Exact Likelihood for Inverse Gamma Stochastic Volatility Models

By
Roberto Leon-Gonzalez Blessings Majoni

July 2023

GRIPS

National Graduate institute FOR POlicy Studies

National Graduate Institute for Policy Studies
7-22-1 Roppongi, Minato-ku,
Tokyo, Japan 106-8677

Exact Likelihood for Inverse Gamma Stochastic Volatility Models ${ }^{1}$

Roberto Leon-Gonzalez ${ }^{a, b}$, Blessings Majoni ${ }^{a}$
${ }^{a}$ National Graduate Institute for Policy Studies (GRIPS), Japan
${ }^{b}$ The Rimini Centre for Economic Analysis (RCEA)

July, 2023

[^0]
Abstract

We obtain a novel analytic expression of the likelihood for a stationary inverse gamma Stochastic Volatility (SV) model. This allows us to obtain the Maximum Likelihood Estimator for this non linear non gaussian state space model. Further, we obtain both the filtering and smoothing distributions for the inverse volatilities as mixture of gammas and therefore we can provide the smoothed estimates of the volatility. We show that by integrating out the volatilities the model that we obtain has the resemblance of a GARCH in the sense that the formulas are similar, which simplifies computations significantly. The model allows for fat tails in the observed data. We provide empirical applications using exchange rates data for 7 currencies and quarterly inflation data for four countries. We find that the empirical fit of our proposed model is overall better than alternative models for 4 countries currency data and for 2 countries inflation data.

Keywords: Hypergeometric Function, Particle Filter, Parallel Computing, Euler Acceleration.

JEL: C32, C58
MSC: 62M10, 62F99, 62J99, 60J05

1 Introduction

For most non-linear or non-Gaussian state space models it is difficult to obtain the likelihood function in closed form. This prevents the use of Maximum Likelihood Estimation (MLE). As a result most studies use Bayesian estimation with Markov Chain Monte Carlo (MCMC) methods. Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models are simpler to estimate than Stochastic Volatility (SV) models, because the likelihood for a GARCH model can be easily calculated in closed form (e.g. Engle (1982), Bollerslev (1987)). However, SV models have often been found to outperform GARCH models in empirical studies for both macroeconomic and financial data (e.g. Chan \& Grant (2016) and Kim et al. (1998)). In addition, unlike GARCH models, SV models provide not only filtered estimates but also smoothed estimates of the volatility.

Although in linear Gaussian state space models the likelihood is available in closed form and can easily be calculated with the Kalman Filter algorithm (e.g. Durbin and Koopman (2012)), few studies have attempted to obtain a closed form expression for the likelihood in nonlinear non-Gaussian state space models. Shephard (1994) obtains a closed form expression for the likelihood of a non-stationary SV model known as Local Scale Model, showing the similarities to GARCH models. Uhlig (1997) builds on and generalizes Shephard (1994) to the multivariate case. They obtain an analytic expression for the likelihood and posterior density of a SV non-stationary restricted singular Wishart model. Creal (2017) obtains an analytic expression for the likelihood in a SV gamma model and shows that analytic expressions for the likelihood could also be obtained for a family of non linear non Gaussian state space models. The gamma SV model in Creal (2017) implies a variance-gamma distribution for the data and this distribution has thin tails (Madan \& Seneta, 1990). In contrast, inverse gamma SV models imply a student-t distribution, thus, they can account for the fat tails that are observed in most macroeconomic and financial data (Leon-Gonzalez, 2019).

The purpose of this study is to obtain an analytic expression of the likelihood for the inverse gamma SV model. This exact likelihood solution will allow the estimation of the parameters and unobserved states for this non linear and non gaussian state space model by MLE. Without the likelihood expression, estimation of non linear non gaussian state space models generally involves bayesian methods such as Markov Chain Monte Carlo. We show that by marginalising out the volatilities, the model that we obtain has the resemblance of a GARCH in the sense that the formulas that we get are similar, which simplifies computations significantly. Moreover, the likelihood function proposed in this paper can be calculated efficiently using a simple recursion. The calculations can be accelerated by doing
computations in parallel, as well as by applying Euler or other acceleration techniques to the Gauss hypergeometric functions in the likelihood. In addition to obtaining the exact likelihood, we obtain analytically the expressions for the smoothed and filtered estimates of the volatilities. We provide the computer code to calculate the likelihood as a user-friendly R package.

Section 2 reviews the literature on previous attempts to obtain analytically the likelihood expressions for non linear non gaussian state space models. Section 3 describes our model and derives the analytic expression of the likelihood. In addition the section provides the analytic expressions for the filtering and smoothing distributions of the volatilities. Section 4 evaluates the empirical performance and computational efficiency of the proposed novel algorithm with a comparison to other methods. We provide empirical applications using exchange rates data for 7 currencies to the US dollar and quarterly inflation data for four countries. Section 5 concludes.

2 Literature Review

2.1 Stochastic Volatility Models with an Exact Likelihood

There are very few non linear non gaussian state space models for which the likelihood can be obtained exactly. In what follows we review some of the SV models for which an analytic expression of the likelihood has been obtained.

To obtain the maximum likelihood estimates for a generalised non stationary local scale model, Shephard (1994) uses the conjugacy between the gamma and the beta distribution. Using our notation, their model for a univariate observed variable y_{t} can be expressed as:

$$
y_{t}=x_{t} \beta+h_{t}^{-\frac{1}{2}} e_{t}, \quad e_{t} \sim N(0,1)
$$

where x_{t} is a vector of predetermined variables which could include lags of y_{t}, and the inverse of h_{t} is the time varying volatility. The law of motion for the volatilities is:

$$
\begin{equation*}
h_{t+1}=h_{t} \frac{\nu_{t}}{\lambda} \quad \quad \nu_{t} \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \tag{2.1}
\end{equation*}
$$

with $\alpha_{2}=\frac{1}{2}$. The initial distribution is a gamma with parameters ν and S_{1} such that h_{1}
has the following density function:

$$
\begin{equation*}
f\left(h_{1} \mid S_{1}\right)=h_{1}^{\frac{\nu}{2}-1} \exp \left(-\frac{h_{1}}{2 S_{1}}\right) \frac{1}{\Gamma(\nu / 2)\left(2 S_{1}\right)^{\frac{\nu}{2}}} \tag{2.2}
\end{equation*}
$$

where for mathematical convenience the initial density is restricted such that $\alpha_{1}=\frac{\nu}{2}$. The parameters to be estimated are β, ν, λ and S_{1}. Note that, in contrast with the other models in this paper, the volatility follows a non-stationary process. As shown in subsection 6.6 of the Appendix, defining $Z=h_{1}-\lambda h_{2}$ for $\in(0, \infty)$, the likelihood for this model can be obtained by integrating over the state variable Z. Given that the process for the stochastic volatility is multiplicative, the likelihood is as follows:

$$
\begin{equation*}
\pi\left(y_{t} \mid y_{1: t-1}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right)} \lambda^{\alpha_{1}}\left(\frac{S_{t+1}}{S_{t}}\right)^{\alpha_{1}} \frac{1}{\sqrt{2 \pi}}\left(2\left(\left(y_{t}-x_{t} \beta\right)^{2}+\frac{1}{S_{t}}\right)^{-1}\right)^{\alpha_{2}} \tag{2.3}
\end{equation*}
$$

where $S_{t}=\left(\left(y_{t-1}-x_{t-1} \beta\right)^{2}+\frac{1}{S_{t-1}}\right)^{-1} \frac{1}{\lambda}$ and $y_{1: t-1}=\left(y_{1}, y_{2}, \ldots, y_{t-1}\right)$. To facilitate the reading here and in the following we do not write explicitly x_{t} as a conditioning argument.

The framework in Shephard (1994) provides a formal justification to Bayesian methods of variance discounting used in earlier literature (West \& Harrison (2006), p.p. 360-361).

Creal (2017) shows that closed form solutions for the likelihood can be obtained for a family of non linear state space models with observation densities $p\left(y_{t} \mid h_{t}, x_{t} ; \theta\right)$, in which the continuous valued time varying state variable h_{t} can be analytically integrated out conditionally on a discrete auxiliary variable $z_{t} . x_{t}$ in these models are the predetermined regressors and θ is a parameter vector. The models in this class are defined as follows:

$$
\begin{aligned}
& y_{t} \backsim p\left(y_{t} \mid h_{t}, x_{t} ; \theta\right) \\
& h_{t} \backsim \operatorname{Gamma}\left(\nu+z_{t}, c\right) \\
& z_{t} \backsim \operatorname{Poisson}\left(\frac{\phi h_{t-1}}{c}\right)
\end{aligned}
$$

where c is a scale parameter and ϕ determines the persistence of the state variable. For example Creal (2017) provides the following two alternative sufficient conditions for being able to integrate analytically these densities conditional on z_{t} :

$$
\begin{aligned}
& p\left(h_{t} \mid \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \propto h_{t}^{\alpha_{1}} \exp \left(\alpha_{2} h_{t}+\alpha_{3} h_{t}^{-1}\right) \\
& p\left(h_{t} \mid \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \propto h_{t}^{\alpha_{1}}\left(1+h_{t}\right)^{\alpha_{2}} \exp \left(\alpha_{3} h_{t}\right)
\end{aligned}
$$

where $\alpha_{1: 3}$ are functions of only the observations and parameters of the model. Thus, the contribution to the likelihood of one observation conditional on z_{t} can be obtained by integrating out the continuous state variables h_{t} analytically. The model that is obtained after integration simplifies to a Markov Switching model over the support of the non-negative discrete state variables z_{t}. The likelihood for these Markov Switching models can therefore be obtained recursively. Creal (2017) gives the detailed recursive formulas to obtain the likelihood for some specific models within this family, such as the gamma stochastic volatility models, stochastic duration models, stochastic count models and cox processes.

The gamma SV model by Creal (2017) can be expressed as follows:

$$
y_{t}=\mu+x_{t} \beta+\gamma h_{t}+\sqrt{h_{t}} e_{t}, \quad e_{t} \sim N(0,1)
$$

where γ determines the skewness. When $\gamma=0$ the model implies a variance-gamma distribution for the observed variable, which has thin tails (Madan \& Seneta, 1990). The initial stationary distribution is $h_{1} \backsim \operatorname{Gamma}\left(\nu, \frac{c}{1-\phi}\right)$ and the unconditional mean is $E\left(h_{1}\right)=\frac{\nu c}{1-\phi}$.

More recently Sundararajan \& Barreto-Souza (2023) propose a composite likelihood approach for the same model that we analyze in this paper, and which was estimated with Bayesian methods earlier by Leon-Gonzalez (2019). While they do not obtain the MLE as we do, their approach uses an expectation maximization algorithm to find the maximum of the composite likelihood, albeit with some restrictions.

3 Model Specification, Likelihood and Volatility Estimates

The model that we analyze is the same as in Leon-Gonzalez (2019) and assumes that the distribution of the one dimensional y_{t} conditional on an observed predetermined vector of regressors x_{t} can be described as follows:

$$
\begin{equation*}
y_{t}=\mu+x_{t} \beta+e_{t}, \quad \quad e_{t} \left\lvert\, k_{t} \sim N\left(0, \frac{1}{k_{t} B^{2}}\right)\right. \tag{3.1}
\end{equation*}
$$

where β is a conformable vector of coefficients, μ and B^{2} are scalar parameters and e_{t} is independent of x_{t}. The state variable k_{t} follows an autoregressive Gamma process (Gouriéroux \& Jasiak, 2006) which can be described by writing $k_{t}=z_{t}^{\prime} z_{t}$, where z_{t} is a $n \times 1$ vector that
has the following Gaussian $\mathrm{AR}(1)$ representation:

$$
\begin{equation*}
z_{t}=\rho z_{t-1}+\varepsilon_{t} \quad \varepsilon_{t} \sim N\left(0, \theta^{2} I_{n}\right) \tag{3.2}
\end{equation*}
$$

where ρ is a scalar that controls the persistence of the volatility, with $|\rho|<1$. The stationary and initial distribution of the time varying inverse volatility k_{t} is a gamma with n degrees of freedom, such that $k_{1} \backsim \operatorname{Gamma}\left(n / 2, \frac{2 \theta^{2}}{1-\rho^{2}}\right)$. Therefore we have that $E\left(\frac{1}{k_{t} B^{2}}\right)=E\left(\operatorname{Var}\left(e_{t} \mid k_{t}\right)\right)=\frac{1}{B^{2}} \frac{1-\rho^{2}}{n-2}$, provided that $n>2$, where as a normalization we assume $\theta^{2}=1$ because we have B^{2} in (3.1). For $0<n \leq 2$ the model is well-defined but the volatility does not have a finite mean. The conditional distribution of $k_{t} \mid k_{t-1}$ is a non central chi-squared times a parameter constant that can be written as a mixture of gammas. The noncentral chi squared is well defined for non-integer values of n, so we will treat the unknown parameter n as a continuous parameter.

Then, given the properties of a gamma, the conditional mean of the inverse volatility k_{t} given previous history of k_{t} is a weighted average of the unconditional mean of k_{t} and its previous value k_{t-1}.

$$
E\left(k_{t} \mid k_{t-1}\right)=\rho^{2} k_{t-1}+\left(1-\rho^{2}\right) E\left(k_{t}\right)
$$

where $\rho^{2} k_{t-1}$ represents the non centrality parameter. k_{t} is correlated with its previous value and this generates the persistence in the squared residuals, a characteristic feature of time-varying variance models.

The inverse gamma specification implies a student-t distribution with n degrees of freedom for y_{t} thus enabling us to model heavy tailed distributions. In contrast, the gamma SV model (Creal, 2017) implies a variance-gamma distribution, which has thin tails (Madan \& Seneta, 1990). The local scale model of Shephard (1994) is non-stationary, unlike ours which is stationary. In addition, the local scale model requires a restriction on the initial distribution for conjugacy (i.e. $\nu=2 \alpha_{1}$).

Integrating out analytically the volatilities in our model not only allows us to get a closed form expression for the likelihood, but also to see the similarity of our model to GARCH models. In particular we can see that the variance at each point in time given previous data is a (nonlinear) function of previous residuals. Using the filtering distributions in Section 3.2 , we obtain the following:

- $y_{1} \mid k_{1} \sim N\left(\mu+x_{1} \beta,\left(B^{2} k_{1}\right)^{-1}\right)$, where k_{1} is a gamma. Therefore the first observation is a student-t with n degrees of freedom.
- Similarly for the second observation $y_{2} \mid y_{1}, k_{2} \sim N\left(\mu+x_{2} \beta,\left(B^{2} k_{2}\right)^{-1}\right)$, where $k_{2} \mid y_{1}$ is a mixture of gammas. $E\left(k_{2} \mid y_{1}\right)$ is a nonlinear function of past residuals.
- For any t, $y_{t} \mid y_{t-1}, \ldots, y_{1}, k_{t} \sim N\left(\mu+x_{t} \beta,\left(B^{2} k_{t}\right)^{-1}\right)$, where $k_{t} \mid y_{t-1}, \ldots, y_{1}$ is a mixture of gammas, whose expected value is a nonlinear function of all past residuals.

Thus, integrating out the volatilities gives a structure similar to GARCH models, but with a different functional form and distribution.

3.1 The Likelihood

The following proposition, whose proof is in Appendix 6.2, gives the likelihood for the model described in equations (3.1)-(3.2).

Proposition 3.1. Let $e_{t}=y_{t}-\mu-x_{t} \beta$ for $t=1, \ldots, T$. The likelihood for the first observation is:

$$
L\left(y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} 2^{\frac{1}{2}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\left|B^{2} e_{1}^{2}+V_{1}^{-1}\right|^{-\frac{n+1}{2}} V_{1}^{-\frac{n}{2}}
$$

for the second is:

$$
L\left(y_{2} \mid y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{\left(B^{2} e_{2}^{2}+1\right)^{-\frac{n+1}{2}}}{\left(1-\delta_{2}\right)^{-\frac{n+1}{2}}} \hat{C}_{2}
$$

for the third is:

$$
L\left(y_{3} \mid y_{2}, y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{3}} \sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \frac{\Gamma\left(\frac{n+1+2 h_{2}}{2}\right)}{\left(B^{2} e_{3}^{2}+1\right)^{\frac{n+1}{2}}}\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \hat{C}_{3}
$$

for the fourth is:

$$
L\left(y_{4} \mid y_{3}, y_{2}, y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{4}} \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3}} \frac{\Gamma\left(\frac{n+1+2 h_{3}}{2}\right)}{\left(B^{2} e_{4}^{2}+1\right)^{\frac{n+1}{2}}}\left(2 S_{4}\right)^{\frac{n+1+2 h_{3}}{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \hat{C}_{4}
$$

and for any $t \geq 3$ is

$$
L\left(y_{t} \mid y_{1: t-1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{t}} \sum_{h_{t-1}=0}^{\infty} \widetilde{C}_{t-1, h_{t-1}} \frac{\Gamma\left(\frac{n+1+2 h_{t-1}}{2}\right)}{\left(B^{2} e_{t}^{2}+1\right)^{\frac{n+1}{2}}}\left(2 S_{t}\right)^{\frac{n+1+2 h_{t-1}}{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \hat{C}_{t}
$$

where:

$$
\begin{aligned}
& V_{1}=\left(1-\rho^{2}\right)^{-1} \\
& \widetilde{V}_{2}^{-1}=V_{1}^{-1}+B^{2} e_{1}^{2} \\
& \delta_{2}=\rho^{2}\left(\widetilde{V}_{2}^{-1}+\rho^{2}\right)^{-1} \\
& Z_{2}=\left(1+B^{2} e_{2}^{2}\right)^{-1} \delta_{2} \\
& \widetilde{C}_{2, h_{2}}=\frac{[(n+1) / 2]_{h_{2}}}{[n / 2]_{h_{2}}}\left(\frac{1}{2} \rho^{2}\left(\widetilde{V}_{2}^{-1}+\rho^{2}\right)^{-1}\right)^{h_{2}} \frac{1}{h_{2}!} \\
& \widetilde{C}_{3, h_{3}}=\sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \Gamma\left(\frac{n+1+2 h_{2}}{2}\right) \frac{\left[(n+1) / 2+h_{2}\right]_{h_{3}}}{[n / 2]_{h_{3}}}\left(\frac{1}{2} \rho^{2} S_{3}\right)^{h_{3}} \frac{1}{h_{3}!}\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}} \\
& c_{3}={ }_{2} F_{1}\left(\frac{n+1}{2}, \frac{n+1}{2} ; \frac{n}{2} ; \delta_{3}\right) \Gamma\left(\frac{n+1}{2}\right)\left(1-\rho^{2} S_{3}\right)^{-\frac{n+1}{2}}\left(2 S_{3}\right)^{\frac{n+1}{2}} \\
& \hat{C}_{t}={ }_{2} F_{1}\left(\frac{n+1+2 h_{t-1}}{2}, \frac{n+1}{2} ; \frac{n}{2} ; Z_{t}\right) \text { for } t \geq 2 \text { and where } h_{1}=0
\end{aligned}
$$

for $T \geq t \geq 3$

$$
\begin{aligned}
& S_{t}=\left(1+B^{2} e_{t-1}^{2}+\rho^{2}\right)^{-1} \\
& \tilde{V}_{t}^{-1}=1+B^{2} e_{t-1}^{2} \\
& Z_{t}=\left(B^{2} e_{t}^{2}+1\right)^{-1} S_{t} \rho^{2} \\
& \delta_{t}=\left(\left(1-\rho^{2} S_{t}\right)^{-1} S_{t} \rho^{2}\left(\widetilde{V}_{t-1}^{-1}+\rho^{2}\right)^{-1}\right)
\end{aligned}
$$

and for $T+1 \geq t \geq 4$

$$
c_{t}=\sum_{h_{t-1}=0}^{\infty} \widetilde{C}_{t-1, h_{t-1}}\left(1-\rho^{2} S_{t}\right)^{-\frac{n+1+2 h_{t-1}}{2}} \Gamma\left(\frac{n+1+2 h_{t-1}}{2}\right)\left(2 S_{t}\right)^{\frac{n+1+2 h_{t-1}}{2}}
$$

$$
\widetilde{C}_{t-1, h_{t-1}}=
$$

$$
\sum_{h_{t-2}=0}^{\infty} \widetilde{C}_{t-2, h_{t-2}} \Gamma\left(\frac{n+1+2 h_{t-2}}{2}\right) \frac{\left[(n+1) / 2+h_{t-2}\right]_{h_{t-1}}}{[n / 2]_{h_{t-1}}}\left(\frac{1}{2} \rho^{2} S_{t-1}\right)^{h_{t-1}} \frac{\left(2 S_{t-1}\right)^{\frac{n+1+2 h_{t-2}}{2}}}{h_{t-1}!}
$$

and $S_{T+1}=\left(1+B^{2} e_{T}^{2}\right)^{-1}$

The rising factorial is denoted as $[x]_{h}$ and ${ }_{2} F_{1}$ denotes a hypergeometric function (e.g. Muirhead (2005, p. 20)). There are a number of transformations to the ${ }_{2} F_{1}$ hypergeometric functions above to accelerate their convergence. Abramowitz et al. (1988, p.559) defines several transformations such as the Euler transformation:

$$
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{c-a-b}{ }_{2} F_{1}(c-a, c-b ; c ; z)
$$

or a linear combination approach:

$$
\begin{aligned}
{ }_{2} F_{1}(a, b ; c ; z) & =\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}{ }_{2} F_{1}(a, b ; a+b-c+1 ; 1-z) \\
& +(1-z)^{c-a-b} \frac{\Gamma(c) \Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}{ }_{2} F_{1}(c-a, c-b ; c-a-b+1 ; 1-z) \\
& \text { for }(|\arg (1-z)|<\pi)
\end{aligned}
$$

The expression for \hat{C}_{t} above transformed using the Euler transformation becomes:

$$
\hat{C}_{t}=\left(1-Z_{t}\right)^{-\frac{n+2+2 h_{t-1}}{2}}{ }_{2} F_{1}\left(-\frac{1+2 h_{t-1}}{2},-\frac{1}{2} ; \frac{n}{2} ; Z_{t}\right) \text { for } \mathrm{t} \geq 2 \text { and where } h_{1}=0
$$

In our coding we used the Euler acceleration only for \hat{C}_{2} and c_{3}, because for larger values of t the acceleration did not converge when h was large. Regarding the linear combination approach, although we did not implement it in our code for the R package, the acceleration converges. We accelerated the calculations by implementing parallel computing in the code. This is possible because many of the coefficients in the series are the same for every t, therefore they only need to be computed once, which can be done in parallel. We also calculate all the \hat{C}_{t} in parallel. As shown in Section 4, this drastically reduces computation time. The derivatives of the log-likelihood can be obtained as a byproduct of the likelihood calculation.

After integrating out the volatilities, this likelihood can be calculated recursively starting with y_{1}, which is the first observation, to y_{T}. This likelihood is easy to compute and it always converges since $\left|Z_{t}\right|<1$ for all values of t. We truncate the number of terms to calculate the hypergeometric functions to around 350 to ensure convergence, and the sums are truncated at about $h=350$. These truncation values seemed to be sufficient as explained in Table 1 in our application using inflation data.

3.2 Joint Smoothing and Filtering Distributions

In this subsection, we provide the analytical expressions for both the joint smoothing and filtering distributions for the volatilities. Propositions 3.2, 3.3 and 3.4, proved in the Appendix, provide the smoothing distributions in alternative forms. Proposition 3.2 and 3.3 give the conditional distributions $\pi\left(k_{t} \mid k_{(t+1): T}, y_{1: T}\right)$, and $\pi\left(k_{t} \mid k_{1:(t-1)}, y_{1: T}\right)$, respectively, while Proposition 3.4 gives the marginals $\pi\left(k_{t} \mid y_{1: T}\right)$. The filtering distributions are stated after Proposition 3.4.

Proposition 3.2. The joint posterior distribution $\pi\left(k_{1: T} \mid y_{1: T}\right)$ can be obtained from the following conditional densities each of which is a mixture of gammas:

$$
\pi\left(k_{t} \mid k_{(t+1): T}, y_{1: T}\right) \propto\left|k_{t}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{t+1}^{-1} k_{t}\right) \sum_{h=0}^{\infty}\left(C_{t, h}\left|k_{t}\right|^{h}\right), t=1, \ldots, T
$$

where

$$
\begin{aligned}
& C_{1, h}=\frac{1}{h!} \frac{1}{[n / 2]_{h}}\left(\frac{1}{4} \rho^{2} k_{2}\right)^{h} \\
& S_{2}=\left(1+B^{2} e_{1}^{2}\right)^{-1} \\
& S_{T+1}=\left(1+B^{2} e_{T}^{2}\right)^{-1}
\end{aligned}
$$

for $3 \leq t \leq T$

$$
S_{t}=\left(1+B^{2} e_{t-1}^{2}+\rho^{2}\right)^{-1}
$$

and for $2 \leq t<T$:

$$
C_{t, h}=\sum_{h_{t}=0}^{h} \widetilde{C}_{t, h-h_{t}} \frac{1}{[n / 2]_{h_{t}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{t}} \frac{k_{t+1}^{h_{t}}}{h_{t}!}
$$

while for $t=T, C_{t, h}=\widetilde{C}_{t, h}$, and where $\widetilde{C}_{t, h}$ has been defined in Proposition 3.1.
Proposition 3.3. The density $\pi\left(k_{t} \mid k_{1:(t-1)}, y_{1: T}\right)$ is a mixture of gamma distributions and its kernel is proportional to:
$\pi\left(k_{\mathrm{T}-\mathrm{s}} \mid k_{1:(\mathrm{T}-\mathrm{s}-1)}, y_{1: T}\right) \propto\left|k_{\mathrm{T}-\mathrm{s}}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{\mathrm{T}-\mathrm{s}+1}^{-1} k_{\mathrm{T}-\mathrm{s}}\right)\left(\sum_{h=0}^{\infty} a_{\mathrm{T}-\mathrm{s}, h} k_{\mathrm{T}-\mathrm{s}}^{h}\right) \quad s=0, \ldots, T-1$
where

$$
a_{\mathrm{T}-\mathrm{s}, h}=\sum_{h_{\mathrm{T}-\mathrm{s}}=0}^{h} \widetilde{a}_{\mathrm{T}-\mathrm{s}, h-h_{\mathrm{T}-\mathrm{s}}} \frac{1}{\left(h_{\mathrm{T}-\mathrm{s}}\right)!} \frac{1}{[n / 2]_{h_{\mathrm{T}-\mathrm{s}}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{\mathrm{T}-\mathrm{s}}} k_{\mathrm{T}-\mathrm{s}-1}^{h_{\mathrm{T}-1}}, \quad s=1, \ldots, T-2
$$

and

$$
\begin{aligned}
\widetilde{a}_{\mathrm{T}-\mathrm{s}, h_{\mathrm{T}-\mathrm{s}+1}} & =\sum_{h_{\mathrm{T}-\mathrm{s}+2}=0}^{\infty} \widetilde{a}_{\mathrm{T}-\mathrm{s}+1, h_{\mathrm{T}-\mathrm{s}+2}} \Gamma\left(\frac{n+1}{2}+h_{\mathrm{T}-\mathrm{s}+2}\right) \frac{\left[(n+1) / 2+h_{\mathrm{T}-\mathrm{s}+2}\right]_{h_{\mathrm{T}-\mathrm{s}+1}}}{[n / 2]_{h_{\mathrm{T}-\mathrm{s}+1}}} \\
& \times \frac{\left(\frac{1}{2} \rho^{2} S_{\mathrm{T}-\mathrm{s}+2}\right)^{h_{\mathrm{T}-\mathrm{s}+1}}}{\left(h_{\mathrm{T}-\mathrm{s}+1}\right)!}\left(2 S_{\mathrm{T}-\mathrm{s}+2}\right)^{\frac{n+1+2 h_{\mathrm{T}-\mathrm{s}+2}}{2}} \quad s=2, \ldots, T-1
\end{aligned}
$$

with,

$$
\begin{aligned}
a_{T, h} & =\frac{1}{h!} \frac{1}{[n / 2]_{h}}\left(\frac{1}{4} \rho^{2} k_{T-1}\right)^{h} \\
\widetilde{a}_{T-1, h_{T}} & =\frac{[(n+1) / 2]_{h_{T}}}{[n / 2]_{h_{T}}} \frac{\left(\frac{1}{2} \rho^{2} S_{T+1}\right)^{h_{T}}}{\left(h_{T}\right)!}
\end{aligned}
$$

For the case when $s=T-1$, we have $a_{T-s, h}=a_{1, h}=\widetilde{a}_{1, h}$.
We can integrate $\pi\left(k_{1: T}\right) \pi\left(y_{1: T} \mid k_{1: T}\right)$ with respect to $k_{1:(t-1)}$ and with respect to $k_{(t+1): T}$ to obtain the following proposition which gives the marginal density $\pi\left(k_{t} \mid y_{1: T}\right)$ for $t=2, \ldots, T-$ 1. Note that for $t=T$ or $t=1$ the marginal densities are given by Propositions 3.2 and 3.3, respectively.

Proposition 3.4. The density of $\pi\left(k_{t} \mid y_{1: T}\right)$ is that of a mixture of gammas and its kernel is given by:

$$
\pi\left(k_{t} \mid y_{1: T}\right) \propto\left|k_{t}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{t+1}^{-1} k_{t}\right) \sum_{h=0}^{\infty} \widetilde{D}_{t, h}\left|k_{t}\right|^{h}
$$

for $t=2, \ldots, T-1$, where for $2 \leq t<T-1$:

$$
\widetilde{D}_{t, h}=\sum_{h_{t}=0}^{h} \sum_{h_{t+1}=0}^{\infty} \widetilde{C}_{t, h-h_{t}} \frac{1}{[n / 2]_{h_{t}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{t}} \frac{1}{h_{t}!} \frac{\Gamma\left(\frac{n+1}{2}+h_{t}+h_{t+1}\right)}{\left(S_{t+2}^{-1} / 2\right)^{\frac{n+1}{2}+h_{t}+h_{t+1}}} \widetilde{a}_{t+1, h_{t+1}}
$$

and for $t=T-1$:

$$
\widetilde{D}_{T-1, h}=\sum_{h_{T-1}=0}^{h} \widetilde{C}_{T-1, h-h_{T-1}} \frac{1}{[n / 2]_{h_{T-1}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{T-1}} \frac{1}{\left(h_{T-1}\right)!} \frac{\Gamma\left(\frac{n+1}{2}+h_{T-1}\right)}{\left(S_{T+1}^{-1} / 2\right)^{\frac{n+1}{2}+h_{T-1}}}
$$

where $\widetilde{a}_{t+1, h}$ was defined in Proposition 3.3 and $\widetilde{C}_{t, h_{t}}$ was defined in Proposition 3.1.
Regarding the filtering distributions, they were obtained in the proof of Proposition 3.1.

They are a mixture of gammas and the kernel is given by:

$$
\pi\left(k_{t} \mid y_{t-1}, y_{t-2}, \ldots, y_{1}\right) \propto\left|k_{t}\right|^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{t}\right) \sum_{h=0}^{\infty}\left(\widetilde{C}_{t, h}\left|k_{t}\right|^{h}\right), t=1, \ldots, T
$$

where the recursive constants are defined in Proposition 3.1.

4 Empirical Applications

4.1 Macroeconomic Data

To illustrate the efficiency and usefulness of our proposed novel addition to the SV literature, we provide macroeconomic applications using inflation data for the UK, Japan, US and Brazil. The data series were all sourced from the Federal Reserve Bank of St Louis Fred database as the Consumer Price Index (CPI) data and inflation was constructed using the following formula:

$$
\text { Inflation }=\frac{C P I_{t}-C P I_{t-1}}{C P I_{t-1}} \times 100
$$

The number of observations for each series were determined by availability of data. UK data thus covers the period 1960Q2 to 2022Q1 and Japan data is obtained for the period 1960Q4 to 2022Q1. The US inflation data covers the period 1960Q1 to 2021Q4. Due to unavailability of data for earlier years for Brazil we have observations for the period 1981Q1 to 2021Q4. y_{t} is the level of inflation and x_{t} contains a constant and 4 lags of y_{t}. Therefore, for each series we have $244,242,244$ and 160 observations, respectively, after constructing the lags.

Figure 1 illustrates the quarterly inflation series for the four countries in levels. The trend for the evolution of inflation for the US, UK and Japan in the early 1970's and 1980's have slight similarities. However, in later years across all series, inflation evolves differently.

Figure 1: Inflation Rates. The x-axis plots the dates that correspond to the end of each year for the quarterly observations. The y-axis plots the Inflation Rates

Figure 2 shows the Ordinary Least Squares (OLS) residuals for the four countries over the sample period, after regressing the level of inflation on its 4 lags and an intercept. The spikes in volatility observed for Brazil inflation show that the series accumulates periods of consistent high volatility continuously. Overall for all countries, volatility patterns exhibit some extreme values suggesting that models that assume heavier tailed distributions might fit better and improve forecasting.

Figure 2: Residuals Plots. The x-axis plots the time period. The y-axis plots the OLS Residuals

In the maximization algorithm, the initial values for the slope coefficients are equal to the OLS estimates, and for the rest of the parameters we choose values such that the mean volatility implied by the model equals that of the data. We truncate the calculation of hypergeometric functions at 300 terms and we truncate h_{t} in the likelihood at $h_{t}=300$ to ensure convergence.

4.1.1 Smoothed Estimates of the Volatilities

Using the smoothing distributions we are able to obtain an estimate of the variance of e_{t} at each point of time given all available data: $E\left(\operatorname{var}\left(e_{t} \mid k_{t}\right)\right)=E\left(\operatorname{var}\left(y_{t} \mid x_{t}, k_{t}\right)\right)$, where the
expectation is with respect to the smoothing distribution of k_{t} (i.e. $\pi\left(k_{t} \mid y_{1: T}\right)$). This is in contrast to the commonly used GARCH MLE estimates, which can only provide the filtered estimates of the variance: $\operatorname{var}\left(e_{t} \mid y_{1:(t-1)}\right)$. Figure 3 compares the MLE smoothed estimates of the variance at each point in time for each country, to the moving average of the squared OLS residuals obtained from 5 continuous squared residuals.

Figure 3: Smoothed Estimates of the Volatilities. The red lines show the smoothed estimates of the volatilities compared to the moving average of OLS squared residuals displayed in blue

The periods with high residuals coincide with periods of high estimated stochastic volatility each point in time for all the four countries. In particular for the US and UK the estimates
reflect the expectations for high volatility trends observed during periods such as the Great recession and smaller peaks in volatility representing the covid recessions.

4.1.2 Accuracy Check

We compare our novel algorithm to the Particle Filter to check the accuracy of our computations. Particle filters are commonly used in practice for calculating the likelihood function. Literature has it that they provide an unbiased estimate of the likelihood (see e.g Moral (2004), proposition 7.4.1). We use the UK inflation data for this exercise. Parameter values for both algorithms are set at the maximum likelihood estimates. To evaluate each value of the likelihood we use the average of 110 independent replications of the particle filter proposed in Chan et al. (2020). We set the number of particles to twice the sample size T, that is each particle filter has $T * 2$ particles. We obtained 100 values for the log-likelihood using this method and plot them in Figure 4 together with the value provided by our algorithm.

The exact log likelihood estimate for the UK inflation data is -229.87 . The figure shows that the particle filter value for the log-likelihood goes above and below our exact value. Therefore our solution seems accurate.

Particle Filter vs Exact Value

Figure 4: Particle Filter Estimates. The horizontal blue line represents the exact value obtained using our novel algorithm. Small circles show the 100 log-likelihood estimates, each of which was obtained by averaging 110 runs of the particle filter

4.1.3 Computational Efficiency

In order to calculate the likelihood, we need to truncate the number of terms that are added for the hypergeometric functions (niter), and also we need to truncate h. For simplicity we use the same truncation points for both. Table 1 shows the values of the log likelihood obtained for several truncation values, using the MLE estimates for the parameter values and the four datasets. The value of the log-likelihood remains stable at truncation points of 150 (Japan), 200 (US), 300 (UK) and 350 (Brazil).

Using a truncation point of 350 , the computation time for one evaluation of the likelihood
in seconds for the UK inflation dataset $(T=244)$ is $0.24,0.39,0.72$ and 2.60 when using 18 , 8,4 , or just one computing thread, respectively. For the UK exchange rate dataset ($T=999$) that we use in Section 4.2 a truncation point of 350 was also adequate, and the computation times for the same increase to $0.82,1.42,2.72,10.07$, respectively. The coding was done in C++, linked to the R software and executed in a Ryzen threadripper 3970x processor.

Table 1: Likelihood at different truncation parameter values

	UK	Japan	US	Brazil
niter $=h=100$	-234.59	102.58	-124.61	-392.51
niter $=h=150$	-230.48	102.67	-124.58	-387.29
niter $=h=200$	-229.91	102.67	-124.57	-385.91
niter $=h=300$	-229.87	102.67	-124.57	-385.63
niter $=h=350$	-229.87	102.67	-124.57	-385.62
niter $=h=400$	-229.87	102.67	-124.57	-385.62

4.1.4 Parameter Estimates and Model Comparison

Maximum likelihood parameter estimates are reported in Table 2 for our model using quarterly inflation data for the UK, Japan, US and Brazil and their standard errors in parenthesis. β_{0} is the coefficient of the intercept while $\beta_{1: 4}$ are the coefficients of the lags. Throughout the maximum likelihood estimation, we imposed the constraint $0<\rho<1$ on the persistence of volatility.

Table 2: Inverse Gamma SV Model Maximum Likelihood Estimates

Parameter	UK	Japan	US	Brazil
B^{2}	0.0653	2.2868	0.2845	0.0127
	(0.0354)	(1.2679)	(0.1670)	(0.0064)
ρ	0.9849	0.9734	0.9577	0.9964
n	(0.0091)	(0.0159)	(0.0252)	(0.0048)
	2.2527	2.0529	3.2136	0.7010
β_{0}	(0.6534)	(0.4724)	(0.8377)	(0.1374)
β_{1}	0.1148	0.0053	0.1053	-0.1030
	(0.0492)	(0.0078)	(0.0418)	(0.0810)
β_{2}	0.1256	0.0222	0.5772	1.0604
	(0.0529)	(0.0557)	(0.0701)	(0.0607)
β_{3}	0.1627	0.2592	0.0500	-0.4053
	(0.0479)	(0.0537)	(0.0731)	(0.0499)
β_{4}	-0.1005	0.0247	0.3304	0.4889
	(0.0483)	(0.0517)	(0.0719)	(0.0924)
	0.6140	0.4291	-0.0747	-0.0652
	(0.0485)	(0.0530)	(0.0638)	(0.0315)

The coefficients of the lags are mostly significant, and the estimates of ρ indicate high persistence of the volatility in all countries. In all cases except Brazil, the estimated values of n are bigger than 2, implying a finite value for the expected value of volatility. For Brazil we have $n=0.7$, implying that y_{t} has very fat tails, similar to those of a Cauchy distribution.

We compare the empirical performance of the following 7 models:
M_{1} : Homoscedastic
M_{2} : Local scale model (Shephard, (1994))
M_{3} : Univariate $\operatorname{GARCH}(1,1)$ with normal errors
M_{4} : Univariate $\operatorname{GARCH}(1,1)$ with student t errors
$M_{5}:$ Log Normal stochastic volatility (e.g. Kim et al. (1998))
M_{6} : Gamma stochastic volatility
M_{7} : Inverse Gamma stochastic volatility
Except M_{5} all models are estimated by MLE. The model M_{5} is estimated using Bayesian methods with the R package stochvol (Kastner (2016)), using the default non-informative priors implemented in the package. For this model the value of the log-likelihood at the posterior mean of parameters is evaluated by averaging 50 independent replications of a bootstrap particle filter, with each particle filter having a number of particles equal to 60 times the sample size. The numerical standard error of the log-likelihood estimate was
smaller than 0.02 in all cases. Both the Gaussian and Student t GARCH are specified as $\operatorname{GARCH}(1,1)$, thus they have 8 parameters and 9 parameters respectively given that we have 4 lags and an intercept. The stochastic volatility models have 8 parameters except for the gamma SV model which has an additional parameter for the skewness of volatility.

Table 3 reports the log likelihood values at the maximum likelihood estimates and Table 4 reports the values of the Bayesian Information Criterion (BIC, Schwarz 1978). As expected the homoscedastic model is the worst of all models for all countries. In terms of the loglikelihood the inverse gamma model is the best for the US, and the gamma SV model is the best for the UK and Japan. For Brazil the $\operatorname{GARCH}(1,1)$ with student-t errors has the best value of the log-likelihood, but when penalizing for the number of parameters using the BIC (the smaller the better) the inverse gamma SV model is the best. In summary, using the BIC the gamma SV model is the best for the UK and Japan, and the inverse gamma SV model is the best for the US and Brazil. In the case of the UK and Japan the asymmetry parameter of the Gamma SV model was estimated to be large, which might be the reason for the better performance of this model. In the case of Brazil and the US the residuals appear to have more abrupt changes, which might be the reason for the better performance of the inverse Gamma SV model.

Table 3: Inflation Rates Model Comparisons: Log Likelihood

Model	UK	Japan	US	Brazil
M_{1}	-306.74	18.39	-165.42	-763.33
M_{2}	-230.04	100.17	-129.90	-395.30
M_{3}	-233.01	90.87	-147.72	-387.76
M_{4}	-227.74	107.06	-133.34	-383.97
M_{5}	-229.08	101.96	-126.74	-389.63
M_{6}	-220.88	112.09	-129.33	-475.07
M_{7}	-229.87	102.67	-124.57	-385.62

Table 4: Inflation Rates Model Comparisons: BIC

Model	Parameters	UK	Japan	US	Brazil
T		244	242	244	160
M_{1}	6	646.46	-3.85	363.83	1557.12
M_{2}	8	504.05	-156.42	303.77	831.21
M_{3}	8	509.99	-137.83	339.41	816.11
M_{4}	9	504.95	-164.73	316.15	813.61
M_{5}	8	502.13	-160.00	297.47	819.85
M_{6}	9	491.24	-174.79	308.14	995.81
M_{7}	8	503.72	-161.43	293.12	811.84

4.2 Exchange Rates Data Application

We use 1000 daily exchange rate observations for 7 currencies (GBP, EUR, JPY, CND, AUD, BRL, ZAR) to the USD. The data for the first 6 currencies were obtained from the Board of Governors of the Federal Reserve and covers the period beginning 5 March 2019 and ending 3 March 2023. ZAR was obtained from the South African Reserve Bank for the period 7 May 2019 to 3 March 2023. In this analysis y_{t} is the first differences of the log exchange rate. All models include an intercept but we include no regressors (i.e. x_{t} is empty).

Figure 5 shows the normalised exchange rates for the 7 countries. We calculate the percentage of times that the absolute value of the normalised exchange rate goes beyond 1.96 standard deviations. The JPY, BRL, GBP, CAD, EUR, and AUD have thicker tails than a normal distribution with $5.8 \%, 5.7 \%, 5.9 \%, 5.2 \%, 6.5 \%$ and 6.1% proportions respectively. The ZAR has slightly thinner tails to the normal with 4.8% of the proportion going beyond 1.96 standard deviations.

In addition we obtain the proportion where the absolute value of the normalised exchange rate goes beyond 3.0902 standard deviations, which is 0.2% for a normal distribution. The ZAR has the lowest proportion, with 0.4%, but still larger than the normal. The JPY, BRL, GBP, CAD, EUR, and AUD distribution proportions are $1.8 \%, 1.0 \%, 1.6 \%, 1.3 \%, 1.2 \%, 0.9 \%$, respectively, all of them much greater than the normal.

Figure 5: Normalised Exchange Rates. y_{t} was normalised by subtracting its mean and dividing by the standard deviation. The x-axis plots the dates that correspond to the end of each year for the daily observations. The y-axis plots the normalised y_{t}

Table 5 shows the log likelihood values and Table 6 the BIC values (the smaller the better) across all the 7 models listed above. The best model for the ZAR, which has the thinnest tails, is the Gamma SV model, both in terms of the likelihood and the BIC. For all the other currencies the $\operatorname{GARCH}(1,1)$ with student-t errors has the highest log-likelihood values. However, when taking into account the number of parameters using the BIC, this model is the best only for the EUR and JP. The inverse Gamma SV model is the best for all the other currencies, GBP, CAD, AUD, BRL, with the log normal SV model being equally good for the GBP and BRL.

Table 5: Exchange Rates Model Comparisons: Log likelihood

Model	GBP	EUR	JPY	CAD	AUD	BRL	ZAR
M_{1}	3659.66	3962.76	3770.79	3976.17	3551.11	3123.64	3236.27
M_{2}	3754.46	4053.28	3962.96	4034.74	3637.23	3167.60	3244.68
M_{3}	3747.26	4044.27	3927.91	4027.51	3632.31	3165.52	3249.98
M_{4}	3765.21	4059.93	3987.26	4041.50	3641.47	3171.54	3253.80
M_{5}	3762.50	4055.48	3971.76	4036.88	3638.15	3168.97	3251.93
M_{6}	3759.35	4053.41	3967.96	4034.91	3633.98	3168.72	3257.63
M_{7}	3762.81	4055.50	3973.79	4038.36	3640.23	3168.94	3252.42

Table 6: Exchange Rates Model Comparisons: BIC

Model	Parameters	GBP	EUR	JPY	CAD	AUD	BRL	ZAR
T		999	999	999	999	999	999	999
M_{1}	2	-7305.51	-7911.71	-7527.77	-7938.52	-7088.41	-6233.46	-6458.73
M_{2}	4	-7481.30	-8078.92	-7898.28	-8041.86	-7246.83	-6307.58	-6461.73
M_{3}	4	-7466.89	-8060.91	-7828.19	-8027.39	-7236.99	-6303.42	-6472.33
M_{4}	5	-7495.89	-8085.33	-7939.98	-8048.47	-7248.40	-6308.55	-6473.07
M_{5}	4	-7497.37	-8083.33	-7915.89	-8046.13	-7248.67	-6310.31	-6476.23
M_{6}	5	-7484.16	-8072.29	-7901.38	-8035.29	-7233.42	-6302.92	-6480.73
M_{7}	4	-7497.99	-8083.37	-7919.96	-8049.09	-7252.83	-6310.25	-6477.22

5 Conclusions

This paper obtained an analytic expression for the likelihood of an inverse gamma SV model. As a result it is possible to obtain the Maximum Likelihood estimator. The exact value of the likelihood is also useful for Bayesian estimation and model comparison. Within the literature of nonlinear or non Gaussian state space models this novel approach is one of the very few methods that allow MLE because we are able to obtain the likelihood exactly. We provide the explicit formulas for this likelihood as well as the code to calculate it. Furthermore, we obtained the filtering and smoothing distributions for the inverse volatilities as mixture of gammas, allowing exact sampling from these distributions. Inverse gamma SV models can account for fat tails, which are observed in most macroeconomic and financial data. The approach that we use to obtain the likelihood expression is a result of integrating out the volatilities in the model. This approach is computationally efficient, simple and accurate.

The empirical fit of the inverse gamma SV model is better than other alternative models in the literature with inflation data for two countries and for 4 exchange rates series as shown in the empirical exercises.

References

Abramowitz, M., Stegun, I. A., \& Romer, R. H. (1988). Handbook of mathematical functions with formulas, graphs, and mathematical tables. American Association of Physics Teachers.

Bauwens, L., Lubrano, M., \& Richard, J.-F. (2000). Bayesian inference in dynamic econometric models. OUP Oxford.

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics, 69(3), 542-547.

Chan, J. C., Doucet, A., León-González, R., \& Strachan, R. W. (2020). Multivariate stochastic volatility with co-heteroscedasticity. GRIPS Discussion Papers, 20-09.

Chan, J. C., \& Grant, A. L. (2016). Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Economics, 54, 182-189.

Creal, D. D. (2017). A class of non-gaussian state space models with exact likelihood inference. Journal of Business ${ }^{6}$ Economic Statistics, 35(4), 585-597.

Durbin, J., \& Koopman, S. J. (2012). Time series analysis by state space methods. OUP Oxford.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica: Journal of the econometric society, $50(4), 987-1007$.

Gouriéroux, C., \& Jasiak, J. (2006). Autoregressive gamma processes. Journal of Forecasting, 25(2), 129-152.

Kim, S., Shephard, N., \& Chib, S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. The Review of Economic Studies, 65(3), 361-393.

Leon-Gonzalez, R. (2019). Efficient bayesian inference in generalized inverse gamma processes for stochastic volatility. Econometric Reviews, 38(8), 899-920.

Madan, D. B., \& Seneta, E. (1990). The variance gamma model for share market returns. Journal of Business, 63(4), 511-524.

Moral, P. (2004). Feynman-kac formulae: genealogical and interacting particle systems with applications. Springer.

Muirhead, R. J. (2005). Aspects of multivariate statistical theory. John Wiley \& Sons.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.

Shephard, N. (1994). Local scale models: State space alternative to integrated GARCH processes. Journal of Econometrics, 60(1-2), 181-202.

Sundararajan, R. R., \& Barreto-Souza, W. (2023). Student-t stochastic volatility model with composite likelihood EM-algorithm. Journal of Time Series Analysis, 44, 125-147.

Uhlig, H. (1997). Bayesian vector autoregressions with stochastic volatility. Econometrica: Journal of the Econometric Society, 65(1), 59-73.

West, M., \& Harrison, J. (2006). Bayesian forecasting and dynamic models. Springer Science \& Business Media.

6 Appendix

Proofs for the Lemmas and Proposition results in the paper are stated here.

6.1 Proof of Lemma

To derive the likelihood we will make use of the following lemma, which is a slightly modified version of Theorem 7.3.4 in Muirhead (2005).

Lemma 6.1. For integers $p \leq q$

$$
\begin{array}{r}
\int|K|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} A K\right){ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \frac{1}{4} B K\right) d K=\Gamma\left(\frac{n+1}{2}\right)\left|\frac{1}{2} A\right|^{-\frac{n+1}{2}} \times \\
{ }_{p+1} F_{q}\left(a_{1}, \ldots, a_{p}, \frac{n+1}{2} ; b_{1}, \ldots, b_{q} ; \frac{1}{2} B A^{-1}\right)
\end{array}
$$

where $(n+1) / 2>0$ and ${ }_{p} F_{q}($.$) is a hypergeometric function of scalar argument, provided$ that in the case $p=q$ we have that $\left|0.5 B A^{-1}\right|<1$.

Proof. We apply Theorem 7.3.4 in Muirhead (2005) after making a change of variables. Let $X=\frac{1}{4} B K$ such that $K=4 X B^{-1}$. Thus we have:

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \frac{1}{4} B K\right)={ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; X\right)
$$

Therefore the integral becomes as follows:

$$
\int|X|^{\frac{n+1-2}{2}}\left|4 B^{-1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} 4 A X B^{-1}\right){ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; X\right) d K
$$

We use the Jacobian $d K=\left|4 B^{-1}\right| d X$ to integrate with respect to X :

$$
\int|X|^{\frac{n+1-2}{2}} \exp \left(-2 X B^{-1} A\right)_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; X\right) d X\left|4 B^{-1}\right|^{\frac{n+1}{2}}
$$

This integral is the same as in the theorem, therefore, when we integrate out X we get the following:

$$
\begin{array}{r}
\int \frac{|X|^{\frac{n+1-2}{2}}}{\left|4 B^{-1}\right|^{-\frac{n+1}{2}}} \exp \left(-X 2 B^{-1} A\right)_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; X\right) d X=\Gamma\left(\frac{n+1}{2}\right)\left|\frac{1}{2} A\right|^{-\frac{n+1}{2}} \times \\
{ }_{p+1} F_{q}\left(a_{1}, \ldots, a_{p}, \frac{n+1}{2} ; b_{1}, \ldots, b_{q} ; \frac{1}{2} B A^{-1}\right)
\end{array}
$$

6.2 Proof of Proposition 3.1

Proof. k_{1} is a gamma, Bauwens et al. (2000) gives the prior density for k_{1} as:

$$
\begin{equation*}
\left|k_{1}\right|^{\frac{n-2}{2}} \exp \left(-\frac{1}{2}\left(k_{1}\left(1-\rho^{2}\right)\right)\right) \frac{1}{c_{0}} \tag{6.1}
\end{equation*}
$$

where $c_{0}=\frac{\Gamma\left(\frac{n}{2}\right)}{\left(\frac{1-\rho^{2}}{2}\right)^{\frac{n}{2}}}$, is a constant and Γ is a gamma function. Let $V_{1}^{-1}=\left(1-\rho^{2}\right)$, thus, the likelihood for the first observation is as follows:

$$
\begin{align*}
L\left(y_{1}\right) & =\int L\left(y_{1} \mid k_{1}\right) \pi\left(k_{1}\right) d k_{1} \\
& =\int(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} k_{1}^{\frac{1}{2}} \exp \left(-\frac{1}{2} e_{1}^{2} B^{2} k_{1}\right) k_{1}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2}\left(1-\rho^{2}\right) k_{1}\right) \frac{1}{c_{0}} d k_{1} \tag{6.2}
\end{align*}
$$

The integral is with respect to k_{1}, so after rearranging and combining like terms we have;

$$
L\left(y_{1}\right)=\int(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} k_{1}^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2}\left(B^{2} e_{1}^{2}+V_{1}^{-1}\right) k_{1}\right) \frac{1}{c_{0}} d k_{1}
$$

where $k_{1}^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2}\left(B^{2} e_{1}^{2}+V_{1}^{-1}\right) k_{1}\right)$ is the kernel of a gamma with $n+1$ degrees of freedom. Let $\widetilde{V}_{2}=\left(B^{2} e_{1}^{2}+V_{1}^{-1}\right)^{-1}$, therefore, the density of $k_{1} \mid y_{1}$ is:

$$
\begin{equation*}
\pi\left(k_{1} \mid y_{1}\right)=k_{1}^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} k_{1}{\widetilde{V_{2}}}^{-1}\right) \frac{1}{\overline{c_{0}}} \tag{6.3}
\end{equation*}
$$

with $\overline{c_{0}}=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\left(\frac{\bar{V}_{2}-1}{2}\right)^{\frac{n+1}{2}}}$. Thus, we have the likelihood as:

$$
L\left(y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \Gamma\left(\frac{n+1}{2}\right)\left|\frac{B^{2} e_{1}^{2}+V_{1}^{-1}}{2}\right|^{-\frac{n+1}{2}} \frac{1}{c_{0}}
$$

Taking into account c_{0} we can write the likelihood for $t=1$ as:

$$
L\left(y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} 2^{\frac{1}{2}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\left|B^{2} e_{1}^{2}+V_{1}^{-1}\right|^{-\frac{n+1}{2}} V_{1}^{-\frac{n}{2}}
$$

Define $k_{1: 2}=\left(k_{1}, k_{2}\right)$, then we have the likelihood for the second observation as:

$$
L\left(y_{2} \mid y_{1}\right)=\int L\left(y_{2} \mid k_{1: 2}, y_{1}\right) \pi\left(k_{1: 2} \mid y_{1}\right) d k_{1: 2}
$$

where $\pi\left(k_{1: 2} \mid y_{1}\right)=\pi\left(k_{1} \mid y_{1}\right) \pi\left(k_{2} \mid k_{1}, y_{1}\right)$. The prior for k_{t} unconditionally is a gamma. However, $k_{t} \mid k_{t-1}$ is a non central chi-squared. Muirhead (2005, p. 442) gives this non central chi-squared density as follows:

$$
\begin{equation*}
\pi\left(k_{t} \mid k_{t-1}\right)=k_{t}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{t}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{t-1} k_{t}\right) \exp \left(-\frac{1}{2} \rho^{2} k_{t-1}\right)\left(\Gamma\left(\frac{n}{2}\right)\right)^{-1} \frac{1}{c} \tag{6.4}
\end{equation*}
$$

where ${ }_{0} F_{1}$ is a hypergeometric function, $\rho^{2} k_{t-1}$ is the non-centrality parameter and $c=2^{\frac{n}{2}}$. We can then write the likelihood for the second observation given the first as :

$$
\begin{equation*}
L\left(y_{2} \mid y_{1}\right)=\int(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} k_{2}^{\frac{1}{2}} \exp \left(-\frac{1}{2} B^{2} e_{2}^{2} k_{2}\right) \pi\left(k_{1: 2} \mid y_{1}\right) d k_{1: 2} \tag{6.5}
\end{equation*}
$$

We integrate first with respect to k_{1}. Define l_{2} as representing all the elements in $\pi\left(k_{2} \mid k_{1}\right)$ as given by (6.4) that do not depend on k_{1} as follows:

$$
\begin{equation*}
l_{2}=\left(k_{2}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{2}\right)\right)^{-1}\left(\frac{1}{\Gamma\left(\frac{n}{2}\right)}\right)^{-1}\left(\frac{1}{c}\right)^{-1} \tag{6.6}
\end{equation*}
$$

Given that $\pi\left(k_{2} \mid k_{1}, y_{1}\right)=\pi\left(k_{2} \mid k_{1}\right)$, and given (6.4) and (6.3), we can write $\pi\left(k_{2} \mid y_{1}\right)$ as follows:

$$
\begin{aligned}
& \pi\left(k_{2} \mid y_{1}\right)=\int \pi\left(k_{2} \mid k_{1}, y_{1}\right) \pi\left(k_{1} \mid y_{1}\right) d k_{1}= \\
& \int \frac{1}{\bar{c}_{0}} k_{1}^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2}\left(\widetilde{V}_{2}^{-1} k_{1}\right)\right) \exp \left(-\frac{1}{2}\left(\rho^{2} k_{1}\right)\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{1} k_{2}\right) \frac{1}{l_{2}} d k_{1}
\end{aligned}
$$

where we have used the expression for $\pi\left(k_{1} \mid y_{1}\right)$ in (6.3). We can write the above integral more compactly as:

$$
\int \pi\left(k_{2} \mid k_{1}, y_{1}\right) \pi\left(k_{1} \mid y_{1}\right) d k_{1}=\int \frac{1}{\overline{c_{0}}} k_{1}^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2}\left({\widetilde{V_{2}}}^{-1}+\rho^{2}\right) k_{1}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{1} k_{2}\right) \frac{1}{l_{2}} d k_{1}
$$

Applying Lemma 6.1 the solution to this integral is as follows:

$$
\begin{align*}
\pi\left(k_{2} \mid y_{1}\right)= & \int \pi\left(k_{2} \mid k_{1}, y_{1}\right) \pi\left(k_{1} \mid y_{1}\right) d k_{1}= \\
& \frac{1}{\overline{c_{0}}} \Gamma\left(\frac{n+1}{2}\right)\left|\frac{\widetilde{V}_{2}^{-1}+\rho^{2}}{2}\right|^{-\frac{n+1}{2}}{ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} k_{2} \rho^{2}\left({\widetilde{V_{2}}}^{-1}+\rho^{2}\right)^{-1}\right) \frac{1}{l_{2}} \tag{6.7}
\end{align*}
$$

Given (6.6) and (6.7), the distribution of $k_{2} \mid y_{1}$ is a mixture of gammas as follows:

$$
\begin{equation*}
\pi\left(k_{2} \mid y_{1}\right) \propto k_{2}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{2}\right){ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} k_{2} \rho^{2}\left(\widetilde{V}_{2}^{-1}+\rho^{2}\right)^{-1}\right) \tag{6.8}
\end{equation*}
$$

The normalising constant for this density function can be obtained in closed form. Lemma 6.1 gives the solution to this integral, thus, we have:

$$
\begin{equation*}
\int k_{2}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{2}\right){ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} k_{2} \delta_{2}\right) d k_{2}=\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}{ }_{2} F_{1}\left(\frac{n+1}{2}, \frac{n}{2} ; \frac{n}{2} ; \delta_{2}\right) \tag{6.9}
\end{equation*}
$$

where $\delta_{2}=\rho^{2}\left(\tilde{V}_{2}^{-1}+\rho^{2}\right)^{-1}$. This ${ }_{2} F_{1}\left(\frac{n+1}{2}, \frac{n}{2} ; \frac{n}{2} ; \delta_{2}\right)$ function has the same terms in the denominator and the numerator thus they cancel out and we have:

$$
\begin{equation*}
{ }_{2} F_{1}\left(\frac{n+1}{2}, \frac{n}{2} ; \frac{n}{2} ; \delta_{2}\right)={ }_{1} F_{0}\left(\frac{n+1}{2} ; \delta_{2}\right) \tag{6.10}
\end{equation*}
$$

Therefore, this function simplifies to a known solution for $\left|\delta_{2}\right|<1$, see Muirhead (2005, p.261).

$$
\begin{equation*}
{ }_{1} F_{0}\left(\frac{n+1}{2} ; \delta_{2}\right)=\left(1-\delta_{2}\right)^{-\frac{n+1}{2}} \tag{6.11}
\end{equation*}
$$

Therefore the normalising constant becomes:

$$
\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}{ }_{1} F_{0}\left(\frac{n+1}{2} ; \delta_{2}\right)=\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}\left(1-\delta_{2}\right)^{-\frac{n+1}{2}}
$$

Given this normalising constant, we have the density for $\pi\left(k_{2} \mid y_{1}\right)$ from 6.8 as follows:

$$
\pi\left(k_{2} \mid y_{1}\right)=\frac{1}{c_{1}} k_{2}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{2}\right){ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} k_{2} \rho^{2}\left(\widetilde{V}_{2}^{-1}+\rho^{2}\right)^{-1}\right)
$$

where $c_{1}=\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}\left(1-\delta_{2}\right)^{-\frac{n+1}{2}}$. Thus, the likelihood for the second observation is as follows:

$$
\begin{aligned}
& L\left(y_{2} \mid y_{1}\right)=\int \pi\left(y_{2} \mid k_{2}, y_{1}\right) \pi\left(k_{2} \mid y_{1}\right) d k_{2} \\
& =\int(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} k_{2}^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2}\left(B^{2} e_{2}^{2}+1\right) k_{2}\right) \frac{1}{c_{1}}{ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} k_{2} \rho^{2}\left({\widetilde{V_{2}}}^{-1}+\rho^{2}\right)^{-1}\right) d k_{2}
\end{aligned}
$$

Using again Lemma 6.1 and taking into account c_{1}, the likelihood for the second observation is:

$$
L\left(y_{2} \mid y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{\left(B^{2} e_{2}^{2}+1\right)^{-\frac{n+1}{2}}}{\left(1-\delta_{2}\right)^{-\frac{n+1}{2}}} 2^{2} F_{1}\left(\frac{n+1}{2}, \frac{n+1}{2} ; \frac{n}{2} ;\left(B^{2} e_{2}^{2}+1\right)^{-1} \delta_{2}\right)
$$

Thus we get a Gauss hypergeometric function which can be evaluated easily. Let $Z_{2}=$ $\left(B^{2} e_{2}^{2}+1\right)^{-1} \delta_{2}$ and $\hat{C}_{2}={ }_{2} F_{1}\left(\frac{n+1}{2}, \frac{n+1}{2} ; \frac{n}{2} ; Z_{2}\right)$. This series converges because $\left|Z_{2}\right|<1$ (Abramowitz et al., 1988). To accelerate the convergence of this series we apply the Euler transformation as in Abramowitz et al. (1988) and thus we get:

$$
\begin{equation*}
{ }_{2} F_{1}\left(\frac{n+1}{2}, \frac{n+1}{2} ; \frac{n}{2} ; Z_{2}\right)=\left(1-Z_{2}\right)^{-\frac{n+2}{2}}{ }_{2} F_{1}\left(-\frac{1}{2},-\frac{1}{2} ; \frac{n}{2} ; Z_{2}\right) \tag{6.12}
\end{equation*}
$$

Thus $\hat{C}_{2}={ }_{2} F_{1}\left(\frac{n+1}{2}, \frac{n+1}{2} ; \frac{n}{2} ; Z_{2}\right)=\left(1-Z_{2}\right)^{-\frac{n+2}{2}}{ }_{2} F_{1}\left(-\frac{1}{2},-\frac{1}{2} ; \frac{n}{2} ; Z_{2}\right)$, then we can write the $L\left(y_{2} \mid y_{1}\right)$ as follows:

$$
L\left(y_{2} \mid y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{\left(B^{2} e_{2}^{2}+1\right)^{-\frac{n+1}{2}}}{\left(1-\delta_{2}\right)^{-\frac{n+1}{2}}} \hat{C}_{2}
$$

The density of k_{t} for the third observation is given by:

$$
\pi\left(k_{3} \mid y_{2}, y_{1}\right)=\int \pi\left(k_{3} \mid k_{2}\right) \pi\left(k_{2} \mid y_{2}, y_{1}\right) d k_{2}
$$

where $\pi\left(k_{2} \mid y_{2}, y_{1}\right) \propto \pi\left(k_{2} \mid y_{1}\right) L\left(y_{2} \mid k_{2}, y_{1}\right)$. The distribution for $\pi\left(k_{2} \mid y_{1}\right)$ in (6.8) can be written as follows:

$$
\pi\left(k_{2} \mid y_{1}\right) \propto \sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} k_{2}^{\frac{n+2 h_{2}-2}{2}} \exp \left(-\frac{1}{2} k_{2}\right)
$$

where $\widetilde{C}_{2, h_{2}}=\frac{[(n+1) / 2]_{h_{2}}}{[n / 2] h_{2}}\left(\frac{1}{2} \rho^{2}\left(\widetilde{V}_{2}^{-1}+\rho^{2}\right)^{-1}\right)^{h_{2}} \frac{1}{h_{2}!}$. Thus we have:

$$
\begin{equation*}
\pi\left(k_{2} \mid y_{2}, y_{1}\right) \propto \sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} k_{2}^{\frac{n+1+2 h_{2}-2}{2}} \exp \left(-\frac{1}{2} k_{2}\left(B^{2} e_{2}^{2}+1\right)\right) \tag{6.13}
\end{equation*}
$$

Given (6.4) and (6.13) we have:

$$
\begin{aligned}
\pi\left(k_{3} \mid y_{2}, y_{1}\right) \propto & \int k_{3}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{3}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{2} k_{3}\right) \exp \left(-\frac{1}{2} \rho^{2} k_{2}\right) \\
& \times \sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} k_{2}^{\frac{n+1+2 h_{2}-2}{2}} \exp \left(-\frac{1}{2} k_{2}\left(B^{2} e_{2}^{2}+1\right)\right) \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}} d k_{2}
\end{aligned}
$$

which simplifies to:

$$
\begin{gathered}
\pi\left(k_{3} \mid y_{2}, y_{1}\right) \propto \int k_{3}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{3}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{2} k_{3}\right) \exp \left(-\frac{1}{2}\left(B^{2} e_{2}^{2}+1+\rho^{2}\right) k_{2}\right) \\
\sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} k_{2}^{\frac{n+1+2 h_{2}-2}{2}} \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}} d k_{2}
\end{gathered}
$$

Using Lemma 6.1 the density of $k_{3} \mid y_{2}, y_{1}$ is thus:

$$
\begin{align*}
& \pi\left(k_{3} \mid y_{2}, y_{1}\right)=\frac{1}{c_{3}} k_{3}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{3}\right) \sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \Gamma\left(\frac{n+1+2 h_{2}}{2}\right) \tag{6.14}\\
&{ }_{1} F_{1}\left(\frac{n+1+2 h_{2}}{2} ; \frac{n}{2} ; \frac{1}{2} k_{3} \rho^{2} S_{3}\right)\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}} \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}}
\end{align*}
$$

where $S_{3}=\left(B^{2} e_{2}^{2}+1+\rho^{2}\right)^{-1}$ and c_{3} is the normalising constant as in (6.9) as follows:

$$
c_{3}=\sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \Gamma\left(\frac{n+1+2 h_{2}}{2}\right)\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}}{ }_{2} F_{1}\left(\frac{n+1+2 h_{2}}{2}, \frac{n}{2} ; \frac{n}{2} ; \rho^{2} S_{3}\right)
$$

Similar to (6.10) and (6.11), the hypergeometric function simplifies to get:

$$
c_{3}=\sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \Gamma\left(\frac{n+1+2 h_{2}}{2}\right)\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}}\left(1-\rho^{2} S_{3}\right)^{-\frac{n+1+2 h_{2}}{2}}
$$

Collecting terms dependent on h_{2} we can write c_{3} as

$$
c_{3}=\left(\sum_{h_{2}=0}^{\infty} \frac{[(n+1) / 2]_{h_{2}}}{[n / 2]_{h_{2}}}[(n+1) / 2]_{h_{2}} \frac{\delta_{3}^{h_{2}}}{h_{2}!}\right) \Gamma\left(\frac{n+1}{2}\right)\left(1-\rho^{2} S_{3}\right)^{-\frac{n+1}{2}}\left(2 S_{3}\right)^{\frac{n+1}{2}}
$$

where $\delta_{3}=\left(\left(1-\rho^{2} S_{3}\right)^{-1} S_{3} \rho^{2}\left(\tilde{V}_{2}^{-1}+\rho^{2}\right)^{-1}\right)$. This can be written as:

$$
c_{3}={ }_{2} F_{1}\left(\frac{n+1}{2}, \frac{n+1}{2} ; \frac{n}{2} ; \delta_{3}\right) \Gamma\left(\frac{n+1}{2}\right)\left(1-\rho^{2} S_{3}\right)^{-\frac{n+1}{2}}\left(2 S_{3}\right)^{\frac{n+1}{2}}
$$

Using Euler's acceleration in (6.12) we can transform c_{3} as:

$$
c_{3}=\left(1-\delta_{3}\right)^{-\frac{n+2}{2}}{ }_{2} F_{1}\left(-\frac{1}{2},-\frac{1}{2} ; \frac{n}{2} ; \delta_{3}\right) \Gamma\left(\frac{n+1}{2}\right)\left(1-\rho^{2} S_{3}\right)^{-\frac{n+1}{2}}\left(2 S_{3}\right)^{\frac{n+1}{2}}
$$

Therefore the likelihood for $t=3$ is as follows:

$$
L\left(y_{3} \mid y_{2}, y_{1}\right)=\int \pi\left(y_{3} \mid k_{3}, y_{2}, y_{1}\right) \pi\left(k_{3} \mid y_{2}, y_{1}\right) d k_{3}
$$

Thus we have from (6.14)

$$
\begin{array}{r}
L\left(y_{3} \mid y_{2}, y_{1}\right)=\int(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{3}} k_{3}^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} k_{3}\left(B^{2} e_{3}^{2}+1\right)\right) \sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \Gamma\left(\frac{n+1+2 h_{2}}{2}\right) \\
{ }_{1} F_{1}\left(\frac{n+1+2 h_{2}}{2} ; \frac{n}{2} ; \frac{1}{2} k_{3} \rho^{2} S_{3}\right)\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}} \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}} d k_{3}
\end{array}
$$

and using Lemma 6.1 we get:

$$
\begin{aligned}
& L\left(y_{3} \mid y_{2}, y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{3}} \sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \Gamma\left(\frac{n+1+2 h_{2}}{2}\right)\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}} \Gamma\left(\frac{n+1}{2}\right) 2^{\frac{n+1}{2}} \\
&\left(B^{2} e_{3}^{2}+1\right)^{-\frac{n+1}{2}}{ }_{2} F_{1}\left(\frac{n+1+2 h_{2}}{2}, \frac{n+1}{2} ; \frac{n}{2} ;\left(B^{2} e_{3}^{2}+1\right)^{-1} \rho^{2} S_{3}\right) \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}}
\end{aligned}
$$

Letting $Z_{3}=\left(B^{2} e_{3}^{2}+1\right)^{-1} \rho^{2} S_{3}$, we can define $\hat{C}_{3}={ }_{2} F_{1}\left(\frac{n+1+2 h_{2}}{2}, \frac{n+1}{2} ; \frac{n}{2} ; Z_{3}\right)$. Thus, we have:

$$
L\left(y_{3} \mid y_{2}, y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{3}} \sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \frac{\Gamma\left(\frac{n+1+2 h_{2}}{2}\right)}{\left(B^{2} e_{3}^{2}+1\right)^{\frac{n+1}{2}}}\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \hat{C}_{3}
$$

The filtering density of k_{t} for $t=4$ is given by:

$$
\begin{equation*}
\pi\left(k_{4} \mid y_{3}, y_{2}, y_{1}\right)=\int \pi\left(k_{4} \mid k_{3}, y_{1}, y_{2}, y_{3}\right) \pi\left(k_{3} \mid y_{3}, y_{2}, y_{1}\right) d k_{3} \tag{6.15}
\end{equation*}
$$

where $\pi\left(k_{3} \mid y_{3}, y_{2}, y_{1}\right) \propto \pi\left(k_{3} \mid y_{2}, y_{1}\right) L\left(y_{3} \mid k_{3}, y_{2}, y_{1}\right)$. Let:

$$
\begin{equation*}
\widetilde{C}_{3, h_{3}}=\sum_{h_{2}=0}^{\infty} \widetilde{C}_{2, h_{2}} \Gamma\left(\frac{n+1+2 h_{2}}{2}\right) \frac{\left[(n+1) / 2+h_{2}\right]_{h_{3}}}{[n / 2]_{h_{3}}}\left(\frac{1}{2} \rho^{2} S_{3}\right)^{h_{3}} \frac{1}{h_{3}!}\left(2 S_{3}\right)^{\frac{n+1+2 h_{2}}{2}} \tag{6.16}
\end{equation*}
$$

Then from (6.14) we have that the filtering distribution $k_{3} \mid y_{2}, y_{1}$ is a mixture of gammas as follows:

$$
\pi\left(k_{3} \mid y_{2}, y_{1}\right) \propto \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3}} k_{3}^{\frac{n+2 h_{3}-2}{2}} \exp \left(-\frac{1}{2} k_{3}\right)
$$

As before, when we include the third observation, the distribution of $k_{3} \mid y_{3}, y_{2}, y_{1}$ is also a mixture of gammas and can be written as follows:

$$
\pi\left(k_{3} \mid y_{3}, y_{2}, y_{1}\right) \propto \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3}} k_{3}^{\frac{n+1+2 h_{3}-2}{2}} \exp \left(-\frac{1}{2} k_{3}\left(B^{2} e_{3}^{2}+1\right)\right)
$$

Let $\widetilde{V}_{4}^{-1}=\left(B^{2} e_{3}^{2}+1\right)$. Then, using (6.15) and (6.4), we have the distribution of $k_{4} \mid y_{3}, y_{2}, y_{1}$ as follows:

$$
\begin{gather*}
\pi\left(k_{4} \mid y_{3}, y_{2}, y_{1}\right) \propto \int k_{4}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{4}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{3} k_{4}\right) \exp \left(-\frac{1}{2} \rho^{2} k_{3}\right) \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}} \\
\times \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3}} k_{3}^{\frac{n+1+2 h_{3}-2}{2}} \exp \left(-\frac{1}{2} k_{3} \widetilde{V}_{4}^{-1}\right) d k_{3} \tag{6.17}
\end{gather*}
$$

Taking this integral with respect to k_{3} we get:

$$
\begin{gathered}
\pi\left(k_{4} \mid y_{3}, y_{2}, y_{1}\right) \propto k_{4}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{4}\right) \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3} 1} F_{1}\left(\frac{n+1+2 h_{3}}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{4}\left(\widetilde{V}_{4}^{-1}+\rho^{2}\right)^{-1}\right) \\
\Gamma\left(\frac{n+1+2 h_{3}}{2}\right)\left(2 S_{4}\right)^{\frac{n+1+2 h_{3}}{2}} \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}}
\end{gathered}
$$

where $S_{4}=\left(\widetilde{V}_{4}^{-1}+\rho^{2}\right)^{-1}=\left(B^{2} e_{3}^{2}+1+\rho^{2}\right)^{-1}$. Let c_{4} be the normalising constant, that is:

$$
\begin{array}{r}
c_{4}=\int k_{4}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{4}\right) \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3} 1} F_{1}\left(\frac{n+1+2 h_{3}}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{4}\left(\widetilde{V}_{4}^{-1}+\rho^{2}\right)^{-1}\right) \\
\Gamma\left(\frac{n+1+2 h_{3}}{2}\right)\left(2 S_{4}\right)^{\frac{n+1+2 h_{3}}{2}} \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}} d k_{4}
\end{array}
$$

Thus we get:

$$
c_{4}=\sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3} 2} F_{1}\left(\frac{n+1+2 h_{3}}{2}, \frac{n}{2} ; \frac{n}{2} ; \rho^{2} S_{4}\right) \Gamma\left(\frac{n+1+2 h_{3}}{2}\right)\left(2 S_{4}\right)^{\frac{n+1+2 h_{3}}{2}}
$$

Using (6.10) and (6.11), this simplifies to:

$$
c_{4}=\sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3}}\left(1-\rho^{2} S_{4}\right)^{-\frac{n+1+2 h_{3}}{2}} \Gamma\left(\frac{n+1+2 h_{3}}{2}\right)\left(2 S_{4}\right)^{\frac{n+1+2 h_{3}}{2}}
$$

Thus,

$$
\begin{gathered}
\pi\left(k_{4} \mid y_{3}, y_{2}, y_{1}\right)=\frac{1}{c_{4}} k_{4}^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{4}\right) \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3} 1} F_{1}\left(\frac{n+1+2 h_{3}}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{4}\left(\widetilde{V}_{4}^{-1}+\rho^{2}\right)^{-1}\right) \\
\Gamma\left(\frac{n+1+2 h_{3}}{2}\right)\left(2 S_{4}\right)^{\frac{n+1+2 h_{3}}{2}} \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}}
\end{gathered}
$$

Therefore the likelihood for $t=4$ is as follows:

$$
L\left(y_{4} \mid y_{3}, y_{2}, y_{1}\right)=\int \pi\left(y_{4} \mid k_{4}, y_{3}, y_{2}, y_{1}\right) \pi\left(k_{4} \mid y_{3}, y_{2}, y_{1}\right) d k_{4}
$$

Thus we have:

$$
\begin{gathered}
L\left(y_{4} \mid y_{3}, y_{2}, y_{1}\right)=\int(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{4}} k_{4}^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} k_{4}\left(B^{2} e_{4}^{2}+1\right)\right) \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3}} \Gamma\left(\frac{n+1+2 h_{3}}{2}\right) \\
{ }_{1} F_{1}\left(\frac{n+1+2 h_{3}}{2} ; \frac{n}{2} ; \frac{1}{2} k_{4} \rho^{2} S_{4}\right)\left(2 S_{4}\right)^{\frac{n+1+2 h_{3}}{2}} \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{\frac{n}{2}}} d k_{4}
\end{gathered}
$$

This is similar to $t=3$ therefore we have:

$$
L\left(y_{4} \mid y_{3}, y_{2}, y_{1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{4}} \sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h_{3}} \frac{\Gamma\left(\frac{n+1+2 h_{3}}{2}\right)}{\left(B^{2} e_{4}^{2}+1\right)^{\frac{n+1}{2}}}\left(2 S_{4}\right)^{\frac{n+1+2 h_{3}}{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \hat{C}_{4}
$$

and the likelihood for any t is:

$$
L\left(y_{t} \mid y_{1: t-1}\right)=(2 \pi)^{-\frac{1}{2}} \sqrt{B^{2}} \frac{1}{c_{t}} \sum_{h_{t-1}=0}^{\infty} \widetilde{C}_{t-1, h_{t-1}} \frac{\Gamma\left(\frac{n+1+2 h_{t-1}}{2}\right)}{\left(B^{2} e_{t}^{2}+1\right)^{\frac{n+1}{2}}}\left(2 S_{t}\right)^{\frac{n+1+2 h_{t-1}}{2}} \frac{2^{\frac{n+1}{2}}}{2^{\frac{n}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \hat{C}_{t}
$$

where for $t \geq 4$:

$$
\begin{aligned}
& \delta_{t}=\left(\left(1-\rho^{2} S_{t}\right)^{-1} S_{t} \rho^{2}\left(\widetilde{V}_{t-1}^{-1}+\rho^{2}\right)^{-1}\right) \\
& Z_{t}=\left(B^{2} e_{t}^{2}+1\right)^{-1} S_{t} \rho^{2} \\
& \hat{C}_{t}={ }_{2} F_{1}\left(\frac{n+1+2 h_{t-1}}{2}, \frac{n+1}{2} ; \frac{n}{2} ; Z_{t}\right) \\
& \widetilde{V}_{t}^{-1}=1+B^{2} e_{t-1}^{2} \\
& S_{t}=\left(B^{2} e_{t-1}^{2}+1+\rho^{2}\right)^{-1}=\left(\widetilde{V}_{t}^{-1}+\rho^{2}\right)^{-1} \\
& c_{t}=\sum_{h_{t-1}=0}^{\infty} \widetilde{C}_{t-1, h_{t-1}}\left(1-\rho^{2} S_{t}\right)^{-\frac{n+1+2 h_{t-1}}{2}} \Gamma\left(\frac{n+1+2 h_{t-1}}{2}\right)\left(2 S_{t}\right)^{\frac{n+1+2 h_{t-1}}{2}} \\
& \widetilde{C}_{t-1, h_{t-1}}= \\
& \sum_{h_{t-2}=0}^{\infty} \widetilde{C}_{t-2, h_{t-2}} \Gamma\left(\frac{n+1+2 h_{t-2}}{2}\right) \frac{\left[(n+1) / 2+h_{t-2}\right]_{h_{t-1}}}{[n / 2]_{h_{t-1}}}\left(\frac{1}{2} \rho^{2} S_{t-1}\right)^{h_{t-1}} \frac{\left(2 S_{t-1}\right)^{\frac{n+1+2 h_{t-2}}{2}}}{h_{t-1}!}
\end{aligned}
$$

6.3 Proof of Proposition 3.2

Proof. Combining the prior density for k_{1} in (6.1) with the transition equation in (6.4) and the likelihood, we get:

$$
\begin{align*}
\pi\left(k_{1} \mid k_{2: T}, y_{1: T}\right) & \propto\left|k_{1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{2}^{-1} k_{1}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{1} k_{2}\right) \\
& =\left|k_{1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{2}^{-1} k_{1}\right) \sum_{h=0}^{\infty}\left(C_{1, h}\left|k_{1}\right|^{h}\right) \tag{6.18}
\end{align*}
$$

with $C_{1, h}=\frac{1}{h!} \frac{1}{[n / 2]_{h}}\left(\frac{1}{4} \rho^{2} k_{2}\right)^{h}$.
The integral of (6.18) with respect to k_{1} is proportional to:

$$
{ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{2} S_{2}\right)
$$

and therefore:

$$
\begin{align*}
& \pi\left(k_{2} \mid k_{3: T}, y_{1: T}\right) \\
& \propto\left|k_{2}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{3}^{-1} k_{2}\right){ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{2} S_{2}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{3} k_{2}\right) \tag{6.19}
\end{align*}
$$

where we have used that $S_{3}^{-1}=1+B^{2} e_{2}^{2}+\rho^{2}$. Combining the series we get that:

$$
\begin{align*}
& { }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{2} S_{2}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{3} k_{2}\right)= \\
& \left(\sum_{h_{1}=0}^{\infty} \frac{[(n+1) / 2]_{h_{1}}}{[n / 2]_{h_{1}}} \frac{\left(\frac{1}{2} \rho^{2} S_{2}\right)^{h_{1}} k_{2}^{h_{1}}}{h_{1}!}\right)\left(\sum_{h_{2}=0}^{\infty} \frac{1}{h_{2}!} \frac{1}{[n / 2]_{h_{2}}}\left(\frac{1}{4} \rho^{2} k_{3}\right)^{h_{2}} k_{2}^{h_{2}}\right) \tag{6.20}
\end{align*}
$$

By making the change of variables $h=h_{1}+h_{2}$ we get that (6.20) can be written as:

$$
\begin{equation*}
\sum_{h=0}^{\infty} \sum_{h_{2}=0}^{h}\left(\left(\frac{[(n+1) / 2]_{h-h_{2}}}{[n / 2]_{h-h_{2}}} \frac{\left(\frac{1}{2} \rho^{2} S_{2}\right)^{h-h_{2}}}{\left(h-h_{2}\right)!}\right) \frac{1}{h_{2}!} \frac{1}{[n / 2]_{h_{2}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{2}} k_{3}^{h_{2}}\right) k_{2}^{h}=\sum_{h=0}^{\infty} C_{2, h} k_{2}^{h} \tag{6.21}
\end{equation*}
$$

where:

$$
C_{2, h}=\sum_{h_{2}=0}^{h} \widetilde{C}_{2, h-h_{2}} \frac{1}{h_{2}!} \frac{1}{[n / 2]_{h_{2}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{2}} k_{3}^{h_{2}}
$$

and $\widetilde{C}_{2, h-h_{2}}$ has been defined in proposition 3.1 as:

$$
\widetilde{C}_{2, h-h_{2}}=\frac{[(n+1) / 2]_{h-h_{2}}}{[n / 2]_{h-h_{2}}} \frac{\left(\frac{1}{2} \rho^{2} S_{2}\right)^{h-h_{2}}}{\left(h-h_{2}\right)!}
$$

Using (6.21) we obtain that:

$$
\begin{equation*}
\pi\left(k_{2} \mid k_{3: T}, y_{1: T}\right) \propto\left|k_{2}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{3}^{-1} k_{2}\right) \sum_{h=0}^{\infty}\left(C_{2, h} k_{2}^{h}\right) \tag{6.22}
\end{equation*}
$$

as we wanted to prove.
The integral of (6.22) with respect to k_{2} is proportional to:

$$
\begin{equation*}
\sum_{h=0}^{\infty}\left(C_{2, h} \frac{\Gamma\left(\frac{n+1+2 h}{2}\right)}{\left(S_{3}^{-1} / 2\right)^{\frac{n+1+2 h}{2}}}\right)=\sum_{h=0}^{\infty}\left(\sum_{h_{2}=0}^{h} \widetilde{C}_{2, h-h_{2}} \frac{1}{h_{2}!} \frac{1}{[n / 2]_{h_{2}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{2}} k_{3}^{h_{2}}\right) \frac{\Gamma\left(\frac{n+1+2 h}{2}\right)}{\left(S_{3}^{-1} / 2\right)^{\frac{n+1+2 h}{2}}} \tag{6.23}
\end{equation*}
$$

Making the change of variables $h_{1}=h-h_{2}$, equation (6.23) can be written as:

$$
\begin{equation*}
\sum_{h_{1}=0}^{\infty} \sum_{h_{2}=0}^{\infty}\left(\widetilde{C}_{2, h_{1}} \frac{1}{h_{2}!} \frac{1}{[n / 2]_{h_{2}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{2}} k_{3}^{h_{2}}\right) \frac{\Gamma\left(\frac{n+1}{2}+h_{1}+h_{2}\right)}{\left(S_{3}^{-1} / 2\right)^{\frac{n+1}{2}+h_{1}+h_{2}}} \tag{6.24}
\end{equation*}
$$

Note that $\Gamma\left(\frac{n+1}{2}+h_{1}+h_{2}\right)=\Gamma\left(\frac{n+1+2 h_{1}}{2}\right)\left[\frac{n+1+2 h_{1}}{2}\right]_{h_{2}}$. Then (6.24) can be written as:

$$
\begin{equation*}
\sum_{h_{2}=0}^{\infty} \sum_{h_{1}=0}^{\infty} \widetilde{C}_{2, h_{1}} \Gamma\left(\frac{n+1+2 h_{1}}{2}\right) \frac{\left[(n+1) / 2+h_{1}\right]_{h_{2}}}{[n / 2]_{h_{2}}}\left(\frac{1}{2} \rho^{2} S_{3}\right)^{h_{2}} \frac{1}{h_{2}!}\left(2 S_{3}\right)^{\frac{n+1+2 h_{1}}{2}} k_{3}^{h_{2}} \tag{6.25}
\end{equation*}
$$

Using the definition of $\widetilde{C}_{3, h_{2}}$ in proposition 3.1, we can write (6.25) as:

$$
\sum_{h_{2}=0}^{\infty} \widetilde{C}_{3, h_{2}} k_{3}^{h_{2}}
$$

Recall that the transition density is in (6.4). Therefore, we have:

$$
\pi\left(k_{3} \mid k_{4: T}, y_{1: T}\right) \propto\left(\sum_{h_{2}=0}^{\infty} \widetilde{C}_{3, h_{2}} k_{3}^{h_{2}}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{3} k_{4}\right)\left|k_{3}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{4}^{-1} k_{3}\right)
$$

with $S_{4}^{-1}=1+B^{2} e_{3}^{2}+\rho^{2}$. As before, we can multiply the two series as follows:

$$
\begin{aligned}
& \left(\sum_{h_{2}=0}^{\infty} \widetilde{C}_{3, h_{2}} k_{3}^{h_{2}}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{3} k_{4}\right)=\left(\sum_{h_{2}=0}^{\infty} \widetilde{C}_{3, h_{2}} k_{3}^{h_{2}}\right)\left(\sum_{h_{3}=0}^{\infty} \frac{1}{[n / 2]_{h_{3}}}\left(\frac{1}{4} \rho^{2} k_{3}\right)^{h_{3}} k_{4}^{h_{3}} \frac{1}{h_{3}!}\right) \\
& =\sum_{h=0}^{\infty} \sum_{h_{3}=0}^{h}\left|k_{3}\right|^{h} \widetilde{C}_{3, h-h_{3}} \frac{1}{[n / 2]_{h_{3}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{3}} k_{4}^{h_{3}} \frac{1}{h_{3}!}=\sum_{h=0}^{\infty}\left|k_{3}\right|^{h} C_{3, h}
\end{aligned}
$$

where

$$
C_{3, h}=\sum_{h_{3}=0}^{\infty} \widetilde{C}_{3, h-h_{3}} \frac{1}{[n / 2]_{h_{3}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{3}} \frac{k_{4}^{h_{3}}}{h_{3}!}
$$

and therefore, $\pi\left(k_{3} \mid k_{4: T}, y_{1: T}\right)$ can be written as:

$$
\begin{equation*}
\pi\left(k_{3} \mid k_{4: T}, y_{1: T}\right) \propto\left|k_{3}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{4}^{-1} k_{3}\right) \sum_{h=0}^{\infty}\left|k_{3}\right|^{h} C_{3, h} \tag{6.26}
\end{equation*}
$$

as we wanted to prove.
Since $\pi\left(k_{3} \mid k_{4: T}, y_{1: T}\right)$ in (6.26) and $\pi\left(k_{2} \mid k_{3: T}, y_{1: T}\right)$ in (6.22) have the same structure, and, since the transition density of k_{t} is always the same, we get analogous results for any $t<T$, as we wanted to prove. For $t=T$ the only difference is that there is no transition density from k_{T} to k_{T+1}. For this reason we do not need to multiply two series, and hence $C_{T, h}=\widetilde{C}_{T, h}$ and $S_{T+1}=\left(1+B^{2} e_{T}^{2}\right)^{-1}$

6.4 Proof of Proposition 3.3

Proof. We need to integrate $\pi\left(k_{1: T}\right) \pi\left(y_{1: T} \mid k_{1: T}\right)$ with respect to k_{T} first. The terms that depend on k_{T} are the following:

$$
\begin{gather*}
\exp \left(-\frac{1}{2} e_{T}^{2} B^{2} k_{T}\right)\left|k_{T}\right|^{\frac{1}{2}}\left|k_{T}\right|^{\frac{n-2}{2}} \exp \left(-\frac{1}{2} k_{T}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{T} k_{T-1}\right)= \\
\exp \left(-\frac{1}{2} S_{T+1}^{-1} k_{T}\right)\left|k_{T}\right|^{\frac{n+1-2}{2}} \sum_{h=0}^{\infty} a_{T, h}\left|k_{T}\right|^{h} \tag{6.27}
\end{gather*}
$$

with $a_{T, h}=\frac{1}{h!} \frac{1}{[n / 2]_{h}}\left(\frac{1}{4} \rho^{2} k_{T-1}\right)^{h}$. This proves the result for $s=0$. The integral of (6.27) with respect to k_{T} is proportional to:

$$
{ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{T-1} S_{T+1}\right)
$$

Therefore, the terms that depend on k_{T-1} in $\pi\left(k_{1: T}\right) \pi\left(y_{1: T} \mid k_{1: T}\right)$ after integrating out k_{T} are the following:

$$
\begin{equation*}
\left|k_{T-1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{T}^{-1} k_{T-1}\right){ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{T-1} S_{T+1}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{T-1} k_{T-2}\right) \tag{6.28}
\end{equation*}
$$

Equation (6.28) has the product of two series, that can be written as:

$$
\begin{align*}
& { }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n}{2} ; \frac{1}{2} \rho^{2} k_{T-1} S_{T+1}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{T-1} k_{T-2}\right)= \\
& =\left(\sum_{h_{T}=0}^{\infty} \frac{[(n+1) / 2]_{h_{T}}}{[n / 2]_{h_{T}}} \frac{\left(\frac{1}{2} \rho^{2} S_{T+1}\right)^{h_{T}} k_{T-1}^{h_{T}}}{h_{T}!}\right)\left(\sum_{h_{T-1}=0}^{\infty} \frac{1}{\left(h_{T-1}\right)!} \frac{1}{[n / 2]_{h_{T-1}}}\left(\frac{1}{4} \rho^{2} k_{T-2}\right)^{h_{T-1}} k_{T-1}^{h_{T-1}}\right) \tag{6.29}
\end{align*}
$$

Making the change of variables $h=h_{T}+h_{T-1}$ we get that (6.29) is equal to:

$$
\begin{array}{r}
\sum_{h=0}^{\infty}\left(\sum_{h_{T-1}=0}^{h} \frac{[(n+1) / 2]_{h-h_{T-1}}}{[n / 2]_{h-h_{T-1}}} \frac{\left(\frac{1}{2} \rho^{2} S_{T+1}\right)^{h-h_{T-1}}}{\left(h-h_{T-1}\right)!} \frac{1}{\left(h_{T-1}\right)!} \frac{1}{[n / 2]_{h_{T-1}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{T-1}} k_{T-2}^{h_{T-1}}\right) k_{T-1}^{h}= \\
\sum_{h=0}^{\infty} a_{T-1, h} k_{T-1}^{h}
\end{array}
$$

where:

$$
a_{T-1, h}=\sum_{h_{T-1}=0}^{h}\left(\frac{[(n+1) / 2]_{h-h_{T-1}}}{[n / 2]_{h-h_{T-1}}} \frac{\left(\frac{1}{2} \rho^{2} S_{T+1}\right)^{h-h_{T-1}}}{\left(h-h_{T-1}\right)!} \frac{1}{\left(h_{T-1}\right)!} \frac{1}{[n / 2]_{h_{T-1}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{T-1}} k_{T-2}^{h_{T-1}}\right)
$$

which can be written as:

$$
a_{T-1, h}=\sum_{h_{T-1}=0}^{h} \widetilde{a}_{T-1, h-h_{T-1}} \frac{1}{\left(h_{T-1}\right)!} \frac{1}{[n / 2]_{h_{T-1}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{T-1}} k_{T-2}^{h_{T-1}}
$$

and:

$$
\widetilde{a}_{T-1, h}=\frac{[(n+1) / 2]_{h}}{[n / 2]_{h}} \frac{\left(\frac{1}{2} \rho^{2} S_{T+1}\right)^{h}}{h!}
$$

Therefore, $\pi\left(k_{T-1} \mid k_{1: T-2}, y_{1: T}\right)$ which is given by (6.28), can be written as:

$$
\begin{equation*}
\pi\left(k_{T-1} \mid k_{1: T-2}, y_{1: T}\right) \propto\left|k_{T-1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{T}^{-1} k_{T-1}\right) \sum_{h=0}^{\infty}\left(a_{T-1, h} k_{T-1}^{h}\right) \tag{6.30}
\end{equation*}
$$

which proves the result for $s=1$.
The integral of (6.30) with respect to k_{T-1} gives:

$$
\begin{align*}
& \sum_{h=0}^{\infty}\left(a_{T-1, h} \frac{\Gamma\left(\frac{n+1+2 h}{2}\right)}{\left(S_{T}^{-1} / 2\right)^{\frac{n+1+2 h}{2}}}\right)= \\
& =\sum_{h=0}^{\infty} \sum_{h_{T-1}=0}^{h} \widetilde{a}_{T-1, h-h_{T-1}} \frac{1}{\left(h_{T-1}\right)!} \frac{1}{[n / 2]_{h_{T-1}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{T-1}} k_{T-2}^{h_{T-1}} \frac{\Gamma\left(\frac{n+1+2 h}{2}\right)}{\left(S_{T}^{-1} / 2\right)^{\frac{n+1+2 h}{2}}} \tag{6.31}
\end{align*}
$$

Making a change of variables $h=h_{T}+h_{T-1}$, equation (6.31) can be written as:

$$
\begin{equation*}
\sum_{h_{T}=0}^{\infty} \sum_{h_{T-1}=0}^{\infty}\left(\widetilde{a}_{T-1, h_{T}} \frac{1}{\left(h_{T-1}\right)!} \frac{1}{[n / 2]_{h_{T-1}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{T-1}} k_{T-2}^{h_{T-1}}\right) \frac{\Gamma\left(\frac{n+1}{2}+h_{T}+h_{T-1}\right)}{\left(S_{T}^{-1} / 2\right)^{\frac{n+1}{2}+h_{T}+h_{T-1}}} \tag{6.32}
\end{equation*}
$$

Noting that $\Gamma\left(\frac{n+1}{2}+h_{T}+h_{T-1}\right)=\Gamma\left(\frac{n+1}{2}+h_{T}\right)\left[\frac{n+1}{2}+h_{T}\right]_{h_{T-1}},(6.32)$ can be written as:

$$
\begin{align*}
\sum_{h_{T-1}=0}^{\infty}\left(\sum_{h_{T}=0}^{\infty} \widetilde{a}_{T-1, h_{T}} \Gamma\left(\frac{n+1}{2}+h_{T}\right) \frac{\left[(n+1) / 2+h_{T}\right]_{h_{T-1}}}{[n / 2]_{h_{T-1}}}\right. & \left.\frac{\left(\frac{1}{2} \rho^{2} S_{T}\right)^{h_{T-1}}}{\left(h_{T-1}\right)!}\left(2 S_{T}\right)^{\frac{n+1+2 h_{T}}{2}}\right) k_{T-2}^{h_{T-1}} \\
& =\sum_{h_{T-1}=0}^{\infty} \widetilde{a}_{T-2, h_{T-1}} k_{T-2}^{h_{T-1}} \tag{6.33}
\end{align*}
$$

where:

$$
\widetilde{a}_{T-2, h_{T-1}}=\sum_{h_{T}=0}^{\infty} \widetilde{a}_{T-1, h_{T}} \Gamma\left(\frac{n+1}{2}+h_{T}\right) \frac{\left[(n+1) / 2+h_{T}\right]_{h_{T-1}}}{[n / 2]_{h_{T-1}}} \frac{\left(\frac{1}{2} \rho^{2} S_{T}\right)^{h_{T-1}}}{\left(h_{T-1}\right)!}\left(2 S_{T}\right)^{\frac{n+1+2 h_{T}}{2}}
$$

Therefore, we have that the integral of (6.30) with respect to k_{T-1} gives (6.33).Therefore, collecting the terms that depend on k_{T-2} we have that:

$$
\begin{align*}
& \pi\left(k_{T-2} \mid k_{1:(T-3)}, y_{1: T}\right) \propto \\
& \left|k_{T-2}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{T-1}^{-1} k_{T-2}\right)\left(\sum_{h_{T-1}=0}^{\infty} \widetilde{a}_{T-2, h_{T-1}} k_{T-2}^{h_{T-1}}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{T-2} k_{T-3}\right) \tag{6.34}
\end{align*}
$$

Equation (6.34) depends on the product of two series, which can be written as follows:

$$
\begin{aligned}
& \left(\sum_{h_{T-1}=0}^{\infty} \widetilde{a}_{T-2, h_{T-1}} k_{T-2}^{h_{T-1}}\right){ }_{0} F_{1}\left(\frac{n}{2} ; \frac{1}{4} \rho^{2} k_{T-2} k_{T-3}\right)= \\
& \left(\sum_{h_{T-1}=0}^{\infty} \widetilde{a}_{T-2, h_{T-1}} k_{T-2}^{h_{T-1}}\right)\left(\sum_{h_{T-2}=0}^{\infty} \frac{\left(\frac{1}{4} \rho^{2} k_{T-2} k_{T-3}\right)^{h_{T-2}}}{\left(h_{T-2}\right)!} \frac{1}{[n / 2]_{h_{T-2}}}\right)= \\
& \sum_{h=0}^{\infty}\left(\sum_{h_{T-2}=0}^{h} \widetilde{a}_{T-2, h-h_{T-2}} \frac{1}{\left(h_{T-2}\right)!} \frac{1}{[n / 2]_{h_{T-2}}}\left(\frac{1}{4} \rho^{2} k_{T-3}\right)^{h_{T-2}}\right) k_{T-2}^{h}=\sum_{h=0}^{\infty} a_{T-2, h} k_{T-2}^{h}
\end{aligned}
$$

where:

$$
a_{T-2, h}=\sum_{h_{T-2}=0}^{h} \widetilde{a}_{T-2, h-h_{T-2}} \frac{1}{\left(h_{T-2}\right)!} \frac{1}{[n / 2]_{h_{T-2}}}\left(\frac{1}{4} \rho^{2} k_{T-3}\right)^{h_{T-2}}
$$

Therefore, we can write (6.34) as:

$$
\begin{equation*}
\pi\left(k_{T-2} \mid k_{1:(T-3)}, y_{1: T}\right) \propto\left|k_{T-2}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{T-1}^{-1} k_{T-2}\right) \sum_{h=0}^{\infty} a_{T-2, h} k_{T-2}^{h} \tag{6.35}
\end{equation*}
$$

which proves the result for $s=2$.
Because $\pi\left(k_{T-2} \mid k_{1:(T-3)}, y_{1: T}\right)$ in (6.35) and $\pi\left(k_{T-1} \mid k_{1: T-2}, y_{1: T}\right)$ in (6.30) have the same structure, and because the transition density is always the same, we can conclude the result is proven for any $s=0, \ldots, T-2$. For $s=T-1$ there is no transition density from k_{0} to k_{1}, therefore there is no need to multiply two series, so we get $a_{1, h}=\widetilde{a}_{1, h}$ and $S_{2}=\left(1+B^{2} e_{1}^{2}\right)^{-1}$.

6.5 Proof of Proposition 3.4

Proof. To find $\pi\left(k_{t} \mid y_{1: T}\right)$ we need to integrate $\pi\left(k_{1: T}\right) \pi\left(y_{1: T} \mid k_{1: T}\right)$ with respect to $k_{1:(t-1)}$ and with respect to $k_{(t+1): T}$. From the proofs of propositions 3.2 and 3.3 , we have that when $2 \leq t<(T-1)$:

$$
\begin{gather*}
\iint \pi\left(k_{1: T}\right) \pi\left(y_{1: T} \mid k_{1: T}\right) d k_{1:(t-1)} d k_{(t+2): T} \propto\left|k_{t}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{t+1}^{-1} k_{t}\right)\left(\sum_{h=0}^{\infty} C_{t, h}\left|k_{t}\right|^{h}\right) \\
\times\left|k_{t+1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{t+2}^{-1} k_{t+1}\right)\left(\sum_{h=0}^{\infty} a_{t+2, h} \frac{\Gamma\left(\frac{n+1}{2}+h\right)}{\left(S_{t+3}^{-1} / 2\right)^{\frac{n+1+2 h}{2}}}\right) \tag{6.36}
\end{gather*}
$$

In the proof of proposition 3.3, it is shown that:

$$
\sum_{h=0}^{\infty} a_{t+2, h} \frac{\Gamma\left(\frac{n+1}{2}+h\right)}{\left(S_{t+3}^{-1} / 2\right)^{\frac{n+1+2 h}{2}}}=\sum_{h=0}^{\infty} \widetilde{a}_{t+1, h} k_{t+1}^{h}
$$

Therefore (6.36) can be written as:

$$
\begin{align*}
\pi\left(k_{t}, k_{t+1} \mid y_{1: T}\right) \propto\left|k_{t}\right|^{\frac{n+1-2}{2}} & \exp \left(-\frac{1}{2} S_{t+1}^{-1} k_{t}\right)\left(\sum_{h=0}^{\infty} C_{t, h}\left|k_{t}\right|^{h}\right) \tag{6.37}\\
& \times\left|k_{t+1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{t+2}^{-1} k_{t+1}\right)\left(\sum_{h=0}^{\infty} \widetilde{a}_{t+1, h} k_{t+1}^{h}\right)
\end{align*}
$$

The product of the two series can be written as:

$$
\begin{align*}
\left(\sum_{h=0}^{\infty} C_{t, h}\left|k_{t}\right|^{h}\right) & \left(\sum_{h=0}^{\infty} \widetilde{a}_{t+1, h} k_{t+1}^{h}\right)= \\
& \sum_{h_{t+1}=0}^{\infty} \sum_{h=0}^{\infty} \sum_{h_{t}=0}^{h} \widetilde{C}_{t, h-h_{t}} \frac{1}{[n / 2]_{h t}}\left(\frac{1}{4} \rho^{2}\right)^{h_{t}} \frac{\left(k_{t+1}\right)^{h_{t}+h_{t+1}}}{h_{t}!}\left|k_{t}\right|^{h} \widetilde{a}_{t+1, h_{t+1}} \tag{6.38}
\end{align*}
$$

where neither $\widetilde{a}_{t+1, h_{t+1}}$ nor $\widetilde{C}_{t, h-h_{t}}$ depend on k_{t+1}. Therefore, we can integrate out k_{t+1} from (6.37) using (6.38) to obtain:

$$
\pi\left(k_{t} \mid y_{1: T}\right) \propto\left|k_{t}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{t+1}^{-1} k_{t}\right)\left(\sum_{h=0}^{\infty} \widetilde{D}_{t, h}\left|k_{t}\right|^{h}\right)
$$

where

$$
\widetilde{D}_{t, h}=\sum_{h_{t}=0}^{h} \sum_{h_{t+1}=0}^{\infty} \widetilde{C}_{t, h-h_{t}} \frac{1}{[n / 2]_{h_{t}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{t}} \frac{1}{h_{t}!} \frac{\Gamma\left(\frac{n+1}{2}+h_{t}+h_{t+1}\right)}{\left(S_{t+2}^{-1} / 2\right)^{\frac{n+1}{2}+h_{t}+h_{t+1}}} \widetilde{a}_{t+1, h_{t+1}}
$$

as we wanted to prove.
In the case $t=T-1$, expression (6.37) becomes:
$\pi\left(k_{T-1}, k_{T} \mid y_{1: T}\right) \propto\left|k_{T-1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{T}^{-1} k_{T-1}\right)\left(\sum_{h=0}^{\infty} C_{T-1, h}\left|k_{T-1}\right|^{h}\right)\left|k_{T}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{T+1}^{-1} k_{T}\right)$
Thus, in this case we only have one series, not the product of two. Integrating with respect to k_{T} we get:

$$
\pi\left(k_{T-1} \mid y_{1: T}\right) \propto\left|k_{T-1}\right|^{\frac{n+1-2}{2}} \exp \left(-\frac{1}{2} S_{T}^{-1} k_{T-1}\right) \sum_{h=0}^{\infty} \widetilde{D}_{T-1, h}\left|k_{T-1}\right|^{h}
$$

with

$$
\widetilde{D}_{T-1, h}=\sum_{h_{T-1}=0}^{h} \widetilde{C}_{T-1, h-h_{T-1}} \frac{1}{[n / 2]_{h_{T-1}}}\left(\frac{1}{4} \rho^{2}\right)^{h_{T-1}} \frac{1}{\left(h_{T-1}\right)!} \frac{\Gamma\left(\frac{n+1}{2}+h_{T-1}\right)}{\left(S_{T+1}^{-1} / 2\right)^{\frac{n+1}{2}+h_{T-1}}}
$$

as we wanted to prove.

6.6 Proof of Local Scale Model Likelihood

To facilitate the reading we do not explicitly write x_{t} as a conditioning argument. Given that we have a gamma distribution for the initial condition (2.2) and a Gaussian error term, we have that the joint density $\left(y_{1}, h_{1}, \nu_{1}\right)$ is :

$$
\pi\left(y_{1}, h_{1}, \nu_{1}\right)=\frac{1}{\sqrt{2 \pi}}\left(h_{1}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2}\left(y_{1}-x_{1} \beta\right)^{2} h_{1}\right) f\left(h_{1} \mid S_{1}\right) \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \nu_{1}^{\alpha_{1}-1}\left(1-\nu_{1}\right)^{\alpha_{2}-1}
$$

where $f\left(h_{1} \mid S_{1}\right)$ is the density of the initial condition given as:

$$
\begin{equation*}
f\left(h_{1} \mid S_{1}\right)=h_{1}^{\frac{\nu}{2}-1} \exp \left(-\frac{h_{1}}{2 S_{1}}\right) \frac{1}{\Gamma(\nu / 2)\left(2 S_{1}\right)^{\frac{\nu}{2}}} \tag{6.40}
\end{equation*}
$$

The volatility process is represented by a non stationary process as in (2.1). We make a change of variables from $\left(y_{1}, h_{1}, \nu_{1}\right)$ to $\left(y_{1}, Z, h_{2}\right)$ where $Z=h_{1}-\lambda h_{2}$, and $v_{1}=\frac{h_{2} \lambda}{h_{1}}$. The

Jacobian of this transformation is $\lambda /\left(Z+\lambda h_{2}\right)$. Therefore $\pi\left(y_{1}, Z, h_{2}\right)$ can be written as:

$$
\begin{aligned}
\pi\left(y_{1}, Z, h_{2}\right) & =\frac{1}{\sqrt{2 \pi}}\left(Z+\lambda h_{2}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2}\left(y_{1}-x_{1} \beta\right)^{2}\left(Z+\lambda h_{2}\right)\right)\left(Z+\lambda h_{2}\right)^{\frac{\nu}{2}-1} \exp \left(-\frac{1}{2 S_{1}}\left(Z+\lambda h_{2}\right)\right) \\
& \times\left(\frac{\left(Z+\lambda h_{2}\right)}{\lambda}\right)^{-1} \frac{1}{\Gamma(\nu / 2)\left(2 S_{1}\right)^{\frac{\nu}{2}}} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}\left(\frac{h_{2} \lambda}{Z+\lambda h_{2}}\right)^{\alpha_{1}-1}\left(\frac{Z}{Z+\lambda h_{2}}\right)^{\alpha_{2}-1}
\end{aligned}
$$

which simplifies to:
$\pi\left(y_{1}, Z, h_{2}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\left(y_{1}-x_{1} \beta\right)^{2}+\frac{1}{S_{1}}\right)\left(Z+\lambda h_{2}\right)\right) \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \frac{\left(Z+\lambda h_{2}\right)^{\frac{\nu}{2}+\frac{1}{2}-\left(\alpha_{1}+\alpha_{2}\right)}}{\Gamma(\nu / 2)\left(2 S_{1}\right)^{\frac{\nu}{2}}} \lambda_{1}^{\alpha} Z^{\alpha_{2}-1} h_{2}^{\alpha_{1}-1}$
Note that for mathematical convenience, α_{1} is restricted as $\alpha_{1}=\frac{\nu}{2}$ and $\alpha_{2}=\frac{1}{2}$. Therefore, $\frac{\nu}{2}+\frac{1}{2}-\left(\alpha_{1}+\alpha_{2}\right)=0$, and $\pi\left(Z \mid y_{1}, h_{2}\right)$ is a gamma distribution. Using the properties of the gamma distribution, we can integrate over the state variable Z :

$$
\begin{align*}
\pi\left(y_{1}, h_{2}\right) & =\int \pi\left(y_{1}, Z, h_{2}\right) d Z \\
& =\frac{\Gamma\left(\alpha_{2}\right)}{\sqrt{2 \pi}} \frac{\exp \left(-\frac{\lambda h_{2}}{2}\left(\left(y_{1}-x_{1} \beta\right)^{2}+\frac{1}{S_{1}}\right)\right)}{\left(2\left(\left(y_{1}-x_{1} \beta\right)^{2}+\frac{1}{S_{1}}\right)^{-1}\right)^{-\alpha_{2}}} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \frac{\lambda_{1}^{\alpha} h_{2}^{\nu / 2-1}}{\Gamma(\nu / 2)\left(2 S_{1}\right)^{\frac{\nu}{2}}} \tag{6.41}
\end{align*}
$$

From equation (6.41) we can see that $h_{2} \mid y_{1}$ is a gamma distribution with parameters $\left(\frac{\nu}{2}, 2 S_{2}\right)$, where $S_{2}=\left(\left(y_{1}-x_{1} \beta\right)^{2}+\frac{1}{S_{1}}\right)^{-1} \frac{1}{\lambda}$. Let $f\left(h_{2} \mid S_{2}\right)$ be defined as in (6.40), that is, the density of a gamma distribution:

$$
\begin{equation*}
f\left(h_{2} \mid S_{2}\right)=h_{2}^{\frac{\nu}{2}-1} \exp \left(-\frac{h_{2}}{2 S_{2}}\right) \frac{1}{\Gamma(\nu / 2)\left(2 S_{2}\right)^{\frac{\nu}{2}}} . \tag{6.42}
\end{equation*}
$$

Then equation (6.41) can be written as follows:
$\pi\left(y_{1}, h_{2}\right)=\frac{\Gamma\left(\alpha_{2}\right)}{\Gamma\left(\alpha_{2}\right)} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right)} \frac{\lambda^{\alpha_{1}}}{\Gamma(\nu / 2)\left(2 S_{1}\right)^{\frac{\nu}{2}}} \frac{1}{\sqrt{2 \pi}}\left(2\left(\left(y_{1}-x_{1} \beta\right)^{2}+\frac{1}{S_{1}}\right)^{-1}\right)^{\alpha_{2}} f\left(h_{2} \mid S_{2}\right) \Gamma(\nu / 2)\left(2 S_{2}\right)^{\frac{\nu}{2}}$
Therefore, $h_{2} \mid y_{1}$ is a gamma distribution, such that $\pi\left(h_{2} \mid y_{1}\right)=f\left(h_{2} \mid S_{2}\right)$, which is defined in (6.42).

From these derivations we can get the likelihood as follows. First, for $t=1$, we have that

$$
\pi\left(y_{1} \mid h_{1}\right)=\frac{1}{(\sqrt{2 \pi})} h_{1}^{\frac{1}{2}} \exp \left(-\frac{1}{2} h_{1}\left(y_{1}-x_{1} \beta\right)^{2}\right)
$$

and the initial condition for h_{1} is a gamma distribution given in (6.40). Therefore, $\pi\left(y_{1}\right)$ is
a student-t and we have:

$$
\begin{equation*}
\pi\left(y_{1}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right)} \lambda^{\alpha_{1}}\left(\frac{S_{2}}{S_{1}}\right)^{\alpha_{1}} \frac{1}{\sqrt{2 \pi}}\left(2\left(\left(y_{1}-x_{1} \beta\right)^{2}+\frac{1}{S_{1}}\right)^{-1}\right)^{\alpha_{2}} \tag{6.43}
\end{equation*}
$$

For $t=2, \pi\left(y_{2} \mid h_{2}\right)$ is also a normal. Thus the conditional distribution for the second observation given h_{2} is as follows:

$$
\pi\left(y_{2} \mid h_{2}\right)=\frac{1}{(\sqrt{2 \pi})} h_{2}^{\frac{1}{2}} \exp \left(-\frac{1}{2} h_{2}\left(y_{2}-x_{2} \beta\right)^{2}\right)
$$

and $\pi\left(h_{2} \mid y_{1}\right)$ is the gamma distribution defined in (6.42). Therefore, we have the same structure as in $t=1$, and using the properties of the gamma distribution, we get that the likelihood $\pi\left(y_{2} \mid y_{1}\right)$ is a student-t as follows:

$$
\begin{equation*}
\pi\left(y_{2} \mid y_{1}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right)} \lambda^{\alpha_{1}}\left(\frac{S_{3}}{S_{2}}\right)^{\alpha_{1}} \frac{1}{\sqrt{2 \pi}}\left(2\left(\left(y_{2}-x_{2} \beta\right)^{2}+\frac{1}{S_{2}}\right)^{-1}\right)^{\alpha_{2}} \tag{6.44}
\end{equation*}
$$

where $S_{3}=\left(\left(y_{2}-x_{2} \beta\right)^{2}+\frac{1}{S_{2}}\right)^{-1} \frac{1}{\lambda}$.
Because the kernels are the same for $t=1$ and for $t=2$, then we have proved it for every t.

[^0]: ${ }^{1}$ The authors thank participants of the 24th International Conference on Computational Statistics (Bologna) and the 16th International Conference on Computational and Financial Econometrics (London) for helpful comments and suggestions. They also thank the Japan Society for the Promotion of Science (JSPS) for financial support under grant 19K01588. Roberto Leon-Gonzalez is a senior fellow of The Rimini Centre for Economic Analysis.

