method estimates

well the characteristics of approximate factor models with heteroscedastic errors.

Keywords: Markov Chain Monte Carlo, Gibbs Sampling, Flexible Parametric Model, Particle

Filter, Co-heteroscedasticity, state-space, reparameterization, alternating-order.

JEL Codes: C11, C15
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1 Introduction

It is now well recognised that the variance for many macroeconomic and financial variables change

over time. Many approaches have been proposed and employed to model this behaviour including Au-

toregressive Conditional Heteroscedasticity (ARCH) and Generalized ARCH (GARCH) models (Engle

(1982), Bollerslev (1986)) in which the variance of the reduced form errors is a deterministic function

of past residuals and variances. Another important class of models of the variance are the stochastic

volatility (SV) models. These differ from ARCH and GARCH models in that the conditional variance

is an unobserved Markov Process.

Multivariate GARCH (MGARCH) models often suffer from the problem that the number of pa-

rameters to be estimated grows too quickly with the dimension. Another problem that often occurs

is related to ensuring that the conditional variance matrix remains positive definite without imposing

too strong restrictions on the parameters (e.g. Bauwens et al. (2006)). In the MGARCH context,

conditionally heteroscedastic latent factor models (e.g. Diebold and Nerlove (1989), King et al. (1994))

provide a simple way to ensure positive definiteness, and help to reduce the number of parameters.

However, the conditional variance matrix is no longer only a function of observables, which makes in-

ference more complicated as the latent factor has to be marginalized in the likelihood (e.g. Gourieroux

(1997), section 6.3).

Recent advances in computation have made possible the estimation of Multivariate SV (MSV)

models, providing parsimonious yet flexible models in which the conditional variance is always positive

definite. For univariate models, it has been found that SV models forecast better than GARCH in

terms of root mean squared forecast error and log-predictive scores for macro data (e.g. Chan (2013))

and in terms of log Bayes factors for financial data (e.g. Kim , Shephard and Chib (1998)). Similar

evidence has been found in MSV models (e.g. Clark and Ravazzolo (2015)).

The MSV literature is not free from problems. One common problem is that the order of the

variables in a vector affects the estimates of its covariance matrix, implying that the methods are not

invariant to ordering (e.g. Primiceri (2005)). Another problem is that, with the exception of factor

SV models (e.g. Chib et al. (2006), Kastner (2019)), computational difficulties make most methods

only applicable in practice to relatively small covariance matrices. The computational problems are

related to the dimension of the latent variables and the typically high correlation between parameters

and latent variables.

Most of the MSV literature uses a log-normal distribution for the volatility, and often result in

methods that are not invariant to ordering, with several exceptions such as Yu and Meyer (2006) or

Kastner (2019), among others. Furthermore, this specification implies that all moments of the volatility
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exist. In many applications, particularly in finance, features of the data suggest that the distributions

have heavy tails and possibly few moments. To allow for the possibility of heavy tails, it is common to

use Student’s-t errors.

Another line of literature in modelling multivariate SV uses Wishart or inverted Wishart processes

(see, for example, Philipov and Glickman (2006), Casarin and Sartore (2007), Asai and McAleer (2009),

Fox and West (2011), and Karapanagiotidis (2012)). A feature of this approach is that the estimates

are invariant to ordering. Inverted Wishart models also allow for non-existence of higher moments and

heavier tails. However, the methods do not scale up to higher dimensions, unless very strong restrictions

are imposed on the time variation of the process (e.g. Uhlig (1997), Triantafyllopoulos (2012)).

The approach in this paper uses a stationary inverse Wishart process together with testable co-

heteroscedasticity (Engle and Kozicki (1993)) restrictions that reduce the dimension of the latent vari-

ables, permitting the analysis of larger covariance matrices and an interesting decomposition of the

errors into homoscedastic and heteroscedastic parts. The model can be interpreted as an approximate

factor model (Chamberlain and Rothschild (1983)) where the factors have a time varying covariance

matrix. This allows for a more general time variation than hitherto proposed strict factor models, which

assume independence among the heteroscedastic factors and independent idiosyncratic errors.

In order to surmount the computational difficulties, we present a novel particle filter that samples all

volatilities jointly conditionally on the unknown parameters using Particle Gibbs (Andrieu et al. (2010))

with backward sampling (Whiteley (2010)). The particle filter uses an approximation of the posterior

distribution as a proposal density, which allows us to substantially reduce the computation time in

models of higher dimension, and it is related to the ψ-Auxiliary Particle Filters studied in Guarniero et

al. (2017). We additionally use the approximation of the posterior to find a reparameterization of the

model that substantially reduces the correlation between the latent states and the fixed parameters,

which we empirically find to speed up computation and thus contributes to the literature on parame-

terization in state space and hierarchical models (e.g. Pitt and Shephard (1999), Papaspiliopoulos et

al. (2007)). We also propose to alternate the order in which the volatilities are generated, finding that

this reduces the number of particles needed for accurate estimation.

Our approach also allows us to obtain new variance decompositions as well as new insights into the

characteristics of the structural shocks and their impacts on the variables of interest. Co-heteroscedasticity

might also be relevant to find portfolio allocations with thinner tails and constant variance returns (e.g.

Diebold and Nerlove, (1989), Engle and Susmel (1993) and Hernández-Trillo (1997)).

The structure of the paper is as follows. Section 2 describes the model and the identification

strategy. Section 3 deals with decompositions of impulse responses and the variance. Section 4 develops

the particle filter to estimate the likelihood while in Section 5 the particle Gibbs algorithm and tools
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for model comparison are explained. Section 6 contains an application to US macro data, a comparison

in terms of predictive performance with previous methods, and a Monte Carlo experiment to illustrate

the properties of the new method.

2 Model and Identification Strategy

We consider the following model of stochastic volatility:

yt = βxt + et, with et|xt ∼ N(0,Σt), t = 1, ..., T

where β : r × kx is a matrix of unknown parameters, xt : kx × 1 is a vector of predetermined variables,

and et : r × 1 is the vector of unobserved errors. We assume that G = E(Σt) exists and is finite, and

use its singular value decomposition (SVD, e.g. Magnus and Neudecker (1999, p. 18)), defined as:

G = E(Σt) = USU ′ = U1S1U
′
1 + U2S2U

′
2 (1)

where U is a r×r orthogonal matrix such that U ′U = Ir, S = diag (s1, ..., sr) with s1 ≥ s2 ≥ ... ≥ sr ≥ 0,

and S1 contains the r1 biggest singular values, such that:

U =

(
U1 U2

)
S =

 S1 0

0 S2

 (2)

U1 : r × r1, U2 : r × r2, S1 : r1 × r1, S2 : r2 × r2

We assume that var(et|xt) = Σt can be written as:

Σt = U1S
1/2
1 Υ−1t S

1/2
1 U ′1 + U2S2U

′
2 (3)

where Υt is a Wishart Autoregressive process of order 1 (WAR(1), Gourieroux et al. (2009)), normalized

such that E(Υ−1t ) = Ir1 . This implies that vector et can be decomposed into r1 heteroscedastic errors

(u1t : r1×1, var(u1t) = Υ−1t ) and r2 homoscedastic errors (u2t : r2×1, var(u2t) = Ir2 , cov(u1t, u2t) = 0),

with r = r1 + r2:

et = A1u1t +A2u2t =

(
A1 A2

) u1t

u2t

 = Aut (4)

and A1 = U1S
1/2
1 , A2 = U2S

1/2
2 . The WAR(1) can be described by first defining Kt = Z ′tZt, where Zt

5



is a n× r1 matrix distributed as a Gaussian AR(1) process:

Zt = Zt−1ρ+ εt vec(εt) ∼ N(0, Ir1 ⊗ In) (5)

where ρ is diagonal r1 × r1 (with diagonal elements smaller than one in absolute value) and we assume

that vec(Z1) is drawn from the stationary distribution N(0, (Ir1 − ρ2)−1 ⊗ In). The parameter n

represents the degrees of freedom in the WAR(1) process and it will be estimated2. Because E(K−1t ) =

(n− r1 − 1)−1(I − ρ2), we normalize K−1t as Υ−1t = (n− r1 − 1)(I − ρ2)−1/2K−1t (I − ρ2)−1/2, so that

E(Υ−1t ) = Ir1 . We assume that n > r1 + 1, such that E(Σt) is finite3.

We follow a Bayesian approach and put a prior directly on the model parameters (G, ρ, n, β). Section

5 will describe a Particle Gibbs algorithm to sample from the posterior of model parameters and latent

variables given the observed data Y , defined as Y = (y1, x1, ..., yT , xT ). The latent variables are related

to the volatility matrices Kt, and will be defined in Section 54.

This framework allows for a Normal-Wishart prior on (β,G), which simplifies the calculations in

the context of estimating a large VAR. This prior allows for shrinkage, and implies that the conditional

posterior of β is normal with a mean and var-cov matrix which can be calculated without inverting

large matrices. In particular, the posterior mean and var-cov matrix of β can be calculated by inverting

matrices of order r1kx. This implies a reduction from rkx to r1kx.

The properties of the WAR(1) are well established (e.g. Gourieroux et al. (2009), Koop et al.

(2011)). For example, the stationary distribution of Kt is a Wishart distribution with n degrees of

freedom and E(Kt) = n(I − ρ2)−1, and the conditional expectation of Kt|Kt−1 is equal to a weighted

average of Kt−1 and E(Kt):

E(Kt|Kt−1) = ρKt−1ρ+ (I − ρ2)1/2E(Kt)(I − ρ2)1/2

The correlations between different elements of Σ−1t conditional on Σ−1t−1 are controlled by the pa-

rameters in A1 and can be calculated using the properties of the non-central Wishart.

Assumption (3) is natural if it is assumed that et has an approximate factor structure with only

r1 heteroscedastic factors and r is large relative to r1, because a factor structure implies that the first

2This representation implies that n is an integer, but in Section 5 we will use an equivalent representation that allows
n to be continuous when n ≥ 2r1.

3Note that the variance of any element of K−1
t will only be finite when n > r1 + 3 (e.g. Gupta and Nagar (2000,

p.113)), and so the restriction n > r1 +1 still allows for very fat tails. Also note that the marginal of any diagonal element
of K−1

t is an inverted Gamma-2 distribution (Bauwens et al. (1999, p.p. 292, 305 )) with (n− r1 + 1) degrees of freedom.
Therefore, if n = r1 + 2 (which is the minimum value that we allow in this paper), the marginal of a diagonal element of
K−1

t will have only 3 degrees of freedom, implying that it has finite mean but not finite variance.
4Similarly to Jacquier et al. (1994), who estimate a univariate stochastic volatility model, we expand the parameter

space by treating the latent variables as parameters, which leads to a more tractable form for the likelihood function. The
particle Gibbs allows us to obtain a draw of all volatilities jointly conditional on the model parameters (G, ρ, n, β), and
a draw of model parameters conditional on the volatilities.
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r1 eigenvalues of G grow without bound as r gets larger, whereas the other eigenvalues are bounded

(provided that each of the common factors affect a large number of variables, and hence the factors

are ’pervasive’, see for example Chamberlain and Rothschild (1983) or Bai and Ng (2002)). Hence

we can interpret u1t as the heteroscedastic factors and A1 as the factor loadings. Note that only the

space spanned by A1 (sp(A1)) is identified, and we solve the indeterminacy by choosing A1 = U1S
1/2
1 ,

which restricts A′1A1 to be a diagonal matrix. In Section 6.3 we provide a Monte Carlo experiment that

illustrates that our model performs well as a factor model for moderate values of r.

Another practical reason for assumption (3) is that it is well-known that stochastic volatility is

empirically important, and therefore it seems reasonable to introduce Υ−1t into the model in the way

that it will have the greatest impact, which is by interacting Υ−1t with the largest singular values of G.

Note that our model implies that there are r2 linear combinations of et which are homoscedastic.

In particular, if the (r × r2) matrix A1⊥ lies in the space of the orthogonal complement of A1, then

the r2 × 1 vector A′1⊥et has a constant variance. It can be said then that the elements of the vector yt

share heteroscedastic shocks, a property known in the literature as common heteroscedasticity (Engle

and Kozicki (1993)), and which for convenience we refer to as co-heteroscedasticity. However, it should

be noted that there might be co-heteroscedasticity patterns that our model fails to capture, especially

in small VARs of 2 up to 10 variables.

Note that our model differs from traditional factor models of unobserved volatility (e.g. King et al.

(1994), Yu and Meyer (2006), Chib et al. (2006), Kastner (2019)) in two important aspects. Firstly,

we allow for time-varying correlations among the heteroscedastic factors. This implies that the time-

varying process has dimension r1(r1 + 1)/2, which approaches the number of free elements of Σt as

r1 approaches r. Secondly, as in Chamberlain and Rothschild (1983), we do not impose the strict

factor structure, which would imply the existence of independent idiosyncratic errors, but instead allow

correlation among the homoscedastic components. Although in previous factor models the correlation

between two elements in et changes with time, the restrictions on the correlation among the latent

factors imply that the time-variation of Σt is more restricted that in our setup (Kastner (2019, p.

100)). On the other hand, some previous models (e.g. Chib et al. (2006)) allow for features that our

model does not have, such as jumps in the mean or student-t errors, but these could also be incorporated

in our setup.

Asai and McAleer (2015) propose a factor model for realized volatility, the fMSV-WAR, which is

related to ours. One difference is that the fMSV-WAR specifies a WAR(1) process for Υ−1t , implying

that all the moments of Σt exist. Our model specifies a WAR(1) process for Υt, implying that the

number of finite moments of Σt depends on n. Another difference is that the availability of realized

volatility data permits the fMSV-WAR to identify and estimate more parameters, and to do without
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the assumption of a large r. Asai and McAleer (2015) provide generalizations of the fMSV-WAR model

to incorporate asymmetric and heterogeneous-time effects, which could perhaps be incorporated into

our framework in future research.

3 Decompositions, Identification of Structural Shocks and Im-

pulse Responses

Equation (4) implies that et has a heteroscedastic component ehett = A1u1t and a homoscedastic com-

ponent ehomt = A2u2t. By defining H1 as H1 = U1U
′
1, the heteroscedastic component of et can be

obtained as ehett = H1et = A1u1t, such that yt can be decomposed into its heteroscedastic (yhett ) and

homoscedastic components (yhomt ). In the case of a VAR in which xt contains a constant and lags of

yt, the decomposition can be obtained by using the moving average representation:

yt = yhett + yhomt = µ+ et + Ψ1et−1 + Ψ2et−2 + ... (6)

yhett = H1µ+H1et + Ψ1H1et−1 + Ψ2H1et−2 + ...+

yhomt = H2µ+H2et + Ψ1H2et−1 + Ψ2H2et−2 + ...

where H2 = Ir − H1 = U2U
′
2. The matrices H1 and H2 are also useful to isolate the heteroscedastic

component Σhett of the volatility matrix as Σhett = H1Σt, and the homoscedastic component Σhomt =

H2Σt, such that Σt = Σhett + Σhomt .

In the VAR literature it is common to identify the structural shocks ξt by finding a matrix Pt such

that Σt = PtP
′
t and defining ξt = P−1t et. For example Pt could be a triangular matrix based on the

assumption that some variables do not react contemporaneously to the impulse (e.g. Banbura et al.

(2010)). In this case the impulse response function can be calculated as the difference of two forecasts

(e.g. Koop et al. (1996)):

IRt(s; i, j) = E(yi,t+s|ξjt = 1, y1:(t−1))− E(yi,t+s|ξjt = 0, y1:(t−1))

IRhett (s; i, j) = E(yheti,t+s|ξjt = 1, y1:(t−1))− E(yheti,t+s|ξjt = 0, y1:(t−1))

IRhomt (s; i, j) = E(yhomi,t+s|ξjt = 1, y1:(t−1))− E(yhomi,t+s|ξjt = 0, y1:(t−1))

where IRt(s; i, j), IR
het
t (s; i, j), IRhomt (s; i, j) correspond to the (i, j) elements of ΨsPt, ΨsH1Pt and

ΨsH2Pt, respectively, with Ψ0 = Ir, y1:(t−1) = (y1, ..., yt−1), yt = (y1t, ..., yrt) and ξt = (ξ1t, ..., ξrt).

Note that IRt(s; i, j) = IRhett (s; i, j) + IRhomt (s; i, j) and that IRhet(s; i, j) can be interpreted as the
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impact of ξjt on yhett at horizon s5.

Note that yhett is a sum of only heteroscedastic shocks, and yhomt is a sum of only homoscedastic

shocks. Equation (6) can be used to obtain variance decompositions, calculating the proportion of

var(yt+h|yt), var(yhett+h|yt) or var(yhomt+h |yt) caused by the heteroscedastic shocks u1t or by ξt, as we

illustrate in the empirical section. As the impulse response functions, these variance decompositions

change with t.

By decomposing yt into yhett and yhomt using equation (6), we can estimate how yt would behave if

there were only heteroscedastic shocks (i.e. u2t = 0 and yt = yhett ) or there were only homoscedastic

shocks (i.e. u1t = 0 and yt = yhomt ), as we illustrate in the empirical section.

Importantly, we can also calculate the proportion of the conditional variance of the structural shock

ξt caused by the heteroscedastic shocks, by noting that ξt = P−1t et = P−1t (A1u1t + A2u2t), and there-

fore the conditional variance of the heteroscedastic component of ξt is var(P−1t (A1u1t)|y1:(t−1)) =

var(P−1t (H1et)|y1:(t−1)) = P−1t H1PtH
′
1

(
P−1t

)′
.

4 Likelihood and Particle Filter

The value of the likelihood evaluated at the posterior means of the parameters can be used to calculate

the Bayesian Information Criterion (BIC) or the marginal likelihood (Chib and Jeliazkov (2001)) for

selecting r1. However, because the likelihood cannot be calculated in analytical form, we propose a

particle filter that provides a numerical approximation. This particle filter will also be a key ingredient

of the particle Gibbs algorithm that we use to sample from the posterior distribution, and that we

describe in Section 5.

Although one could in principle use a bootstrap particle filter (Gordon et al. (1993)), such an

approach would require too much computation time, especially as r1 increases, and could become

impractical when the data contains extreme observations, which are often abundant in economic or

financial datasets6.

The bootstrap particle filter uses the prior distribution of K1:T , with density π(K1:T |θ) and θ =

(G, ρ, n), as a proposal density, and then the resampling weights are given by the likelihood L(Y |Σ1:T , β),

where Y represents the observed data and Σ1:T = (Σ1, ...,ΣT ). In order to define a more efficient parti-

cle filter, we first find a convenient approximation of the posterior π(K1:T |Y, θ), denoted as the pseudo

5In factor models it is common to identify the structural shocks ξt as a rotation of the factors: ξt = CtΥ
1/2
t u1t,

where Ct is a r1 × r1 orthogonal matrix such that C′tCt = I. The matrix Ct can be defined to facilitate the economic
interpretation of the impulse responses (e.g. Uhlig (2005) or Gonzalo and Ng (2001)). We leave this as an avenue for
future research.

6León-González (2018) proposes methods of inference for the univariate version of the model proposed in this paper,
and finds that a particle Metropolis-Hasting algorithm that uses the bootstrap particle filter would have an effective
sample size for n of only 0.29 per minute when T = 2000, when using only one core.
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posterior π̃(K1:T |Y, θ), such that π(K1:T |θ)L(Y |Σ1:T , β) ∝ π̃(K1:T |Y, θ)R(K1:T ), for some function R(.).

Then we use π̃(K1:T |Y, θ) as a proposal density, such that the resampling weights will be determined

by R(K1:T ). We can expect that the particle filter will be more efficient when π̃(K1:T |Y, θ) approxi-

mates π(K1:T |Y, θ) well, and we can expect an improvement over the bootstrap particle filter whenever

π̃(K1:T |Y, θ) is better than π(K1:T |θ) as an approximation of π(K1:T |Y, θ)7.

In order to define the pseudo posterior, note that because of the Gaussian assumption about et, the

density of Y given Σ1:T is given by:

L(Y |Σ1:T , β) =

(
T∏
t=1

|Σt|−1/2
)

exp

(
−1

2
δ

T∑
t=1

tr
(

Σ−1t ete
′

t

))
L̃(Y |Σ, β)

where L̃(Y |Σ, β) is a pseudo-likelihood defined as:

L̃(Y |Σ1:T , β) = (2π)
−Tr/2

exp

(
−1

2
(1− δ)

T∑
t=1

tr
(

Σ−1t ete
′

t

))
, where et = yt − βxt (7)

where δ is a scalar between 0 and 1 that can be tuned to improve the efficiency of the particle filter.

Setting δ = 1 gives the bootstrap particle filter, and after some experimentation we set δ = 0.8 in

the empirical analysis of Section 6.1. Exploiting the fact that the prior is conjugate for the pseudo

likelihood, we define the pseudo-posterior as π̃(K1:T |Y, θ) ∝ π(K1:T |θ)L̃(Y |Σ1:T , β), which turns out to

be (as shown in Appendix I) also a WAR(1) process, and can be represented as Kt = Z ′tZt with:

Zt = Zt−1ρVt + εt vec(εt) ∼ N(0, Vt ⊗ In), for t > 1 (8)

Z1 = ε1 vec(ε1) ∼ N(0, V1 ⊗ In)

where Vt is given by the following recursion:

VT = (I + (1− δ)B′1eT e′TB1)−1 (9)

Vt = (I + (1− δ)B′1ete′tB1 + ρ(I − Vt+1)ρ)−1 t > 1

V1 = (I + (1− δ)B′1e1e′1B1 − ρV2ρ)−1

where B = (B1, B2) = ((Ã1, A2)−1)′, with Ã1 =
√
n− r1 − 1A1(I − ρ2)−1/2 and B1 : r × r1. Appendix

I shows that the true likelihood, after integrating out the latent K, can be compactly written as:

7The particle filter that we propose can be viewed as a bootstrap particle filter on a ’twisted model’, and falls into the
class of ψ-Auxiliary Particle Filters discussed in Guarniero et al. (2017).
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L(Y |β, θ) = c̃LEπ̃

(
T∏
t=1

[
|Kt|1/2 exp

(
−δ

2
tr(KtB

′
1ete

′

tB1)

)])
(10)

c̃L =
∣∣I − ρ2∣∣n/2 ∣∣∣Ã1Ã

′
1 +A2A

′
2

∣∣∣−T/2 exp

(
−1

2

T∑
t=1

tr
(
B2B

′
2ete

′

t

))( T∏
t=1

|Vt|n/2
)

(11)

where the expectation is taken with respect to the pseudo-posterior π̃(K1:T |Y, θ). Because this expec-

tation cannot be calculated in analytical form, we propose a particle filter that provides a numerical

approximation.

An unbiased estimate of the expectation in (10) can be obtained using a particle filter in which

the proposal density is given by the pseudo-posterior π̃(Kt|K1:t−1,Y, θ). Using N particles, denoted as

{Kk
1:T = (Kk

1 , ...,K
k
T )} for k = 1, ..., N , the particle filter can be described as follows (e.g. Andrieu et

al. (2010, p. 272)):

Algorithm 1 Particle filter.

Step 1: at time t = 1,

(a) sample Kk
1 from a Wishart Wr1(n, V1) for every k = 1, ..., N , and

(b) compute the weights:

C1 :=
1

N

N∑
m=1

|Km
1 |

1/2

exp
(
δ
2 tr (Km

1 B
′
1e1e

′
1B1)

) , W k
1 :=

1

NC1

∣∣Kk
1

∣∣1/2
exp

(
δ
2 tr
(
Kk

1B
′
1e1e

′
1B1

))
Step 2: at times t = 2, ..., T ,

(a) sample the indices Akt−1, for every k = 1, ..., N , from a multinomial distribution on (1, ..., N)

with probabilities Wt−1 = (W 1
t−1, ...,W

N
t−1)

(b) sample Kk
t from a non-central Wishart Wr1(n, Vt, ρK

Akt−1

t−1 ρVt) and

(c) compute the weights

Ct :=
1

N

N∑
m=1

|Km
t |

1/2

exp
(
δ
2 tr (Km

t B
′
1ete

′
tB1)

) , W k
t :=

1

NCt

∣∣Kk
t

∣∣1/2
exp

(
δ
2 tr
(
Kk
t B
′
1ete

′
tB1

))
Step 3: Estimate the Likelihood value as:

L̂(Y |β, θ) := c̃L

T∏
t=1

Ct

where Wr1(n, Vt,Ω) denotes a non-central Wishart distribution with noncentrality parameters Ω (e.g.

Muirhead 2005, p. 442).

When n ≥ 2r1 a draw Kt from Wr1(n, Vt, ρKt−1ρVt) can be obtained (e.g. Anderson and Girshick
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(1944, pp. 347-349) or Appendix II) by drawing a matrix L1t : r1 × r1 from a normal (vec(L1t) ∼

N(vec((Kt−1)
1/2

ρVt), Ir1 ⊗ Vt)), K2t from a Wishart Wr1(n− r1, Vt) and calculating Kt = (L1t)
′L1t +

K2t, where (Kt−1)
1/2

is any matrix such that ((Kt−1)
1/2

)′ (Kt−1)
1/2

= Kt−1 (for example the upper tri-

angular Cholesky factor). When r1 ≤ n < 2r1 and n is an integer, a draw Kt from Wr1(n, Vt, ρKt−1ρVt)

can be obtained by drawing Zt : n × r1 from a Normal (vec(Zt) ∼ N(vec(µZ), In ⊗ Vt)), with

µZ = ((Kt−1)
1/2

ρVt)
′, 0r1×(n−r1))

′ and calculating Kt = Z ′tZt.

5 Particle Gibbs and Model Comparison

In order to define the Gibbs algorithm, we rewrite the WAR(1) process in (5) using the representation

of a non-central Wishart in Anderson and Girshick (1944, p.p. 347-349), which has been used for con-

structing simulation algorithms (e.g. Gleser (1976)). This representation writes a non-central Wishart

matrix with n degrees of freedom Kt as Kt = L′1tL1t +K2t, where L1t is a r1× r1 normally distributed

matrix and K2t is a Wishart density with n − r1 degrees of freedom. Applying this representation to

the WAR(1) process in (5), we get the following:

Kt ∼ W (n, (I − ρ2)−1), for t = 1 (12)

L1t = (Kt−1)1/2ρ+ ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Ir1 ⊗ Ir1), for t > 1

K2t ∼ W (n− r1, Ir1), for t > 1

where (Kt−1)1/2 is any matrix such that ((Kt−1)1/2)′(Kt−1)1/2 = Kt−1 (for example the upper trian-

gular Cholesky factor). This representation allows n to be a continuous parameter but requires that

n ≥ 2r1 (otherwise K2t would be singular). When n ≤ 2r1 we assume that n is an integer and write

K2t = L′2tL2t, where L2t is a (n− r1)× r1 matrix such that vec(L2t) ∼ N(0, Ir1 ⊗ In−r1) for t > 1 and

vec(L2t) ∼ N(0, (Ir1 − ρ2)−1 ⊗ In−r1) for t = 1.

As a prior for n we assume a discrete probability distribution in the interval [r1 + 2, 2r1] and

a continuous density on (2r1,∞). The continuous density is specified with a normal prior on ñ =

log(n− 2r1).

Our algorithm for simulating from the posterior distribution groups the parameters and latent states

in 3 main blocks: (L1,1:T ,K2,1:T ), β and (G, ρ, n). The latent states (L1,1:T ,K2,1:T ) = (L11, ..., L1T ,K21, ...,K2T )

are drawn using a Particle Gibbs algorithm with Backward Sampling (Andrieu et al. (2010) and White-

ley (2010)), β is drawn from a normal distribution and the parameters in (G, ρ, n) are generated jointly

using a reparameterization and a sequence of Metropolis steps.
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The latent states can be generated starting from t = 1 up t = T (natural order), or in the reverse

order (starting at t = T and continuing up to t = 1). In the natural order, the mixing properties of

the states tend to be better for the states near t = T , whereas in the reverse order the mixing tends to

be better for the states near t = 1. Although one solution to obtain good mixing properties for all t is

to increase the number of particles, this requires extra computational cost. Here we propose a strategy

which consists in alternating between the natural order and the reverse order at different iterations of

the algorithm. In this way we are using a mixture of two MCMC kernels, resulting in an algorithm

that we find performs empirically better than the use of only one of them at no extra computational

cost8. In particular we find that using the Macroeconomic data described in Section 6.1 with r1 = 7,

the alternating order algorithm delivers an Effective Sample Size (ESS) for K = (K1 + ...+KT )/T that

is 37% (33%) higher than the ESS of the natural order (reverse order) algorithm, respectively, when

the number of particles is 80 and ρ = 0.8Ir1 (see appendix II for more details).

5.1 Drawing the latent states (L1,1:T , K2,1:T ) in natural order

Let Lt = (L1t,K2t) for t > 1 and L1 = K1, and L1:T = (L1, L2, ..., LT ). Let the N particles be denoted

as Lkt = (Lk1t,K
k
2t) for t > 1 and Lk1 = (Kk

1 ), for k = 1, ..., N . Define Kk
t = (Lk1t)

′Lk1t + Kk
2t for t > 1.

The value of L1:T at iteration i, denoted as L1:T (i) = (L1(i), ..., LT (i)), can be generated given the

previous value L1:T (i− 1) using a conditional Particle Filter with Backward sampling (cPFBS).

Algorithm 2 cPFBS.

Step 1: Fix the last particle equal to L1:T (i− 1), that is, LN1:T = L1:T (i− 1)

Step 2: at time t = 1,

(a) sample Kk
t ∼Wr1(n, V1) for k = 1, ..., N − 1, and

(b) compute and normalize the weights:

wk1 :=

∣∣Kk
1

∣∣1/2
exp

(
δ
2 tr
(
Kk

1B
′
1e1e

′
1B1

)) , W k
1 := wk1/(

N∑
m=1

wm1 ), k = 1, ..., N

Step 3: at times t = 2, ..., T ,

(a) sample the indices Akt−1, for k = 1, ..., N − 1, from a multinomial distribution on (1, ..., N) with

probabilities Wt−1 = (W 1
t−1, ...,W

N
t−1)

(b) sample vec(Lk1t) ∼ N(

(
K
Akt−1

t−1

)1/2

ρVt, Ir1 ⊗ Vt) and Kk
2t ∼ Wr1(n − r1, Vt), calculate Kk

t =

(Lk1t)
′Lk1t +Kk

2t for k = 1, ..., N − 1 and

8There is an ample literature on the use of mixture of kernels to improve MCMC algorithms, see for example Andrieu
et al. (2003, section 3.3) for a review.

13



(c) compute and normalize the weights

wkt :=

∣∣Kk
t

∣∣1/2
exp

(
δ
2 tr
(
Kk
t B
′
1ete

′
tB1

)) , W k
t := wkt /(

N∑
m=1

wmt ), k = 1, ..., N

Step 4: at time t = T , sample bT from a multinomial distribution on (1, ..., N) with probabilities

WT , and set LT (i) = LbTT .

Step 5: at times t = T − 1, ..., 1

(a) compute the updated weights

w̃kt = wkt f(K
bt+1

t+1 |Kk
t ),..., W̃ k

t := w̃kt /(

N∑
m=1

w̃mt ), k = 1, ..., N , where

µkt = (Kk
t )1/2ρVt+1, f(K

bt+1

t+1 |Kk
t ) = exp(−1

2
tr(V −1t+1(L

bt+1

1(t+1) − µ
k
t )′(L

bt+1

1(t+1) − µ
k
t ))

(b) sample bt from a multinomial distribution on (1, ..., N) with probabilities W̃t = (W̃ 1
t , ..., W̃

N
t ),

and set Lt(i) = Lbtt .

5.2 Drawing the latent states (L1,1:T , K2,1:T ) in reverse order

Because we assume that Z1 is drawn from the stationary distribution, the WAR(1) process in equation

(5) can be equivalently written in reverse order as Zt = Zt+1ρ+ εt, with ZT drawn from the stationary

distribution (see Appendix II for a proof). However, we show in the Appendix II that to use the

representation in (12) we need to define first (L̃1t, K̃2t) as follows:

L̃1t = (K
−1/2
t+1 )′L′1,t+1K

1/2
t , for t = 1, ..., (T − 1) (13)

K̃2t = Kt − L̃′1tL̃1t

Using this definition we can write the transition equation in reverse order as:

Kt ∼ W (n, (I − ρ2)−1), for t = T (14)

L̃1t = (Kt+1)1/2ρ+ ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Ir1 ⊗ Ir1), for t < T

K̃2t ∼ W (n− r1, Ir1), for t < T
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Then the pseudo-posterior in (8) can be written in reverse order by first adapting the recursion in (9)

as follows:

Ṽ1 = (I + (1− δ)B′1e1e′1B1)−1 (15)

Ṽt = (I + (1− δ)B′1ete′tB1 + ρ(I − Ṽt−1)ρ)−1 t < T

ṼT = (I + (1− δ)B′1eT e′TB1 − ρṼT−1ρ)−1

and then writing the pseudo-posterior in reverse order as:

Kt ∼ W (n, Ṽt), for t = T (16)

L̃1t = (Kt+1)1/2ρṼt + ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Ṽt ⊗ Ir1), for t < T

K̃2t ∼ W (n− r1, Ṽt), for t < T

A similar conditional particle filter to that defined in Section 5.1 can be defined to draw L̃1:T (see

Algorithm 4 in Appendix II for details). A draw of L̃1:T can be then converted into a draw of L1:T

using the inverse transformation of (13):

L1t = (K
−1/2
t−1 )′L̃′1,t−1K

1/2
t , for t = 2, ..., T (17)

K2t = Kt − L′1tL1t

5.3 Drawing θ = (G, ρ, n)

It is well known that the choice of parameterization can have an important impact on the computational

efficiency of MCMC algorithms in state space and hierarchical models (e.g. Pitt and Shephard (1999),

Papaspiliopoulos et al. (2007)). In line with this literature, we compare two algorithms, one generates

θ conditional on the latent states L1:T and the other one conditional on a one-to-one differentiable

transformation of the states fθ(L1:T ), where the transformation depends on θ. In the first case we use a

Metropolis step that targets the conditional posterior π(θ|L1:T , β) and in the other we target πt(θ|ε, β),

where ε = fθ(L1:T ) such that the conditional density πt(θ|ε, β) can be obtained by the change of variables

theorem as:

πt(θ|ε, β) ∝ π(θ|f−1θ (ε), β)J

where J is the Jacobian of the transformation. Note that although we keep ε constant when we generate

θ, the latent states in the original parameterization might change. That is, when we condition on ε, a
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new value generated for θ (say θ∗) implies that the latent states have to updated as9 L∗1:T = f−1θ∗ (ε).

Using the transformation will be more efficient when θ is less correlated with ε than with L1:T .

To find an efficient parameterization, we propose to obtain first a convenient approximation to

the distribution of the conditional posterior of the states given parameters πa(L1:T |θ), in which it is

possible to find ε such that in the approximated density, ε becomes independent of θ: πa(ε|θ) = πa(ε).

This strategy could be used in conjunction with existing linear Gaussian approximation methods (e.g.

Durbin and Koopman (ch. 11)), given that in linear Gaussian state-models the standardized residuals

are independent of θ. We can expect that the better the approximation, the weaker the dependence of

ε and θ in the true posterior, and hence the better the reparameterization10. In our context, we can

apply this strategy by rewriting the pseudo-posterior in (8) using the decomposition of the non-central

Wishart:

Kt ∼ W (n, Vt), for t = 1 (18)

L1t = (Kt−1)1/2ρVt + ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Vt ⊗ Ir1), for t > 1

K2t ∼ W (n− r1, Vt), for t > 1

Define the standardized residuals as a1t = ε1t(Vt)
−1/2. To standardize K̂2t we first define K̂2t =

(V
−1/2
t )′K2t(Vt)

−1/2, and then, to eliminate the dependence on the degrees of freedom parameter n, we

use the Bartlett decomposition. For this purpose define the Cholesky factor ∆t such that K̂2t = ∆′t∆t,

and let ct be the off-diagonal elements of ∆t. Let pt be the result of evaluating the distribution function of

a χ2 distribution at the squared of the diagonal elements of ∆t. Then we define the reparameterization

as ε = (a1t, pt, ct : t = 1, ..., T ), which is independent of θ in the pseudo-posterior. The details of

the conditional density πt(θ|ε, β) are given in Appendix III, as well as a simulation that shows that,

accounting for computation time, this reparameterization is 16 times more efficient to sample n and 4.7

times more efficient to sample ρ in terms of ESS when using the data in Section 6.1 with r1 = 7.

To generate θ we use a Metropolis step repeated a number of times with an AR(1) proposal, using

an inverse Wishart for (G), and a normal for ñ = log(n − 2r1) and ρ̃ = ln(− ln(1 − ρ2)) (details in

Appendix III).

9In Section 5.5 we give the overall summary of the MCMC algorithm, and we use the so-called State-Space expansion
of the Gibbs sampler described in Papaspiliopoulos et al. (2007).

10This approach is slightly different from that in Papaspiliopoulos et al. (2007) and Pitt and Shephard (1999), who
compare the efficiency of centred versus uncentred parameterizations. Papaspiliopoulos et al. (2007) defines centred
parameterizations as those in which Y is independent of θ given L1:T , and uncentred when ε and θ are independent in
the prior. Our approach is instead to make ε and θ independent in an approximation of the posterior.
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5.4 Drawing β

The matrix of coefficients β has dimension r × k, where the k is the number of rows of xt, and its

conditional posterior is normal. Although the conditional posterior of β is a normal, when rk is large

it could be time consuming to calculate the var-cov matrix of β, because it requires inverting matrices

of the order rk × rk . To avoid this problem, we follow the large VAR literature and choose the prior

var-cov matrix for β to have a Kronecker structure, V β = G⊗ V 0, such that (V β)−1 = G−1 ⊗ (V 0)−1,

where V 0 controls the degree of shrinkage. In the homoscedastic VAR, this implies that the posterior

var-cov matrix (V β) also has a Kronecker structure, and hence inverting the posterior variance only

requires to invert matrices of the order r × r and k × k. In heteroscedastic VARs such as ours, V β

does not necessarily have a Kronecker structure. However, in our case the Kronecker structure in the

prior implies that V β and (V β)1/2 can be calculated by inverting matrices of order r1k× r1k and k×k.

In our empirical application with r = 20 and k = 81, we conclude that the best value of r1 is 5, and

therefore we only need to invert matrices of order 405 (as opposed to 1620). The following proposition,

whose proof is in appendix IV, summarizes this result.

Proposition 3 Assuming that the conditional prior of vec(β′)|G is a normal with mean µβ and co-

variance matrix V β given by:

V β = (G⊗ V 0) , for V 0 : k × k

the conditional posterior vec(β′)|G,K1:T is also normal with mean µβ and covariance matrix V β given

by:

V β = (Ã1 ⊗ Ik)

(
T∑
t=1

(Kt ⊗ xtx
′

t) + Ĩ−1r1 ⊗ V
−1
0

)−1
(Ã′1 ⊗ Ik) + (19)A2A

′
2 ⊗

(
T∑
t=1

(xtx
′

t) + V −10

)−1
µβ = V β

(
vec(

T∑
t=1

xty
′
tΣ
−1
t ) +

(
G−1 ⊗ V −10

)
µ
β

)
(20)

with Ĩ−1r1 = (n− r1 − 1)(Ir1 − ρ2)−1, Ã1 =
√
n− r1 − 1A1(I − ρ2)−1/2

A draw of vec(β′)|G,K1:T can be obtained as
((
V β
)1/2)′

η+µβ where η is a rk×1 vector of independent
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standard normal variates, and
(
V β
)1/2

can be calculated as:

(
V β
)1/2

= (D1, D2)′, D1 : rk × r1k, D2 : rk × r2k (21)

D1 = (Ã1 ⊗ Ik)

( T∑
t=1

(Kt ⊗ xtx
′

t) + Ĩ−1r1 ⊗ V
−1
0

)−1/2′

D2 = A2 ⊗

( T∑
t=1

(xtx
′

t) + V −10

)−1/2′

5.5 Summary of the Algorithm

Let (L1:T (i− 1), θ(i− 1), β(i− 1)) be the values of (L1:T , θ, β) at the (i− 1)th iteration. The values at

the ith iteration are generated as follows:

• If i is even:

– Generate a value L∗1:T for L1:T , using the natural order Algorithm 2 in section 5.1.

• If i is odd: Calculate L̃1:T (i− 1) from L1:T (i− 1) using the inverse transformation (13).

– Generate a value L̃∗1:T of L̃1:T in reverse order using Algorithm 4 in Appendix II.

– Calculate L∗1:T from L̃∗1:T using transformation (17).

• Calculate the transformation ε = fθ(i−1)(L
∗
1:T ) using Algorithm 5 in Appendix III.

• Generate θ(i)|ε using a Metropolis step targeting the conditional distribution πt(θ|ε, β) in expres-

sion (28) of Appendix III.

• Fix L1:T (i) as L1:T (i) = f−1θ(i)(ε) using the inverse transformation outlined in Algorithm 6 in

Appendix III.

• Draw β(i) from a multivariate Normal Density with mean µβ and variance V β described in

Proposition 3 in Appendix IV.

5.6 Model Comparison

In order to select the value of r1 we can use the BIC, which can be calculated by evaluating the log

likelihood at the posterior mean of the parameters using the particle filter. Note that when r1 increases

by 1, the number of parameters only increases by 1, so the BIC easily allows us to assess whether it is

worthwhile increasing r1 in terms of the likelihood gains. We also calculate the marginal likelihood using

the approach of Chib and Jeliazkov (2001), but using an approximation that allows us to calculate the
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value of the posterior density of (G, β) at the posterior mean without doing any additional simulations.

For this we use the value of a Normal-Wishart density calibrated with the posterior mean of β and G,

which are calculated with the MCMC algorithm. The prior for each of the diagonal elements of ρ is

a beta distribution, so we approximate the posterior ordinate of ρ using independent beta calibrated

with the posterior mean and variance of ρ delivered by the MCMC algorithm. Similarly, the prior for

ñ = log(n − 2r1) is a normal, so we use also a normal to approximate the posterior of ñ. We also

use the BIC and marginal likelihood to compare the model that assumes n ≥ 2r1 with models that

assume r1 + 2 ≤ n < 2r1. The Monte Carlo experiment in Section 6.3 suggests that the marginal

likelihood calculated in this manner gives good estimates of r1, and is slightly more accurate than the

BIC criterion.

6 Empirical Application

6.1 Macroeconomic Data

We use 20 macroeconomic quarterly variables (defined in Table 1) with 4 lags in the VAR, for the period

1959Q3-2013Q4 and specify a normal-inverse-Wishart prior with shrinkage for (β,G)11. Therefore yt

is a 20 × 1 vector, and xt is a 81 × 1 vector containing 4 lags of yt and the intercept. Table 2 shows

model selection criteria when the restriction n ≥ 2r1 is imposed, indicating that the best value for r1 is

5 according to both the marginal likelihood and BIC. Models that impose the restriction12 n = r1 + 2,

not shown here for brevity, also estimate a value of r1 equal to 5. Although the model with n = r1 + 2

gives a higher value of the log-likelihood and marginal likelihood, the model with n ≥ 2r1 performs

better in terms of the predictive likelihoods calculated in Section 6.2, so this is the model we choose.

Estimating the preferred model took 4.8 hours in a Intel Xeon CPU (E5-2690) with 2.9 GHz, using 10

cores, and obtaining 12000 iterations with no thinning, a burn-in of 20 iterations and 320 particles13.

The evaluation of the loglikelihood, using the average of 100 independent replications of the particle

filter, each one with 2Tr1 = 2140 particles, took 4.8 minutes, with a numerical standard error of 0.09.

For the preferred model, Figure 1 shows the trace plot and autocorrelations for the fifth diagonal element

of K107 (107 is the middle period in the sample), for the 4th element of ρ, for n and for the (1,1) element

of G. In all cases the autocorrelations decrease below 0.2 after 20 lags, indicating good convergence.

11This is the same dataset used in Chan (2020), and the shrinkage prior has k1 = 0.04, k2 = 100, with (k1,k2) defined
in Chan (2020). The degrees of freedom parameter for the inverse-Wishart prior of G is r+ 3. The prior for each diagonal
element of ρ is a beta distribution B(95, 5) and the prior for ñ = log(n− 2r1) is a Normal: N(ln(23.5 − 2r1), 1.5).

12Note that when we estimate n with the posterior simulator, we require n ≥ 2r1. To check whether this restriction is
appropriate, we also estimate the model with the restriction n = r1 + 2, which is the minimum integer value of n that
ensures that E(Σt) exists. For simplicity we do not check other values of n.

13The code is written in C++ and runs in Rstudio, allowing for computations in parallel. It is available at
http://www3.grips.ac.jp/˜rlg/. It can be run in Amazon Web Services (AWS) machines using an AMI for Rstudio.
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Figure 2 shows the posterior estimates of the reduced form volatility of the GDP growth (GDP) and

the real stock returns (SP) using the non-invariant method, prevalent in the econometrics literature,

that specifies random walks as transition equations for the log of the diagonal elements of the Cholesky

decomposition (e.g. Carriero et al. (2019), Chiu et al. (2017), Clark and Ravazzolo (2015)) and our

invariant method, as well as the Bayesian squared residuals (which we define as the squared value of

an element of the vector (yt − β̂xt), with β̂ being the posterior mean). Defining ordering 1 with GDP

as the first variable and SP the last, and ordering 2 with SP the first and GDP the last (the other 18

variables remaining in the same place), we see that the non-invariant method is very sensitive to the

ordering. For example, the volatility of SP in 2008 Q4 is 35 under ordering 1 and 70 under ordering

214.

For the purpose of illustration, variance decompositions and impulse responses are calculated at the

period 1978 Q2. Table 3 shows the proportion of the variance var(yt+h|yt) caused by the heteroscedastic

shock u1t for several key variables. For h = 1 the proportions due to u1t for SP and the Federal Funds

Rate (FFR) are (99%, 17%), whereas they become (88%, 30%) for h = ∞, respectively. In order to

identify the monetary policy shock (ξmon) we use the same classification of slow and fast variables as in

Banbura et al. (2010) and summarized in Table 1. We can see that ξmon affects only the homoscedastic

components of yt (yhomt ), to the extent that the proportion of var(yhett+h|yt) explained by ξmon is virtually

0 for all h. This is confirmed by the impulse response functions in Figure 3, where we can see that ξmon

has the expected impact on GDP growth (GDP) and the 10 year bond yield (BOND), but only through

the homoscedastic component. In contrast, Figure 3 also shows that GDP responds positively to a

shock to SP15 only through its heteroscedastic component (yhett ). Interestingly, a shock to SP affects

both the hetero and homo components of BOND, but with different signs, with the homo component

increasing and the hetero decreasing when SP increases. A variance decomposition shows that the

structural monetary policy shock is mostly homoscedastic, with only 1.3% of its conditional variance

caused by the heteroscedastic shocks u1t at 1978Q2.

Figure 4 plots the actual value of GDP growth (GDP), and its hetero (GDPhet) and homo (GDPhom)

components, showing what the economy would be if there were only hetero (u1t) or homoscedastic shocks

(u2t). Although both GDPhet and GDPhom have approximately the same average of 3%, we can see

that GDPhom has a smaller variance and becomes negative less often than GDPhet.

14For the other variables that do not change position with the ordering, the estimated volatilies are the same under
both orderings. The non-diagonal elements are assumed to remain constant with time as in Carriero et al (2019).

15The response to the SP shock is identified by assuming that SP is the fastest variable.
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Variable Transformation Speed Label
Real gross domestic product 400 ∆ log Slow y1t
Consumer price index 400 ∆ log Slow y2t
Effective Federal funds rate no transformation y3t
M2 money stock 400 ∆ log Fast y4t
Personal income 400 ∆ log Slow y5t
Real personal consumption expenditure 400 ∆ log Slow y6t
Industrial production index 400 ∆ log Slow y7t
Civilian unemployment rate no transformation Slow y8t
Housing starts log Slow y9t
Producer price index 400 ∆ log Slow y10,t
Personal consumption expenditures: chain-type price index 400 ∆ log Slow y11,t
Average hourly earnings: manufacturing 400 ∆ log Slow y12,t
M1 money stock 400 ∆ log Fast y13,t
10-Year Treasury constant maturity rate no transformation Fast y14,t
Real gross private domestic investment 400 ∆ log Slow y15,t
All employees: total nonfarm 400 ∆ log Slow y16,t
ISM manufacturing: PMI composite index no transformation Slow y17,t
ISM manufacturing: new orders index no transformation Slow y18,t
Business sector: real output per hour of all Persons 400 ∆ log Slow y19,t
Real stock prices (S&P 500 index divided by PCE index) 100 ∆ log Fast y20,t

Table 1: Definition of Macroeconomic variables in the large VAR and block identification assumption.
Fast variables are assumed to react contemporaneously to a shock to the funds rate, whereas slow
variables react only after a lag.

r1 p(θ) + l(Y |θ) l(Y |θ) l(Y ) BIC
0 -5824.0 -6529.5 -8727.1 -6529.5
1 -5916.5 -6542.4 -8716.6 -6547.7
2 -5859.6 -6486.5 -8674.1 -6494.5
3 -5822.6 -6469.5 -8653.2 -6480.3
4 -5776.7 -6458.4 -8644.3 -6471.8
5 -5763.0 -6455.5 -8638.1 -6471.6
6 -5742.3 -6455.8 -8648.2 -6474.6
7 -5735.6 -6464.2 -8651.7 -6485.7
8 -5727.1 -6466.4 -8653.4 -6490.5

Table 2: Model selection criteria for each value of r1, with n estimated subject to n > 2r1 (Macro data).
p(θ) and l(Y |θ) denote the values of the log prior and log likelihood at the posterior mean, respectively.
l(Y ) is the approximated marginal likelihood. Numerical standard errors (NSE) for the log likelihood
values were estimated using 100 independent replications of the particle filter, with N = 2Tr1 particles.
In all cases, the NSE values were smaller than 0.42.
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Mon Policy Shock (ξt) Hetero shock (u1t)
1 2 3 4 5 ∞ 1 2 3 4 5 ∞

GDP 0 0 1 2 2 3 86 82 76 73 71 61
GDPhet 0 0 0 0 0 0 100 100 100 100 100 100
GDPhom 0 1 6 7 7 9 0 0 0 0 0 0
INF 0 3 3 3 2 4 55 64 65 65 68 44
INFhet 0 0 0 0 0 0 100 100 100 100 100 100
INFhom 0 7 9 8 8 7 0 0 0 0 0 0
FFR 72 51 42 34 31 11 17 38 48 56 59 30
FFRhet 0 0 0 0 0 0 100 100 100 100 100 100
FFRhom 83 81 79 77 75 15 0 0 0 0 0 0
BOND 10 11 12 13 14 4 42 48 50 51 52 27
BONDhet 0 0 0 0 0 0 100 100 100 100 100 100
BONDhom 16 20 22 25 27 6 0 0 0 0 0 0
SP 0 0 0 0 0 1 99 97 96 96 95 88
SPhet 0 0 0 0 0 0 100 100 100 100 100 100
SPhom 0 1 3 3 4 8 0 0 0 0 0 0

Table 3: Variance Decompositions. Percentage of var(yt+h|yt), var(yhett+h|yt) and var(yhomt+h |yt) caused
by the monetary policy shock (ξt, left panel) and by the heteroscedastic shocks (u1t, right panel), for
h = 1, 2, 3, 4, 5,∞.

Figure 1: Trace plot and autocorrelations for the (5,5) element of K107, the 4th diagonal element of ρ,
for n and the (1,1) element of G (Macro data).
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Figure 2: Estimated reduced form volatilities and squared Bayesian residuals for the real GDP growth
rate (GDP) and the real stock returns (SP). The left panel corresponds to the method of Carriero et al.
(2019) under two different orderings: the solid line is for ordering 1 and the dotted line is for ordering
2. The central panel corresponds to our method with r1 = 5, and the right panel are the squared of the
Bayesian residuals.
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Figure 3: Impulse Responses of GDP growth (GDP) and the 10 year bond yield (BOND) to a monetary
policy shock (FFR) and to a stock return shock (SP). The left panel plots the overall response, the central
panel plots the reponse of the heteroscedastic component (yhet), and the right panel the homoscedastic
component (yhom). Posterior median and 90% credible interval. Horizons 1 up to 12.

Figure 4: Decomposition of GDP growth into its heteroscedastic and homoscedastic components.
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6.2 Comparison to Other Approaches

We compare our model with r1 = 5 and r1 = 6 (denoted as WAR-5 and WAR-6 respectively) to other

approaches in terms of out-of-sample forecasting. The evaluation period consists of 116 observations,

from 1985Q1 to 2013Q4. We calculate the average log predictive score for the joint vector y = (y1, ..., y20)

for several horizons h (π1:20,h), as well as the Root Mean Squared Forecasting Error (RMSFE,) and

average log predictive score for each variable yit for horizon 1 (denoted as Ei and πi, respectively, for

i = 1, ..., 20)16.

We consider the factor stochastic volatility model of Chib et al. (2006), with both normal and

student-t idiosyncratic errors. We use 5 and 6 factors because this gives a better value for π1:20,h than a

smaller amount of factors. The models with normal errors are denoted as fSV-5 and fSV-6 (for 5 and 6

factors, respectively), and with student-t errors as fSVt-5 and fSVt-6. These models have a stationary

process for stochastic volatility, and we fix the prior mean for the coefficient of the lag volatility to 0.95

(as we do in the Wishart model). The prior for vec(β′) has the same shrinkage structure.

We also consider models with non-stationary stochastic volatility, such as the previously mentioned

model of Carriero et al. (2019), denoted as SV, and also the common drifting Volatility model of

Carriero et al. (2016), denoted as CSV and CSV-t for normal and student-t errors17, respectively.

Table 4 shows that the WAR-5 and WAR-6 models have the best values of π1:20,h among all models

for horizons 3, 4 and 8. The relative advantage of the WAR models increases with the horizon. The

second best model for horizon 3 is the fSV6-t, and for horizons 4 and 8 the second best model is the

CSV-t. For horizon one, the fSV models and the SV model are better than the WAR models. For the

second horizon, only the fSVt-6 model is better than the WAR models. All models are better than the

homoscedastic VAR model.

In terms of the RMSFE and πi for each of the variables, the results in Table 4 indicate that there

is no model that is better for all the variables. In terms of the RMSFE, the WAR-5 model is equal or

better than the non-WAR models for 9 of the variables, the CSV is equal or better than the non CSV

models for 7 of the variables, the CSV-t is also equal or better (than the non-CSV models) for 7 of the

variables, the SV is equal or better than the other models for 6 of the variables, whereas the fSV-6 or

fSVt-6 models are equal or better for only 3 variables. Doing similar comparisons in terms of πi, the

SV is the best for 7 variables, followed by the WAR and CSV-t models with 4 variables.

16See for example Chan (2020) for a more detailed definition of πi and Ei
17Pajor (2006) and Yu and Meyer (2006) also used the common volatility assumption, but assuming stationarity.
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VAR WAR-5 WAR-6 fSV-5 fSV-6 fSVt-5 fSVt-6 SV CSV CSVt
π1:20,1 -36.33 -35.43 -35.53 -35.39 -35.26 -35.22 -35.08 -35.15 -35.61 -35.56
π1:20,2 -39.19 -38.24 -38.30 -38.42 -38.4 -38.35 -38.12 -38.37 -38.49 -38.37
π1:20,3 -40.76 -39.88 -39.80 -40.22 -40.19 -40.08 -39.94 -40.13 -40.22 -40.01
π1:20,4 -41.97 -41.17 -41.14 -41.65 -41.70 -41.44 -41.36 -41.50 -41.43 -41.22
π1:20,8 -44.58 -43.87 -43.84 -44.43 -44.28 -44.10 -44.19 -44.35 -44.18 -44.04
E1 2.18 2.20 2.17 2.41 2.46 2.42 2.45 2.08 2.14 2.14
π1 -2.25 -2.26 -2.25 -2.32 -2.35 -2.32 -2.33 -2.17 -2.21 -2.20
E2 2.11 2.06 2.06 1.98 1.97 1.96 1.96 2.05 1.99 1.99
π2 -2.27 -2.02 -2.03 -1.93 -1.92 -1.91 -1.91 -2.00 -1.99 -1.97
E3 0.66 0.64 0.63 0.50 0.50 0.49 0.51 0.51 0.65 0.65
π3 -1.05 -1.08 -1.07 -0.61 -0.64 -0.60 -0.63 -0.62 -0.94 -0.95
E4 2.57 2.60 2.63 2.79 2.84 2.75 2.76 2.82 2.71 2.69
π4 -2.37 -2.36 -2.37 -2.42 -2.44 -2.40 -2.40 -2.46 -2.38 -2.37
E5 2.87 2.85 2.84 3.00 2.97 3.00 2.98 2.79 2.82 2.80
π5 -2.46 -2.44 -2.45 -2.47 -2.45 -2.46 -2.45 -2.38 -2.43 -2.43
E6 1.97 1.96 1.94 2.01 2.00 2.02 2.00 1.92 1.98 1.95
π6 -2.11 -2.12 -2.11 -2.14 -2.12 -2.15 -2.14 -2.08 -2.06 -2.06
E7 3.39 3.39 3.39 4.30 4.32 4.33 4.33 3.48 3.62 3.57
π7 -2.69 -2.69 -2.69 -2.82 -2.82 -2.82 -2.82 -2.63 -2.65 -2.64
E8 0.18 0.18 0.18 0.22 0.22 0.22 0.22 0.21 0.18 0.19
π8 0.21 0.18 0.19 0.10 0.10 0.09 0.09 0.14 0.14 0.14
E9 0.08 0.08 0.08 0.10 0.10 0.10 0.11 0.10 0.08 0.08
π9 0.99 0.95 0.95 0.89 0.89 0.89 0.88 0.92 0.76 0.76
E10 5.50 5.34 5.33 5.28 5.29 5.23 5.25 5.42 5.24 5.22
π10 -3.26 -3.03 -3.04 -2.96 -2.95 -2.94 -2.94 -3.03 -3.07 -3.04
E11 1.52 1.49 1.48 1.45 1.44 1.44 1.43 1.51 1.43 1.43
π11 -1.89 -1.70 -1.70 -1.68 -1.67 -1.65 -1.65 -1.74 -1.67 -1.65
E12 1.77 1.76 1.77 1.81 1.80 1.81 1.81 1.76 1.84 1.83
π12 -2.03 -2.04 -2.04 -2.06 -2.06 -2.06 -2.06 -2.02 -2.06 -2.05
E13 4.71 4.63 4.66 5.37 5.46 5.38 5.42 5.69 4.75 4.74
π13 -3.13 -2.94 -2.96 -3.12 -3.11 -3.07 -3.08 -3.13 -3.10 -3.08
E14 0.46 0.46 0.46 0.47 0.48 0.46 0.48 0.46 0.46 0.46
π14 -0.64 -0.65 -0.66 -0.65 -0.67 -0.65 -0.67 -0.61 -0.65 -0.64
E15 9.56 9.55 9.53 12.05 12.07 12.07 12.08 10.04 9.61 9.61
π15 -3.73 -3.74 -3.73 -3.90 -3.90 -3.89 -3.90 -3.71 -3.69 -3.69
E16 0.79 0.81 0.80 0.91 0.91 0.92 0.92 0.78 0.84 0.84
π16 -1.27 -1.30 -1.29 -1.32 -1.32 -1.33 -1.33 -1.22 -1.28 -1.27
E17 2.83 2.77 2.79 3.26 3.27 3.27 3.27 2.82 2.77 2.77
π17 -2.47 -2.46 -2.47 -2.62 -2.63 -2.63 -2.62 -2.46 -2.43 -2.44
E18 4.45 4.38 4.42 5.26 5.33 5.26 5.30 4.52 4.50 4.50
π18 -2.91 -2.87 -2.88 -3.09 -3.10 -3.09 -3.08 -2.92 -2.91 -2.91
E19 2.58 2.59 2.57 2.55 2.57 2.55 2.55 2.49 2.48 2.48
π19 -2.39 -2.41 -2.40 -2.40 -2.43 -2.40 -2.42 -2.36 -2.38 -2.38
E20 6.41 6.38 6.38 6.49 6.49 6.45 6.46 6.50 6.34 6.30
π20 -3.28 -3.19 -3.20 -3.26 -3.26 -3.21 -3.21 -3.27 -3.22 -3.21

Table 4: Comparison with Other Approaches. π1:20,h is the average log predictive score for horizon h
for the whole vector (y1t, ..., y20,t). πi is the average log predictive score for the first horizon for yi. Ei
is the RMSE when predicting yit in the first horizon.
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6.3 Monte Carlo Experiment

The data generating process is given by the following heteroscedastic approximate factor model:

yt = βyt−1 + Γu1t +
√
θũ2t (22)

u1t : r1 × 1, var(u1t) = Υ−1t , E(Υ−1t ) = Ir1 , Υt ∼WAR(1)

ũ2t : r × 1, var(ũ2t) = ∆ = (δij), δij = 0.5|i−j|, θ : 1× 1

G = var(Γu1t +
√
θũ2t) = ΓΓ′ + θ∆

with r1 = 2 and the parameters of the WAR(1) process fixed as n = 8 and ρ = 0.95Ir1 . The matrix

β is 0 in the data generating process, but estimated for each dataset. For each dataset generated,

each of the elements of the matrix of factor loadings Γ is generated using iid N(0, 1) variates. Note

that the elements of ũ2t are correlated with each other and that its dimension is r × 1, which is bigger

than the dimension of u2t in our model. Recalling the singular value decomposition of G in Section 2

(G = U1S1U
′
1 + U2S2U

′
2), model (22) becomes equivalent to our model when ΓΓ′ = U1S1U

′
1. This will

be the case as r gets larger relative to r1, or θ decreases (Chamberlain and Rothschild (1983)). The

degree of misspecification of our model with respect to (22) can be captured with two measures: d21 and

d2. d21 is the squared distance between the spaces sp(Γ) and sp(U1): d21 = d2(sp(Γ)), sp(U1)), as defined

by Larsson and Villani (2001) and normalized to be between 0 and 100. d2 is the ratio of the absolute

value of the (1,1) element of the matrix (U1S1U
′
1 − ΓΓ′) over the (1,1) element of G. It measures the

asymptotic (i.e. for large T ) mean absolute error in estimating the proportion of the variance that

changes with time.

The prior is the same as in the empirical application to US data. We consider the cases of

r = 10, 20, 30, 40 and T = 250, 500. As a baseline we assume θ = r1 = 2, which implies that (uncondi-

tionally on Γ) the common (heteroscedastic) components have the same variances as the idiosyncratic

(homoscedastic) components (as in the simulations of Bai and Ng (2002)), but we also illustrate the

case of θ = 0.1 for r = 10. Table 5 gives the average values (calculated with 50000 replications) of

d21 and d2, which indicates that even for r = 10 the degree of misspecification is relatively small, with

E(d21) = 4.4 and E(d2) = 0.11 for (r = 10, θ = 2), and quickly decreases with increasing r, such that for

example E(d21) = 0.78 and E(d2) = 0.05 for (r = 20, θ = 2). Decreasing θ from 2 to 0.1 has a similar

effect on (d21, d2) as increasing r from 10 to 40 (with E(d21) about 0.175 and E(d2) about 0.015).

For each data configuration, we simulate 100 datasets, and apply our methodology to each of them.

Table 5 shows the average estimate of r1 when it is estimated using the BIC (r̂BIC1 ), the Marginal

Likelihood (r̂ML
1 ) described in Section 5.6, by Bayesian model averaging with BIC weights (r̂BMA,BIC

1 )
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and with weights calculated using the Marginal Likelihood (r̂BMA,ML
1 ). Using the Marginal Likelihood

gives better results than the BIC. The best performance is provided by r̂BMA,ML
1 , which gives an

average estimate (1.77) close to the true value (2) even in the most difficult case of (r = 10, θ = 2,

T = 250). As expected, the performance improves as r or T increases or θ decreases. Table 5 also

shows the proportion of times that each model was chosen under each criterion (π̂BICr1 , π̂ML
r1 ). As a

comparison, the criteria ICp1 and PCp1 of Bai and Ng (2002) only perform well in the case of r = 40.

We also report the bias, mean absolute error (MAE), and coverage of 90%, 95%, and 99% credible

intervals18 for the following six parameters. g11 is the (1,1) element of G. %12 is the correlation defined

as %12 = g12/
√
g11g22. p11 is the ratio of the (1,1) element of U1S1U

′
1 over g11 (i.e. proportion of the

variance of the first variable that is time varying). σ11,t is the (1,1) element of Σt, with t being the

integer nearest to T/3. %12,t is the correlation defined as %12,t = σ12,t/
√
σ11,tσ22,t. σ11 is the average of

σ11,t: σ11 = (1/T )
∑T
t=1 σ11,t. The bias and MAE are calculated as a percentage of the true value in

the cases of non-bounded parameters, namely g11, σ11,t and σ11.

In addition to the performance of the BMA estimates (calculated with ML weights), we report the

performance of estimates calculated assuming that r1 = 0. Table 6 for T = 250 and Table 7 for T = 500

show that the actual coverage is close to the nominal one for g11, σ11,t and σ11 in all cases, except only

for g11 when T = 250, r = 40, in which case it is slightly undersized. The actual coverages for the

correlations %12, %12,t are also close to the nominal ones in almost all cases, but are slightly undersized

in the case of r = 10, T = 250 for %12 and r = 10, T = 250, 500 for %12,t. The credible intervals of p11

are undersized in all cases, but the bias and MAE are relatively small. Using any of the measures of

coverage, bias or MAE, the performance of the BMA estimates is much better than for the estimates

based on r1 = 0, which illustrates the importance of accounting for heteroscedasticity

18This is the percentage of times that the posterior credible interval, calculated with the posterior quantiles, contains
the true value.
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θ = 2 θ = 0.1
T = 250 T = 500 T=250 T=500

r 10 20 30 40 10 20 30 40 10 10

r̂ML
1 1.63 1.93 2.07 2.01 1.79 2.05 2.04 2.01 2.01 2.00

r̂BIC1 0.93 1.71 1.86 1.92 1.50 1.97 1.95 1.98 1.66 2.00

r̂BMA,ML
1 1.77 1.95 2.07 2.00 1.85 2.06 2.04 2.01 1.98 2.00

r̂BMA,BIC
1 0.93 1.69 1.83 1.90 1.49 1.97 1.96 1.99 1.65 2.00

π̂ML
0 0.11 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.01 0.00

π̂ML
1 0.25 0.12 0.02 0.01 0.18 0.05 0.02 0.01 0.05 0.00

π̂ML
2 0.58 0.80 0.92 0.97 0.71 0.93 0.93 0.97 0.87 1.00

π̂ML
3 0.04 0.07 0.03 0.02 0.05 0.02 0.04 0.02 0.05 0.00

π̂ML
4 0.00 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.00 0.00

π̂BIC0 0.39 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.13 0.00

π̂BIC1 0.29 0.31 0.21 0.17 0.19 0.05 0.05 0.04 0.09 0.00

π̂BIC2 0.32 0.67 0.73 0.75 0.64 0.93 0.95 0.94 0.77 1.00

π̂BIC3 0.00 0.02 0.05 0.07 0.01 0.02 0.00 0.02 0.01 0.00

π̂BIC4 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
PCp1 8.00 7.87 7.69 7.18 8.00 8.00 7.74 7.08 8.00 8.00
ICp1 8.00 7.49 4.84 2.45 8.00 7.91 4.95 2.04 8.00 8.00
E(d21) 4.40 0.78 0.31 0.17 4.40 0.78 0.31 0.17 0.18 0.18
E(d2) 0.11 0.05 0.03 0.02 0.11 0.05 0.03 0.02 0.01 0.01

Table 5: Average estimated values for r1 using 100 simulations (r̂ML
1 , r̂BIC1 , r̂BMA,ML

1 , r̂BMA,BIC
1 ,

PCp1,ICp1), and proportion of times that each model was chosen (π̂ML
r1 , π̂BICr1 ). E(d21) and E(d2) are

measures of model misspecification, and are calculated with 50000 replications.
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θ = 2 θ = 0.1
r = 10 r = 20 r = 30 r = 40 r = 10

r1 = 0 BMA r1 = 0 BMA r1 = 0 BMA r1 = 0 BMA r1 = 0 BMA
c99 90 98 82 98 79 99 75 96 80 100
c95 76 92 66 92 74 92 65 83 65 96

g11 c90 70 88 54 83 68 84 50 70 58 87
Bias (%) -6.0 -2.0 -5.3 4.0 -10.6 6.1 -12.4 14.4 -5.8 -0.8
MAE (%) 10.9 10.0 14.3 13.5 12.5 11.6 14.5 18.7 13.7 14.1

c99 82 93 94 100 95 98 94 97 86 99
c95 77 81 87 96 87 94 88 94 72 96

%12 c90 73 79 76 94 81 89 81 86 64 91
Bias 0.003 0.002 0.009 0.009 0.003 -0.005 0.000 -0.013 0.010 0.012
MAE 0.064 0.065 0.048 0.048 0.053 0.057 0.056 0.062 0.058 0.053
c99 0 94 0 84 0 90 0 89 0 89
c95 0 83 0 64 0 80 0 72 0 77

p11 c90 0 74 0 55 0 71 0 62 0 63
Bias -0.43 0.06 -0.73 0.07 -0.40 0.05 -0.39 0.08 -0.89 -0.01
MAE 0.43 0.13 0.73 0.07 0.40 0.07 0.39 0.09 0.89 0.03
c99 64 98 43 100 70 99 64 98 37 99
c95 50 94 37 97 56 96 47 94 29 93

σ11,t c90 45 90 34 91 48 92 41 85 24 85
Bias (%) 1.97 -2.85 12.01 3.14 -4.73 1.57 -4.38 1.91 33.60 12.07
MAE (%) 19.90 15.82 32.12 22.05 18.07 14.82 21.96 17.05 51.33 33.97

c99 65 95 51 99 72 98 71 99 43 100
c95 49 79 43 95 61 94 60 97 30 97

%12,t c90 44 74 39 92 55 91 54 92 24 85
Bias -0.04 -0.03 0.03 0.02 -0.02 0.00 -0.01 0.00 0.00 -0.01
MAE 0.13 0.10 0.12 0.10 0.10 0.07 0.11 0.09 0.14 0.11
c99 97 99 89 99 88 99 77 100 92 97
c95 90 93 78 94 77 95 69 96 85 90

σ̄11 c90 80 90 69 89 69 89 54 89 80 87
Bias (%) -5.95 -2.95 -7.01 -0.62 -10.55 1.30 -12.94 3.47 -5.93 -2.78
MAE (%) 8.56 7.49 10.46 8.16 11.22 7.65 13.40 9.19 9.75 8.48

Table 6: Performance of estimates with T = 250. cα is the coverage of an α% posterior credible interval,
measured as the number of times that the interval contained the true value over 100 simulations. The
columns labeled as BMA refer to the performance of BMA estimates, and those labeled with r1 = 0
refer to the estimates from the model that assumes r1 = 0
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θ = 2 θ = 0.1
r = 10 r = 20 r = 30 r = 40 r = 10

r1 = 0 BMA r1 = 0 BMA r1 = 0 BMA r1 = 0 BMA r1 = 0 BMA
c99 96 98 90 96 88 99 86 100 75 100
c95 83 97 81 92 77 94 71 96 63 97

g11 c90 77 90 71 88 72 87 61 91 57 94
Bias (%) -2.27 -0.66 -3.15 0.84 -5.00 2.46 -7.45 2.09 1.14 1.15
MAE (%) 6.86 6.63 7.39 6.32 7.76 7.30 8.61 6.52 10.76 9.53

c99 95 96 94 98 97 100 97 99 82 99
c95 92 93 82 92 86 95 87 93 72 98

%12 c90 82 90 75 87 77 89 76 84 64 95
Bias 0.00 -0.01 0.00 0.00 0.01 0.00 -0.01 -0.01 -0.01 0.00
MAE 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
c99 0 76 0 80 0 87 0 98 0 72
c95 0 59 0 63 0 75 0 89 0 59

p11 c90 0 53 0 50 0 64 0 84 0 51
Bias -0.38 0.07 -0.41 0.05 -0.42 0.04 -0.34 0.03 -0.87 0.01
MAE 0.38 0.13 0.41 0.07 0.42 0.05 0.34 0.04 0.87 0.02
c99 58 95 50 98 43 98 66 99 75 100
c95 47 92 40 89 38 92 56 96 63 97

σ11,t c90 38 88 35 83 33 86 47 90 57 94
Bias (%) 2.3 -1.2 6.9 1.9 2.6 -1.9 -5.5 -1.5 1.1 1.1
MAE (%) 17.8 13.6 23.7 16.5 21.8 15.2 15.8 11.0 10.8 9.5

c99 57 92 62 99 61 98 63 99 82 99
c95 41 84 48 92 54 95 53 93 72 98

%12,t c90 35 83 39 88 43 92 46 88 64 95
Bias -0.01 -0.01 -0.02 -0.01 -0.01 0.00 0.01 0.02 -0.01 0.00
MAE 0.11 0.09 0.11 0.09 0.09 0.07 0.10 0.08 0.04 0.04
c99 97 98 99 99 93 99 92 98 94 98
c95 90 93 89 97 84 95 73 95 85 93

σ̄11 c90 84 88 83 93 76 87 59 87 78 89
Bias (%) -3.1 -1.7 -4.3 -0.9 -5.2 0.7 -7.3 0.5 -1.2 -0.4
MAE (%) 5.6 5.2 6.3 4.9 6.7 5.6 8.4 5.7 7.0 6.1

Table 7: Performance of estimates with T = 500. cα is the coverage of an α% posterior credible interval,
measured as the number of times that the interval contained the true value over 100 simulations. The
columns labeled as BMA refer to the performance of BMA estimates, and those labeled with r1 = 0
refer to the estimates from the model that assumes r1 = 0.
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7 Concluding remarks

In this paper we have developed methods for Bayesian inference in an inverted Wishart process for

Stochastic Volatility. The model is invariant to the ordering of the variables and allows for fat tails and

the non-existence of higher moments. We provide a novel algorithm for posterior simulation which uses

a pseudo posterior to define an efficient particle filter, and to obtain a reparameterization that we find

improves computational efficiency.

The modelling framework allows us to determine whether a set of variables share heteroscedastic

shocks and are therefore co-heteroscedastic. Furthermore, the framework allows us to obtain new vari-

ance decompositions as well as new insights on the characteristics of the structural shocks and their

impacts on the variables of interest. We find strong evidence of co-heteroscedasticity in an application

to a large VAR of 20 macroeconomic variables, and found that our model performs better than previous

methods in terms of forecasting performance from horizon 3 onward. A Monte Carlo experiment indi-

cates that our model recovers well the characteristics of approximate factor models with heteroscedastic

factors.

Future research could look into the implications of co-heteroscedasticity for finding portfolio alloca-

tions with smaller risk and for decision making. Another possible venue is to find ways to reduce the

number of free parameters in G through, for example, the use of Wishart graphical models (e.g. Dawid

and Lauritzen (1993), Wang and West (2009)).
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Appendix I

This appendix is for section 4, and derives the pseudo posterior and the compact expression for the

likelihood in (10). The prior π(Z1:T |θ) is:

(2π)−Tnr/2
∣∣I − ρ2∣∣n/2 exp

(
−1

2
tr

(
T∑
t=2

(Zt − Zt−1ρ)
′
(Zt − Zt−1ρ) + (Z ′1Z1) (I − ρ2)

))
(23)

= (2π)−Tnr/2
∣∣I − ρ2∣∣n/2 exp

(
−1

2
tr

(
T−1∑
t=1

(ρ′Z ′tZtρ) +

T∑
t=2

(Z ′tZt)− 2

T∑
t=2

(Z ′tZt−1ρ) + (Z ′1Z1) (I − ρ2)

))

Given the definition of Σt in (3), and defining Ã = (Ã1, A2), the inverse Σ−1t can be written as:

Σ−1t =
(
Ã−1

)′ Kt 0

0 I

 Ã−1 = B1KtB
′
1 +B2B

′
2, for B =

(
Ã−1

)′
= ( B1 B2 ) (24)

where Kt = Z ′tZt. Thus, when we multiply (23) times the pseudo likelihood in (7) we obtain:

π(Z1:T |θ)L̃(Y |Σ1:T , β) = (25)

= exp

(
−1

2
tr

(
T−1∑
t=1

(ρ′Z ′tZtρ) +

T∑
t=2

(Z ′tZt) (I + (1− δ)B′1ete′tB1)− 2

T∑
t=2

(Z ′tZt−1ρ)

))
×

exp

(
−1

2
tr
((

(I − ρ2) + (1− δ)B′1e1e′1B1

)
Z ′1Z1

))
(2π)−Tnr/2

∣∣I − ρ2∣∣n/2 cB̃
where:

cB̃ = exp

(
− (1− δ)

2

T∑
t=1

tr
(
B2B

′
2ete

′

t

))

The terms that depend on ZT in (25) are exp(−0.5tr((Z ′TZT ) (I+(1−δ)B′1eT e′TB1)−2 (Z ′TZT−1ρ)))

and so vec(ZT )|Z1:T−1 is a normal with mean equal to vec(ZT−1ρVT ) and variance VT ⊗ I, with

VT = (I + (1− δ)B′1eT e′TB1)−1. Integrating out ZT from (25) we obtain:
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∫
π(Z1:T |θ)L̃(Y |Σ1:T , β)dZT

= (2π)nr/2 |VT |n/2 exp(
1

2
tr(ρ′Z ′T−1ZT−1ρVT ))×

exp

(
−1

2
tr

(
T−1∑
t=1

(ρ′Z ′tZtρ) +

T−1∑
t=2

(Z ′tZt) (I + (1− δ)B′1ete′tB1)− 2

T−1∑
t=2

(Z ′tZt−1ρ)

))
×

exp

(
−1

2
tr
((

(I − ρ2) + (1− δ)B′1e1e′1B1

)
Z ′1Z1

))
(2π)−Tnr/2

∣∣I − ρ2∣∣n/2 cB̃
The terms that depend on ZT−1 are exp(−0.5tr(

(
Z ′T−1ZT−1

)
(I + (1 − δ)B′1eT−1e

′
T−1B1 + ρρ′) −

2
(
Z ′T−1ZT−2ρ

)
−(Z ′T−1ZT−1ρVT ρ

′))) and so vec(ZT−1)|Z1:T−2 is a normal with mean equal to vec(ZT−2ρVT−1)

and variance VT−1 ⊗ I, with VT−1 = (I + (1 − δ)B′1eT−1e′T−1B1 + ρ(I − VT )ρ′)−1. This process can

be repeated recursively to find the densities described in (8) and (9) and also the following integrating

constant: ∫
π(Z1:T |θ)L̃(Y |Σ1:T , β) =

∣∣I − ρ2∣∣n/2 c̃B T∏
t=1

|Vt|n/2 = c̃

which allows us to write the pseudo posterior as:

π̃(Z1:T |Y, θ) =
π(Z1:T |θ)L̃(Y |Σ1:T , β)

c̃

Then we can write the likelihood as:

L(Y |β, θ) =

∫ ( T∏
t=1

|Σt|−1/2
)

exp(−δ
2

T∑
t=1

tr(Σ−1t ete
′
t))π(Z1:T |θ)L̃(Y |Σ1:T , β)dZ1:T

=

∫ ( T∏
t=1

∣∣Σ−1t ∣∣1/2 exp(−δ
2
tr(B1KtB

′
1ete

′
t))

)
exp(−δ

2

T∑
t=1

tr(B2B
′
2ete

′
t))c̃π̃(Z1:T |Y, θ)dZ1:T

=

∫ ( T∏
t=1

|Kt|1/2

exp( δ2 tr(KtB′1ete
′
tB1))

)(∣∣∣Ã1Ã
′
1 +A2A

′
2

∣∣∣−T/2) c̃π̃(Z1:T |Y, θ)
exp( δ2

∑T
t=1 tr(B2B′2ete
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dZ1:T

= c̃LEπ̃

(
T∏
t=1

[
|Kt|1/2 exp(−δ

2
tr(KtB

′
1ete

′
tB1))

])

which is equal to (10).

Appendix II

This appendix is for Section 5.2. It derives the reverse order representation in (13) - (14) and outlines

the algorithm to obtain a draw of L̃1:T . It also provides a simulation to illustrate the computational
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gains of alternating the order.

To prove the connection between (L1t,K2t) and (L̃1t, K̃2t) in (13), we obtain (L1t,K2t) by first

defining the semi-orthogonal matrix
−→
Z t = Zt(Kt)

−1/2, with Kt = Z ′tZt and its orthogonal complement

−→
Z t⊥ : n× (n− r1) such that:

−→
Z ′t
−→
Z t = Ir1 ,

−→
Z ′t⊥
−→
Z t⊥ = In−r1 ,

−→
Z ′t
−→
Z t⊥ = 0

And transform from Zt to (L1t, L2t), where L1t =
−→
Z ′t−1Zt, L2t =

−→
Z ′t−1,⊥Zt, such that L1t : r1 × r1

is independent of L2t : (n− r1)× r1. Then the process Zt = Zt−1ρ+ εt implies that:

L1t =
−→
Z ′t−1Zt =

(−→
Z t−1

)′
Zt−1︸ ︷︷ ︸

K
1/2
t−1

ρ+
(−→
Z t−1

)′
εt︸ ︷︷ ︸

ε1t

(26)

L1t = K
1/2
t−1ρ+ ε1t, ε1t : r1 × r1, vec(ε1t) ∼ N(0, Ir1 ⊗ Ir1), t > 1

and that:

L2t =
−→
Z ′t−1,⊥Zt =

(−→
Z t−1,⊥

)′
Zt−1ρ︸ ︷︷ ︸

0

+
(−→
Z t−1,⊥

)′
εt =

(−→
Z t−1,⊥

)′
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ε2t

L2t = ε2t, vec(L2t) ∼ N(0, Ir1 ⊗ In−r1)

K2t = L′2tL2t ∼Wr(n− r1, Ir1)

Note that the process Zt = Zt−1ρ + εt with Z1 following the stationary distribution can be equiv-

alently written as Zt−1 = Ztρ + εt with ZT following the stationary distribution19. Therefore we can

apply the same decomposition to the reverse process as follows:

L̃1,t−1 =
−→
Z ′tZt−1 =

(−→
Z t

)′
Zt︸ ︷︷ ︸

K
1/2
t

ρ+
(−→
Z t

)′
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ε1t

(27)

L̃2,t−1 =
−→
Z ′t⊥Zt−1 =

(−→
Z t⊥

)′
Ztρ︸ ︷︷ ︸

0

+
(−→
Z t⊥

)′
εt =

(−→
Z t−1,⊥

)′
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ε2t

K̃2t = L̃′2tL̃2t

19This can easily be proved from Zt = Zt−1ρ + εt by writing (Z1, ..., ZT ) as a vector Z =
(vec(Z1)′, vec(Z2)′, ..., vec(ZT )′)′, and noting that the joint distribution of Z is normal with 0 mean and covariance
V :

V =


(I − ρ2)−1 ⊗ In (I − ρ2)−1ρ⊗ In ... (I − ρ2)−1ρT−1 ⊗ In
ρ′(I − ρ2)−1 ⊗ In (I − ρ2)−1 ⊗ In (I − ρ2)−1ρT−2 ⊗ In

ρ(T−1)′(I − ρ2)−1 ⊗ In ρ(T−2)′(I − ρ2)−1 ⊗ In (I − ρ2)−1 ⊗ In


and also the distribution of Z̃ = (vec(ZT )′, vec(ZT−1)′, ..., vec(Z1)′)′ is normal with the same 0 mean and covariance
matrix V , and so we can also write Zt = Zt+1ρ+ εt provided ZT comes from the stationary distribution.
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Note that L1t =
−→
Z ′t−1Zt = (K

−1/2
t−1 )′Z ′t−1Zt, while L̃1,t−1 =

−→
Z ′tZt−1 = (K

−1/2
t )′Z ′tZt−1, and

therefore we can conclude that Z ′tZt−1 = (K
1/2
t )′L̃1,t−1 = ((K

1/2
t−1)′L1t)

′, from where we can arrive at

(13) and the inverse transformation (17).

The algorithm to generate a value for L̃1:T in reverse order is analogous to the natural order algorithm

in Section 5.1. Let L̃t = (L̃1t, K̃2t) for t < T, L̃T = KT , and L̃1:T = (L̃1, L̃2, ..., L̃T ). Let the N particles

be denoted as L̃kt = (L̃k1t, K̃
k
2t) for t < T and L̃kT = (Kk

T ). Define Kk
t = (L̃k1t)

′L̃k1t+ K̃k
2t for t < T . Given

the definition of Ṽt in (15), the value of L̃1:T at iteration i, denoted as L̃1:T (i) = (L̃1(i), ..., L̃T (i)), can

be generated given the previous value L̃1:T (i− 1) as follows:

Algorithm 4 Reverse order cPFBS.

Step 1: Fix the last particle equal to L̃1:T (i− 1), that is, L̃N1:T = L̃1:T (i− 1)

Step 2: at time t = T ,

(a) sample Kk
T ∼Wr1(n, ṼT ) for k = 1, ..., N − 1, and

(b) compute and normalize the weights:

wkT :=

∣∣Kk
T

∣∣0.5
exp

(
δ
2 tr(K

k
TB
′
1eT e

′
TB1)

) , W k
T := wkT /(

N∑
m=1

wmT ), k = 1, ..., N

Step 3: at times t = T − 1, ..., 1,

(a) sample the indices Akt+1, for k = 1, ..., N − 1, from a multinomial distribution on (1, ..., N) with

probabilities Wt+1 = (W 1
t+1, ...,W

N
t+1)

(b) sample vec(L̃k1t) ∼ N(

(
K
Akt+1

t+1

)1/2

ρṼt, Ir1 ⊗ Ṽt) and K̃k
2t ∼ Wr1(n − r1, Ṽt), calculate Kk

t =

(L̃k1t)
′L̃k1t + K̃k

2t for k = 1, ..., N − 1 and

(c) compute and normalize the weights

wkt :=

∣∣Kk
t

∣∣0.5
exp

(
δ
2 tr(K

k
t B
′
1ete

′
tB1)

) , W k
t := wkt /(

N∑
m=1

wmt ), k = 1, ..., N

Step 4: at time t = 1, sample b1 from a multinomial distribution on (1, ..., N) with probabilities W1,

and set L̃1(i) = L̃b11 .

Step 5: at times t = 2, ..., T

(a) compute the updated weights

w̃kt = wkt f(K
bt−1

t−1 |Kk
t ),..., W̃ k

t := w̃kt /(

N∑
m=1

w̃mt ), k = 1, ..., N , where

µkt = (Kk
t )1/2ρṼt−1, f(K

bt−1

t−1 |Kk
t ) = exp(−1

2
tr(Ṽ −1t−1(L̃

bt−1

1(t−1) − µ
k
t )′(L̃

bt−1

1(t−1) − µ
k
t ))
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N order K1 KT/2 KT K Gain (%)
-1 7853 107 86 91

25 0 3764 124 3938 103 14 31
1 88 80 7587 79
-1 8661 174 332 231

50 0 4640 272 4581 371 61 32
1 321 258 8762 281
-1 9222 579 558 586

80 0 4929 654 4971 801 37 33
1 709 475 9289 601
-1 9843 880 578 1052

110 0 5325 988 5357 1539 46 49
1 1226 974 9427 1030

Table 8: Effective sample size of K with 10000 iterations and r1 = 7 using the Macro data. The column
with label ’order’ takes values (-1,0,1) for reverse, alternating and natural order, respectively. N is the
number of particles and the columns (K1, KT/2, KT ,K̄) give the Effective Sample Size (ESS) with 10000

iterations of sampling the (1,1) element of (K1, KT/2, KT ,K), where K̄ = (K1 + ...+KT )/T . The two

columns under ’Gain (%)’ give the percentage increase in the ESS of the (1,1) element of K when using
alternating order with respect to reverse order (left) and natural order (right). The parameters (G, β)
were fixed equal to their posterior means, n equal to its posterior median and ρ = 0.8Ir1 .

(b) sample bt from a multinomial distribution on (1, ..., N) with probabilities W̃t = (W̃ 1
t , ..., W̃

N
t ),

and set L̃t(i) = L̃btt .

In order to see the impact of alternating the order, we fix (G, β) equal to their posterior means, n

equal to the posterior median and ρ = 0.8Ir1 and calculate the Effective Sample Size (ESS) of the (1,1)

element of Kt for 10000 iterations using the Macro data with r1 = 7 (Table 8). The ESS values are not

adjusted by computing time because the differences in computing time among algorithms are negligible.

We can see that the ESS values of KT are always bigger (smaller) than the ESS values of K1 in the

natural order (reverse order) algorithm, respectively. The alternating order algorithm has always better

ESS than the natural order for K1, and better ESS than the reverse order for KT . The gains imply that

ESS is increased at least by a factor of 6.9 and at most by a factor of 45.7. However, the alternating

order algorithm has lower ESS than the natural order for KT , and lower ESS than the reverse order

for K1, but the factor of increase of the single order algorithms over the alternating algorithm is only

between 1.8 and 2.1. Looking at the ESS of KT/2 (i.e. at the middle of the sample), the alternating

order algorithm has always better ESS (Table 8), with the factor of improvement ranging between 1.01

(with 110 particles) and 1.55 (with 25 particles). To get a measure of which algorithm is overall better

to sample K1:T , we calculate the ESS of K = (K1 + ... + KT )/T . We find that the alternating order

algorithm is the best in all cases, increasing the ESS by at most 61% and at least by 14%. Overall we

can conclude that the ordering in sampling K1:T affects the efficiency of the algorithm, and that for our

dataset alternating the ordering brings always computational gains.
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Appendix III

This appendix is for Section 5.3 and it gives details on the reparameterization function ε = fθ(L1:T ),

its inverse f−1θ (ε), the density πt(θ|ε, β), and a simulation to illustrate the better performance of the

reparameterization.

Defining ε = (a2:T , p1:T , c1:T ), the following algorithm can be used to calculate ε = fθ(L1:T ).

Algorithm 5 To obtain ε = fθ(L1:T ).

Step 1: at time t = 1,

(a) Define K̂1 = (V
−1/2
1 )′K1(V

−1/2
1 ), and ∆1 as an upper triangular matrix such that K̂1 = ∆′1∆1,

with c1 being the off-diagonal elements of ∆1.

(b) Let d1 = (d11, d21, ..., dr11) be the diagonal elements of ∆1. Let p1 = (p11, p21, ..., pr11), with

pi1 = Fχ2(fni1)
(d2i1), where Fχ2(fni1)

(d2i1) is the distribution function of a chi-squared with fni1 = n+ i+ 1

degrees of freedom.

Step 2: at times t = 2, ..., T ,

(a) Calculate at as:

at = (L1t − (Kt−1)1/2ρVt)V
−1/2
t , for t > 1

(b) Calculate K̂2t = (V
−1/2
t )′K2t(V

−1/2
t ), and ∆t as an upper triangular matrix such that K̂2t =

∆′t∆t, with ct being the off-diagonal elements of ∆t.

(c) Let dt = (d1t, d2t, ..., dr1t) be the diagonal elements of ∆t. Let pt = (p1t, p2t, ..., pr1t), with

pit = Fχ2(fnit)
(d2it), where Fχ2(fnit)

(d2it) is the distribution function of a chi-squared with fnit = n−r1+i+1

degrees of freedom.

The inverse transformation is denoted as Lθ∗1:T = f−1θ∗ (ε), for θ∗ = (G∗, ρ∗, n∗), where we write Lθ∗1:T

instead of L1:T to make clear that for a fixed value of ε, L1:T changes when θ changes. For this reason we

also use the notation (Kθ
t ,K

θ
2t, L

θ
1t, V

θ
t ) for (Kt,K2t, L1t, Vt) below. The following algorithm describes

how to obtain Lθ∗1:T = f−1θ∗ (ε).

Algorithm 6 To obtain Lθ∗1:T = f−1θ∗ (ε)

Step 1: Calculate (V θ
∗

1 , V θ
∗

2 , ..., V θ
∗

T ) using the recursion in (9) and the value of θ∗ = (G∗, ρ∗, n∗).

Step 2: at time t = 1

(a) Obtain the vector dn
∗

t = (dn
∗

1t , d
n∗

2t , ..., d
n∗

r1t), by calculating dn
∗

it =
(
F−1
χ2(fn

∗
it )

(pit)
)1/2

, where

F−1
χ2(fn

∗
it )

is the inverse of the distribution function of a chi-squared with fn
∗

it = n∗ + i + 1 degrees

of freedom.
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(b) Construct ∆θ∗

t as an upper triangular matrix with off diagonal elements equal to ct and diagonal

equal to dn
∗

it .

(c) Calculate Kθ∗

1 =
(
(V θ

∗

t )1/2
)′ (

∆θ∗

t

)′
∆θ∗

t (V θ
∗

t )1/2

Step 3: at times t = 2, ..., T

(a) Calculate

Lθ
∗

1t = (Kθ∗

t−1)1/2ρ∗V θ
∗

t + at(V
θ∗

t )1/2

(b) Obtain the vector dn
∗

t = (dn
∗

1t , d
n∗

2t , ..., d
n∗

r1t), by calculating dn
∗

it =
(
F−1
χ2(fn

∗
it )

(pit)
)1/2

, where

F−1
χ2(fn

∗
it )

is the inverse of the distribution function of a chi-squared with fn
∗

it = n∗ − r1 + i + 1 de-

grees of freedom.

(c) Construct ∆θ∗

t as an upper triangular matrix with off diagonal elements equal to ct and with

diagonal equal to dn
∗

t

(d) Calculate Kθ∗

2t =
(
(V θ

∗

t )1/2
)′ (

∆θ∗

t

)′
∆θ∗

t (V θ
∗

t )1/2.

The following proposition gives the conditional posterior density of θ given (ε, β).

Proposition 7 The conditional posterior density of θ given (ε, β), denoted by πt(θ|ε, β), is such that:

πt(θ|ε, β) ∝ π(Lθ1:T |θ)L(Y |Kθ
1:T , β)Jεπ(θ)π(β|θ) (28)

where

L(Y |Kθ
1:T , β) = (2π)

−Tr/2

(
T∏
t=1

∣∣Σ−1t ∣∣1/2
)

exp

(
−1

2

T∑
t=1

tr
(

Σ−1t ete
′

t

))
,

with et = yt − βxt, Σ−1t = B1K
θ
tB
′
1 +B2B

′
2

π(Lθ1:T |θ) =
∣∣Ir1 − ρ2∣∣n/2 exp

(
−1

2
tr
((
Ir1 − ρ2

)
Kθ

1 +M
)) ∣∣Kθ

1

∣∣(n−r1−1)/2 ×
T∏
t=2

|K2t|(n−r1−(r1+1))/2 2−
((T−1)(n−r1)r1)

2

(Γr1 ((n− r1)/2))
T−1

2−
nr1
2

(Γr1 (n/2))
(2π)−

(T−1)r21
2

M =

T∑
t=2

Kθ
t +

T∑
t=2

ρ′Kθ
t−1ρ− 2ρ′

T∑
t=2

(
(
Kθ
t−1
)1/2

)′Lθ1t

Jε =
(
V θ1
)(r1+1)/2

(
T∏
t=2

(
V θt
)(r1+1)/2+r1/2

)(
T∏
t=2

r1∏
i=1

(
(dnit)

(r1−i)

F ′χ2(fnit)
((dnit)

2
)

))

where for t > 1, dnt = (dn1t,...,d
n
r1t) is the diagonal of the Cholesky decomposition of K̂2t = (V

−1/2
t )′K2t(V

−1/2
t ),

whereas for t = 1, dnt = (dn1t,...,d
n
r1t) is the diagonal of the Cholesky decomposition of K̂1 = (V

−1/2
1 )′K1(V

−1/2
1 ).

F ′χ2(fnit)
(d2it) is the density function of a χ2 distribution evaluated at d2it with degrees of freedom fnit =
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n−r1 + i+1 for t > 1, and fnit = n+ i+1 for t = 1. π(θ) is the prior of θ, and π(β|θ) is the conditional

prior of β given θ.

Proof. L(Y |Kθ
1:T , β) is the likelihood given Kθ

1:T , π(Lθ1:T |θ) is the prior of Lθ1:T , and Jε is the

Jacobian of the transformation from L1:T to ε. π(Lθ1:T |θ) can be calculated as:

π(Lθ1:T |θ) = π(Kθ
1 |θ)

T∏
t=2

π(Lθ1t|θ,Kθ
t−1)π(Kθ

2t|θ)

and then use the expressions for the multivariate normal and Wishart densities with parameters specified

as in (12). To calculate the Jacobian Jε note that the Jacobian from K2t to K̂2t (or from K1 to K̂1)

is
(
V θt
)(r1+1)/2

and the Jacobian from K̂2t to its Cholesky decomposition is
r1∏
i=1

(
(dnit)

(r1−i+1)
)

. The

Jacobian from dnit to pit is
(

(dnit)F
′
χ2(fnit)

((dnit)
2
)
)−1

, and the Jacobian from L1t to at is
(
V θt
)r1/2

.

In our estimations we use a normal inverse Wishart prior for G, and a normal prior for ñ = log(n−

2r1) and a beta distribution for ρ. However, in order to perform the Metropolis step we target the

conditional posterior of (G, ñ, ρ̃), where ρ̃ = ln(− ln(1− ρ2)). The prior for π(ρ̃) can be obtained as:

π(ρ̃) = π(ρ)Jρ

Jρ =
1− ρ2

2ρ
(− ln(1− ρ2))

where Jρ is the Jacobian. As a proposal density we use an inverse Wishart for G centered at ((1 −

τG)G(i− 1) + τGĜ), where G(i− 1) is the value of G in the previous iteration and Ĝ is a preliminary

estimate of G. For % = (ñ, ρ̃) we use a normal proposal density centered at ((1 − τρ)%(i − 1) + τρ%̂),

where %̂ is a preliminary estimate and %(i− 1) is the value of % in the previous iteration.

Figure 5 shows the trace plot and autocorrelations when no reparameterization is used, using the

macro data of Section 6.1. We can see that the autocorrelations are much more persistent than those

in Figure 1, particularly for ρ and n. For example, the lag 40 autocorrelation of n (ρ) is 0.87 (0.69)

with no reparameterization, but equal to 0.01 (0.025) with the reparameterization, respectively. The

effective sample sizes (ESS) of 10000 after burn-in iterations for (K, ρ, n, G) are (439, 81, 24, 107),

without reparameterization and equal to (960, 878, 877, 522) with the reparameterization. However,

the computation time with the latter is about 2.3 higher. Therefore, taking into account computation

time, the algorithm with the reparameterization is about 16 times more efficient to sample n, 4.7 times

more efficient to sample ρ, 2.3 times more efficient to sample G and roughly equally efficient to sample

K.
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Figure 5: Trace plot and autocorrelations when no reparameterization is used in the model with r1 = 7
(Macro data). Trace plots and autocorrelations are for the (7,7) element of KT/2, the 4th diagonal
element of ρ, for n and the (1,1) element of G.

Appendix IV

This appendix gives the proof of Proposition 3 presented in Section 5.4, which gives the conditional

posterior of β.

Proof. Standard calculations, similar to those in a multivariate regression model, show that V β is

given by

V β =

(
T∑
t=1

(
Σ−1t ⊗ xtx′t

)
+G−1 ⊗ V −10

)−1
(29)

and that µβ is given by (20). However, expression (29) requires the inversion of a rk × rk matrix. To

obtain (19) first note that (3) and (24) imply that

G−1 = B

 Ĩ−1r1 0

0 Ir2

B′, Σ−1t = B

 Kt 0

0 Ir2

B′

Hence we can write (29) as:

V β =

(B ⊗ Ik)

 T∑
t=1


 Kt 0

0 Ir2

⊗ xtx′t
+

 Ĩ−1r1 0

0 Ir2

⊗ V −10

 (B′ ⊗ Ik)


−1

V β = (Ã⊗ Ik)


 ∑T

t=1Kt ⊗ xtx′t + Ĩ−1r1 ⊗ V
−1
0 0

0 Ir2 ⊗
(∑T

t=1 xtx
′
t + V −10

)


−1

(Ã′ ⊗ Ik)

V β = (Ã1 ⊗ Ik)

(
T∑
t=1

(Kt ⊗ xtx′t) + Ĩ−1r1 ⊗ V
−1
0

)−1
(Ã′1 ⊗ Ik) +A2A

′
2 ⊗

(
T∑
t=1

xtx
′
t + V −10

)−1
(30)

which is equal to (19), and where we have used that Ã ⊗ Ik = (Ã1, A2) ⊗ Ik = (Ã1 ⊗ Ik, A2 ⊗ Ik). To

derive (21) simply note that
((
V β
)1/2)′ (

V β
)1/2

= D1D
′
1 +D2D

′
2 = V β , as we wanted to show.
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