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Abstract

This dissertation investigates the estimation of Dynamic General Equilibrium models

(DSGE) solved using nonlinear approximation. The DSGE model has been widely used

as a theoretical framework for the study of the business cycle and monetary and fiscal

policy. To solve DSGE models, it is common practice in macroeconomics to use linear

methods to approximate solutions of nonlinear DSGE models.

Therefore, the linearization of DSGE models has become a standard tool for the

approximation of solutions to the dynamic optimization problem (DOP) in the DSGE

model. Linearization is typically obtained by using only the first term of a Taylor

expansion around the steady state of the log of the equations representing the first-order

conditions of the dynamic optimization problem. This method makes it possible to use

formal statistical methods to estimate and test DSGE models. However, the linearization

of this class of models also has a cost: some questions, such as welfare evaluation and

risk premia in stochastic environments, cannot be fully addressed in a linearized model.

In the first study, we propose a new likelihood-based approach using perturbation

methods to estimate nonlinear DSGE models. We implicitly use a nonlinear approxima-

tion to the policy function that is invertible with respect to the shocks, implying that

in the approximation, the shocks can be recovered uniquely from some of the control

variables. Based on this approximation, the likelihood can then be obtained by using a

standard change of variables theorem and a Lagrange inversion formula. We implement

this technique to estimate the DSGE model. In contrast with previous likelihood-based

approaches, the method used here allows for unobserved non-stochastic state variables

and requires neither additional shocks nor simulation to evaluate the likelihood. Using

US data, we demonstrate the proposed approach to the well-known neoclassical growth

model of Fernandez-Villaverde (2010). In addition to the baseline model, we also consider

versions of the model in which the structural shocks have time-varying variances. We

find that a nonlinear heteroscedastic model has much better empirical performance. It

is a better fit for the observed data than the linearized model. In addition, we find that

i



the monetary policy shock primarily drives the time changes in the uncertainty in the

economy.

In the second study, we develop a more general New Keynesian model with limited

heterogeneity featuring two agent properties, referred to in the macroeconomic literature

as the Two-Agent New Keynesian (TANK) DSGE model, and estimate the model

using the method developed in the first study. Our model incorporates technology,

monetary and fiscal shocks. The model features price and wage rigidity dynamic and

capital adjustment cost. This study builds on recent empirical evidence of nonlinear

relations between financial variables and aggregate fluctuations. Our work argues for

the importance of explicitly considering nonlinearities when analyzing the behavior of

the TANK DSGE model. Thus, we employ the likelihood-based approach using the

perturbation method to estimate the model in linearized and nonlinearized forms and

draw inferences from it. We used quarterly aggregate Korean data for 1999 Q4—2021

Q4. We analyze data for this time range since, as the literature shows, the Bank

of Korea started to become more proactive in controlling inflation; and adopted an

inflation-targeting rule in 1998, which allowed them to focus on keeping inflation under

control and being less accommodating of the high demand for liquidity that preceded

the Asian financial crisis.

As a result, we find that the estimation of the linear representation of the TANK

model generates a better fit of the model to the data (as measured by log-likelihood

at the posterior mode). However, the nonlinear model is preferable in terms of log

marginal and predictive likelihoods to the linearized one. Similar to the literature, we

find that the government expenditure shock has an expansionary effect on consumption

and output. However, this effect differs for different types of households. We also find

that distortionary taxation has a crowding-out effect, and contractionary monetary

policy shock can effectively curb inflationary pressures in the economy.

In summary, the dissertation investigates the estimation of DSGE models using the

nonlinear approximation of order two and proposes a new likelihood-based approach to

estimate them. The studies reported here demonstrate the methodology’s effectiveness

and provide insights into the model under a different framework.
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Chapter 1 Introduction

Numerical techniques are often used to solve “true” nonlinear Dynamic Stochastic

General Equilibrium Models (DSGE), which include the perturbation method, projection

method, and dynamic programming tools such as value function and policy function

iterations. Among them, the perturbation method is appealing because it is significantly

faster than, for example, value function iteration, and has good convergence properties.

These features are essential for estimation because the policy function needs to be solved

repeatedly with many parameter values (Aruoba et al. (2006)). Within this dissertation

we employ this method to solve the DSGE models.

The main idea of perturbation methods is to build a Taylor series expansion of policy

functions around the deterministic steady state of an economy with a perturbation

parameter. The first terms of the Taylor series result in linear policy approximation,

known as the linearization method. Since the linearization method makes it possible

to obtain of a linear approximation of policy functions, which can be solved by matrix

algebra techniques, it has become a standard tool for solving and estimating the model

(Blanchard and Kahn (1985), Sims (2000)). Moreover, many DSGE models exhibit

behavior that is close to linear, especially in the neighborhood of the steady state, which

makes the linearization method a reasonable approximation. As supported by a number

of studies, this method is widely used in evaluating likelihood-based DSGE models

because it allows for the transformation of these models into state-space representations

compatible with Kalman filtering (An (2005)). Furthermore, with the availability of

software platforms such as Dynare, the estimation of DSGE models using Bayesian

methods becomes more straightforward, which has led to a surge in empirical studies in

the last twenty years.

However, the linearization of these models can omit interesting aspects provided

by nonlinearity, especially in the conduct of welfare analysis, examination of asset

pricing, and analysis of the changes in uncertainty over time in an economy within

DSGE models. In this regard, the second-order approximation of solutions of DSGE
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models has been explored since the seminal studies of Judd (1998), Jin and Judd (2002),

Schmitt-Grohé and Uribe (2004), Collard and Juillard (2001a), proved that a second-

order approximation can be obtained from the second-order perturbation to equilibrium

conditions and can provide algorithms for construction of an accurate second-order

solution to the DSGE model.

To estimate the model resulting from the second and higher-order perturbation

technique is challenging and requires a large computational effort. We discuss different

methods of computing the likelihood function of DSGE models developed in Bayesian

econometrics, including Sequential Monte Carlo methods (Fernández-Villaverde and

Rub́ıo-Ramirez (2007)), and Exact Likelihood computation techniques (Amisano and

Tristani (2011)). While the former method involves the simulation of a large number of

particles, which requires significant processing power, the latter applies to small models

with quite restrictive assumptions. To fill the apparent gap, we propose a relatively

simple and fast approach to estimation of nonlinear DSGE models, which is also a

likelihood-based approach. The gist of our proposed technique is to compute the higher

order approximation of the likelihood function of a nonlinear DSGE model using a

Laplace approximation method and imposing invertibility of the policy function in the

approximation of the likelihood.

Thus, the main contribution of the dissertation is the development of a likelihood-

based approach to the computation of a likelihood function of nonlinear DSGE models

using second-order perturbation methods. This enables us to form posterior density of

parameters of a model, which is proportional to the product of the likelihood function

and the prior density of the parameters. This addresses the central objective of this

dissertation: to apply the proposed methodology to the estimation of DSGE models

and make inferences about that estimation.

Accordingly, in the first study, presented in Chapter 2, we propose a new likelihood-

based approach using perturbation methods to estimate nonlinear DSGE models. We

note that in the literature it has been pointed out that in some DSGE models the

shocks can be recovered uniquely from some of the control variables, which implies

that the policy function is invertible with respect to the shocks (e.g. Stokey et al.

(1989), Hopenhayn and Prescott (1992) and Gordon and Qiu (2018)). Accordingly

we impose invertibility in the approximation by using an implicit nonlinear invertible

approximation of the policy function. This allows us to construct the likelihood function

using a standard change of variables theorem and a Lagrange inversion formula. We
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further develop this technique to implement a nonlinear estimation of the DSGE model.

In contrast with previous likelihood-based approaches, the method used here allows

for unobserved non-stochastic state variables and requires neither additional shocks nor

simulation to evaluate the likelihood. Using US data, we demonstrate the proposed

approach in the case of the well-known neoclassical growth model of Fernández-Villaverde

(2010). In addition to the baseline model, we modify the model by incorporating an

uncertainty, defined as an increase in the standard deviation of the shocks that affect

the economy (which implies that the shocks are heteroskedastic). We specify uncertainty

by Generalized Autoregressive Conditional Heteroskedasticity (GARCH) processes. We

estimated four structural models: the log-linearized model with homoscedastic shocks;

the model resulting from second-order approximation with homoscedastic shocks; the

model resulting from second-order approximation with unrestricted GARCH in the

shocks; and the model resulting from the second-order approximation with a common

factor in the GARCH processes.

As a result of the Bayesian estimation of four models, we find that the nonlinear

heteroscedastic empirically performed better model than linearized models in terms of

their log marginal likelihood, log-likelihood and predictive likelihood. The posterior

analyses indicate that the monetary policy shock in a nonlinear heteroscedastic model

is the main driving force of uncertainty in an economy.

In the second study, presented in Chapter 3, we develop a more general New Keynesian

model with limited heterogeneity featuring two agent properties (referred to in the

macroeconomic literature as the Two-Agent New Keynesian (TANK) DSGE model)

and estimate the model using a likelihood-based approach via the perturbation method.

Following existing studies on two-agent models, we introduce Ricardian (financially

unconstrained) and non-Ricardian (financially constrained) households. The model

features price and wage rigidity dynamic and capital adjustment cost, and innovation

to technology, monetary and government spending rules, as well as labor income and

consumption tax shocks. Also, we model real and nominal frictions nonlinearly, where

the former includes investment costs, the latter price and wage frictions. This study

builds on recent empirical evidence of nonlinear relations between financial variables and

aggregate fluctuations, hence, our interest in employing the likelihood-based approach

using the perturbation method to estimate the model in linearized and nonlinearized

fashion and draw inferences from it. We used quarterly aggregate Korean data for 1999

Q4–2021 Q4. We chose this time range for analysis since, as the literature shows, the
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Bank of Korea started to become more proactive in controlling inflation and adopted an

inflation targeting rule in 1998, which allowed them to focus on (a) keeping inflation

under control and (b) being less accommodating of the high demand for liquidity that

preceded the Asian financial crisis.

Through likelihood-based estimation, we find that the linear representation of the

TANK model generates a better fit of the model to the data than the nonlinear one, as

measured by log-likelihood at the posterior mode. However, the nonlinear representation

of the TANK model has better log marginal and predictive likelihood than the linearized

model. These results still support the idea of including nonlinearities when analyzing the

behavior of the TANK model. The standard deviations of the parameters are estimated

to be much higher for the second-order approximation model than for the first-order

approximation, indicating that the nonlinear likelihood is more dispersed than the linear.

The analyses of Bayesian impulse responses for both models indicate that, in general,

they align with findings of existing studies, most of which have mostly involved linear

estimation. However, the magnitude varies by model: we find that positive government

expenditure shock has an expansionary effect on aggregate consumption and output in

both linear and nonlinear models. Nevertheless, in both models this effect differs for

constrained and unconstrained households. Thus the consumption level of constrained

households increased due to increased wage levels in the economy, and that of uncon-

strained households decreased due to increased real interest rates. Distortionary taxation

has a crowding-out effect on the aggregate economy and on the consumption of both

agents. Regarding the innovation to monetary policy rules, a positive shock decreases

output, aggregate consumption, investment, and hours worked.

The dissertation is structured as follows. The introduction is presented in Chapter 1.

Chapter 2 proposes a new likelihood-based approach for estimating DSGE models using

perturbation methods and Bayesian inference theory. Chapter 3 explores the two-agent

model and applies the above mentioned methodology to estimation. Chapter 4 presents

conclusions and implications for policy-makers; and proposes promising directions for

future research.
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Chapter 2 Likelihood-Based Estimation of Nonlinear Dynamic

Stochastic General Equilibrium Models Through

Perturbation Methods

2.1 Introduction

Linearization of DSGE models is a common tool for approximation of the solution to the

dynamic optimization problem in DSGE (e.g., Blanchard and Kahn (1985), Sims (2002),

Klein (2000)). This method has been used in numerous studies in the last twenty years.

Linearization is typically achieved by using only the first term of a Taylor expansion

around the steady state of the log of the equations representing the first-order conditions

of the dynamic optimization problem.

Linearization has made it possible to use formal statistical methods to estimate

and test DSGE models such as the General Method of Moments (e.g., Hansen and

Singleton (1983), Christiano and Eichenbaum (1992)), Maximum Likelihood (e.g.,

Hansen and Sargent (1980), Altug (1989)) and Bayesian methods (e.g., DeJong et al.

(2000), Schorfheide (2000), Otrok (2001)).

However, the linearization of this class of models also comes at a cost, because not all

questions can be fully addressed in a linearized model. As argued by Schmitt-Grohé and

Uribe (2004), two such questions are welfare evaluations and risk premia in stochastic

environments. In a linearized model, the agents become risk-neutral, so it is impossible

to analyze the impact of uncertainty on the economy. Furthermore, evaluating social

welfare across alternative stochastic or policy environments using a linear approximation

model leads to the omission of some critical second-order terms, resulting in spurious

results.

To address the limitations of the linearization method, Schmitt-Grohé and Uribe

(2004) proposed the use of perturbation methods (e.g., Judd (1998)) to obtain higher-

order Taylor approximations of the policy functions. They also showed that when

perturbation methods are used to obtain a first-order approximation, the result is the
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same as that obtained in previous studies on linearization (e.g., Blanchard and Kahn

(1985)).

In terms of estimation, moving away from a linearized model towards a nonlinear

one is challenging because the structural errors enter the model in a nonlinear fashion,

and the likelihood function of a model is no longer normal or readily available. Despite

this difficulty, Amisano and Tristani (2011) show how to obtain the likelihood in some

restricted models when using a second-order approximation to solve the model. Their

method is applicable only when there are no unobserved non-stochastic state variables,

which implies that, for example, capital has to be observed in a model with capital.

In addition, this method requires finding solutions of polynomial equations, which

is computationally intensive and, therefore, in practice, implies that the number of

structural shocks has to be relatively small.

Fernández-Villaverde and Rub́ıo-Ramirez (2007) propose a particle filter approach

that permits the numerical approximation of the likelihood. However, this approach

requires that the number of shocks be greater than the number of observed variables

and that some shocks (structural or measurement errors) have to enter linearly in the

likelihood. Therefore, in practice, for econometric convenience, one has to add more

shocks to the model, which might make identifying the shocks of interest more difficult.

Furthermore, because evaluating the likelihood requires simulation with a potentially

large number of particles, the method could be slow, especially in large models.

This chapter proposes a new likelihood-based approach to estimating nonlinear

DSGE models. We exploit the condition where the shocks in a DSGE model can

sometimes be recovered uniquely from some of the control variables, implying that the

policy function is invertible with respect to shocks. Accordingly, we impose invertibility

in the approximation by using an implicit nonlinear invertible approximation of the

policy function. This allows us to construct the likelihood function by using a standard

change of variables theorem and a Lagrange inversion formula. This likelihood can then

be used for Bayesian analysis or Maximum Likelihood. In contrast with Amisano and

Tristani (2011), this method allows for unobserved non-stochastic state variables, and

unlike Fernández-Villaverde (2010) it requires neither the introduction of additional

shocks nor simulation to evaluate the likelihood.

Using US data, we demonstrate the approach by applying it to the well-known

neoclassical growth model of Fernández-Villaverde (2010). In addition to the baseline

model, we modify the model by incorporating uncertainty, defined as an increase in the
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standard deviation of the shocks that affect the economy. This implies that the shocks are

heteroskedastic. We specify uncertainty by GARCH processes with both an unrestricted

variance component and a common factor that affects the volatility of aggregate shocks.

We estimated four structural models: the log-linearized model with homoscedastic

shocks; the model resulting from second-order approximation with homoscedastic shocks;

the model resulting from second-order approximation with unrestricted GARCH in the

shocks; and the model resulting from the second-order approximation with a common

factor in the GARCH processes. We find that among the four estimated models a

nonlinear heteroscedastic model performs best empirically as measured by the log

marginal likelihood, log likelihood and predictive likelihood. The posterior analyses

indicate that the monetary policy shock in a nonlinear heteroscedastic model is the

main driving force of the uncertainty in the economy.

The remainder of this chapter is structured as follows: section 2.2 reviews related

literature on the current topic. Section 2.3 presents the perturbation method for

obtaining the policy function and estimating the model. Section 2.4 shows how to a)

approximate the inverse of the policy function using the perturbation methods and b)

estimate the model. Section 2.5 illustrates that the Laplace based solution to the model

that we propose gives similar results to the previous approach in the literature. Then,

section 2.6 illustrates an application of the proposed method to the neoclassical growth

DSGE model and discusses the results. Finally, section 2.7 concludes.

2.2 Literature review

As Fernández-Villaverde (2010) emphasizes, DSGE models do not have simple pencil and

paper solutions. In order to obtain this solution, it is necessary to resort to numerical

approximation to characterize the equilibrium dynamics of a model.

One of the first approaches for solving DSGE models comes from control theory. For

example, the seminal study of Kydland and Prescott (1982) substituted a quadratic

approximation for the original problem. In particular, they integrated the growth model

and business cycle theory, where they approximated the policy function using a quadratic

approximation in the neighborhood of steady state. They computed the equilibrium

decision rules for obtaining the approximate economy and showed that because the rules

they obtained are linear, the resulting equilibrium is generated by a system of stochastic

difference equation.
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In response to findings of Kydland and Prescott (1982), Christiano (1990) compared

two quadratic approximations to value function iterations as a method of solving DSGE

models. The method involves the iteration of the value function, which represents the

optimal decision of agents in the economy given an expectation about future variables.

Christiano (1990) shows that the quadratic approximation can be easier to implement

and faster than value function iteration. However, he points out that value function

iteration gives more accurate solutions of dynamic models and can solve more complex

methods than the method provided by Kydland and Prescott (1982).

Another method for solving functional equations of DSGE models is the projection

method. Essentially, projection method finds a function that 1) approximates a given

function, 2) and satisfies additional constraints by expressing it as a linear combination

of a set of basis functions. Judd (1992) introduced this technique in the economics

literature.

An alternative approach, linearization procedure, has become prevalent as a result

of its tractability and effectiveness in approximating nonlinear systems. The concept of

linearization involves replacing a complex model (which has a state-space representation)

with a simpler one that we can solve, and then using the solution to estimate the

solution of the original problem. Researchers favor this approach since most linear

models can approximate arbitrary ”true” nonlinear models. As the literature has shown

(Jin and Judd (2002), Blanchard and Kahn (1985), Sims (2002)), linearization has been

successfully applied in many fields, notably within the discipline of working with DSGE

models. Essentially, this technique finds the Taylor expansion of the policy function that

describes the model’s variables around the deterministic steady state. Thus, linearization

is the first term of Taylor expansion. Judd and Guu (1993) confirm that this is indeed

a first-order perturbation method. The authors explain that perturbation methods

involve using a Taylor series expansion around the a known solution to approximate the

solution to a complex model using a simpler one. They demonstrate this method by

applying it to a simple growth model, proving that the perturbation method gives an

accurate approximate solution. They also compared the accuracy and computational

efficiency of the perturbation method with that of value function iteration. As a

result, the authors conclude that perturbation method sufficiently approximates the

solution of complex economic dynamic models. Since the publication of Judd and Guu

(1993), the approximation method has become a widespread macroeconomics practice

for approximating solutions nonlinear models.
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However, first-order approximation techniques cannot fully address many problems

related to macroeconomics, including zero-lower bound on nominal interest rate; welfare

evaluation; structural shocks with time-varying variances; and stochastic volatility. For

example, as demonstrated by Kim and Kim (2003), welfare evaluation using first-order

approximation can produce a spurious outcome. They argue that evaluating individual

welfare (utility) using a linear approximation of the policy function may result in a

misleading conclusion. Specifically, the evaluation indicates that welfare is higher under

autarky (incomplete-markets economy) than under full risk sharing (complete-markets

economy), which contradicts the first welfare theorem. The point is that when using a

linear approximation of the policy function, specific higher-order terms of the equilibrium

welfare function are excluded, while others are included. The exclusion and inclusion of

terms can result in a distorted comparison of actual welfare under autarky and full risk

sharing. An accurate analysis would require all relevant terms of the welfare function

be considered.

Another example of an issue that cannot be solved with linearization is time-varying

variances (changes in uncertainty over time). There is a significant strand of the literature

devoted to investigating it, defined as an increase in the standard deviation of the shocks

that affect the economy (Justiniano and Primiceri (2008), Bloom (2009), Fernández-

Villaverde et al. (2015), Bloom et al. (2018), Fernández-Villaverde and A.Guerrón-

Quintana (2020)). These studies provide evidence that uncertainty shock significantly

impacts aggregate fluctuations. Thus, in recent survey study, Fernández-Villaverde and

A.Guerrón-Quintana (2020) examine uncertainty shocks using a representative DSGE

model with financial frictions. The authors argue the importance of a higher-order

approximation (perturbation methods) for analysis of models with uncertainty shocks,

given that those models are high-dimensional, meaning that it is necessary to keep track

of additional state variables, such as the volatility of shocks. In that regard, they argue

that in contrast to other methods, particularly projection and dynamic programming,

perturbation techniques can handle DSGE models with large state spaces and produce

accurate results even at a significant distance from the perturbation point. Aruoba et al.

(2006) and Caldara et al. (2012) have demonstrated the effectiveness of perturbation

techniques in the solution of DSGE models, particularly their ability to accurately

approximate the policy function.

In this regard, obtaining higher-order expansions is an essential task: Collard and

Juillard (2001a) and Collard and Juillard (2001b) propose a fixed-point algorithm
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for solving dynamic models. Their method involves transforming the DSGE model

into a system of nonlinear equations, starting with an initial guess at the values of

endogenous variables and iteratively updating the guesses until they converge to the

true fixed point of the model. However, Schmitt-Grohé and Uribe (2004) argue that the

solution proposed by Collard and Juillard (2001b) differs from a second-order Taylor

approximation. To address this issue, they derived the second-order approximation to

the solution of the DSGE model, and employed the perturbation method incorporating

scale parameters for the standard deviation of exogenous shocks as an argument of the

policy function. In approximating the policy function, they employed a second-order

Taylor expansion with respect to the state variables and a scale parameter, and proved

that in the second-order approximation, the presence of uncertainty affects the constant

terms of decision rules, which is evidently missing in the first-order approximation.

When it comes to estimation, moving away from a linearized model towards a

nonlinear one is challenging because structural errors enter nonlinearly in the model,

and the likelihood is no longer normal or readily available.

Despite this difficulty, in macroeconomics, Fernández-Villaverde and Rub́ıo-Ramirez

(2007) suggest a Sequential Monte Carlo (SMC) method, also known as particle filtering,

that permits numerical approximation of the likelihood of macroeconomic models.

However, this approach requires that the number of shocks is greater than the number

of observed variables and that some shocks (structural or measurement errors) must

enter linearly in the likelihood. Therefore, for econometric convenience, it is necessary

to add more shocks to the model, which could make identifying the shocks of interest

more difficult. In addition, as Amisano and Tristani (2011) indicate, when using particle

filters, as the number of particles used in each evaluation increases to infinity, the

approximation of the likelihood function converges to the actual likelihood.

In that regard, because evaluating the likelihood requires simulation with a potentially

immense number of particles, the method could be slow, especially when used with

extensive models. Moreover, it is not guaranteed that approximation errors are negligible,

even when a large number of particles is employed.

Amisano and Tristani (2011) propose a procedure for the exact calculation of the

likelihood function of a nonlinear DSGE model. In particular, they show a method for

obtaining the likelihood in some restricted models, where variances in structural shocks

to the state vector are subject to stochastic regime switches. First, the authors employed

a second-order perturbation method to solve the model, since (unlike studies including
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Coleman (1991), Andolfatto and Gomme (2003), Sims and Zha (2006)) they assume

that regime switching only affects the variance of structural shocks. Then, to obtain

the model’s unobserved state variables, they invert observation equations. Finally, they

determine the likelihood by finding the solutions of polynomial equations, similar to

linearised models with i.i.d. shocks. Nevertheless, the method of Amisano and Tristani

(2011) only applies when a model does not feature unobserved non-stochastic state

variables. This assumption implies, for example, that in a model featuring capital, the

capital has to be observed. As mentioned above, their method requires the solving of

polynomial equations, which is computationally intensive and, therefore, in practice,

implies that the number of structural shocks has to be relatively small.

The findings in the literature motivate a search for a better estimation approach

to evaluation of the parameters of DSGE models, an approach that does not resort to

numerous assumptions considered by the above-mentioned studies. Moreover, different

from the particle filter approach, we seek to establish a computationally efficient way to

compute the likelihood function.

2.3 Using Perturbation Methods to Obtain the Policy Function and Esti-
mate the Model

Using the first-order conditions of the dynamic optimization problem, we can see that

the general nonlinear form of a DSGE model can be cast as (e.g., Amisano and Tristani

(2011)):

Et[f(yt+1, yt, xt+1, xt)] = 0 (2.1)

where Et is the expectation operator conditional on information available at time

t; yt represents a vector of non-predetermined variables; and xt denotes a vector of

predetermined variables. The vector xt can be partitioned as xt = (Kt, At), where Kt is

a vector of endogenous predetermined state variables and At is a vector of exogenous

predetermined state variables. Schmitt-Grohé and Uribe (2004) assume that At+1

follows the stochastic process: At+1 = ΛAt + σεt+1, where the scalar σ is a perturbation

parameter, and εt+1 is a vector of zero mean innovations, independently and identically

distributed with Σ as the variance-covariance matrix. The matrix Λ has all eigenvalues

within the unit circle. Given xt = (Kt, At), the solution of the model (DSGE) consists
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of the policy functions which give the optimal value of yt:

yt = gy(Kt, At, σ)

Kt+1 = hK(Kt, At, σ)

At+1 = hA(Kt, At, σ) + σεt+1

(2.2)

Schmitt-Grohé and Uribe (2004) obtain a Taylor approximation of the above policy

functions, gy, hK and hA around the deterministic steady state, xt = xss and σ = 0,

using perturbation methods. The deterministic steady state is defined as vectors (yss, xss)

such that f(yss, yss, xss, xss) = 0.

In order to obtain a higher order approximation, Schmitt-Grohé and Uribe (2004)

use a perturbation method that incorporates the scale parameter σ as an argument of

the policy function. They apply perturbation methods (e.g., Fleming (1971) and Judd

(1998)) by taking a higher order Taylor expansion with respect to the state variables xt

as well as the scale parameter σ. Consequently, their method can be applied to finding

higher-order approximations to the policy function. In addition, Schmitt-Grohé and

Uribe (2004) presented a set of MATLAB programs designed to compute coefficients of

the higher-order approximations. A similar approach was proposed by Sims (2000) and

Collard and Juillard (2001b).

In order to write the higher-order approximation around the deterministic steady

state, let us define Yt and Xt as:

Yt =

 yt − yss,

Kt+1 −Kss

At − Ass

 , Xt =

(
Kt −Kss

At−1 − Ass

)
.

where yss, Kss, Ass are the deterministic steady state values of yt, Kt, At. Using this

notation the solution in (2.2) can be written as:

Yt = g(Xt, εt, σ) (2.3)

Following Dynare (2021) a second-order approximation to (2.3) can be written using

Kronecker products as follows:

Yt = G0,0 +G1,0εt +G0,1Xt +G2,0(εt ⊗ εt) +G0,2(Xt ⊗Xt) +G1,1(εt ⊗Xt) (2.4)
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where G0,0, . . . , G1,1 are matrices of coefficients that depend on σ and other parameters

of the model.

Suppose that some of the variables in Yt are observed. Let Y o
t be the variables

of Yt for which there are observed data, for t = 1, ..., T . Taking as given the model

solution in (2.4), the method of Amisano and Tristani (2011) can be used to obtain

the likelihood provided that Y o
t and εt have the same dimension no and Kt is empty.

However, this method requires finding all the 2no solutions of polynomial equations

for each t = 1, ..., T , so in practice it can only be used when no is small. For example,

Amisano and Tristani (2011) provide an empirical application in which the dimension of

the structural errors εt is two. Due to its computational difficulty, the method cannot

be readily extended to the case in which the dimension of εt is greater than that of Y o
t

or to orders of approximation higher than 2.

Fernández-Villaverde and Rub́ıo-Ramirez (2007) propose a particle-filtering approach

that permits the numerical approximation of the likelihood in nonlinear DSGE models.

This method can be used with various models, including those solved using perturbation

methods and those solved with global solution methods (e.g., value function iteration).

The main requirement for particle filtering is that the model must have a state-space

representation.

However, this method does not apply to (2.4) unless it is assumed that either: 1) Y o
t

is observed with measurement error; or 2) some elements of εt enter linearly in (2.4).

Either of these linearity assumptions is necessary for calculations of the importance

weights in the particle filter. However, adding measurement errors to the model could

weaken the identification of structural errors and parameters.

Regarding the second option, although it is possible in some models, in general it

is not evident how to add structural errors that enter linearly in the solution (2.4).

Furthermore, adding more structural errors for econometric convenience might make

identifying the structural errors of interest more difficult. For these reasons, estimation

of the theoretical model without adding additional linear errors is of interest. Despite

the acknowledged discrepancy between the available macro data and the variables in the

model, it is still of academic significance to compare the empirical fit obtained with and

without taking into account measurement errors; that way, the necessity of introducing

empirical errors could be determined empirically rather than accepted simply because

of the econometric imperative.
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2.4 Using Perturbation Methods to Approximate the Inverse of the Policy
Function and Estimate the Model

Writing Yt as Yt = (Y o
t , Y

n
t ), the solution in (2.3) can be written as:

Y o
t = go(Xt, εt, σ)

Y n
t = gn(Xt, εt, σ)

(2.5)

We assume that Y o
t and εt have the same dimension no and that both are defined in

Rno . If the function go(Xt, εt, σ) was globally invertible with respect to εt in an area of

probability 1, then the following inverses would be well-defined:

εt = mo(Xt, Y
o
t , σ)

Y n
t = mn(Xt, Y

o
t , σ)

(2.6)

Following Galewski (2016), the following conditions are sufficient for global invert-

ibility:

1. go(Xt, εt, σ) is differentiable in εt with continuous derivatives.

2. The determinant of the Jacobian of go(Xt, εt, σ) with respect to εt is never 0.

3. ∥go(Xt, εt, σ)∥ → ∞ as ∥εt∥ → ∞, where ∥.∥ is the norm operator.

The second condition is guaranteed if the policy function is strictly monotonic in εt.

There is a large literature which gives conditions for policy functions to be strictly

monotonic and proves the condition holds in many important models, for example:

Topkis (1978), Hopenhayn and Prescott (1992), Stokey et al. (1989), Gordon and Qiu

(2018). In addition, the assumption of monotonicity has often been exploited in the

literature on DSGE models to obtain the policy function more efficiently (e.g. Christiano

(1990), Judd (1998), Gordon and Qiu (2018)).

We assume that the policy function Y o
t = go(Xt, εt, σ) is locally invertible with respect

to εt at the steady state. This condition holds if the Jacobian of the transformation

from Y o
t to εt is not zero at the steady state, which is a condition that can be verified

numerically. This will allow us to invert the Taylor polynomial using a Lagrange inversion

formula. In addition we assume that there exists a globally invertible approximation of

the policy function Y o
t = go(Xt, εt, σ) and we denote it with Y o

t = ĝo(Xt, εt, σ), and its

inverse as εt = m̂o(Xt, Y
o
t , σ). If the policy function was indeed globally invertible, then
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we would use ĝo(Xt, εt, σ) = go(Xt, εt, σ). Otherwise ĝo(Xt, εt, σ) could be an invertible

function that has the same Taylor polynomial as go(Xt, εt, σ) up to a high order at

the steady state. Two functions will have the same Taylor polynomial up to some

order r, if they have the same value for the derivatives of order up to r at the point of

approximation. Although there is a literature that constructs invertible approximations

of functions (for example approximations of the cumulative density function of a normal

distribution (e.g. Lipoth et al. (2022)), or approximations of multivariate functions

with invertible neural networks (Teshima et al. (2020), Ishikawa et al. (2022)), for our

purposes we do not need to obtain the invertible approximation explicitly: it is enough

to assume that it exists.

We can use m̂o(Xt, Y
o
t , σ) to obtain an approximation of the density of Y o

t conditional

on Xt, if we apply a change of variables theorem (e.g. Billingsley (1999))

πy(Y
o
t |Xt) = πε(m̂o(Xt, Y

o
t , σ))

∣∣∣∣∣∂m̂o(Xt, Y
o
t , σ)

∂Y o
t

∣∣∣∣∣ (2.7)

where ∂m̂o(Xt, Y
o
t , σ)/∂Y

o
t is the Jacobian of the transformation.

The density in (2.7) can be approximated using a Laplace approximation, which we

denote as π̂(y,2)(Y
o
t |Xt). A Laplace approximation is a second-order Taylor approximation

of the log-density around the mode of the distribution. In order to obtain the Laplace

approximation, we only need the derivatives of εt = m̂o(Xt, Y
o
t , σ) at the mode. Therefore

we do not need to obtain the function εt = m̂o(Xt, Y
o
t , σ) explicitly, only its derivatives.

We approximate the mode of (2.7) and obtain the derivatives at the mode using a Taylor

polynomial obtained through standard perturbation methods (as provided by Dynare

(2021)) plus a Lagrange inversion formula to invert the Taylor polynomial.

Because the Laplace approximation is only a second-order Taylor approximation, it

might be desirable to approximate the density in (2.7) with higher accuracy, by matching

derivatives of order higher than two. However, we leave this problem for future research

and limit ourselves to the use of the Laplace approximation here.

Provided that Y o
t = go(Xt, εt, σ) is locally invertible at the steady state, its Taylor

polynomial can be inverted using a Lagrange inversion formula. As a matter of notation,

let the inverse of the Taylor polynomial of (Y o
t = go(Xt, εt, σ), Y

n
t = gn(Xt, εt, σ)) be

denoted as (Y o
t = m̃o,s(Xt, Y

o
t , σ), Y

n
t = m̃n,s(Xt, Y

o
t , σ)). Specific formulas for these

inversions are provided in Proposition 3. Then the derivatives of the likelihood in (2.7)
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can be approximated by those of the following function:

π̃(y,s)(Y
o
t |Xt) = πε(m̃o,s(Xt, Y

o
t , σ))

∣∣∣∣∂m̃o,s(Xt, Y
o
t , σ)

∂Y o
t

∣∣∣∣ (2.8)

Because the Taylor polynomial m̃o,s(Xt, Y
o
t , σ) need not be invertible, the function

π̃(y,s)(Y
o
t |Xt) in (2.8) is not guaranteed to be a proper density function, in the sense

that the area under the curve does not need to add up to one. For this reason it cannot

be used as an approximation for the likelihood. However, because the derivatives of the

Taylor polynomial m̃o,s(Xt, Y
o
t , σ) approximate those of m̂o(Xt, Y

o
t , σ) near the point

of approximation, we can use the derivatives of π̃(y,s)(Y
o
t |Xt) in (2.8) to approximate

the derivatives of the likelihood πy(Y
o
t |Xt) in (2.7). We can then use these derivatives

to construct the Laplace approximation, which is a proper density in the sense that it

integrates up to one.

We therefore propose to obtain the approximation π̂(y,2)(Y
o
t |Xt) to the likelihood

πy(Y
o
t |Xt) using the following procedure.

1. Obtain the Taylor polynomials of the policy function Y o
t = go(Xt, εt, σ) and

Y n
t = gn(Xt, εt, σ) of order s = 2 through perturbation methods.

2. Invert the Taylor polynomials using a Lagrange inversion formula to obtain

εt = m̃o,s(Xt, Y
o
t , σ) and Y

n
t = m̃n,s(Xt, Y

o
t , σ).

3. Calculate the mode of log(π̃y,s(Y
o
t |Xt)), and the second-order derivatives at the

mode Y o
t = Y L.

4. Use the mode and second-order derivatives to construct the Laplace approximation.

The procedure is started at t = 1 with X1 = 0, which assumes that the initial

value is the deterministic steady state. Because Yt contains Xt+1, for each t we can

obtain Xt+1 by using the observed values Y o
t and the relationship Y n

t = m̃n,s(Xt, Y
o
t , σ).

Because the dimensions of εt and Y
o
t are the same, we do not need any Kalman Filter to

calculate the likelihood. Note that when εt is normally distributed, using s = 1 gives the

same likelihood as in the literature for linear DSGE models (e.g. Fernández-Villaverde

(2010)).

Using the Newton-Raphson algorithm, we calculate YL as the point that maximizes

π̃(y,s)(Y
o
t |Xt) in (2.8). The Laplace approximation is a normal density with mean equal

to YL and variance-covariance matrix equal to the inverse of minus the Hessian of
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log π̃(y,s)(Y
o
t |Xt). The following propositions provide the formulas for implementing the

procedure. Proposition 1 gives the Hessian and gradient of log πy(Y
o
t |Xt) at any point

Y o
t as a function of the derivatives of m̂o(Xt, Y

o
t , σ) when εt is normally distributed.

Proposition 2 shows how to obtain the gradient and Hessian of log π̃(y,2)(Y
o
t |Xt).

Proposition 3 explains how to invert the Taylor approximations of the policy functions

go(Xt, εt, σ) and gn(Xt, εt, σ).

Proposition 1. Define J as the no × no Jacobian of m̂o(Xt, Y
o
t , σ)

J =
∂m̂o(Xt, Y

o
t , σ)

∂(Y o
t )

′ (2.9)

Let Y o
t = (Y o

t,1, ..., Y
o
t,no)

′ and define Fi as the no × no matrix:

Fi =
∂J

∂Y o
t,i

, i = 1, ..., no (2.10)

and C as a 1× no vector

C =
(
tr(J−1F1) ... tr(J−1Fno)

)
(2.11)

where tr(.) is the trace operator. The gradient of log(πy(Y
o
t |Xt)) with respect to Y o

t is

∂ log(πy(Y
o
t |Xt))

∂(Y o
t )

′ = −(m̂o(Xt, Y
o
t , σ))

′Σ−1J + C. (2.12)

Let A be a no × no matrix defined as:

A = (aij), where aij = tr(J−1FiJ
−1Fj) (2.13)

and let V be a no × no matrix defined as:

V =
(
V1 ... Vno

)
, where Vi = −F ′

iΣ
−1(m̂o(Xt, Y

o
t , σ)). (2.14)

Then the Hessian of log(πy(Y
o
t |Xt)) with respect to Y o

t is

H = −J ′Σ−1J + V − A+ F (2.15)

where F is the R×R matrix, defined as
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F = (fij), where fi,j = tr(J−1Fij) and Fij is the no × no matrix defined as:

Fi,j =
∂Fi
∂Y o

t,j

Proof. Let πo = log(πy(Y
o
t |Xt)). From (2.7), assuming normality for εt we have that:

πo = log(πo(Y
o
t |Xt)) = −1

2
ε
′

tΣ
−1εt + log |J | − 1

2
log |Σ| − no

2
log(2π)

Using matrix differential calculus, the derivatives of a determinant can be calculated

(e.g Magnus and Neudecker (1999)), such that a differential of πo can be written as:

∂πo = −ε′tΣ−1∂εt + tr(J−1∂J)

where ∂J is the differential of J and can be written as:

∂J =
no∑
i=1

∂J

∂Y o
t,i

∂Y o
t,i =

no∑
i=1

Fi∂Y
o
t,i

Therefore, we can write:

tr(J−1∂J) = tr(J−1

no∑
i=1

Fi∂Y
o
t,i) =

no∑
i=1

tr(J−1Fi)∂Y
o
t,i = C∂Y o

t

where: ∂Y o
t = (∂Y o

t,1, Y
o
t,2, . . . Y

o
t,no)

′
.

Therefore, ∂πo can be written as:

∂πo = −ε′tΣ−1∂εt + C∂Y o
t

From the definition of Jacobian J , we have that ∂εt = J∂Y o
t . Therefore, we can write:

∂πo = −ε′tΣ−1J∂Y o
t + C∂Y o

t

which gives the result that proves (2.12):

∂πo
∂(Y o

t )
′ = −ε′tΣ−1J + C = −(m̂o(Xt, Y

o
t , σ))

′Σ−1J + C.
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Define π1 =
∂πo

∂(Y ot )
′ and take a differential:

∂π1 = −∂ε1tΣ−1J − ε
′

tΣ
−1∂J + ∂C

As before, we have ∂εt = J∂Y o
t . So, we can write:

∂π1 = −(∂Y o
t )

′
J

′
Σ−1J − ε

′

tΣ
−1∂J + ∂C (2.16)

From ∂J =
∑no

j=1 Fj∂Y
o
t,j, we can write:

−ε′tΣ−1∂J = −
no∑
j=1

ε
′

tΣ
−1Fj∂Y

o
t,j = −(∂Y o

t )
′


ε
′
tΣ

−1F1

ε
′
tΣ

−1F2

...

ε
′
tΣ

−1Fno

 = (∂Y o
t )

′


V

′
1

V
′
2
...

V
′
no

 = (∂Y o
t )

′
V

′

Therefore, from (2.16) we can write ∂π1 as:

∂π1 = (∂Y o
t )

′
(−J ′

Σ−1J + V ) + ∂C (2.17)

where we have used the fact that V is symmetric. In order to calculate ∂C, first note

that:

∂(tr(J−1Fi)) = tr(∂J−1Fi + J−1∂Fi)

and also that (e.g. Magnus and Neudecker (1999)):

∂J−1 = −J−1∂JJ−1

such that, using ∂J =
∑no

j=1
Fj
∂Y ot,j

, we have that:

∂(tr(J−1Fi)) =
no∑
j=1

tr(−J−1FjJ
−1Fi)∂Y

o
t,j + tr(J−1∂Fi)

Because C = (tr(J−1F1) . . . tr(J
−1Fno)) we have that:

∂C = −(∂Y o
t )

′
∂Fi
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Now using that ∂Fi =
∑no

j=1 Fij∂Y
o
t,j we can write:

∂C = −(∂Y o
t )

′
A+ (∂Y o

t )
′
F (2.18)

Combining (2.17) and (2.18) we get:

∂π1 = (∂Y o
t )

′
(−J ′

Σ−1J + V − A+ F )

which implies that the Hessian in (−J ′
Σ−1J + V − A+ F ), as we wanted to prove.

Proposition 2. Assume that εt = m̃o,2(Xt, Y
o
t , σ) is given by

εt = G̃0,0
o + G̃1,0

o Y o
t + G̃0,1

o Xt + G̃2,0
o (Y o

t ⊗ Y o
t ) + G̃0,2

o (Xt ⊗Xt) + G̃1,1
o (Y o

t ⊗Xt) (2.19)

where G̃0,0
o , . . . , G̃1,1

o are comformable matrices.

Then the Jacobian is:

J =
∂m̃o,2(Xt, Y

o
t , σ)

∂(Y o
t )

′ = G̃1,0
o + 2G̃2,0

o (Ino ⊗ Y o
t ) + G̃1,1

o (Ino ⊗Xt) (2.20)

where Ino is the identity matrix of dimension no.

Let ij denote the j
th column of the identity matrix, such that Ino = (i1, ..., ino). Define

C as the no × no matrix whose jth column is equal to 2tr(J−1G̃2,0
o (Ino ⊗ ij)), such that:

C = 2(tr(J−1G̃2,0
o (Ino ⊗ i1)), ..., tr(J

−1G̃2,0
o (Ino ⊗ ino))) (2.21)

The gradient of log(π̃(y,2)(Y
o
t |Xt)) with respect to Y o

t is:

∂ log(πy(Y
o
t |Xt))

∂(Y o
t )

′ = −(m̃o,2(Xt, Y
o
t , σ))

′Σ−1J + C (2.22)

Let A be a no × no matrix defined as:

A = (aij), where aij = 4tr(J−1G̃2,0
o (Ino ⊗ ii)J

−1G̃2,0
o (Ino ⊗ ij)) (2.23)
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Let V be a no × no matrix defined as:

V =
(
V1 ... Vno

)
, where Vi = −(2G̃2,0

o (Ino ⊗ ii))
′Σ−1(m̃o,2(Xt, Y

o
t , σ)) (2.24)

The Hessian of log(π̃(y,2)(Y
o
t |Xt)) with respect to Y o

t is:

H = −J ′Σ−1J + V − A (2.25)

Proof. To find the Jacobian let us take the differential of (2.19) which is given by:

∂εt = G̃1,0
o ∂Y o

t + G̃2,0
o (∂Y o

t ⊗ Y o
t ) + G̃2,0

o (Y o
t ⊗ ∂Y o

t ) + G̃1,1
o (∂Y o

t ⊗Xt) (2.26)

Note that G̃2,0
o contains second-order derivatives. In particular, each row of G̃2,0

o is the

vectorized version of a Hessian matrix, which is symmetric. From this we have that:

G̃2,0
o (∂Y o

t ⊗ Y o
t ) = G̃2,0

o (Y o
t ⊗ ∂Y o

t ),

so that (2.26) can be written as:

∂εt = G̃1,0
o ∂Y o

t + 2G̃2,0
o (∂Y o

t ⊗ Y o
t ) + G̃1,1

o (∂Y o
t ⊗Xt) =

= G̃1,0
o ∂Y o

t + 2G̃2,0
o (Ino ⊗ Y o

t )∂Y
o
t + G̃1,1

o (Ino ⊗Xt)∂Y
o
t

=
(
G̃1,0
o + 2G̃2,0

o (Ino ⊗ Y o
t ) + G̃1,1

o (Ino ⊗Xt)
)
∂Y o

t

(2.27)

This shows that the Jacobian is the expression given in (2.20):

J = G̃1,0
o + 2G̃2,0(Ino ⊗ Y o

t ) + G̃1,1
o (Ino ⊗Xt)

To calculate (F1, . . . , Fno) let us obtain the differential of J as:

∂J = 2G̃2,0(Ino ⊗ ∂Y o
t ),

which shows that Fj = 2G̃2,0(Ino ⊗ ij) for j = 1, . . . , no. Using (2.11) and (2.12) in

Proposition 1 we obtain (2.21) and (2.22). The expressions for A and V in (2.23) and

(2.24) were obtained by using the expression for Fj in equation (2.13) and (2.14) of

Proposition 1. Finally, (2.25) is obtained from (2.15) by noting that Fj does not depend

on Y o
t , and, thus, Fij = 0.

21



Proposition 3. Let the Taylor Polynomials εt = m̃o,2(Xt, Y
o
t , σ) and Y

n
t = m̃n,2(Xt, Y

o
t , σ)

be given by:

εt = G̃0,0
o + G̃1,0

o Y o
t + G̃0,1

o Xt + G̃2,0
o (Y o

t ⊗ Y o
t ) + G̃0,2

o (Xt ⊗Xt) + G̃1,1
o (Y o

t ⊗Xt)

Y n
t = G̃0,0

n + G̃1,0
n Y o

t + G̃0,1
n Xt + G̃2,0

n (Y o
t ⊗ Y o

t ) + G̃0,2
n (Xt ⊗Xt) + G̃1,1

n (Y o
t ⊗Xt)

(2.28)

where G̃0,0
o , . . . , G̃1,1

o , and G̃0,0
n , . . . , G̃1,1

n are comformable matrices. The G̃ matrices in

(2.28) can be obtained from the G matrices in (2.4) as follows.


G̃1,0
o =

(
G1,0
o − 2G2,0

o

(
G1,0
o ⊗G1,0

o + 2(G2,0
o ⊗G0,0

o )
)−1

(G0,0
o ⊗G1,0

o )
)−1

G̃1,0
n =

(
G1,0
n − 2G2,0

n

(
G1,0
o ⊗G1,0

o + 2(G2,0
o ⊗G0,0

o )
)−1

(Go
0,0 ⊗Go

1,0)
)
G̃1,0
o

(2.29)


G̃2,0
o = −G̃1,0

o G2,0
o

(
G1,0
o ⊗G1,0

o + 2(G2,0
o ⊗G0,0

o )
)−1

G̃2,0
n =

(
Gn

2,0 − G̃1,0
n Go

2,0
)(
G1,0
o ⊗G1,0

o + 2(G2,0
o ⊗G0,0

o )
)−1

(2.30)


G̃1,1
o = −

(
G̃1,0
o G1,1

o + 2G̃2,0
o (G1,0

o ⊗G0,1
o ) + 2G̃2,0

o (G1,1
o ⊗Go

0,0)
)(

(G1,0
o )−1 ⊗ InK

)

G̃1,1
n =

(
G1,1
n −

(
G̃1,0
n G2,0

o + 2G̃2,0
n (Go

1,0 ⊗Go
0,1)
)
+ 2G̃2,0

n (G1,1
o ⊗Go

0,0)
)(

(Go
1,0)−1 ⊗ InK

)
(2.31)


G̃0,2
o = −

(
G̃1,0
o G0,2

o + G̃2,0
o (G0,1

o ⊗G0,1
o ) + G̃1,1

o (G0,1
o ⊗ InK )

)
− 2G̃2,0

o

(
Go

0,0 ⊗Go
0,2
)

G̃0,2
n = G0,2

n −
(
G̃1,0
n G0,2

o + G̃2,0
n (G0,1

o ⊗G0,1
o ) + G̃1,1

n (G0,1
o ⊗ InK )

)
− 2G̃2,0

n

(
G0,0
o ⊗G0,2

o

)
(2.32)
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G̃0,1
o = −

(
G̃1,0
o G0,1

o + G̃1,1
o (G0,0

o ⊗ InK )
)
− 2G̃2,0

o

(
G0,0
o ⊗G0,1

o

)

G̃0,1
n = G0,1

n −
(
G̃1,0
n G0,1

o + G̃1,1
n (G0,0

o ⊗ InK )
)
− 2G̃2,0

n

(
G0,0
o ⊗G0,1

o

)
(2.33)

G̃0,0
o = −

(
G̃1,0
o G0,0

o + G̃2,0
o (G0,0

o ⊗G0,0
o )
)

G̃0,0
n = G0,0

n −
(
G̃1,0
n G0,0

o + G̃2,0
n (G0,0

o ⊗G0,0
o )
) (2.34)

Proof. Here we use εt = mo(Xt, Y
o
t , σ) as the local inverse of the policy function

Y o
t = go(Xt, εt, σ), which exists provided that the Jacobian is different from 0. Similarly,

Y n
t = mn(Xt, Y

o
t , σ) is the local inverse of Y n

t = gn(Xt, εt, σ). From the properties of

the inverse function, we have that εt = mo(Xt, go(Xt, εt, σ), σ), and also that Y n
t =

mn(Xt, go(Xt, εt, σ), σ) = gn(Xt, εt, σ). Therefore, a second-order Taylor expansion of

the composition functions mo(Xt, go(Xt, εt, σ), σ), and mn(Xt, go(Xt, εt, σ), σ) gives the

following:

mo(Xt, go(Xt, εt, σ), σ) = F 0,0
o + F 1,0

o εt + F 0,1
o Xt + F 2,0

o (εt ⊗ εt)+

F 0,2
o (Xt ⊗Xt) + F 1,1

o (εt ⊗Xt) = εt
(2.35)

mn(Xt, go(Xt, εt, σ), σ) = F 0,0
n + F 1,0

n εt + F 0,1
n Xt + F 2,0

n (εt ⊗ εt)+

F 0,2
n (Xt ⊗Xt) + F 1,1

n (εt ⊗Xt) = Yn = gn(Xt, εt, σ)
(2.36)

Equations (2.35)-(2.36) imply the following restrictions on the F matrices:

F 0,0
o = 0, F 1,0

o = I, F 0,1
o = 0, F 2,0

o = 0, F 0,2
o = 0, F 1,1

o = 0,

F 0,0
n = G0,0

n , F 1,0
n = G1,0

n , F 0,1
n = G0,1

n , F 2,0
n = G2,0

n ,

F 0,2
n = G0,2

n , F 1,1
n = G1,1

n

(2.37)

Let g̃o,s(Xt, εt, σ) and g̃n,s(Xt, εt, σ) be the Taylor approximations of order s to the pol-

icy functions go(Xt, εt, σ) and gn(Xt, εt, σ), respectively. The second-order Taylor approx-
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imation of the composition functions mo(Xt, go(Xt, εt, σ), σ), and mn(Xt, go(Xt, εt, σ), σ)

can be obtained by calculating the composition function of the corresponding Taylor

polynomials and keeping the terms up to 2nd order.

Therefore, using the Taylor approximations in (2.4) and in (2.28) we can calculate

the compositions mo(Xt, go(Xt, εt, σ), σ), and mn(Xt, go(Xt, εt, σ), σ), and obtain the

coefficients for (εt ⊗ εt), (εt), (εt ⊗Xt), (Xt ⊗Xt), (Xt) and for the constant term.

Equating these coefficients with those in (2.37) gives the following 12 equations with 12

unknowns.

for (εt ⊗ εt)
G̃o

2,0
(G1,0

o ⊗G1,0
o ) + 2G̃o

2,0
(G0,0

o ⊗G2,0
o ) + G̃o

1,0
G2,0
o = F 2,0

o = 0

G̃n
2,0
(G1,0

n ⊗G1,0
n ) + 2G̃n

2,0
(G0,0

n ⊗G2,0
n ) + G̃n

1,0
G2,0
n = F 2,0

n = G2,0
n

(2.38)

for (εt) 
G̃o

1,0
G1,0
o + 2G̃o

2,0
(G0,0

o ⊗G1,0
o ) = F 1,0

o = I

G̃n
1,0
G1,0
o + 2G̃n

2,0
(G0,0

o ⊗G1,0
o ) = F 1,0

n = G1,0
n

(2.39)

for (εt ⊗Xt)
G̃o

1,1
(G1,0

o ⊗ IK) + G̃o
1,0
G1,1
o + 2G̃o

2,0
(G1,0

o ⊗G0,1
o ) + 2G̃o

2,0
(G1,1

o ⊗G0,0
o ) = F 1,1

o = 0

G̃n
1,1
(G1,0

o ⊗ IK) + G̃n
1,0
G1,1
o + 2G̃n

2,0
(G1,0

o ⊗G0,1
o ) + 2G̃n

2,0
(G1,1

o ⊗G0,0
o ) = F 1,1

n = G1,1
n

(2.40)

for (Xt ⊗Xt)
G̃o

0,2
+ G̃o

1,0
G0,2
o + G̃o

2,0
(G0,1

o ⊗G0,1
o ) + G̃o

1,1
(G1,0

o ⊗ IK) + 2G̃o
2,0
(G0,0

o ⊗G0,2
o ) = F 0,2

o = 0

G̃n
0,2

+ G̃n
1,0
G0,2
o + G̃n

2,0
(G0,1

o ⊗G0,1
o ) + G̃n

1,1
(G1,0

o ⊗ IK) + 2G̃n
2,0
(G0,0

o ⊗G0,2
o ) = F 0,2

n = G0,2
n

(2.41)
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for (Xt)
G̃o

0,1
+ G̃o

1,0
G0,1
o + G̃o

1,1
(G0,0

o ⊗ IK) + 2G̃o
2,0
(G0,0

o ⊗G0,1
o ) = F 0,1

o = 0

G̃n
0,1

+ G̃n
1,0
G0,1
o + G̃n

1,1
(G0,0

o ⊗ IK) + 2G̃n
2,0
(G0,0

o ⊗G0,1
o ) = F 0,1

n = G0,1
n

(2.42)

for the constant term:
G̃o

0,0
+ G̃o

1,0
G0,0
o + G̃o

2,0
(G0,0

o ⊗G0,0
o ) = F 0,0

o = 0

G̃n
0,0

+ G̃n
1,0
G0,0
o + G̃n

2,0
(G0,0

o ⊗G0,0
o ) = F 0,0

n = G0,0
n

(2.43)

Thus, solving the system of equations in (2.38)-(2.43) through substituting and

collecting terms we obtain the proposed solutions for matrices of the second-order

approximation of the inverses.

2.5 Simulation from the Laplace Approximated DSGE Model

Once the model has been solved by perturbation methods, equation (2.4) can be used

to simulate directly values for Yt. For a given value of X1 this can be done by repeating

the following two steps for t = 1, ..., T :

1. Simulate εt from the appropriate distribution and use equation (2.4) to obtain Yt.

2. Obtain Xt+1 as the appropriate subvector of Yt.

We use this approach to obtain the generalized Impulse Response Functions (IRFs)

presented in Section 2.6 (see e.g. Dynare (2021) for an explanation of how to use

simulation to construct IRFs).

However, it is also possible to simulate Yt using the likelihood of the Laplace

approximated DSGE model that we have proposed in Section 2.4. Specifically, for

a given initial value of X1 this can be done by repeating the following 2 steps for

t = 1, ..., T :

1. Simulate Y o
t using the Laplace approximated density π̂(y,2)(Y

o
t |Xt).
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2. Obtain Y n
t using the inverted Taylor polynomial Y n

t = m̃n,s(Xt, Y
o
t , σ). Obtain

Xt+1 as the appropriate subvector of Yt.

Note that perturbation methods give an approximation of the policy functions

around the steady state, and that the quality of the approximation deteriorates as we

get further from the steady state. For this reason, we cannot expect the perturbation

methods to be informative about the tails of the distribution of Yt. We can expect that

several distributions will be consistent with the local properties of the true distribution

around the steady state. The Laplace approximated model uses the local derivatives

to construct a density which is consistent with the local properties around the steady

state, and yet can be calculated easily numerically. In contrast, as argued in previous

sections, the exact likelihood for the solution obtained using only perturbation methods

is not available, except in limited cases.

However, if perturbation methods are accurate in approximating the true policy

functions, we should expect both solutions to give similar results. We can evaluate

this by comparing the IRFs obtained from both approaches. To obtain IRFs in the

Laplace approximated model, we should introduce intervention dummies dt containing the

impulses. Hence, the structural errors of this economy become εt+dt, which we introduce

in the inverse Taylor polynomials εt = m̃o,2(Xt, Y
o
t , σ, dt) and Y

n
t = m̃n,2(Xt, Y

o
t , σ) that

were presented in equation (2.28) as follows:

εt = G̃0,0
o − dt + G̃1,0

o Y o
t + G̃0,1

o Xt + G̃2,0
o (Y o

t ⊗ Y o
t ) + G̃0,2

o (Xt ⊗Xt) + G̃1,1
o (Y o

t ⊗Xt)

Y n
t = G̃0,0

n + G̃1,0
n Y o

t + G̃0,1
n Xt + G̃2,0

n (Y o
t ⊗ Y o

t ) + G̃0,2
n (Xt ⊗Xt) + G̃1,1

n (Y o
t ⊗Xt)

(2.44)

These equations are the same as in (2.28) except we now write (εt + dt) instead of

(εt) or equivalently (G̃0,0
o − dt) instead of (G̃0,0

o ). The simulation then can be carried

out as explained above but using εt = m̃o,2(Xt, Y
o
t , σ, dt) instead of εt = m̃o,2(Xt, Y

o
t , σ),

and choosing the vector dt according to the IRF that needs to be calculated.

In figures 2.1 to 2.8 we plot the IRFs obtained through these two approaches for

the application in Section 2.6. We find that the IRFs are very close to each other in all

cases. There are only some cases in which there seems to be a difference in the shape of

the IRFs: d, µz, µl, µA and phi. However, in all these cases the IRFs are of the order

of 10−17 or smaller in the first approach, while in the second approach they are also

negligible. It is reasonable therefore to conclude that the two solutions are very similar.
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2.6 An application

2.6.1 Model description

We present the benchmark neoclassical growth DSGE model of Fernández-Villaverde

(2010) to demonstrate the proposed likelihood-based approach. The model comprises

five structural errors and initially are estimated for the US economy. Using the same

country data, we first estimate the log-linearized version of the model employing a

first-order perturbation method. To capture nonlinearity in the model, we estimate the

same model with a second-order perturbation method.

However, empirical studies provide compelling evidence for the presence of uncer-

tainty shock in US aggregate time series, as documented by Fernández-Villaverde and

Rub́ıo-Ramirez (2007), Justiniano and Primiceri (2008), Bloom (2009), and Fernández-

Villaverde and A.Guerrón-Quintana (2020). Moreover, these time series exhibit a

time-varying variance component, which violates the homoscedasticity assumption

that a variance of a stochastic process is constant over time. In that regard, the as-

sumption of homoscedasticity, which refers to the assumption that the variance of a

stochastic process is constant over time, no longer holds. It is also worth noting that

heteroscedasticity disappears in the linear approximation of the model, implying that

models with time-varying uncertainty should be solved nonlinearly. To address this issue,

we modify the benchmark model by introducing Generalized Autoregressive Conditional

Heteroscedasticity (GARCH)1 and solve it with the second-order approximation method.

The basic structure of this neoclassical growth model is as follows. There is a

representative household which consumes, saves, holds money, supplies labor, and sets

its own wages subject to a demand curve and Calvo’s pricing. The final output is

produced by a final good firm, which uses as inputs a continuum of intermediate goods

manufactured by monopolistic competitors. The intermediate good producers rent

capital and labor to produce their good. They face the constraint that they can only

change prices following a Calvo’s rule. Finally, there is a monetary authority that fixes

the one-period nominal interest rate through open market operations with public debt.

The equilibrium conditions of the model are in Table 2.1, the definition of variables

is in Table 2.2.

The five shocks (εd,t, εφ,t, εµI ,t , εA,t,mt) are assumed to be normally distributed with

zero mean and standard deviations (expσd, expσφ,expσµ, expσA, expσm), respectively.

1Palm (1996)
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They enter in the model through equations (2.24)- (2.27) and equation (2.15) in Table

2.1, respectively. In the GARCH version of the model, the shocks continue to have the

same variance, but they are multiplied by a time-varying variance with an expected

value of one:

log d̃t = ρdlog dt−1 +
√
σ̃d,tεd,t

σ̃d,t = ρd1σ̃d,t−1 + ρd2σ̃d,t−1
(εd,t−1)

2

exp(2σd)
+ (1− ρd1 − ρd2)

logφt = ρφlogφt−1 +
√
σ̃φ,tεφ,t

σ̃φ,t = ρφ1 σ̃φ,t−1 + ρφ2 σ̃φ,t−1
(εφ,t−1)2

exp(2σφ)
+ (1− ρφ1 − ρφ2 )

log µI,t = Λµ +
√
σ̃µ,tεµI ,t

σ̃µ,t = ρµ1 σ̃µ,t−1 + ρµ2 σ̃µ,t−1
(εµ,t−1)2

exp(2σµ)
+ (1− ρµ1 − ρµ2)

log µA,t = ΛA +
√
σ̃A,tεA,t

σ̃A,t = ρA1 σ̃A,t−1 + ρA2 σ̃A,t−1
(εA,t−1)

2

exp(2σA)
+ (1− ρA1 − ρA2 )

Rt
R

=
(
Rt−1

R

)γR(Πt
Π

)γΠ ỹdt
ỹdt−1

zt
zt−1

Λ
yd

γy1−γR

exp (
√
σ̃m,tmt)

σ̃m,t = ρm1 σ̃m,t−1 + ρm2 σ̃m,t−1
(εm,t−1)2

exp(2σm)
+ (1− ρm1 − ρm2 )

We assume that ρi1 > 0, ρi2 > 0 and that (ρi1 + ρi2) < 1, for i = d, φ, µ,A,m. Under

these restrictions the time-varying variances (σ̃d,t, σ̃φ,t, σ̃µ,t, σ̃A,t, σ̃m,t) have expected

values equal to one, so that the long-run variances are (exp 2σd, exp 2σφ, exp 2σµ,

exp 2σA, exp 2σm). The GARCH version of the model has 10 extra parameters: ρd1,

ρd2, ρ
φ
1 , ρ

φ
2 , ρ

µ
1 , ρ

µ
2 , ρ

A
1 , ρ

A
2 , ρ

m
1 , ρ

m
2 . We specify independent beta priors for each of

these parameters. The prior mean and standard deviation for ρi1 are 0.7 and 0.046,

respectively, for i = d, φ, µ,A,m. The prior mean and standard deviation for ρi2 are 0.2

and 0.12, respectively, for i = d, φ, µ,A,m.
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We also consider a restricted GARCH model in which the variances evolve according

to a common multiplicative factor σ̃t. Here we assume that for every t this restriction

holds: σ̃t=σ̃d,t= σ̃φ,t= σ̃µ,t= σ̃A,t= σ̃m,t. The common factor σ̃t responds to past values

of the structural shocks as in a GARCH model:

σ̃t = ρ1σ̃t−1 + ρ2σ̃t−1
(ε̃t−1)2

var(ε̃t)
+ (1− ρ1 − ρ2)

ε̃t = δd
εd,t

exp (σd)
+ δφ

εφ,t
exp (σφ)

+ δµ
εµ,t

exp (σµ)
+ δA

εA,t
exp (σA)

+ δm
εm,t

exp (σm)

var(ε̃t) = δ2d + δ2φ + δ2µ + δ2A + δ2m

In this model all structural shocks contribute to the time variation of the common

factor. We can measure the relative contributions of the shocks to such time variation

by the following proportions:

pd =
δ2d

var(ε̃t)
, pφ =

δ2φ
var(ε̃t)

, pµ =
δ2µ

var(ε̃t)
, pA =

δ2A
var(ε̃t)

, pm =
δ2m

var(ε̃t)
,

where pd+pφ+pµ+pA+pm = 1. For example, pm is the proportion of the time-variation

in uncertainty driven by the monetary policy shock.

When it comes to estimating the common factor GARCH model, we have to realize

that we have to normalize the vector δ = (δd, δφ, δµ, δA, δm) because it is not identified.

We normalize it by the restriction δ2d + δ2φ + δ2µ + δ2A + δ2m = 1, such that var(ε̃t) = 1.

Regarding the prior, we specify a beta prior for ρ1, with mean 0.7 and standard deviation

0.046. We then define δ̃ =
√
ρ2δ such that ρ2 = δ̃′δ̃, and specify a normal prior for δ̃

with 0 mean and var-cov matrix equal to (0.2/5)I5, where I5 is the identity matrix. This

implies that the prior for ρ2 is a chi-squared distribution with 5 degrees of freedom and

mean equal to 0.2.

We, therefore, estimate and compare four models:

• M1: Log-linearized model with homoscedastic shocks.

• M2: Model resulting from second-order approximation with homoscedastic shocks.

• M2,G: Model resulting from second-order approximation with unrestricted GARCH

in the shocks.
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• M2,fG: Model resulting from second-order approximation with a common factor

in the GARCH processes.

2.6.2 Data and prior specifications

As in Fernández-Villaverde (2010), we used the following five time series for the U.S.

economy: 1) the relative price of investment with respect to the price of consumption,

2) real output per capita growth, 3) real wages per capita growth, 4) the consumer

price index growth and 5) the federal funds rate. We use the same data sources as

Fernández-Villaverde (2010), but have a more extended sample period that runs for

1959 Q1—2019 Q4. Table 2.5 describes the data sources and the transformations to

obtain the variables in the model Y o
t = (log µI,t, y

o
t , ω

o
t , log Πt, logRt)

′.

We specify priors as in Fernández-Villaverde (2010). The prior means and distri-

bution for estimated parameters are summarized in Table 2.3 and Table 2.4. Unlike

Fernández-Villaverde (2010), we additionally estimate δ and γ2 parameters to facilitate

the estimation. Following his work, we restrict some parameters to their calibrated

values: ε = 10, η = 10, ϕ = 0 since they are difficult to identify in the data.

2.6.3 Results and analysis

We compare the models with the value of the marginal likelihood (e.g., Koop (2003), p.

4), predictive likelihood (Geweke and Amisano (2010)), and posterior probabilities. The

marginal likelihood is the probability of observing given data under a specific model,

averaging over all possible values of parameters of the model, and it explains how well

the model fits the data (Koop et al. (2007)). Regarding predictive likelihood, existing

literature has long recognized predictive likelihood as a valid Bayesian approach to

model selection. The predictive distribution provides a foundation for robustness checks

(Warne et al. (2013)). Gelfand and Dey (1994) emphasize that even if models have

improper priors, the predictive likelihood can still be used for model selection, given a

large enough sample to train the prior to a proper one. In addition, the difference in

the predictive likelihood can be evaluated using posterior probabilities (presented in

Table 2.13).

We use a Metropolis-Hasting algorithm with a random walk proposal to obtain draws

from the posterior distribution (e.g., Koop (2003), p. 97). The marginal likelihood is

calculated following Gelfand and Dey (1994) and Geweke (1999). This study calculates

30



the predictive likelihood for observations from 45 to 244. The average computation

time for estimation of models is 2–3 hours with 300000 iterations using a computer

with processor Intel(R) Core (TM) i7-10700, CPU 2.90GHz, and RAM 16.0 GB, which

would be faster than with relatively small models estimated with particle filters. Model

comparison results are summarized in Table 2.13.

Table 2.13 shows that M2,fG is the best-performing model according to log marginal

and predictive likelihood. Particularly, the log marginal likelihood for M2,fG is around

4711, while for the second best model, M2,G, is 4639. The predictive likelihood forM2,fG

is 3859, and for M2,G is 3792. In addition, the posterior probability for M2,fG is close

to one compared to the other three models. Overall, all values indicated in the above

mentioned table convey the same statement: the nonlinear solution method fits the

data better than a linear approximation. According to Jeffreys (1998), a difference of

4.6 or greater in log marginal likelihoods suggests that one hypothesis is more than 100

times more probable than the other. Applying it to our model, we obtain the difference

value of 72, which provides strong evidence in favor of nonlinear estimation, as it is well

beyond the threshold. This is also identified as a Bayes factor, where the data strongly

supports the nonlinear common factor GARCH model, M2,fG, over the linearized model

- M1, with a value of exp (72) for the ratio of marginal likelihoods (Koop et al. (2007),

p. 61).

Thus, the above result implies that taking into account the nonlinearities in the

DSGE improves the empirical performance. Among the two models with incorporated

GARCH processes, the above results show that the common factor GARCH model is

much superior to the unrestricted GARCH model. This suggests that the data strongly

support the common factor restriction.

The results of the posterior estimation of parameters of linear, M1, and nonlinear,

M2, models are reported in Tables 2.6 and 2.7; for unrestricted GARCH, M2,G, and

common factor GARCH, M2,fG, models - in Tables 2.8, 2.10 and 2.9. Posterior analysis

of common factor GARCH model reveals that the posterior mean of pm is 0.95 (Table

2.15), which implies that the monetary policy shock in a nonlinear heteroscedastic model

is the main driving force of uncertainty in the economy (95%). The standard deviation

of the parameters is estimated to be much higher for the common factor GARCH model

than for the unrestricted GARCH model.

Bayesian impulse response analyses show that the positive monetary policy shock

depicted in Figure 2.9 has a contractionary impact on aggregate output, consumption,
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real wages, and investment for all four estimated models. This finding is line with

existing linearized studies. The impulse response functions for model M2 differ from the

other three models since the posterior estimates for parameters, such as h, γ, κ, and

χ are different for model M2. Since these parameters appear in equilibrium equations

of consumption (h), investment (κ), output (χ), and wages (γ), it implies different

steady-state values for consumption, investment, output, and wages (Table 2.11 and

2.12), which in turn induces slightly different impulse response functions. We analyzed

the impulse response functions of model M2 using estimated parameter values derived

from the linear model M1 (Figure 2.16). These impulse response functions are similar to

those obtained with linear approximation and other models. Hence, the reason for the

difference in impulse response functions is that the second-order approximation gives

different estimated values. This difference can account for the nonlinearity inherent in

economic relationships (via the quadratic terms).

In terms of overall fit of the four estimates models, Figures 2.10-2.13 display observed

series used for estimation and their posterior estimates for models M1, M2, M2,G, and

M2,fG. Figures indicate a good fit of some observed data, such as inflation and investment

growth. In order to check the reliability of the model, we have also analysed posterior

distribution of latent variables. In particular, we constructed the smoothed posterior

means for productivity growth and marginal cost. Figures 2.14 and 2.15 show the

posterior distribution of these latent variables implied by estimated M1, M2, M2,G,

and M2,fG models. According to these Figures, the model resulting from second-order

approximation and the model with a common factor in GARCH processes show higher

volatility than other two models.

The likelihood function depicted in Figure 2.17 measures the probability of observing

the data for each quarter based on our estimated parameters. The figure captures

several main recessions, mainly the economic downturn in the US followed by the oil

price shock of the 1970s or Early 80s Recession; and the Great Recession of 2008 to

2009. During both periods, the log-likelihood for models with heteroscedastic shocks

decreases less than for the linear and quadratic models. The reason for this might be

that in heteroscedastic models the conditional variance in periods of crisis increases,

and therefore the likelihood decreases less when there is a large shock.

Figure 2.18 represents the cumulative likelihood function for the whole data pe-

riod. According to these figures, the common-factor GARCH model (M2,fG in cyan)

outperforms other models and better captures the characteristics of the data.
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2.7 Conclusions

This chapter presents the development of a new likelihood-based procedure for nonlinear

DSGE models that allows the estimation of some important models that cannot be

estimated with the current likelihood methods in the literature. In particular, this

method neither requires that the number of shocks to be greater than the number of

observed variables, nor that some shocks enter linearly in the model. In addition, the

method allows for the presence of unobserved non-stochastic state variables, such as

capital.

This method implicitly uses an invertible approximation of the policy function,

according to which the shocks can be recovered uniquely from some of the control

variables. It then uses the inverse of the policy function with respect to the shocks to

calculate a second-order Taylor approximation of the likelihood. Once this likelihood

function has been obtained it can be used either in a maximum likelihood estimation

framework or in a Bayesian posterior simulation algorithm. We opted for Bayesian

posterior simulation algorithm: computationally the method is much faster than previous

methods, mainly because it does not require simulation to evaluate the likelihood, and

does not solve systems of polynomial equations.

To demonstrate the efficacy of the technique, we apply it to the well-known neoclassi-

cal growth model of Fernández-Villaverde (2010) using US data from 1959 Q1–2019 Q4.

In addition, to estimate the models resulting from first and second-order approximation,

we modify and estimate the growth model by introducing heteroscedasticity through

GARCH processes, including restricted and unrestricted versions of GARCH model (to

capture uncertainty in shocks).

Our findings suggest that the nonlinear model performs better than the linear

model based on computed log marginal, predictive likelihood, and posterior probability.

The common factor GARCH model solved with second-order approximations is the

best-performing model among the four estimated models, based on above mentioned

measures. Furthermore, posterior analyses of a common factor GARCH model reveal

that monetary policy shock is a primary driving force of uncertainty in the economy.

Also, the standard deviation of the parameters is estimated to be much higher for the

common factor GARCH model relative to the unrestricted GARCH model.

However, the method proposed is not applicable in all cases, as it requires the policy

function to be monotonic near the steady state. Furthermore, in this chapter, the
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analysis is restricted to a) a case in which the number of shocks equals the number

of observed variables and to b) a second-order approximation. Future research could

analyze the effect of relaxing these two restrictions. For instance, it could explore cases

where the number of shocks differs from the number of observed variables, or those where

higher-order approximations are used, which could contribute to a more comprehensive

understanding of the relationship between shocks and policy functions, and provide even

more accurate estimation.
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Name Model equation

FOC consumption:

dt

(
c̃t − hc̃t−1

zt−1

zt

)−1

− hβEtdt+1

(
c̃t+1

zt+1

zt
− hc̃t

)−1

= λ̃t

(2.1)

Euler equation:

λ̃t = βEt{λ̃t+1
zt
zt+1

Rt

Πt+1

} (2.2)

FOC capital utiliza-

tion: r̃t = γ1 + γ2(ut − 1) (2.3)

FOC capital:

q̃t = βEt

{ λ̃t+1

λ̃t

zt
zt+1

µt
µt+1

((1− δ)q̃t+1 + r̃t+1ut+1−

− (γ1(ut+1 − 1) +
γ2
2
(ut+1 − 1)2))

} (2.4)

FOC investment:

1 = q̃t

(
1− S

[
x̃t
x̃t−1

zt
zt−1

]
− S ′

[
x̃t
x̃t−1

zt
zt−1

]
x̃t
x̃t−1

z̃t
z̃t−1

)
+

+βEtq̃t+1
λ̃t+1

λ̃t

zt
zt+1

S ′
[
x̃t+1

x̃t

zt+1

zt

](
x̃t+1

x̃t

z̃t+1

z̃t

)2

(2.5)

where:

S

[
x̃t
x̃t−1

zt
zt−1

]
=
κ

2

(
x̃t
x̃t−1

zt
zt−1

− expΛz

)2

S ′
[
x̃t+1

x̃t

zt+1

zt

]
= κ

(
x̃t
x̃t−1

zt
zt−1

− expΛz

)
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Wage setting 1:

ft =
η − 1

η
(ω̃∗

t )
1−ηλ̃t(ω̃t)

ηldt+

+ βθωEt

(
Πχω
t

Πt+1

)1−η ( ω̃∗
t+1

ω̃∗
t

zt+1

zt

)η−1

ft+1

(2.6)

Wage setting 2:

ft = ψdtφt(Π
∗ω
t )−η(1+γ)(ldt )

1+γ+

+ βθωEt

(
Πχω
t

Πt+1

)η(1+γ)( ω̃∗
t+1

ω̃∗
t

zt+1

zt

)η(1+γ)
ft+1

(2.7)

Firm price setting

1: g1t = λ̃tmctỹ
d
t + βθpEt

(
Πχ
t

Πt+1

)−ε

g1t+1 (2.8)

Firm price setting

2:

g2t = λ̃tΠ
∗
t ỹ
d
t + βθpEt

(
Πχ
t

Πt+1

)1−ε(
Π∗
t

Π∗
t+1

)
g2t+1 (2.9)

Firm price setting

3: εg1t = (ε− 1)g2t (2.10)

Optimal capital la-

bor ratio: utk̃t−1

ldt
=

α

(1− α)

ω̃t
r̃t

zt
zt−1

µt
µt−1

(2.11)

Marginal costs:

mct =

(
1

1− α

)1−α(
1

α

)α
(ω̃t)

1−α r̃αt (2.12)
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Law of motion

wages:

1 = θω

(
Πχω
t−1

Πt

)1−η (
ω̃t−1

ω̃t

zt−1

zt

)1−η

+ (1− θω) (Π
∗ω
t )1−η

(2.13)

Law of motion

prices: 1 = θp

(
Πχ
t−1

Πt

)1−ε

+ (1− θp)Π
∗1−ε
t (2.14)

Taylor Rule:

Rt

R
=

(
Rt−1

R

)γR(Πt

Π

)γΠ ỹdt
ỹdt−1

zt
zt−1

Λyd

γy1−γR

exp (mt)

(2.15)

Resource con-

straint:
ỹdt = c̃t + x̃t +

zt−1

zt

µt−1

µt

(
γ1(ut − 1) +

γ2
2
(ut − 1)2

)
k̃t−1

(2.16)

Aggregate produc-

tion:
ỹdt =

At
At−1

zt−1

zt

(
utk̃t−1

)α (
ldt
)1−α − ϕ

vpt
(2.17)

Aggregate labor

market: lt = vωt l
d
t (2.18)

LOM Price disper-

sion term: vpt = θp

(
Πχ
t−1

Πt

)−ε

vpt−1 + (1− θp)Π
∗−ε
t (2.19)

37



LOM Wage disper-

sion term:

vwt = θw

(
ω̃t−1

ω̃t

Πχw
t−1

Πt

)−η

vwt−1 + (1− θw)(Π
∗w
t )−η (2.20)

Law of motion for

capital:

t
zt
zt−1

µt
µt−1

− (1− δ)k̃t−1 − zt
zt−1

µt
µt−1

(
1− S

[
x̃t
x̃t−1

zt
zt−1

])
x̃t = 0. (2.21)

Profits:

Ft = ỹdt −
1

(1− α)
ω̃tl

d
t (2.22)

Definition optimal

wage inflation: Π∗ω
t =

ω∗
t

ωt
, where ω∗

t = ω̃∗
t zt, ωt = ω̃tzt (2.23)

Preference Shock:

log dt = ρdlog dt−1 + εd,t (2.24)

Labor disutility

Shock: logφt = ρφlogφt−1 + εφ,t (2.25)

Investment specific

technology: log µI,t = Λµ + εµI ,t, where µI,t =
µt
µt−1

(2.26)

Neutral technology:

log µA,t = ΛA + εA,t, where µA,t =
At
At−1

(2.27)
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Definition compos-

ite technology: µz,t = µ
1

(1−α)
A,t µ

α
(1−α)
I,t , where µz,t =

zt
zt−1

(2.28)

and

γ1 = µz,t
µI,t
β

− (1− δ) (2.29)

and

Λx = expΛz (2.30)

and

Λz =
ΛA + αΛµ
1− α

(2.31)

observation equa-

tion 1 yot = log(ỹdt )− log(ỹdt−1) + log(µz,t) (2.32)

observation equa-

tion 2 ωot = log(ω̃t)− log(ω̃t−1) + log(µz,t) (2.33)

Table 2.1: Model equilibrium
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Variable Description Variable Description

c̃t consumption Π Inflation

dt shock to intertemporal
preferences

λ̃t Lagrange multiplier

µz,t trend growth rate of the
economy

µI,t growth rate of investment-
specific technology growth

µA,t growth rate of neutral
technology

Rt Nominal Interest rate

r̃t rental rate of capital x̃t investment

ut capacity utilization q̃t Tobin marginal q

ft recursive formulation of
wage setting

ldt aggregate labor demand

ω̃t real wage ω̃∗
t optimal real wage

Π∗
t optimal price inflation Πω∗

t optimal wage inflation

ỹdt aggregate output mct marginal costs

kt capital lt aggregate labor bundle

g1t variable 1 for recursive for-
mulation of price setting

g2t variable 2 for recursive for-
mulation of price setting

vpt price dispersion term vωt wage dispersion term

φt labor disutility shock Ft firm profits

ωt non-detrended real wage ω∗
t non-detrended optimal

real wage

Table 2.2: Main variables
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Parameter Description Distr. Mean St.Dev

100(1/β − 1) β is discount factor Gamma 0.25 0.1
100(Π− 1) Target inflation Gamma 0.95 0.1
100Λµ Long-run growth investment

specific
Normal 0.34 0.1

100ΛA Long-run growth productiv-
ity

Normal 0.178 0.075

h Habit persistence Beta 0.7 0.1
ψ Labor disutility parameter Normal 9 3
θp Fraction of firms with fixed

prices
Beta 0.5 0.1

χ Price indexation Beta 0.5 0.15
θω Fraction of firms with fixed

wages
Beta 0.5 0.1

χω Wage indexation Beta 0.5 0.1
γR Taylor rule coefficient past

rates
Beta 0.75 0.1

γY Taylor rule coefficient de-
mand

Normal 0.12 0.05

γπ Taylor rule coefficient infla-
tion

Normal 1.5 0.125

γ The inverse of the Frisch la-
bor supply elasticity

Normal 1 0.25

κ Investment adjustment cost Normal 4 1.5
α Cobb–Douglas labor Normal 0.3 0.025
ρd Persistence demand shock Beta 0.5 0.2
ρϕ Persistence labor supply

shock
Beta 0.5 0.2

expσA SD long-run productivity IG 0.1 2
expσd SD demand shock innovation IG 0.1 2
expσφ SD labor supply shock inno-

vation
IG 0.1 2

expσµ SD investment productivity
shock innovation

IG 0.1 2

expσm SD monetary shock IG 0.1 2
δ depreciation rate Beta 0.025 0.015
γ2 capital utilization, quadratic

term
Beta 0.01 0.03

Table 2.3: The prior distribution
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Parameter Description Distr. Mean St.Dev

ρd1 GARCH parameter Beta 0.7 0.046

ρd2 unrestricted GARCH param-
eter

Beta 0.2 0.12

ρφ1 unrestricted GARCH param-
eter

Beta 0.7 0.046

ρφ2 unrestricted GARCH param-
eter

Beta 0.2 0.12

ρµ1 unrestricted GARCH param-
eter

Beta 0.7 0.046

ρµ2 unrestricted GARCH param-
eter

Beta 0.2 0.12

ρA1 unrestricted GARCH param-
eter

Beta 0.7 0.046

ρA2 unrestricted GARCH param-
eter

Beta 0.2 0.12

ρm1 unrestricted GARCH param-
eter

Beta 0.7 0.046

ρm2 unrestricted GARCH param-
eter

Beta 0.2 0.12

δd factor GARCH parameter Normal 0 0.2

δφ factor GARCH parameter Normal 0 0.2

δµ factor GARCH parameter Normal 0 0.2

δA factor GARCH parameter Normal 0 0.2

δm factor GARCH parameter Normal 0 0.2

Table 2.4: The prior distribution for parameters of GARCH models
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Database name Transformation Model no-
tation

Description

Relative Price of
Investment Goods
(PIRIC)

−∆ log(x) log(µI,t) log of growth
rate of invest-
ment specific
technology
growth

Real gross domes-
tic product per
capita (A939RX0Q
048SBEA)

∆ log(x) yot real output per
capita growth

Nonfarm Business
Sector: Real Com-
pensation Per Hour
(COMPRNFB)

∆ log(x) ωot real wages per
capita growth

Gross Domestic Prod-
uct: Implicit Price
Deflator (GDPDEF)

∆ log(x) Πt log of gross infla-
tion

Effective Federal
Funds Rate (FED-
FUNDS)

log (1 + x/400) Rt log of gross nom-
inal interest rate

Table 2.5: US Data description

Note: All variables were obtained from Federal Reserve Bank of St. Louis’ FRED

database. The column ’Transformation’ indicates how we transformed the original data

in the database to match the model variable in the column ’Model notation’. yot and ωot

are defined in the observation equations (2.32)-(2.33) in Table 2.1.
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M1 - First-order M2 - Second-order

Mean Credible interval Mean Credible interval

β Gamma 0.998 0.1 0.9983 [0.9972, 0.9992] 0.9990 [0.9983, 0.9996]

h Beta 0.7 0.1 0.5523 [0.4448, 0.6488] 0.8382 [0.8149, 0.8592]

ψ Normal 9 3 9.0389 [3.4819, 14.8717] 9.8073 [5.7470, 15.1635]

γ Normal 1 0.25 0.0761 [-0.0775, 0.3174] 1.6953 [1.2575, 2.1099]

κ Normal 4 1.5 5.8466 [3.6256, 8.3106] 0.2005 [0.1432, 0.2709]

α Normal 0.3 0.025 0.2937 [0.2521, 0.3351] 0.3069 [0.2643, 0.3501]

θp Beta 0.5 0.1 0.6466 [0.5714, 0.7114] 0.5948 [0.5033, 0.6539]

χ Beta 0.5 0.1 0.1228 [0.0433, 0.2403] 0.3335 [0.1624, 0.5760]

θω Beta 0.5 0.1 0.3361 [0.2166, 0.5528] 0.3138 [0.2693, 0.3598]

χω Beta 0.5 0.1 0.5408 [0.3551, 0.7189] 0.4496 [0.2732, 0.6178]

γR Beta 0.75 0.1 0.6830 [0.6276, 0.7297] 0.7086 [0.6600, 0.7516]

γY Normal 0.120 0.05 0.1791 [0.0962, 0.2662] 0.2971 [0.2376, 0.3557]

γπ Normal 1.5 0.125 1.6409 [1.4678, 1.8212] 1.7790 [1.6430, 1.9509]

Π̄ Gamma 1.01 0.1 1.0089 [1.0075, 1.0103] 1.0082 [1.0071, 1.0095]

ρd Beta 0.5 0.2 0.9140 [0.8672, 0.9572] 0.7451 [0.6844, 0.8066]

ρϕ Beta 0.5 0.2 0.9948 [0.9892, 0.9989] 0.9931 [0.9860, 0.9984]

Table 2.6: Prior and Posterior distribution for structural parameters of M1 and M2



45

Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M1 - First-order M2 - Second-order

Mean Credible interval Mean Credible interval

Λµ Normal 0.34 0.1 0.0056 [0.0049, 0.0063] 0.0059 [0.0051, 0.0065]

ΛA Normal 0.178 0.075 0.0007 [-0.0002, 0.0016] 0.0010 [0.0001, 0.0018]

γ2 Beta 0.01 0.03 0.2704 [0.1168, 0.4904] 0.2768 [0.1075, 0.4830]

δ Beta 0.025 0.015 0.0652 [0.0344, 0.1108] 0.0396 [0.0331, 0.0517]

expσA IG* 0.1 2 -4.5647 [-4.5647, -4.3140] -4.5792 [-4.7789, -4.3977]

expσd IG 0.1 2 -3.6454 [-3.9580, -3.2126] -2.5250 [-2.7005, -2.3576]

expσφ IG 0.1 2 -3.6866 [-3.9529, -3.4014] -2.4428 [-2.6186, -2.2635]

expσµ IG 0.1 2 -5.0890 [-5.1792, -4.9960] -5.0900 [-5.1741, -5.0024]

expσm IG 0.1 2 -5.7512 [-5.8581, -5.6345] -5.7818 [-5.8811, -5.6742]

Table 2.7: Prior and Posterior distribution for structural parameters of M1 and M2

Note:* - Inverse Gamma Distribution. 2. ** - The posterior values for the shocks is in log((σx))
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M2,G - GARCH M2,fG - fGARCH

Mean Credible interval Mean Credible interval

β Gamma 0.998 0.1 0.9987 [0.9977, 0.9994] 0.9986 [0.9977, 0.9984]

h Beta 0.7 0.1 0.5525 [0.4622, 0.6492] 0.5645 [0.4695, 0.6619]

ψ Normal 9 3 9.0195 [3.4322, 14.8874] 9.0756 [3.3670, 14.8716]

γ Normal 1 0.25 -0.0382 [-0.0653, -0.0061] 0.0665 [-0.0866, 0.3564]

κ Normal 4 1.5 5.5269 [3.0775, 8.2445] 6.2402 [3.9788, 8.7965]

α Normal 0.3 0.025 0.2730 [0.2322, 0.3119] 0.2846 [0.2425, 0.3257]

θp Beta 0.5 0.1 0.5598 [0.5059, 0.6004] 0.5577 [0.4911, 0.6144]

χ Beta 0.5 0.1 0.2181 [0.1669, 0.2582] 0.1574 [0.0584, 0.2929]

θω Beta 0.5 0.1 0.3353 [0.2936, 0.3809] 0.2898 [0.1424, 0.6048]

χω Beta 0.5 0.1 0.5171 [0.3225, 0.7110] 0.4805 [0.2884, 0.6749]

γR Beta 0.75 0.1 0.6872 [0.6468, 0.7187] 0.8038 [0.7687, 0.8349]

γY Normal 0.120 0.05 0.1688 [0.1094, 0.2217] 0.1770 [0.0937, 0.2617]

γπ Normal 1.5 0.125 1.6800 [1.5929, 1.7591] 1.6974 [1.5432, 1.8576]

Π̄ Gamma 1.01 0.1 1.0073 [1.0063, 1.0083] 1.0064 [1.0057, 1.0071]

ρd Beta 0.5 0.2 0.9313 [0.9172, 0.9401] 0.9152 [0.8830, 0.9436]

ρϕ Beta 0.5 0.2 0.9954 [0.9912, 0.9989] 0.9954 [0.9911, 0.9987]

Table 2.8: Prior and Posterior distribution for structural parameters of M2,G and M2,fG
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M2,G - GARCH M2,fG - fGARCH

Mean Credible interval Mean Credible interval

Λµ Normal 0.34 0.1 0.0054 [0.0048, 0.0060] 0.0058 [0.0051, 0.0064]

ΛA Normal 0.178 0.075 0.0006 [-0.0002, 0.0014] 0.0003 [-0.0005, 0.0010]

ρd1 Beta 0.7 0.046 0.6533 [0.6101, 0.6886] 0.6019 [0.4979, 0.6550]

ρd2 Beta 0.2 0.12 0.1377 [0.1243, 0.1552] - -

ρφ1 Beta 0.7 0.046 0.6933 [0.5972, 0.7795] - -

ρφ2 Beta 0.2 0.12 0.0568 [0.0159, 0.1048] - -

ρµ1 Beta 0.7 0.046 0.6610 [0.5711, 0.8102] - -

ρµ2 Beta 0.2 0.12 0.1377 [0.0843, 0.1956] - -

ρA1 Beta 0.7 0.046 0.6974 [0.5934, 0.7877] - -

ρA2 Beta 0.2 0.12 0.0810 [0.0251, 0.1448] - -

ρm1 Beta 0.7 0.046 0.7194 [0.6216, 0.8128] - -

ρm2 Beta 0.2 0.12 0.0483 [0.0321, 0.0680] - -

δd Normal 0 0.2 - - -0.0392 [0.0274, 0.0517]

δφ Normal 0 0.2 - - -0.0064 [-0.0021, 0.0160]

δµ Normal 0 0.2 - - -0.1302 [0.1007, 0.1716]

δA Normal 0 0.2 - - 0.0217 [-0.0493, 0.0029]

δm Normal 0 0.2 - - 0.6096 [-0.6770, -0.5622]

γ2 Beta 0.01 0.03 0.3002 [0.1550, 0.4980] 0.3381 [0.1654, 0.5544]

δ Beta 0.025 0.015 0.1137 [0.0618, 0.1897] 0.0900 [0.0494, 0.1503]

Table 2.9: Prior and Posterior distribution for structural parameters of M2,G and M2,fG
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M2,G - GARCH M2,fG - fGARCH

Mean Credible interval Mean Credible interval

expσA IG* 0.1 2 -4.7088** [-4.8680, -4.5454] -2.9338 [-3.5957, -2.2367]

expσd IG 0.1 2 -3.9732 [-4.0799, -3.8386] -2.1175 [-2.7748, -1.4216]

expσφ IG 0.1 2 -3.8355 [-4.000, -3.6370] -1.9639 [-2.6691, -1.2032]

expσµ IG 0.1 2 -5.0391 [-5.1912, -4.8591] -3.3121 [-3.9670, -2.6109]

expσm IG 0.1 2 -5.7833 [-5.9118, -5.6464] -4.2818 [-4.9142, -3.5850]

Table 2.10: Prior and Posterior distribution for structural parameters of M2,G and M2,fG

Note:* - Inverse Gamma Distribution. 2. ** - The posterior values for the shocks is in log((σx))
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M1 - First-order M2 - Second-order

Mean Credible interval Mean Credible interval

h Beta 0.7 0.1 0.5523 [0.4448, 0.6488] 0.8382 [0.8149, 0.8592]

γ Normal 1 0.25 0.0761 [-0.0775, 0.3174] 1.6953 [1.2575, 2.1099]

κ Normal 4 1.5 5.8466 [3.6256, 8.3106] 0.2005 [0.1432, 0.2709]

χ Beta 0.5 0.1 0.1228 [0.0433, 0.2403] 0.3335 [0.1624, 0.5760]

Table 2.11: Prior and Posterior distribution for structural parameters of M1 and M2

Model variables Model M1 Model M2 Deviations

Consumption, c -2.068 -0.5128 -1.555

Investment, x -3.123 -1.5038 -1.619

Labor demand, ld -2.285 -0.9476 -1.338

Output, yd -1.769 -0.1971 -1.572

Capital, k -0.5121 1.5109 -2.022

Aggregate labor, l -2.2851 -0.9473 -1.3378

Firm profits, F -4.073 -2.4990 -1.5727

Table 2.12: Steady-state values for models M1 and M2



Model Number
of parame-
ters

Log Marginal
Likelihood

Predictive
Likelihood

Pr(M)

M1 25 4596.30 3782.58 0

M2 25 4602.10 3794.59 0

M2,G 35 4639.30 3792.19 0

M2,fG 31 4711.60 3859.99 1

Table 2.13: Model Performance Values for M1, M2, M2,G and M2,fG

Note: Log marginal likelihood is estimated by importance sampling (method of

Geweke) using a normal distribution. The predictive likelihood is calculated for observa-

tions 45 to 244. Pr(M) is the posterior probability of model M using the predictive

likelihood.

Model Number
of parame-
ters

Log Likeli-
hood

Log prior

M1 25 4702.30 -78.80

M2 25 4720.90 -79.90

Table 2.14: Model Performance Values for M1 and M2

Note: Log likelihood and Log prior are calculated forM1 andM2 at a posterior mean.

Parameter Estimated values

pd 0.0039

pφ 0.0001

pµ 0.0434

pA 0.0012

pm 0.9514

Table 2.15: Proportions for M2,fG
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Figure 2.1: IRFs to a monetary policy shock: second-order perturbation methods versus Laplace approximated model
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Figure 2.2: IRFs to a monetary policy shock: second-order perturbation methods versus Laplace approximated model
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Figure 2.3: IRFs to a monetary policy shock: second-order perturbation methods versus Laplace approximated model
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Figure 2.4: IRFs to a monetary policy shock: second-order perturbation methods versus Laplace approximated model
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Figure 2.5: IRFs to a monetary policy shock: second-order perturbation methods versus Laplace approximated model
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Figure 2.6: IRFs to a monetary policy shock: second-order perturbation methods versus Laplace approximated model
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Figure 2.7: IRFs to a monetary policy shock: second-order perturbation methods versus Laplace approximated model
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Figure 2.8: IRFs to a monetary policy shock: second-order perturbation methods versus Laplace approximated model



Figure 2.9: IRFs to monetary policy shock (positive)

Note: Response of macroeconomic variables to positive monetary policy shock (the

plots are the posterior mode).

Figure 2.10: Fitted vs observed values for M1 and M2
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Figure 2.11: Fitted vs observed values for M1 and M2

Figure 2.12: Fitted vs observed values for M2,G and M2,fG
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Figure 2.13: Fitted vs observed values for M2,G and M2,fG

Figure 2.14: Posterior estimates of productivity growth and marginal cost for M1 and
M2
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Figure 2.15: Posterior estimates of productivity growth and marginal cost for M2,G and
M2,fG

Figure 2.16: IRFs to monetary policy shocks for M1 and M2 using common posteriors
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Figure 2.17: Log Likelihood for M1, M2, M2,G and M2,fG

Figure 2.18: Cumulative Log Likelihoods for M1, M2, M2,G and M2,fG
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Chapter 3 Nonlinear analysis and estimation of Two Agent New

Keynesian DSGE model

3.1 Introduction

A rapidly growing macroeconomics literature embraces various types of DSGE mod-

els, including models with heterogeneous agents, since heterogeneity is widespread in

macroeconomic data. The data show that households vary substantially in terms of

income, wealth, and consumption; and that firms do so in productivity, investment, and

technology used.

Accordingly, numerous studies have sought to enhance knowledge of monetary and

fiscal policy and their effect on aggregate economic performance; those efforts led to the

development of Heterogeneous Agent New Keynesian (HANK) models. In contrast to

the well-known Representative Agent New Keynesian model (RANK), HANK models

incorporate market incompleteness and heterogeneity (Ahn et al. (2018)), Kaplan et al.

(2018)), as well as the forward guidance puzzle (McKay et al. (2016)). Thus, these

models feature a distribution of households with different levels of income, wealth, and

borrowing constraints. A number of studies have adopted that new approach to modeling

the New Keynesian framework to improve our understanding of the transmission of

monetary and fiscal policy (Kaplan and Violante (2014), McKay and Reis (2016), Kaplan

et al. (2018), Auclert and Rognlie (2018), Auclert (2019), Alves et al. (2020)).

Notably, Kaplan et al. (2018) developed a quantitative analytic HANK model with

price rigidity, uninsurable income shocks, and liquid and illiquid assets holdings by

households. They show that changes in the interest rate due to monetary policy shock

influence consumption of households through direct (intertemporal substitution) and

indirect effects (expansion of labor demand). Their result indicates that, in contrast

to the RANK model, the HANK model’s direct effect of interest rate shock is small,

while the indirect effect is substantial. This finding indicates that monetary policy can

be effective through the latter channel, i.e. general equilibrium response in household
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disposable income. Concerning fiscal role, Kaplan et al. (2018) found that transitory

but significant interest rate cuts can effectively expand aggregate consumption because

they lead to an immediate reduction in interest payments on government debt, which

that translates to additional fiscal incentives for households. Overall, since the monetary

transmission mechanism of HANK models differs from that of RANK, this changes the

way authorities should conduct monetary policy.

Nevertheless, it must be acknowledged that solving HANK models is computation-

ally expensive since the aggregate state of the economy contains the distribution of

agents, which is generally infinite-dimensional, and since most algorithms approximate

the distribution with a finite number of moments (Winberry (2018)). Due to this

complication, in the literature HANK models are primarily calibrated rather than, for

example, performing a full-information estimation, i.e. applying the Bayesian inference

method. It is well known that calibration may not accurately capture the underlying

economic mechanisms and would result, for example, in overfitting the model to the

data. Although several studies have attempted to evaluate a HANK DSGE model, their

implementations have met with varying degrees of success.

Thus, Winberry (2018), in his heterogeneous firms model, estimates parameters

of aggregate shocks of only two aggregate shock processes. All other parameters that

determine the steady state of the model are calibrated.

Hasumi and Iiboshi (2019) conduct Bayesian estimation of the one-asset HANK model

of the U.S. and Japan using aggregate variables: real GDP, inflation, and real interest

rate. First, the authors solved the model in a manner similar to continuous-time solution

methods of Achdou et al. (2022) and Ahn et al. (2018), which involve approximating

the nonlinear HANK model around a steady state. Then they employed the Sequential

Monte Carlo (SMC) method with a Kalman filter with parallel computing to evaluate

the likelihood of the model. As discussed in the previous chapter, this approach can be

computationally intensive, particularly when the number of particles representing the

posterior distribution is large. In addition, the accuracy of their computation depends

on the specific characteristics of their model and the data being analyzed.

Adopting a more advanced approach, Kase et al. (2022) develop a solution and

estimation method based on neural networks that do not require approximation of the

true nonlinear dynamics of the model by disregarding aggregate uncertainty or assuming

that all agents are identical. They also employ a particle filter to obtain a likelihood of

a nonlinear HANK model. To do so, they trained an additional neural network as a
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surrogate model to approximate the results of the particle filter and estimate the joint

distribution of the agent characteristics and the model’s endogenous variables. The

authors applied this method to HANK DSGE with a zero lower bound (ZLB) constraint

for the nominal interest rate. Even though it is common to expect high accuracy from

neural networks, this method can lead to a problem of overfitting the data. In addition,

their approach may require significant computational resources and would need to be

more practical for large-scale models.

Since existing heterogeneous agent models are built on micro-data, monetary policy

shock is often characterized by a consumption response to transitory income shock in the

short run, which is consistent with micro-moments (Kaplan et al. (2018)). Nonetheless,

HANK models fail to match the macroeconomic dynamics of RANK models, where

the latter are based on macro data (Auclert et al. (2020)). This mismatch makes

heterogeneous agent models unsuitable for estimation using macro data. To address

this issue, Auclert et al. (2020) built and estimated a model of monetary transmission

mechanism with some degree of heterogeneity, combining insights from both models. In

the first step, they estimated the parameters governing the distribution of idiosyncratic

income and employment shocks using microeconomic data on household income dynamics.

In the subsequent step, they estimated the remaining model parameters using the

Bayesian approach. In the final step, they used those estimated parameters to simulate

the model and compare its impulse responses to actual macroeconomic data. As a result,

they were able to match macro and micro-moments simultaneously. Nevertheless, since

their technique relies on linearization to estimate the model, it may generate inaccurate

results since the model is highly nonlinear.

Overall, applying Bayesian statistical methods to estimation of HANK DSGE models

is challenging and computationally intensive. As we specified, one of the main reasons

for that difficulty is that HANK models incorporate a large number of parameters

and high-dimensional data and need to match an extensive set of moments from the

data. Additionally, wealth distribution plays a critical role in HANK models, and

obtaining accurate estimates of wealth distribution from survey data is challenging.

Hence, heterogeneous agent models require analysis due to their lack of analytical

tractability, which induces difficulties and limits our understanding of the forces driving

business cycles (Alves et al. (2020)).

In this study, to preserve analytical tractability in the model and for further estima-

tion, we employ a New Keynesian model with limited heterogeneity featuring two agent

66



properties, referred to in macroeconomic literature as the Two-Agent New Keynesian

(TANK) DSGE model. These models incorporate agents’ limited asset market partici-

pation (LAMP) in the New-Keynesian DSGE model, where a time-invariant fraction

of agents does not hold assets, which means that unlike in the RANK model, these

agents do not smooth consumption. Conversely, another fraction of agents is endowed

with all assets and smooth consumption. They are also referred to as ”constrained”

and ”unconstrained” (or ”non-Ricardian” and ”Ricardian”) households in the literature.

These types of New Keynesian models have a long history; they were first introduced by

Campbell and Mankiw (1989) and were studied by many macroeconomists, including

Gaĺı et al. (2004), Bilbiie (2008).

Regarding the ability of above the models to approximate the impact of heterogeneity,

one interesting finding from the analysis of TANK models is that they can capture

the fluctuations in consumption heterogeneity in response to aggregate shocks between

constrained and unconstrained households. In that light, Debortoli and Gaĺı (2021)

compared HANK, TANK, and RANK models by tracing responses of those models

to aggregate shock. Using the previously discussed two-agent structure of financially

constrained and unconstrained households, they identified three forms of heterogeneity:

variation in the average consumption gap between constrained and unconstrained

households; variations in consumption dispersion within unconstrained households; and

changes in the share of constrained households. In that approach, these features are

inherent to heterogeneous models and absent in representative household models. These

heterogeneity forms were then used to quantify and explain differences between HANK

and RANK models in terms of aggregate responses. Debortoli and Gaĺı (2021) found

that much of the cyclicality is due to the first factor—a cyclical component of the

average consumption gap between constrained and unconstrained households.

Meanwhile the other two factors mutually offset each other. In the TANK model,

constrained households do not adjust their consumption in response to aggregate

fluctuations; that leads to a widening consumption gap between the two agents. As a

result, the authors show that similar to the HANK model, the TANK model captures the

average consumption gap between two households and can generate equilibrium responses

of aggregate output to monetary, technology, and preference shocks — demonstrating

that for plausible specification of heterogeneity, TANK models can closely track HANK

model dynamics.

Furthermore, the macroeconomic literature has employed TANK DSGE models to
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explain the aggregate shocks, including the Great Recession of 2008 and the recent

coronavirus pandemic. These shocks caused severe economic downturns in many coun-

tries, increasing unemployment and inflation rates. To address the adverse effects of

shocks, monetary agencies took various measures, including lowering interest rates,

providing liquidity to financial markets through lending facilities and asset purchases,

and engaging in quantitative easing. Fiscal agencies’ response was to provide stimulus

packages, increase government spending, and implement tax cuts to stimulate demand

and support the economy.

Regarding the estimation of TANK DSGE models, related studies were either

calibrated or estimated using the linearized methods, which, as discussed in the previous

chapter, might affect the model’s dynamics and predictions. The main difference between

our work and that of previous studies (our contribution) is our nonlinear approach in

estimating the TANK DSGE model with monetary and fiscal policy rules, including

real and nominal rigidities and distortionary taxation. Moreover, we provide nonlinear

first-order wage and price-setting conditions for the two-agent model. Considering

this issue, we opted for a higher-order solution to preserve the model’s nonlinearity

feature. First, we solved the model using the perturbation method of order two via the

Dynare software platform. Then we estimated model parameters using a likelihood-based

approach for the second-order approximation to capture nonlinear features of related

macroeconomic data. Within this study, we also conducted first-order estimation of

the model using the same method to compare the main estimation results, Bayesian

impulse responses, and other outcomes.

We employed quarterly aggregate Korean data for 1999 Q4–2021 Q4. We analyzed

this time range since the Bank of Korea (the central bank) became more proactive in

controlling inflation and adopted an inflation-targeting rule in 1998, after the Asian

financial crisis. This allowed the central bank to focus on keeping inflation under control

in contrast to the previous period when it implemented a loose monetary policy by

expanding the money supply (Jung (2022)).

Previewing our results from the second study, we find that the linear estimation

of the linear representation of the TANK model generates a better fit of the model

to the data as measured by log-likelihood at the posterior mode. However, nonlinear

estimation of the nonlinear representation of the model reveals better result in terms

of the marginal and predictive likelihoods. Similar to the literature, we find that

government expenditure shock has an expansionary effect on consumption and output,
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whereas distortionary taxation has a crowding-out effect. Contractionary monetary

policy shock restrains inflationary pressures in the economy. We also find that the

estimated share of financially excluded households is relatively high, 0.42 for the linear

model, and 0.53 for the nonlinear model.

The rest of this chapter is organized as follows: section 2.2 describes the model;

section 2.3 explains the Bayesian estimation procedure and the data used; section 2.4

discusses the results; and Section 2.5 presents conclusions and policy implications.

3.2 Review of the literature: TANK DSGE

As mentioned above, one of the first calibrated studies of two-agent models to examine

the role of constrained households in conducting monetary policy was Gaĺı et al. (2004).

The authors argue that including financially constrained households (Non-Ricardian)

in the RANK model with sticky price properties can change the attributes of the

contemporaneous interest rate rule (simple Taylor rule) in the formulation of a monetary

policy. Particularly, they show that if the weight of constrained consumers is sufficiently

large, the response to inflation needs to be significantly greater than unity to ensure the

uniqueness of equilibrium. As for the forward-looking interest rate rule, they argue that

in order to guarantee unique equilibrium, it is required that the central bank respond to

inflation changes less than unity, which violates the Taylor principle (Taylor (1993)).

Bilbiie (2008) elaborates monetary policy analysis using an analogous two-agent

structure: Ricardian and Non-Ricardian. Notably, he develops an analytical framework

to capture the influence of limited asset participation on aggregate dynamics through

the elasticity of aggregate demand to real interest rates, which depends nonlinearly on

the degree of asset participation. Interest rate changes alter intertemporal consumption

and labor supply of asset holders, which in turn affect the real wage and hence the

demand of agents with no assets, which can change the standard theoretical prediction

between output and real interest rate. This relationship becomes inverted when the

share of non-asset holders is high enough and/or the elasticity of labor supply is low

enough. In this situation, the slope of the well-known IS curve changes from negative to

positive, which Bilbiie characterizes as an inverted Taylor principle. As a result, the

central bank should follow a passive policy rule whereby it increases the nominal interest

rate by less than inflation. Unlike Gaĺı et al. (2004), this principle does not depend on

whether the Taylor rule is specified in terms of current or expected future inflation.
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In a subsequent study, Bilbiie and Straub (2013) estimated the two-agent DSGE

model using the Bayesian estimation technique on US data for two prominent periods

in the US economy: Great Inflation and Great Moderation. Their empirical results

show that the monetary authorities implemented a passive policy approach during the

Great Inflation period; and changed to an active strategy during the Great Moderation

era. They explain this switching in terms of changes in the sign of the IS curve, which

in turn came from the transformation of US financial systems around the 1980s and

shifts in business cycle shocks. During that period, the share of agents participating

in the asset market increased. Overall, their estimation results support the notion of

an inverted Taylor principle; they find that most of the changes can be accounted for

by structural economic changes. Regarding the shock process, to explain the fall in US

output and volatility, shifts in the shock process should also be considered.

Colciago (2011) incorporates nominal-wage stickiness and capital accumulation into

the TANK model of Gaĺı et al. (2004), and finds that under plausible parameterization

of the model, a small degree of wage stickiness restores the standard Taylor principle,

which is a necessary and sufficient condition for equilibrium determinacy (contrary to

Gaĺı et al. (2004) and Bilbiie (2008)). Specifically, nominal wage stickiness dampens the

variations in the real wage associated with productivity shocks; it averts a large increase

in labor income and prevents a strong movement in the consumption of constrained

households.

The above mechanism differs from the results of Gaĺı et al. (2004),where higher

fluctuations in real wage lead to a higher increase in aggregate demand, followed by

increased consumption of constrained agents. Reflecting the result of findings of Colciago

(2011), the central bank rules out any sunspot shocks and can manage aggregate demand.

To explore this notion, Ascari et al. (2017) further examine the implication of LAMP

in the TANK models for the design of monetary policy, arguing that the result of

Bilbiie (2008) relies on nominal wage flexibility. Ascari et al. (2017) show that a small

amount of wage rigidity restricts the parameter space where the Taylor principle is

inverted. Hence, in their analysis, wage stickiness prevents the inversion of the sign of

the elasticity of aggregate demand with respect to the real interest rate. Since LAMP

uniquely affects the demand side, the authors demonstrate that the trade-off a monetary

policy faces marginally depends on LAMP when wages are sticky. Thus, incorporating

the constrained agents into the model does not affect the design of optimal monetary

policy, which contrasts with the findings of Bilbiie (2008).
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By considering a simple two-agent model, Bartolomeo and Rossi (2007) investigate

the earlier ideas of the New Keynesian transmission mechanism, where they differentiate

two different channels (the direct and indirect effects) for the effectiveness of monetary

policy. They argue that monetary policy pertains to its effectiveness even if the degree

of asset market participation falls. The authors show that in the LAMP economy, a

change in interest rate stimulates the revision of consumption of both unconstrained and

constrained agents because of changes in disposable income (Keynesian effect). Also,

since aggregate marginal propensity to consume increases with a fraction of constrained

agents, it compensates for the reduction of direct effects of monetary policy where now

fewer agents can intertemporally smooth their consumption.

Referring to the effects of fiscal shocks, Gaĺı et al. (2007) examine the impact of

government spending on aggregate variables using a two-agent model with sticky prices.

They argue that consumption and output can rise in response to government spending

shock. In their model, constrained households can partly insulate aggregate demand

from the negative effect of raised lump-sum taxes since real wages and labor income

increased. Moreover, as one implication of the model of Gaĺı et al. (2007) is that

generating a positive response of aggregate consumption and output requires a specific

combination of fiscal parameters: a sufficiently high response of taxes to debt and a

sufficiently low response of taxes to current government spending. Thus, their finding

suggests that a careful balance between addressing debt and avoiding the negative effect

of higher taxes is required to achieve the desired outcome.

Bilbiie and Straub (2004) argue that obtaining positive consumption response to

government spending shock is challenging. Using the calibrated model with a two-agent

structure with distortionary taxation, they show that aggregate consumption increases

in response to the above shock in the presence of low persistent fiscal shock, passive

monetary rule, and high price stickiness. Similar, to the findings of Gaĺı et al. (2007),

strong response of consumption is driven by strong positive response of real wages.

Following Gaĺı et al. (2007), Furlanetto (2011) examined the impact of expanding

public spending in an economy with a two-agent structure incorporating sticky prices

and wages; he argues that nominal wage rigidity implies that wage inflation is much

lower, and the reaction of real wages is thus also low. Therefore, the constrained

agents increase their consumption less than in a model with flexible wages. At the

same time, another factor comes to light: lower wage inflation. This aspect indicates

a lower pronounced impact on marginal cost, lower price inflation, and a much lower
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increase in interest rate by the central bank. A lower increase in interest rate affects

unconstrained agents and investment, both of which decrease less than in the flexible

wage case. Thus, the expansionary effects of government spending shock on output

and consumption are preserved. As mentioned, earlier monetary policy analysis studies

by Colciago (2011) and Ascari et al. (2017) confirm this result. In particular, after

experimenting with different monetary rules, they conclude that consumption crowds in

upon a government-spending shock only when the monetary policy rule is characterized

by interest rate smoothing and a moderately anti-inflationary stance.

One of the earlier estimation of fiscal shocks with limited assets participation models

was a study of Coenen and Straub (2005). Following Smets and Wouters (2003), they

used Bayesian inference method to estimate the model using the Bayesian inference

method for the euro area with real and nominal rigidities and lump-sum taxation and

endogenously set distortionary taxes. They find that the estimated share of constrained

agents is relatively low, between 25% and 37%, which they explain by the financial

deregulation period in the Eurozone. Even though government spending shock positively

stimulates consumption of constrained agents, the high asset participation rate hinders a

positive aggregate consumption and output response to that shock. Unlike the calibrated

model of Gaĺı et al. (2007), the model of Coenen and Straub (2005) does not result in a

sharp increase in real wages that would help curb the negative wealth effect generated

by government spending shock.

During the recession of 2008 and 2009, many countries implemented a large-scale

spending program to revive the economy. During that time, the US enforced the

Economic Stimulus Act of 2008 and the American Reconstruction and Reinvestment

Act (ARRA) of 2009. These laws aimed to provide economic stimulus and support the

US economy. The European Commission announced the European Economic Recovery

Plan of 2008, and other OECD countries reported their domestic stimulus fiscal actions.

Analysis of these measures is reflected in many studies, for example Coenen et al. (2012a)

simulated policy and academic DSGE models with constrained households to study

the domestic effects of stimulus packages. They found that temporary fiscal stimulus

mitigated the economic downturn in the aftermath of the 2008 financial crisis, and show

that spending and targeted transfer can generate sizable output multipliers along with

an accommodative monetary policy rule, where interest rates remain constant for several

years.

There is also a strand of the literature on the estimation of TANK DSGE models
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incorporating endogenously driven distortionary taxation. For example, Forni et al.

(2009) estimated the effects of fiscal policy using TANK DSGE and applying Bayesian

inference methods on euro area data as in Christiano et al. (2005) and Smets and

Wouters (2003), where the latter studies investigated the estimation of the linearized

RANK model. The model of Forni et al. (2009) considers distortionary taxation on

labor, capital, and income, where government spending is partitioned between goods and

services. They find a significant share of constrained agents in the euro area, between

30% and 40%, and observe that a positive shock to government purchases has small and

short-lived expansionary effects on consumption. The decreasing of consumption tax

has a positive effect on output and consumption, while a reduction in capital tax has an

expansionary effect on investment and output.

Moreover, several other analyses show that fiscal policy shocks imply an expansionary

effect on consumption and output (Linnemann (2004), Iwata (2009), Coenen and Straub

(2012b), and Drygalla et al. (2020)). Drygalla et al. (2020) investigate the effects of the

stimulus packages adopted by the German government during the Great Recession by

developing an open-economy DSGE model with a two-agent structure with discretionary

fiscal policy effects distinguished from automatic stabilizers. They demonstrate that

discretionary fiscal policy had a positive but small impact on the cyclical output

component during the Recession based on German data, which amounted to a 0.6

percentage point increase in output growth. In the presence of a 5 percentage point drop

in GDP, fiscal measures helped to offset this decline to some degree. Among fiscal policy

instruments, the largest positive impact is contributed to government consumption,

government investments in the future periods, and government transfers. Drygalla et al.

(2020)) also find that reduction of labor tax rates, including social security contributions

and capital tax rates, had a slightly smaller positive effect on output growth in Germany.

On the other hand, consumption tax rates had positive and negative effects, which were

neutralized over time. Thus, according to their results, public consumption, investment,

and transfers prevented a sharp and prolonged decline in German output at the beginning

of the Great Recession. Their results align with those of Coenen and Straub (2012b).

Nevertheless, some studies reveal the contractionary effect of fiscal shocks. Thus,

Ratto et al. (2009) developed a TANK DSGE model with an open economy structure

and subsequently estimated it on the euro area using the Bayesian estimation method.

They find that the aggregate multiplier of government consumption is negative. These

findings are consistent with the findings of Cogan et al. (2010), where the estimated
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LAMP model for US data shows the crowding-out effect of consumption and investment

goods in response to increased government spending shock. Bhattarai and Trzeciakiewicz

(2017) obtained similar results for the UK economy, although results are at odds with

the results of studies discussed earlier.

Thus, unlike the RANK models, which imply a substantial wealth-effect mechanism

where the agent’s consumption falls due to government expenditure shock (higher current

or future taxes) and increased labor supply, the TANK models show better outcomes and

are better suited for fiscal analysis as interaction with monetary policy since they model

more realistic behavior of agents. Nevertheless, estimated TANK DSGE models can

feature various outcomes in response to aggregate shocks, depending on various market

frictions and rigidities, including the share of constrained households and the persistence

of habit, price, and wage rigidity. Henceforth, the implication of the two-agent model

relies on model-specific details, and is subject to the calibration of the model.

In this study, we revisit the effects of aggregate shocks on macroeconomic variables

by developing our TANK DSGE model. In particular, we analyze the two-agent model

and the role of the constrained agent in the propagation of government spending,

distortionary taxation, and monetary policy shocks and constrained agent’s accounting

for observed fluctuations in output and consumption. We investigate the limited

participation assumption for the Korean economy. Some studies have analyzed Korea’s

economy and examined the driving forces of business cycles in that country. For example,

Jung (2022) examines the main shock processes using a two-agent model to analyze

Korean data, and finds that during the high economic growth era, a significant portion

of constrained households played a substantial role in aggregate fluctuations in Korea.

Monetary policy innovation contributes much more than any other shock to explanation

of the behavior of the main economic variables: output and inflation. During the

inflation targeting regime, cost-push and productivity shocks played significant roles

in economic fluctuations. Also, during the Great Recession, a fraction of constrained

households, which previously surged during the Asian financial crisis, played an essential

role in economic turbulence. Jung (2022) also compared the TANK DSGE model

with the RANK model for the Korean economy, and found that the two-agent model

outperforms the simple representative model in generating the co-movements between

output and selected financial variables. Jung (2022) used the maximum likelihood

method to estimate the model’s parameters and concluded that models featuring LAMP

are necessary for analysis of Korea’s economy.
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As emphasized earlier, we contribute to the literature by developing a TANK DSGE

model with a richer structure and estimating it using first and second-order perturbation

methods, where the latter requires a nonlinear solution of the model. As a result, we are

able to analyze how well our model aligns with macroeconomic data; and investigate

Bayesian impulse responses to various shocks. Unlike existing studies on TANK DSGE

models, we resort to the full estimation technique using nonlinear approximation.

3.3 The Model

The model we use in this study builds on the earlier literature on two-agent New Keyne-

sian DSGE models. It is a standard cashless dynamic general equilibrium model with two

agent properties. There are two types of consumers: ”constrained” and ”unconstrained”

(or Non-Ricardian and Ricardian). We assume the fraction of constrained households to

be exogenous. In addition, the model features a single perfectly competitive final-good

producer and monopolistic competitive intermediate-good producers determining prices

in a staggered fashion. The model comprises fiscal and monetary authority, where the

latter pursues its objectives by setting its nominal interest rate, and the former enforces

taxes and subsidies. Real frictions include nominal rigidities – price and wage rigidities.

Since the model essentially builds on the work of Smets and Wouters (2007), Gaĺı et al.

(2007), Bilbiie (2008), we focus on the additional features.

3.3.1 Households

Both types of households have preferences represented by the expected utility function:

E0

∞∑
k=0

βkU i
t+k,

where βk ∈ (0, 1) – discount factor. The non-separable in consumption and leisure

identical instantaneous utility functional form is given by:

U i
t =

((
Ci
j,t

)1−σ
1− σ

−
(
Lij,t
)1+φ

1 + φ

)
,

where Ci
j,t is consumption, i ∈ {R,NR}, where R stands for Ricardian households, and

NR for Non-Ricardian. Lij,t is labor supplied to the market, σ the coefficient of relative

risk aversion, so, 1/σ − the intertemporal elasticity of substitution, φ is the elasticity
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of marginal disutility of labor, where 1/φ is the Frisch elasticity of labor supply at the

household level. The Ricardian households own all the firms in the economy and labor

markets are incomplete. Since we consider here TANK model the households do not

face any form of idiosyncratic uncertainty.

3.3.1.1 Ricardian Households

The Ricardian households solve the following problem

max
CRj,t,K

R
j,t+1,B

R
j,t+1,I

R
j,t

E0

∞∑
t=0

βt

{
(CR

j,t)
1−σ

1− σ
−

(LRj,t)
1+φ

1 + φ

}

subject to:

PtC
R
j,t(1 + τ ct ) + PtI

R
j,t +

BR
j,t+1

RB
t

=

PtWj,tL
R
j,t(1− τ lt )− PtT

R
t +BR

j,t +DR
j,t +RtPtK

R
j,t.

(3.1)

In each time period t, Ricardian agents can purchase any desired single type of nominally

riskless bond, BR, in period t+ 1 at nominal returns RB
t , I

R
j,t are investments. The

expression RtPtK
R
j,t is capital income from renting the capital stock to firms at the

nominal rental rate Rt. Nominal dividends received for the ownership of firms are

denoted by DR
j,t. Ricardian household taxed by consumption and labor taxes, τ ct , τ

l
t .

Finally, TRt represents nominal lump-sum taxes. The household’s stock of physical

capital evolves according to:

KR
j,t+1 = (1− δ)KR

j,t + ϕ

(
IRj,t
KR
j,t

)
KR
j,t. (3.2)

When solving the model in a nonlinear setting, we need to specify the capital adjustment

cost function - for the loglinear approximation, a single elasticity was enough. Thus,

following Jermann (1998) we specify the functional form of ϕ
(
IRj,t
KR
j,t

)
as:

ϕ

(
IRj,t
KR
j,t

)
=

b

1− a

(
IRj,t
KR
j,t

)(1−a)

+ c, (3.3)

where δ denotes the physical rate of depreciation, the coefficients a, b are set so as to

yield the same steady-state properties, and where a replicates the elasticity parameter.
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Capital adjustment costs are introduced via the term ϕ
(
IRj,t
KR
j,t

)
KR
j,t which determines

the change in capital stock induced by investment spending IRj,t. The function ϕ satisfies

the following properties: ϕ
′
(·), ϕ′′

(·) ≥ 0, ϕ
′
(δ) = 0, ϕ(δ) = δ. That is, adjustment costs

are proportional to the investment rate per unit of installed capital.

Ricardian households maximize the expected discounted sum of instantaneous utility

subject to constraints (3.1), (3.2), and (3.3) along with transversality conditions ruling

out Ponzi games be satisfied:
∑∞

t=0 β
tζtBt+1 = 0, whereas it mentioned before β is the

discount factor, Bt+1 is the expected value of the nominally riskless bond at time t. The

sum represents the present value of all future nominally riskless bonds.

Regarding the labor choice, in the presence of wage stickiness, both type of households

do not determine wages. They supply differentiated labor in a market structure of

monopolistic competition. Further in this Chapter, we discuss about it.

The firs-order conditions (expressed in relative prices) of Ricardian households with

respect to CR
j,t, K

R
j,t+1, B

R
j,t+1, I

R
j,t:

ζRj,t =
(CR

j,t)
−σ

(1 + τ ct )
(3.4)

ζj, tR = βRB
t Et

ζRj,t+1

Πt+1

, (3.5)

where ζRj,t is a Lagrange multiplier on the flow budget constraint of Ricardian households

in period (t).

Qj,t =
1

b
(
IRj,t
KR
j,t

)−a , (3.6)

where Qj,t is the (real) shadow value of capital in place, namely, Tobin’s marginal q.

Qj,t = βEt

{
ζRt+1

ζRt

[
Rt+1 +Qt+1

(
(1− δ)−

(
IRt+1

KR
t+1

)
b

(
IRt+1

KR
t+1

)−a

+
b

1− a

(
IRt+1

KR
t+1

)1−a

+ c

)]}
.

(3.7)
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3.3.1.2 Non-Ricardian Households

The Non-Ricardian households solve following problem

max
CNRj,t

E0

∞∑
t=0

βt

{
(CNR

j,t )1−σ

1− σ
−

(LNRj,t )
1+φ

1 + φ

}

subject to:

PtC
NR
j,t (1 + τ ct ) = PtWj,tL

NR
j,t (1− τ lt )− PtT

NR
t (3.8)

Non-Ricardian households do not have an access to financial market, do not hold

physical capital nor do they receive profits in the form of dividend income. The

first-order condition of Non-Ricardian households with respect to CNR
j,t :

ζNRj,t =
(CNR

j,t )−σ

(1 + τ ct )
, (3.9)

where ζNRj,t is a Lagrange multiplier on the flow budget constraint of Non-Ricardian

households in period (t).

3.3.1.3 Labor setting

The first-order condition with respect to labor and wages is more involved than other

variables. The labor used by intermediate good producers is supplied by a representative

competitive firm that hires the labor supplied by each household j. This labor supplier

aggregates the differentiated labor of households with the following production function

(technology):

Ldt =

(∫ 1

0

L
εw−1
εw

j,t dj

) εw
εw−1

(3.10)

where εw > 1 is the elasticity of substitution among different types of labor and Ldt

is the aggregate labor demand. The labor “packer” maximizes profits subject to the

production function (technology),taking as given all differentiated wages Wj,t and wage

Wt. Therefore, the maximization problem is:

max
Lj,t

WtL
d
t −

∫ 1

0

Wj,tLj,tdj
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whose first-order conditions are:

Lj,t =

(
Wj,t

Wt

)−εw
Ldt (3.11)

which represents demand equation for differentiated labor j (input demand function).

To find the aggregate wage, we use the zero profit condition WtL
d
t =

∫ 1

0
Wj,tLj,tdj and

plug-in the input demand functions:

WtL
d
t =

∫ 1

0

Wj,tLj,tdj =

∫ 1

0

Wj,t

(
Wj,t

Wt

)−εw
Ldtdj

to obtain:

Wt =

(∫ 1

0

W 1−εw
j,t dj

) 1
1−εw

. (3.12)

3.3.1.4 Wage setting

Nominal wage rigidities are modeled according to the Calvo (1983), Coenen and Straub

(2005) and Junior (2016). As mentioned above, the households supply their labor

services via a continuum of monopolistically competitive firms (unions), which act

as labor “packers” for the differentiated labor services, taking the aggregate labor

demand of firms as given. Each period, a random fraction (1− θw) of the continuum of

monopolistically competitive firms receive permission to optimally reset their nominal

wage rate in a given period t. In contrast, those firms that do not receive permission

maintain previous period wages. Accordingly, the the maximization problem of labor

“packer i (where i = R,NR) problem is:

max
Wj,t

Et

∞∑
s=0

(θwβ)
s

{
− 1

1 + φ
[Lij,t+s]

1+φ + ζi,t+sWj,tL
i
j,t+s(1− τ lt+s))

}

where:

Lj,t+s =

(
Wj,t

Wt+s

)−εw
Ldt+s. (3.13)

Substituting equation 3.13 into maximization problem we have:
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max
Wj,t

Et

∞∑
s=0

(θwβ)
s

{
− 1

1 + φ
Wj,t

[(
Wj,t

Wt+s

)−εw
(1− τ lt+s)L

d
t+s

]1+φ
+

+ ζj,t+sWj,t

[(
Wj,t

Wt+s

)−εw
Ldt+s(1− τ lt+s)

]} (3.14)

resulting in the following first-order condition:

Wj,t =
ε

ε− 1
Et

∞∑
s=0

(θwβ)
s

[
(Ld,it+s)

φ

ζ ij,t+s(1− τ lt+s)

]
. (3.15)

We can rewrite the above first-order condition for each household types as:

Wj,t =
ε

ε− 1
Et

∞∑
s=0

(θwβ)
s

[
(Ld,Rt+s)

φ

ζRj,t+s(1− τ lt+s)

]
(3.16)

Wj,t =
ε

ε− 1
Et

∞∑
s=0

(θwβ)
s

[
(Ld,NRt+s )φ

ζNRj,t+s(1− τ lt+s)

]
(3.17)

As in Fernández-Villaverde (2010), all Ricardian households set the same wage

because complete markets allow them to hedge the risk of the timing of wage change.

Non-Ricardian agents who reset their wages face the same problem because they do

not have access to the financial market. Consequently, we can drop the jth from the

choice of wages and other variables, Wj,t = W ∗
t , ζj,t = ζt, Lj,t = Ldt (labor aggregation

will be shown further). Unlike Gaĺı et al. (2007), we do not assume that employment is

uniformly distributed across two types of households Ld,R ̸= Ld,NR. However, we rely

on the assumption of a common wage between Ricardian and Non-Ricardian households

and follow Junior (2016).

W ∗
t =

ε

ε− 1
Et

∞∑
s=0

(θwβ)
s

[
(Ld,Rt+s)

φ

ζRt+s(1− τ lt+s)

]
(3.18)

W ∗
t =

ε

ε− 1
Et

∞∑
s=0

(θwβ)
s

[
(Ld,NRt+s )φ

ζNRt+s (1− τ lt+s)

]
(3.19)
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After recursively solving the equations above to obtain the optimal wage for use in

nonlinear estimation, we have the following equations:

W ∗
t =

εw
εw − 1

(Ld,Rt )φ

ζRt (1− τ lt )
+ (θwβ)W

∗
t+1 (3.20)

and

W ∗
t =

εw
εw − 1

(Ld,NRt )φ

ζNRt (1− τ lt )
+ (θwβ)W

∗
t+1 (3.21)

Defining

Πw∗
t =

W ∗
t

Wt

,

Πw
t =

Wt

Wt−1

and in t+ 1:

Πw∗
t+1 =

W ∗
t+1

Wt+1

,

Πw
t+1 =

Wt+1

Wt

Under a Calvo-type wage setting, the equation (3.12) can be rewritten as follows:

Wt =
[
(1− θw) (W

∗
t )

1−εw + θwW
1−εw
t−1

] 1
1−εw

1 = θw (Π
w
t )

εw−1 + (1− θw) (Π
w∗
t )1−εw

The wage dispersion, induced by the assumed nature of wage stickiness, is inefficient

and entails labor (hours) loss. Considering this labor loss, we further define the wage

dispersion term. The state variable SWt measures the resource costs (labor costs) induced

by the inefficient wage dispersion present in the Calvo-Yun model in equilibrium. Thus,

we define the following wage dispersion term.
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Wage dispersion term:

SWt =

1∫
0

(
W j
t

Wt

)−εw

dj =

(1− θw)

(
W ∗
t

Wt

)−εw
+ θw

1∫
0

(
W j
t−1

Wt

)−εw

dj =

(1− θw)

(
W ∗
t

Wt

)−εw
+ θw

(
Wt−1

Wt

)−εw
1∫

0

(
W j
t−1

Wt−1

)−εw

dj =

(1− θw) (Π
w∗
t )−εw + θw

(
Wt−1

Wt

)−εw
SWt−1

(3.22)

Hence,

SWt = (1− θw) (Π
w∗
t )−εw + θw(Π

w
t )

εwSWt−1. (3.23)

As in Fernández-Villaverde (2010), using the zero profits condition for the labor sup-

plier, WtL
d
t =

∫ 1

0
Wj,tLj,tdj, we have that the labor supply by each Ricardian households

can be written as
∫ 1

0
LRj,tdj = (LRt )

d and, similarly, for each Non-Ricardian house-

holds
∫ 1

0
LNRj,t dj = (LNRt )d. Finally, the the aggregate budget constraint of Ricardian

households can be written as:

CR
t (1 + τ ct ) + IRt +

BR
t+1

RB
t Pt

=

Wt(L
d
t )
R(1− τ lt )− TRt +

BR
t

Pt
+
DR
t

Pt
+RtK

R
t

(3.24)

and for Non-Ricardian:

CNR
t (1 + τ ct ) = Wt(L

d
t )
NR(1− τ lt )− TNRt (3.25)

As a result, in a symmetric equilibrium, in every period, a fraction 1− θw of

households set W ∗
t as their wage, while the remaining fraction θw remain with the same

wages as the previous period as was shown above.
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3.3.2 Firms

The demand side of market participants is presented by two distinct categories: the pro-

ducers of final goods and intermediate goods. The intermediate goods producers provide

inputs utilized by the final goods producers, who behave competitively, maximizing their

profit. The total profits are distributed among the asset holders as dividend payments.

3.3.2.1 Final goods firm

There is one final good is produced using intermediate goods with the following produc-

tion function:

Yt =

(∫ 0

1

Y
ψ−1
ψ

j,t dj

) ψ
ψ−1

(3.26)

where ψ > 1 is the elasticity of substitution between different varieties. At the next

stage we obtain demand schedule for intermediate goods:

Yj,t =

(
Pj,t
Pt

)−ψ

Yt (3.27)

Integrating over j and using the zero-profit condition for the final good producer,

we can get a price as it follows:

Pt =

(∫ 1

0

P 1−ψ
j,t dj

) 1
1−ψ

(3.28)

3.3.2.2 Intermediate goods firm

Production function for a typical intermediate goods firm is given by:

Yj,t = AtK
α
j,t(L

d
j,t)

1−α

where Kj,t is the capital rented by the firm, Ldj,t is the amount of the“packed” labor

input rented by the firm, and where At -productivity shocks - follows AR(1) process,

such that:

logAt = (1− ρA) logAss + ρA logAt−1 + ϵt (3.29)

where 0 < ρA < 1, and ϵt represents an i.i.d with constant variance σ2
ϵ .
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Cost minimization, taking the wage and the rental cost of capital as given, implies:

Ldj,t = (1− α)MCj,t
Yj,t
Wt

(3.30)

Kj,t = αMCj,t
Yj,t
Rt

(3.31)

MCj,t =
1

At

(
Wt

1− α

)1−α(
Rt

α

)α
(3.32)

After combining equations (3.30) and (3.31) we get:

Kj,t

Ldj,t
=

α

(1− α)

Wt

Rt

(3.33)

Note that the marginal cost does not depend on j: all firms receive the same

technology shocks and all firms rent inputs at the same price. Thus, the equation (3.32)

can be written:

MCt =
1

At

(
Wt

1− α

)1−α(
Rt

α

)α
(3.34)

As in the literature, in the second stage, intermediate good producers choose the

price that maximizes discounted real profits. They assume to set prices in staggered

fashion Calvo (1983) proposed. These firms can reset their prices with probability (1− θ)

each period, independently of the time elapsed since the last adjustment.Therefore, as

in Gaĺı et al. (2007) each period a measure a measure (1− θ) of producers reset their

prices, while a fraction (θ) keep their prices unchanged.

3.3.2.3 Price setting

The problem of the intermediate firms is then:

max
P ∗
j,t

Et

∞∑
i=0

θiEt

{
Λt,t+iYj,t,t+i

((
P ∗
j,t

Pt+i

)
−MCt+i

)}
(3.35)

subject the sequence of demand constraints:

Yj,t+i =

(
P ∗
j,t

Pt+i

)−ψ

Yt+i (3.36)
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we imply that:

Pj,t = P ∗
t

Λt,t+i = βi
UR
c,t+i

UR
c,t

= βi
(CR

t+i)
−σ

(CR
t )

−σ

So, we can drop j in price when solving maximization problem in (3.35).

The first-order condition for this problem is:

∞∑
i=0

θiEt

{
Λt,t+iYj,t,t+i

((
P ∗
t

Pt+i

)
− ψ

(ψ − 1)
MCt+i

)}
= 0, (3.37)

where µp =
ψ
ψ−1

represents the markup over the price that would prevail in the absence

of nominal rigidities.

Given Calvo’s pricing, the price index evolves:

Pt =
[
θP 1−ψ

t−1 + (1− θ)(P ∗
t )

1−ψ
] 1

1−ψ
(3.38)

and we have optimal price inflation and inflation which are given by:

Π∗
t =

P ∗
t

Pt

Πt =
Pt
Pt−1

Or we can rewrite it as using the above definition:

1 = θΠψ−1
t + (1− θ)(Π∗

t )
1−ψ (3.39)

Derivation of the recursive pricing equation

As in Schmitt-Grohé and Uribe (2007), we retain non-linearity of equilibrium equa-

tions. We start from equation (3.37). As they suggests, we rewrite this equation in a

85



recursive fashion in order to get rid of infinite sums.

∞∑
i=0

θiEt

{
Λt,t+iYj,t,t+i

((
P ∗
t

Pt+i

)
− ψ

(ψ − 1)
MCt+i

)}
= 0 (3.40)

∑∞
i=0 θ

iEt

{
Λt,t+iYt+i

(
P ∗
t

Pt+i

)−ψ
1

Pt+i

((
P ∗
t

Pt+i

)
− ψ

(ψ−1)
MCt+i

)}
= 0 (3.41)

∑∞
i=0 θ

iEt

{
βi

(CRt+i)
−σ

(CRt )−σ

(
Pt
Pt+i

)−ψ (
P ∗
t

Pt

)−ψ
Yt+i

Pt
Pt+i

(
P ∗
t

Pt
− ψ

(ψ−1)
MCt+i

Pt+i
Pt

)}
= 0 (3.42)

∑∞
i=0 θ

iEt

{
βi

(CRt+i)
−σ

(CRt )−σ

(
Pt
Pt+i

)1−ψ (
P ∗
t

Pt

)−ψ
Yt+i

(
P ∗
t

Pt
− ψ

(ψ−1)
MCt+i

Pt+i
Pt

)}
= 0 (3.43)

Next, we multiply by (CR
t )

−σ and using the inflation definition:

∑∞
i=0 θ

iEt

{
βi(CR

t+i)
−σ
(

Pt
Pt+i

)1−ψ
(Π∗

t )
−ψ Yt+i

(
Π∗
t −

ψ
(ψ−1)

MCt+i
Pt+i
Pt

)}
= 0 (3.44)

We can write this:

∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)1−ψ

(Π∗
t )

1−ψYt+i

]
=

∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)1−ψ (
Pt+i
Pt

)
(Π∗

t )
−ψYt+i

ψ

ψ − 1
MCt+i

] (3.45)

∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)1−ψ

(Π∗
t )

1−ψYt+i

]
=

∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)−ψ

(Π∗
t )

−ψYt+i
ψ

ψ − 1
MCt+i

] (3.46)
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Factoring out, we get:

∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)1−ψ

(Π∗
t )

1−ψYt+i

]
=

ψ

ψ − 1

∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)−ψ

(Π∗
t )

−ψYt+iMCt+i

] (3.47)

∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)1−ψ

Π∗
tYt+i

]
=

ψ

ψ − 1

∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)−ψ

Yt+iMCt+i

] (3.48)

We define two auxiliary variables:

g2t =
ψ

ψ − 1
g1t (3.49)

g2t =
∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)1−ψ

Π∗
tYt+i

]
(3.50)

g1t =
∞∑
i=0

θiEt

[
βi(CR

t+i)
−σ
(
Pt
Pt+i

)−ψ

Yt+iMCt+i

]
(3.51)

After recursively solving the equations above to obtain the optimal price for use in

nonlinear estimation, we have the following equations:

g1t = (CR
t )

−σYtMCt + βθEtΠ
ψ
t+1g

1
t+1 (3.52)

g2t = (CR
t )

−σYtΠ
∗
t + βθEtΠ

ψ−1
t+1

Π∗
t

Π∗
t+1

g2t+1 (3.53)

We agree with Schmitt-Grohé and Uribe (2007) on the invalidity of a restriction that

the set of equilibrium conditions should include a resource constraint since the model

implies relative price dispersion across varieties. The price dispersion, induced by the

assumed nature of price stickiness, is inefficient and entails output loss. Considering this
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output loss, we further define the price dispersion term. The state variable Spt measures

the resource costs induced by the inefficient price dispersion present in the Calvo-Yun

model in equilibrium.

Price dispersion term:

Spt =

∫ 0

1

(
Pj,t
Pt

)−ψ

dj (3.54)

Spt =

∫ 0

θ

(
Pj,t−1

Pt

Pt−1

Pt−1

)−ψ

dj +

∫ θ

1

(
P ∗
t

Pt

)−ψ

dj (3.55)

Spt = θ

(
Pt−1

Pt

)−ψ

Spt−1 + (1− θ) (Π∗
t )

−ψ (3.56)

Spt = θΠψ
t S

p
t−1 + (1− θ) (Π∗

t )
−ψ (3.57)

3.3.3 Monetary Policy

Our interest rate setting rule is required to fully specify the dynamics of the model.

Therefore, monetary policy follows standard Taylor type rule according to Taylor (1993):

RB
t

RB
=

(
RB
t−1

RB

)γR [(Yt
Y

)γY (πt
π

)γπ](1−γR)
exp(εmt ), (3.58)

where γY and γπ are parameters governing the central bank’s responsiveness to inflation

and the output gap, respectively. RB is steady state nominal gross return of government

bond, and π is target level of inflation (we assume that it is not equal to inflation in the

steady state). εmt ∼ N (0, 1) is i.i.d. monetary policy shock.

3.3.4 Fiscal Policy

The government conducts fiscal policy through collecting the revenue from taxes on

consumption, labor and lump-sum tax, cash returns from bonds issued in current period.

The government makes expenses on interest and debt payments and public consumption.

For the government budget constraint, it thus follows:

Bt+1

RB
t Pt

+ τ ctCt + τ ltWtL
d
t + Tt = Gt +

Bt

Pt
(3.59)
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where Tt ≡ λTNRt + (1− λ)TRt .

Consumption and labor tax are assumed to follow an exogenous process because con-

sumption taxes are mostly excise taxes in Korea. Labor tax is assumed this way for

determinacy issues and estimation purposes. Thus, these taxes do not adjust to changes

in current output and government debt. Also, government expenditure is normalized by

a steady-state output.

Gt −G

Y
= ρg

Gt −G

Y
+ εGt (3.60)

τ ct = (1− ρτc)τ
c + ρτcτ

c
t−1 + ετ

c

t (3.61)

τ lt = (1− ρτ l)τ
l + ρτ lτ

l
t−1 + ετ

l

t (3.62)

where 0 < ρτc < 1 and 0 < ρτ l < 1, and εGt , ε
τc

t , ετ
l

t represent an i.i.d shocks with zero

means and variances σG, στc , στ l .

Lump-sum taxes are assumed to be set in reaction to the evolution of debt, output,

and prices. We do not put any exogenous shock in the evolution of the lump-sum tax

rule:
Tt − T

Y
= ϕb

[
Bt

Pt−1

B

P

]
/Y + ϕg

[
Gt−1 −Gt

Y

]
(3.63)

3.3.5 Aggregation

Our model implies relative price and wage dispersion across varieties and labor supply.

These two dispersion, which are induced by the assumed nature of price and wage

stickiness, are inefficient and entails output and labor loss. To see this, as usual, first,

we derive an expression for aggregate demand:

Yt = Ct + It +Gt

The demand for each intermediate firms j is:

Yj,t = (Ct + It +Gt)

(
Pj,t
Pt

)−ψ

∀j

Yj,t = AtK
α
j,t(L

d
j,t)

1−α
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AtK
α
j,t(L

d
j,t)

1−α = (Ct + It +Gt)

(
Pj,t
Pt

)−ψ

∀j

By market clearing: ∫ 1

0

(Ldj,t)dj = Ldt∫ 1

0

(Kj,t)dj = Kt∫ 1

0

AtK
α
j,t(L

d
j,t)

1−αdj = AtK
α
t (L

d
t )

1−α

and

AtK
α
t (L

d
t )

1−α = (Ct + It +Gt)

(∫ 1

0

Pj,t
Pt

)−ψ

dj

we defined before price dispersion term in (3.54) and expression for it in (3.57):

Spt =

(∫ 1

0

Pj,t
Pt

)−ψ

dj

Thus, we get:

Ct + It +Gt =
AtK

α
t (L

d
t )

1−α

Spt
(3.64)

As in Gaĺı et al. (2007) for each consumer type aggregate consumption and labor are

given by a weighted average of the corresponding variables:

Ct ≡ λCNR
t + (1− λ)CR

t (3.65)

Ldt ≡ λ(Ldt )
NR + (1− λ)(Ldt )

R. (3.66)

Similarly, aggregate investment, bond, dividends and the capital stock are given by:

It ≡ (1− λ)IRt (3.67)

Bt ≡ (1− λ)BR
t (3.68)

Dt ≡ (1− λ)DR
t (3.69)

and

Kt ≡ (1− λ)KR
t (3.70)
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Following literature, we define an expression for aggregate labor demand. We know

that:

Lj,t =

(
Wj,t

Wt

)−εw
Ldt

Once we integrate over all households j, we obtained next:∫ 1

0

Lj,t = Lt =

∫ 1

0

(
Wj,t

Wt

)−εw
Ldtdj = Ldt

∫ 1

0

(
Wj,t

Wt

)−εw
dj

where Lt is the aggregate labor supply of all households. As we defined in (3.22):

SWt =

∫ 1

0

(
Wj,t

Wt

)−εw
dj

Thus,

Ldt =
Lt
SWt

. (3.71)

3.3.6 Equilibrium

The equilibrium in this model of economy is standard and the symmetric equilibrium

policy functions are determined by the following equations:

• The first-order conditions and the budget constraint of the Ricardian households:

ζRt =
(CR

t )
−σ

(1 + τ ct )
(3.1)

ζRt = βRB
t Et

ζRt+1

Πt+1

(3.2)

Qj,t = βEt

{
ζRt+1

ζRt

[
Rt+1 +Qt+1

(
(1− δ)−

(
IRt+1

KR
t+1

)
b

(
IRt+1

KR
t+1

)−a

+
b

1− a

(
IRt+1

KR
t+1

)1−a

+ c

)]}
.

(3.3)

Qt =
1

b
(
IRt
KR
t

)−a (3.4)
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CR
t (1 + τ ct ) + IRt +

BR
t+1

RB
t Pt

=

Wt(L
d
t )
R(1− τ lt )− TRt +

BR
t

Pt
+
DR
t

Pt
+RtK

R
t

(3.5)

W ∗
t =

εw
εw − 1

(Ld,Rt )φ

ζRt (1− τ lt )
+ (θwβ)W

∗
t+1 (3.6)

W ∗
t =

εw
εw − 1

(Ld,NRt )φ

ζNRt (1− τ lt )
+ (θwβ)W

∗
t+1 (3.7)

and we define as:

µw =
εw

(εw − 1)

• The first-order conditions and the budget constraint of the Non-Ricardian house-

holds

ζNRt =
(CNR

t )−σ

(1 + τ ct )
(3.8)

CNR
t (1 + τ ct ) = Wt(L

d
t )
NR(1− τ lt )− TNRt (3.9)

• The firms that can change prices set them to satisfy:

g1t = (CR
t )

−σYtMCt + βθEtΠ
ψ
t+1g

1
t+1 (3.10)

g2t = (CR
t )

−σYtΠ
∗
t + βθEtΠ

ψ−1
t+1

Π∗
t

Π∗
t+1

g2t+1 (3.11)

g2t =
ψ

ψ − 1
g1t (3.12)

where they rent inputs to satisfy their static minimization problem

Kt

Ldt
=

α

(1− α)

Wt

Rt

(3.13)

MCt =
1

At

(
Wt

1− α

)1−α(
Rt

α

)α
(3.14)

• The wages evolve as:

1 = θw (Π
w
t )

εw−1 + (1− θw) (Π
w∗
t )1−εw (3.15)
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and the prices evolves as:

1 = θΠψ−1
t + (1− θ)(Π∗

t )
1−ψ (3.16)

• Government budget constraint:

Bt+1

RB
t Pt

+ τ ctCt + τ ltWtL
d
t + Tt = Gt +

Bt

Pt
(3.17)

where Tt ≡ λTNRt + (1− λ)TRt .

• Monetary policy rule:

RB
t

RB
=

(
RB
t−1

RB

)γR [(Yt
Y

)γY (πt
π

)γπ](1−γR)
exp εmt (3.18)

where εmt ∼ N (0, 1).

• Fiscal policy rule:

Gt −G

Y
= ρg

Gt −G

Y
+ εGt (3.19)

τ ct = (1− ρτc)τ
c + ρτcτ

c
t−1 + ετ

c

t (3.20)

τ lt = (1− ρτ l)τ
l + ρτ lτ

l
t−1 + ετ

l

t (3.21)

where 0 < ρτc < 1 and 0 < ρτ l < 1, and εGt , ε
τc

t , ετ
l

t represent an i.i.d shocks with

zero means and variances σG, στc , στ l .

Lump-sum taxes are assumed to be set in reaction to the evolution of debt, output,

and prices. We do not put any exogenous shock in the evolution of the lump-sum tax

rule:
Tt − T

Y
= ϕb

[
Bt

Pt−1

B

P

]
/Y + ϕg

[
Gt−1 −Gt

Y

]
(3.22)

• Markets clear:

Yt = Ct + It +Gt (3.23)
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Yt =
AtK

α
t (L

d
t )

1−α

Spt
(3.24)

where:

Lt = SWt L
d
t (3.25)

Dt = Yt −WtL
d
t

1

(1− α)
(3.26)

logAt = (1− ρA) logAss + ρA logAt−1 + ϵt (3.27)

Spt = θΠψ
t S

p
t−1 + (1− θ) (Π∗

t )
−ψ (3.28)

SWt = θw(Π
w
t )

εwSWt−1 + (1− θw) (Π
w∗
t )−εw . (3.29)

• Aggregating both types of households

Ct ≡ λCNR
t + (1− λ)CR

t (3.30)

Ldt ≡ λ(Ldt )
NR + (1− λ)(Ldt )

R. (3.31)

Tt ≡ λTNRt + (1− λ)TRt . (3.32)

It ≡ (1− λ)IRt (3.33)

Bt ≡ (1− λ)BR
t (3.34)

Dt ≡ (1− λ)DR
t (3.35)

Kt ≡ (1− λ)KR
t (3.36)

and

KR
t+1(1− λ) = (1− δ)KR

t (1− λ) +KR
t (1− λ)

(
b

1−a

(
IRt
KR
t

)(1−a)
+ c

)
(3.37)

3.4 Solving the Model

In this study, we solve the model by log linearizing the equilibrium conditions and

applying perturbation techniques of orders one and two. We implement it using version

4.6.1 of the Dynare software platform, Matlab pre-processor, which takes log-linear

approximation around the deterministic steady-state. Once we have the solution of

a TANK DSGE model in terms of its approximated policy functions, we can write
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the laws of motion of variables in a state space representation and further apply our

likelihood-based approach we developed earlier to compute the likelihood function and

derive the posterior estimates of the model’s parameters using Bayesian inference method.

Before Dynare approximates the model, we need to provide the steady-state model.

3.4.1 Steady state

Since we assume that the economy returns to its steady-state level in the long run, we

must define our steady-state model. We will find steady-state values for our DSGE

model variables in order to evaluate optimality conditions when shocks are shut down

and assume that all variables are constant. In steady-state model we consider zero

inflation with Pt = Pt−1, and consequently, Πt = Πt−1 = 1, our steady-state price and

wage terms are Spt = 1, Swt = 1. The steady-state riskless interest rate can be derived

from the Euler equation of unconstrained agents RB
t = 1

β
. We define steady-state wage

and price mark-up as µw = εw
εw−1

and µp = ψ
ψ−1

, and share of government consumption

as γg of total output. As is shown in our Appendix, we follow the literature on the

TANK DSGE model and assume that steady-state consumption and labor hours are the

same across household types: Ct = CR
t = CNR

t and Ldt = (LRt )
d = (LNRt )d, an outcome

that can always be guaranteed by an appropriate choice of TRt and TNRt . The full

steady-state derivation is presented in Appendix.

3.5 Bayesian estimation of the model using likelihood approach

3.5.1 Methodology

There is much to be gained from a nonlinear estimation of the model, both in terms of

accuracy and identification (Fernández-Villaverde (2010)). Considering this and other

factors described in the first study, we estimate the model for the first and second-

order approximation. We use the methodology proposed in Chapter 2 to estimate

the parameters of our TANK DSGE model, presented in this chapter. According to

Bayesian statistics, the likelihood function, which defines the probability the model

assigns for each observation given the vector of parameter values, is our primary object.

The likelihood states that all information in the sample is contained in this function.

For that reason, we went into great detail about the technique of for computing the

likelihood function, π(Y T |Ψ), where the Ψ is a vector of parameter values. Specifically,

we propose a procedure for obtaining the approximation of πy(Y
o
t |Xt), which is the
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density of observed control variables Y o
t conditional on state variables Xt.

Upon computing π(Y T |Ψ), we apply the Bayes rule (fundamental principle in proba-

bility theory, which combines the likelihood function of the model with a prior density,

p(Ψ)) for the parameters to form a posterior distribution, p(Ψ|Y T ):

π(Ψ|Y T ) =
π(Y T |Ψ)π(Ψ)∫
π(Y T |Ψ)π(Ψ)dΨ

Zellner (1988) defines the Bayes theorem as the most effective way of processing

information. The Bayes theorem utilizes all the information in the data, regardless of

sample size. Moreover, Bayes’ theorem avoids adding any superfluous information to

the analysis (Fernández-Villaverde (2010)). Since the posterior, π(Ψ|Y T ) is the density

of fundamental interest, it summarizes what we know about Ψ, after seeing the data.

The posterior distribution of the parameters is proportional to the posterior density

after integrating out Ψ in the the denominator of the above equation:

π(Ψ|Y T ) ∝ π(Y T ; Ψ)π(Ψ).

We employ Metropolis-Hastings to simulate the posterior distribution with 350,000

replications for two Markov chains. We disregard 10 percent of the initially generated

parameters because of an unrepresentative equilibrium distribution.

We follow standard literature on two-agent New Keynesian model in assigning values

to the structural parameters of the model, which is defined in the following sections.

We also calibrate the model to the Korean economy. This choice of country is primarily

in response to data convenience. The time unit is meant to be a quarter of a year. Our

model identifies and examines various macroeconomic shocks on the Korean economy

including: technology shock, monetary policy shock, fiscal policy shock (which here

comprises government expenditure shock), consumption tax shock, and labor tax shock.

3.5.2 Data

As discussed in Chapter 2, it is impossible to estimate the model with fewer shocks than

observables because of stochastic singularity. Therefore, we utilize as many shocks as

observable in the estimation of this model. To estimate the current TANK DSGE model,

we use data from Korea for 1999Q4–2021Q4. This range of the dataset is determined

based on the availability of data. The Korean data is obtained from Statistics Korea,
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The Bank of Korea, and the CEIC database. Model observable variables include five

time series data:

1. Per capita Gross Domestic Product (GDP), Yt;

2. Government consumption, Gt;

3. Tax Revenue from income tax, which is matched with the product of model’s Tt,

Lt, and Wt;

4. Tax Revenue from Goods and services, which corresponds to the product of model’s

Tt and Ct; and

5. Nominal interest rate, RB
t , which is the key policy rate for the Bank of Korea to

implement its monetary policy and achieve its objectives.

This macroeconomic series can capture the primary characteristics of the dynamics of

the data and model much of the information that policymakers are interested in. All

gathered data sets are adjusted for seasonal variation except for the nominal interest

rate since it is a stationary variable. Trending variables such as output, government

consumption, and tax revenues are detrended using Hodrick-Prescott one-sided filter

since we define the model without a specified trend. We should note here that the

information in the sample is limited (we have only 89 observations for the Korean

economy), and it is not easy to obtain stable estimates otherwise.

3.5.3 Calibration

Before specifying the priors, we need to calibrate some parameters to achieve estimation

convergence. Thus, after analyzing the observed data, we set the γg, steady-state real

government expenditure to real GDP, at 0.3. In particular, we computed the long-run

average ratio of real government expenditure to real GDP for the Korean economy for

1999Q4–2021Q. We implemented similar analysis and set steady-state government debt

to real GDP ratio, γB, at 0.4. Also, we fixed the capital depreciated rate, δ, at 0.025 as

in Fernández-Villaverde (2010) since it is difficult to identify δ in the data. Moreover,

we calibrated the price and wage markups, µp and µw, to their steady-state levels. In

our model, transfers/lump-sum tax is defined residually from the government budget

constraint. The remaining parameters have been given the prior information based
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on previous empirical and theoretical studies on New-Keynesian DSGE models. The

definitions of structural parameters are summarized in Table 3.1.

3.5.4 Prior specifications

We limit the estimation of some prior specifications to that in the literature on the

TANK-DSGE model.

Some structural parameters that are difficult to identify are set according to the

respective sample means or to values that are widely used in the existing literature. The

elasticity of the production level with respect to capital, α, is assumed to follow normal

distribution with mean 0.3 and standard deviation 0.1, as in Smets and Wouters (2007).

Intertemporal discount factor, β, follows the gamma distribution with a mean 0.9975

and a standard deviation 0.1. However, we transform parameter β to get rid of the

constraints on its domain.

To satisfy the Taylor principle, in which an increase in inflation eventually leads

to a more than one-for-one rise in the nominal interest rate, we follow New Keynesian

DSGE literature and set parameters of the Taylor rule according to well-known academic

studies. Thus, we follow the literature and parameterize the monetary policy rule using

the long-run reaction inflation, γπ, which is assumed to follow a gamma distribution with

mean 1.5 and standard deviation 0.05. The prior on the short-run reaction coefficient

on the output gap, γy, is also assumed to follow a gamma distribution, with mean 0.125

and standard deviation 0.05 as in Smets and Wouters (2007). In addition, the degree

of interest-rate smoothing parameter,γR, is assumed to follow a beta distribution with

mean 0.7 and standard deviation 0.15. We are aware that under specific parameter

configurations, our economy’s equilibrium may be indeterminate even if the Taylor rule

satisfies.

Thus, throughout, we restrict ourselves to configurations of parameter values for

which the equilibrium is unique.

Since we employ a CRRA utility, the coefficient of the relative risk-aversion, σ,

is an inverse elasticity of intertemporal substitution. We set the prior mean for this

parameter at 2, following DSGE literature, where agents are assumed to be risk-averse

with standard deviation 0.1 and following normal distribution. Regarding the inverse

of the Frisch elasticity of labor supply, ϕ, it also follows normal distribution with prior

means 2 and standard deviation 0.25, respectively. The parameters describing price

and wage markups, ψ and εW , are specified by a gamma distribution with prior means
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5 and standard deviations 1 for both parameters. These prior means imply that the

markups at the steady-state are 25 percent. These values are broadly similar to those in

the existing literature on DSGE models. The parameters describing Calvo probabilities,

θ and θw, follow beta distribution, with means to be around 0.5, suggesting an average

length of price and wage contract of half a year, a value consistent with much of the

empirical evidence; the standard deviations are 0.15 for each parameter.

The prior to the share of constrained agents is set roughly in line with the specification

of studies using Korean data. For example, according to Jung (2022), the estimated share

of constrained households in the Korean economy is around 0.5, which is relatively high

compared to that in other surveys. Park (2017) estimated the shares of hand-to-mouth

households (financially constrained) using Korean Labor and Income Panel Study data

over the period 2001–2013 and found it to be around about 0.32 in 2013. Song (2020)

found the share of constrained agents to be around 0.3 for 2012–2017. In our study

we set a prior mean for the share of constrained households, λ, at 0.4 and standard

deviation 0.1. We assume that λ follows a beta distribution.

The standard errors of innovations, expσx, are assumed to follow inverse gamma

distribution with mean 0.1 and standard deviation 2. Parameters governing the per-

sistence of monetary and fiscal shocks, ρa, ρG, ρτc , ρτ l , are believed to follow a beta

distribution with prior means 0.5, and standard deviation 0.1 for each of the parameters.

These settings are associated with moderately persistent shocks.

Parameter of adjustment cost function, aj is assumed to follow beta distribution

with mean 4 and standard deviation 0.1.

Finally, consumption and labor tax rate parameters, τ c and τ l, follow beta distribution

with mean 0.1 and 0.125 respectively (which is equal to long-run average tax rates in

South Korea); standard deviation is assumed to be equal to 0.01 for both parameters.

Tables 3.2 and 3.3 summarize the information on prior means, standard deviations and

distributions for all estimated parameters.

3.6 Results and analysis

Tables 3.2 and 3.3 also present the posterior distribution of the estimated parameters

and structural shocks for linear and nonlinear models, represented by the first (M1)

and second-order (M2) approximations and their respective credible intervals. The

Metropolis-Hastings algorithm obtains the posterior distribution draws of the listed
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parameters with random walk proposal (e.g., Koop (2003), p. 97). We compare the

models with the value of: log likelihoods; the marginal likelihood, which is calculated

following Gelfand and Dey (1994) and Geweke (1999); and predictive likelihoods (Geweke

and Amisano (2010)). The predictive likelihood is calculated for observations 30 to 89.

In addition to it, we report the log priors measured for both models. Model performance

results are shown in Table 3.4. In order to test the general stability of our results, we

run several different simulation rounds. Estimates are quite stable for (M1), but less so

for (M2).

Thus, the data in Table 3.4 shows that the linear model M1 is a better performing

model in terms of estimated log-likelihood. However, the nonlinear model, M2, is

preferable based on marginal and predictive likelihoods. Particularly, the log likelihood

for the first modelM1 is 1469, for the second modelM2 1451. The marginal likelihood for

the first model is 1247, for the second model 1282. Finally, the predictive likelihood for

the first model is 883, and for the second model is about 912. The posterior probability

for model M2 is close to one compared to model M1.

These findings suggest that the first-order approximation of our estimated model is

a better fit for the data. However, it should be noted that log likelihood measures the fit

of a model to the data, whereas marginal and predictive likelihoods consider both the fit

to the data and complexity of the model. Since the second model has better marginal

and predictive likelihood, it is more parsimonious and less likely to overfit the data,

making it in our view a better alternative. In addition, the nonlinear model is preferred

by the data based on the Bayes factor exp (5), where the Bayes factor is defined as a

ratio of the marginal likelihoods (Koop et al. (2007), p. 61). Our nonlinear model is

more likely to provide better predictions for future data points.

Finally, according to Table 3.4, log prior at posterior mean is higher for nonlinear

model, which suggests that the prior distribution favors model M2.

Figures 3.1 and 3.2 show observed series used for estimation and their posterior

estimates for models M1 and M2. These figures indicate a good fit of some observed

data, such as output, government expenditure, income, and consumption tax revenues.

The fitted values of the second-order approximated model better replicate the observed

variables compared to the linearized model, as shown by these figures.

Figure 3.3 illustrates the log-likelihood function of the data given estimated parameter

values, where the plot for the nonlinear likelihood function has a higher maximum point

for some data periods than the plot for the linear model. At the same time, the log-
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likelihood function of the linear model shows better results for some other regions, which

suggests that M1 model fits the Korean data better.

3.6.1 Posterior estimates

In this section we discuss the posterior estimates of the models presented in Tables

3.2 and 3.3. After transformation back to the original parameter, β, the mean of the

discount factor is estimated to be around 0.9927 for M1 and 0.9923 for M2 for the

Korean economy, slightly lower than prior mean since likelihood function aims to match

a low-interest rate (Fernández-Villaverde (2010)). We should note that in some studies

on DSGE models with Korean data this parameter is usually fixed (e.g. Lee (2012), Jung

(2019)). In the observed data, the policy rate experiences high values at the beginning

of the sample, leading to a discount factor rate lower than prior mean.

Our estimation results reveal a share of constrained agents, λ, to be around 0.42 for

M1 model; and 0.53 for M2. These estimates are higher than those reported in previous

studies (Park (2017) and Song (2020)) but are more similar to the findings of Jung

(2022), a TANK DSGE model examination of the Korean economy.

The inverse of intertemporal elasticity of substitution, σ, is estimated to be 0.33 for

M1 and 0.38 for M2, higher for the nonlinear model. Regarding the inverse of Frisch

elasticity parameters, ϕ, the posterior mean is about 3.7 for the first model and much

higher for the second, 5.3.

The elasticity,α, of the production level with respect to capital is estimated to be

0.06 for both models, lower than previous studies. The posterior means of elasticity of

substitution across inputs, ψ, is relatively similar for linear and nonlinear models, 5.2

and 5.3 respectively, higher than the assumed prior mean. Estimates of elasticity labor

demand for intermediate firms, εw, are higher for M1 (4.6) than for M2 (4.0).

The degree of both price θ and wage stickiness θw is estimated the be higher than the

prior means of 0.5. Based on the posterior mean estimates for θ, the average duration of

price contracts is estimated to be approximately one year for both M1 and M2 (0.8 and

0.9 respectively). Similarly, the average duration of wage contracts is estimated to be

around six months for the linear model, estimated at 0.5, and slightly higher than six

months for the nonlinear model, estimated at 0.6. Therefore, the results suggest that

the duration of contracts varies between models, with longer-term contracts being more

prevalent for prices than for wages.

In the estimates of the monetary policy parameters, the analysis demonstrates that
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the posterior means for the reaction coefficients in the monetary rule are somewhat

different for the output gap than those in the existing literature. That is, the posterior

mean for the output coefficient,γy, is around 0.06 forM1, and 0.01 forM2, which indicates

the Korean central bank prioritizes the price stability over employment or growth. The

inflation coefficient, γπ, is around 1.5 for the first and second-order approximation models.

This indicates that the central bank puts a relatively high weight on stabilizing inflation.

The parameter γR, which characterizes the responsiveness of monetary authority on

changes in natural interest rate, shows a moderate level for linear and nonlinear models.

It is estimated to be 0.7 for M1 and 0.8 for M2, which is in line with results of existing

studies.

The posterior mean of the steady-state consumption tax rate τc is about 0.15 for both

models; while the estimated mean of labor tax, τl, is 0.24 for the linear and nonlinear

models. The degree of smoothing of consumption tax rule,ρτc , is 0.51 for the first model,

0.48 for the second model. The degree of smoothing of labor tax rule, ρτl , is 0.76 for the

first model, 0.70 for the second model. Government expenditure exhibits a moderate

degree of smoothing, ρG about 0.65 and 0.68 for model M1 and M2 respectively.

Finally, the standard deviation of the parameters is estimated to be much higher for

the second-order approximation model than for the first-order approximation relative

to the prior distribution, indicating that the nonlinear likelihood is more dispersed,

which is consistent with estimations using nonlinear filters (Fernández-Villaverde and

Rub́ıo-Ramirez (2005)).

3.6.2 Bayesian impulse response function

In order to assess the dynamic responses of macroeconomic variables to economic shocks,

we perform Bayesian impulse response analyses based on the estimated models and one

standard deviation from the steady state. We measure the responses on a quarterly

basis. All variables in the model are in logs, so the impulse response functions can be

interpreted as percentage point deviations from their deterministic steady-state.

Thus, the impulse responses are shown in Figures 3.4–3.10, illustrating dynamic

responses of main macroeconomic variables as percentage-point deviations from steady

state. Each figure has an impulse response function for the models M1 (blue) and

M2 (red). We analyze the effects of various structural shocks (government spending

shock, monetary policy shock, labor income tax shock, and consumption tax shocks)

on macroeconomic variables, e.g. consumption and labor supply of the differentiated
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agents; output; public spending and inflation.

Figure 3.4 displays expansionary government spending shock for the Korean economy

for the linear and nonlinear model. The size of this shock is a one percent increase in

the government spending-to-output ratio. The figure shows that for both models this

shock positively affects aggregate output, consumption, inflation, real wages, and hours

worked on impact. For example, output increased by 0.004 for M1 and by 0.0036 for

M2. Aggregate consumption increased by 0.0025 and 0.0011 percentage points for the

linear and nonlinear models respectively. Government spending increased by 0.008 for

both models.

Also, Figure 3.4 shows increased labor supply, which had been caused by a surge

in labor demand following the government spending shock. The labor demand of

constrained agents increased by 0.004 for M1, and 0.003 for M2. The government

increased its spending substantially; this led to a significant increase in the general price

level in the economy, including the price of goods and services, marginal cost, and the

nominal wage level. This increase implies 1) higher wage inflation and 2) the real wage.

However, due to the sticky wage mechanism, real wages rise by only 0.007 percentage

points for the linear model and 0.003 for the nonlinear. This resulted in a crowd-in

effect for the consumption of constrained agents, 0.01 percentage points for M1 and

0.005 for M2. This expansionary effect of public spending is consistent with the findings

of linearized studies with two-agent model structure (e.g. Coenen and Straub (2005)).

The high inflation rate generated by increased government spending forced the

central bank to implement anti-inflationary measures, and the nominal interest rate

increased in response. A rise in the interest rate has a negative wealth effect on uncon-

strained households actively participating in the assets market; thus, the consumption

of unconstrained households has decreased by 0.002 percentage points for M1; and by

0.003 for M2. Model M1 experienced a slight decrease in aggregate investment, while

model M2 showed an increase of 0.005 percentage points.

The overall positive effect of government spending shock is subdued after subsequent

quarters as higher wages from increased productivity led households to substitute work

for leisure. As expected, the general public debt has increased as an after-effect of

increased public spending.

Figure 3.6 shows the effects of contractionary monetary policy shock on macroe-

conomic outcomes: the central bank increases the nominal interest rate by 0.0012

percentage points for M1, and 0.0017 for M2, which effectively leads to a general price
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fall in the economy by 0.0007 percentage points for model M1 and 0.0008 for M2. Con-

tractionary monetary policy shock implemented through the Taylor rule slows down

overall economic activity. Figure 3.6 shows a decline in aggregate output and consump-

tion, investment, and hours worked. For example, Bayesian impulse responses of M1

model depict an immediate fall in total output by about 0.006 percentage points; and

a fall in aggregate consumption by about 0.009. As for the nonlinear model, M2, the

contractionary monetary policy shock induces a slightly smaller drop in output of 0.0043,

and in aggregate consumption by 0.0062. The reduction of aggregate output in both

models is related to the greater investment decrease caused by interest rate increases.

Aggregate investment falls by 0.001 for a linear model; and 0.005 for a nonlinear model.

In response to a contractionary monetary policy shock, consumption of constrained

agents falls significantly, due to the fall in real wages, which are the main source of

their income. In both models, consumption of these agents declines by around 0.01

percentage points.

Consumption of unconstrained agents falls by 0.005 for model M1; and 0.002 for

model M2 during the first two periods. However, in the following quarters, consumption

of unconstrained agents rises for both models because these agents can offset the negative

effects of the increased interest rates by relying on their savings in the financial market.

The impulse responses of main macroeconomic variables to positive consumption

tax shocks are shown in Figure 3.8. In the linear and nonlinear model results, the

increase in consumption tax has a negative impact on aggregate output and consumption.

Thus for the linear model, aggregate output and consumption falls by 0.005 and 0.008

percentage points; for the nonlinear model by 0.0045 and 0.007 percentage points. This

is because the increase in the consumption tax rates raises the prices of goods and

services, leading to an overall contractionary effect in the economy. At the same time,

higher consumption tax leads to an increase in the cost of production for firms, which

can decrease their profits. In response, the firms reduce labor costs, which decreases

labor demand and real wages. As shown in the figure, aggregate labor demand decreases

by about 0.005 percentage points for models M1 and M2. Since both households now

have less disposable income, it reduces their purchasing power and negatively impacts

aggregate consumption. However, as in contractionary monetary policy shock, the

consumption of Ricardian agents increases in subsequent quarters. Aggregate investment

decreases by 0.0005 percentage point for model M2 due to a reduction in aggregate

demand, which in turn decreases production. However, impulse response analysis shows
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increased capital and investment for the linear model by 0.0001.

Finally, Figure 3.10 shows the impulse responses for the positive labor income shocks.

With increased labor income tax on both agents, both agents have less disposable income,

which lowers their purchasing power and decreases consumption levels as expected. This

reduction leads to a substantial decrease in aggregate output, aggregate consumption,

investment, and hours worked. Figure 3.10 illustrates that aggregate output falls by

0.005 and 0.006 percentage points for models M1 and M2, respectively. Aggregate

consumption decreases by 0.008 for the linear model and by 0.009 for the nonlinear

model. The aggregate labor demand decreases by about 0.006 percentage points for

both models. The nonlinear model shows a greater negative impact of increased labor

income tax on nominal return on capital and marginal cost, which leads to a higher

decreased effect on the real wages in the model M2.

In sum, the Bayesian impulse response analyses indicate that an expansionary

government spending shock has positive effects on output, consumption, inflation, real

wages, and hours worked; and contractionary monetary policy shock decreases output,

aggregate consumption, investment, and hours worked. Positive consumption tax shocks

have an adverse impact on aggregate output and consumption, as they increase the cost

of production for firms, leading to a contractionary effect on the economy. The results

show that an increase in labor income tax negatively affects output and consumption.

However, we obtain different impulse responses to aggregate shocks for several

variables of the linear and nonlinear TANK DSGE model. For instance: investments in

response to government spending and consumption tax shocks; public debt in response

to government spending shocks; and consumption of Ricardian agents in response to

labor tax shocks. We investigate the reason for this difference and obtain the impulse

response functions of the second-order model M2 using the parameter estimates from

the estimation of the first-order model M1. The impulse response functions of the

first and second-order are nearly identical with the same parameter values (Figures

3.5, 3.7, 3.9, and 3.11). Hence, the main reason for the difference is that we obtain

different estimated values when using a second-order approximation. The nonlinear

estimation uses quadratic terms to represent economic relationships better; therefore,

some parameters have more impact on a second-order approximation. Understandably,

the parameter estimates would differ due to this reason.
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3.7 Conclusions

In this study, we develop and estimate a nonlinear TANK DSGE model using the first

and second-order perturbation technique proposed in Chapter 2. The choice of this

model is primarily driven by its tractability relative to the recently developed HANK

model, its ability to capture important features of the economy, and its explanation

of the effect of aggregate fluctuations on the economy, better than that of the RANK

model.

The TANK model has a time-invariant fraction of agents who do not hold assets

and rely solely on labor income and government transfers. Another subgroup of agents

have access to the bonds market and smooth its consumption intertemporally. In some

studies, estimation of these models is mainly done using the linearization technique.

In order to achieve greater accuracy, we opt for a higher-order solution of the DSGE

model and estimate the model using a likelihood-based approach. Thus, we construct

the TANK DSGE model with financially constrained and unconstrained households,

monopolistic competitive producers, and fiscal and monetary authority. We model real

and nominal frictions nonlinearly, where the former includes investment costs, the latter

price and wage frictions.

Further, the parameters of the model are estimated using a likelihood-based approach

for the first and second-order approximation, so as to capture nonlinear features of related

macroeconomic data. Since our model features a two-agent structure, after obtaining the

posterior estimates and constructing the Bayesian impulse responses, we examine the

role of the constrained agents in the propagation of government spending, distortionary

taxation, and monetary policy shocks and to account for observed fluctuations in output

and consumption. For data convenience, we analyzed the quarterly time series data for

the Korean economy for 1999 Q4–2021 Q4.

Our post-estimation results show that the linear TANK DSGE model M1 better

fits the Korean economy in terms of the log likelihood. However, the nonlinear model

M2 performs better according to the estimated log marginal and predictive likelihoods.

Thus, the marginal likelihood for the nonlinear model is higher than for the linear model

by a Bayes factor of exp (5). This suggests that the nonlinear model is likely to explain

new data better and to be less prone to overfitting.

The estimated share of constrained agents in the linear model is around 0.41 for the

linear model and 0.53 for the nonlinear model. These results are in line with the existing
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literature. The estimated parameters in both models indicate that the discount factor,

the elasticity of intertemporal substitution, and the Frisch elasticity of labor supply play

essential roles in the Korean economy. Furthermore, the estimated parameters for both

models suggest that the Korean economy exhibits moderate price and wage stickiness,

with an average duration of price contracts of around one year and an average duration

of wage contracts of around half a year for the linear model and around one year for

the nonlinear model. Finally, posterior estimates suggest that the Korean central bank

behaves is a slightly more anti-inflationary manner in the nonlinear model than in the

linear model.

In addition, this study analyzes the Bayesian impulse responses of macroeconomic

variables to aggregate shocks. The results provide valuable insights into a) how various

shocks impact macroeconomic variables such as output, consumption, investment, labor

supply and inflation, and b) the differences between the linear and nonlinear models.

The results show that the expansionary spending shock positively impacts aggregate

output, consumption, and hours worked with a significant crowd-in effect for the

consumption of constrained agents, particularly in the nonlinear model. However, due

to the wealth effect, the consumption of financially unconstrained agents decreases.

The overall positive effects of government spending shocks subside after subsequent

quarters, as higher wages from increased productivity lead households to substitute

work for leisure and increased price levels. Moreover, this expansionary effect increases

the general price level in the economy, which raises real wages and marginal cost in

subsequent periods.

At the same time, the contractionary monetary policy shock has a decreasing effect

on output, aggregate consumption, investment, and hours worked. Aggregate output

and consumption plummet in response to a monetary policy shock in modelsM1 andM2.

In M2, the results indicate that the contractionary monetary policy positively affects

the consumption of unconstrained households because these agents can access financial

markets and have savings to mitigate the negative effect of contractionary monetary

policy. However, again this positive effect decreases in subsequent quarters.

The consumption tax and labor income tax shocks have a contractionary impact on

the economy, decreasing aggregate output, consumption, investment, and hours worked.

Regarding the differences between the linear and nonlinear models, the nonlinear model

shows more pronounced effects on real wages and consumption of unconstrained agents.

Bayesian impulse responses resulting from the nonlinear model show smoother results
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than those from the linear model.

Thus, our study conducts the linear and nonlinear estimation of DSGE model,

featuring limited assets participation. The current chapter emphasizes the importance of

evaluating an understanding of the dynamic effects of different shocks on macroeconomic

variables in the presence of nonlinearities and constrained agents. In general, the findings

of this study provide insights for policymakers and researchers interested in working

towards an understanding of the dynamics of the Korean economy.

While we acknowledge that the estimated TANK model is relatively simple compared

to other heterogeneous agent models, we recognize that more complex models may be

necessary to explain complex subjects such as the monetary and fiscal mechanisms of

the entire economy. Nonetheless, we believe that the TANK model can be expanded

in various ways while maintaining its relative tractability. For instance, one possible

extension is the inclusion of idiosyncratic income shocks, as suggested by Debortoli and

Gaĺı (2021). However, estimating the parameters and evaluating the likelihood of such

an extended model may require a different approach.
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Parameter Description

100(1/β − 1) β is discount factor

δ capital depreciation

γg share of government spending

µp price markup

µw wage markup

σ relative risk aversion

ϕ labor disutility parameter

aj parameter of adjustment cost function

γπ inflation parameter

γy output parameter

ψ elasticity demand for intermediate firms

εw elasticity labor demand for intermediate firms

α capital share

λ share of constrained households

θ Calvo’s parameter for price setting

θw Calvo’s parameter for wage setting

γB share of government bonds

ρa persistence productivity shock

ρG persistence government spending shock

ρτc persistence consumption tax shock

ρτ l persistence labor tax shock

τ̄ c consumption tax

γR nominal interest parameter

τ̄ l labor tax

σe productivity shock

σϵm monetary shock

σG government spending shock

στc consumption tax shock

στ l labor tax shock

Table 3.1: Structural parameters
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M1 - First-order M2 - Second-order

Mean Credible interval Mean Credible interval

α Normal 0.3 0.1 0.0673 [-0.0025, 0.1484] 0.0777 [-0.2824, 0.4374]

β Gamma 0.9975 0.1 0.9927 [0.9915, 0.9915] 0.9923 [0.9910, 0.9940]

λ Beta 0.4 0.1 0.4170 [0.3486, 0.5106] 0.5318 [0.4450, 0.6159]

σ Normal 2 0.1 0.3329 [0.1663, 0.5673] 0.3804 [-0.8504, 1.6150]

ϕ Normal 2 0.25 3.7197 [2.7335, 5.1773] 5.3350 [2.1042, 8.5824]

ψ Normal 5 1 5.1773 [4.3595, 8.3084] 5.1576 [3.6328, 7.0939]

εw Normal 5 1 4.6989 [3.0299, 5.8997] 4.0559 [2.8455, 5.4619]

θ Beta 0.5 0.15 0.8998 [0.8563, 0.9316] 0.9661 [0.9463, 0.9828]

θw Beta 0.5 0.15 0.4920 [0.3206, 0.6382] 0.6642 [0.5677, 0.7601]

γR Beta 0.7 0.1 0.7109 [0.5857, 0.8118] 0.8435 [0.7904, 0.8886]

γπ Gamma 1.5 0.05 1.5256 [1.4319, 1.6323] 1.5266 [1.4280, 1.6313]

γY Gamma 0.125 0.05 0.0663 [0.0168, 0.0168] 0.0146 [0.0099, 0.0230]

ρa Beta 0.5 0.1 0.6442 [0.5526, 0.7335] 0.4408 [0.3336, 0.5519]

ρG Beta 0.5 0.1 0.6514 [0.5513, 0.7488] 0.6892 [0.5713, 0.7969]

ρτc Beta 0.5 0.1 0.5192 [0.4551, 0.5968] 0.4872 [0.3530, 0.6255]

ρτl Beta 0.5 0.1 0.7644 [0.6692, 0.8559] 0.70098 [0.5773, 0.8135]

φg Gamma 0.3 0.05 0.0712 [0.0484, 0.1284] 0.0150 [0.0015, 0.0415]

φb Gamma 0.07 0.05 0.1324 [0.0727, 0.2486] 0.0573 [0.0364, 0.1034]

τc Beta 0.1 0.01 0.1503 [0.1342, 0.1695] 0.1425 [0.1425, 0.1636]

τl Beta 0.25 0.01 0.2450 [0.2286, 0.2627] 0.2469 [0.2279, 0.2660]

aj Beta 4 0.1 3.9935 [3.7900 4.2065] 3.9971 [3.9971 4.1951]

Table 3.2: Prior and Posterior distribution for structural parameters of M1 and M2
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M1 - First-order M2 - Second-order

Mean Credible interval Mean Credible interval

expσe IG* 0.1 2 -4.2566** [-4.6327, -3.7853] -3.9135 [-4.2520, -3.5694]

expσem IG 0.1 2 -6.3548 [-6.5501, -6.1368] -6.2811 [-6.4690, -6.0785]

expσεg IG 0.1 2 -5.1549 [-5.7970, -4.2023] -3.0666 [-4.7413, -3.0666]

expστc IG 0.1 2 -5.6748 [-5.8507, -5.4961] -5.6956 [-5.8997, -5.4929]

expστl IG 0.1 2 -4.3996 [-4.5660, -4.2132] -4.6137 [-4.8131, -4.4096]

Table 3.3: Prior and Posterior distribution for structural parameters of M1 and M2

Note:* - Inverse Gamma Distribution. 2. ** - The posterior values for the shocks is in log((σx))

Model n Log
Prior

Log Likelihood Log Marginal
Likelihood

Predictive
Likelihood

Posterior
probability

M1 26 -529.8 1469.6 1277.2 883.2 0

M2 26 -520.6 1451.7 1281.9 911.9 1

Table 3.4: Model Performance Values

Note: M1 - a model resulting from the first-order approximation. M2 - a model resulting from the second-order

approximation



Figure 3.1: Fitted vs observed values for M1 and M2

Figure 3.2: Fitted vs observed values for M1 and M2
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Figure 3.3: Log Likelihood of M1 and M2
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Figure 3.4: IRFs to expansionary government spending shock

Figure 3.5: IRFs to expansionary government spending shock (common posterior)
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Figure 3.6: IRFs to contractionary monetary policy shock

Figure 3.7: IRFs to contractionary monetary policy shock (common posterior)
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Figure 3.8: IRFs to positive consumption tax shock

Figure 3.9: IRFs to positive consumption tax shock (common posterior)
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Figure 3.10: IRFs to positive labor income tax shock

Figure 3.11: IRFs to positive consumption labor income shock (common posterior)
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Chapter 4 Conclusions

4.1 Introduction

This chapter presents a summary of the key findings and their implications, highlighting

the main contributions of the implemented research. Section 4.2 provides a summary of

the main objectives, research methodologies, and findings, while section 4.3 offers policy

recommendations based on the research outcomes. Section 4.4 explores the limitation of

the studies and proposes promising avenues for future research.

4.2 Conclusions

The estimation method using nonlinear DSGE models is quite restrictive, which motivates

us to design a straightforward, faster approach. Thus, this dissertation investigates the

nonlinear estimation of DSGE models using the likelihood-based approach for estimating

the models resulting from the second-order perturbation technique. Notably, in Chapter

2, we leverage the fact that the shocks in some DSGE models can be recovered uniquely

from some of the control variables, implying that the policy function is invertible with

respect to the shocks. Therefore, we implicitly used an invertible approximation of

the policy function and a Lagrange inversion formula to approximate an inverse of the

policy function, enabling us to derive a higher-order likelihood approximation. In the

evaluation of the likelihood function of the DSGE model, the current method does not

require the introduction of measurement errors or resorting to particle filter theory to

compute the likelihood function. This distinguishes our approach from those in the

literature on the nonlinear estimation of DSGE models.

To demonstrate the efficacy of the technique, we apply it to the well-known neoclas-

sical growth model of Fernández-Villaverde (2010), using US data for 1959 Q1–2019 Q4.

In addition, to estimate the models resulting from first and second-order approximation,

we modify the growth model by introducing heteroscedasticity through GARCH pro-

cesses (including restricted and unrestricted versions of the GARCH model) to capture
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uncertainty in shocks.

The main findings of Chapter 2 suggest that our nonlinear model with restricted

GARCH processes delivers a better fit of the model (as measured by marginal and

predictive likelihoods) to the data than the other three models. The model resulting

from second-order approximation with homoskedastic shocks shows better results than

the linearized model obtained from the first-order perturbation method. The posterior

analyses indicate that the monetary policy shock in a nonlinear heteroscedastic model

is the main driving force of uncertainty in the economy.

In Chapter 3 we develop a TANK DSGE model with two types of households,

constrained and unconstrained, with constant shares in population. The choice of

this model is primarily driven by its tractability relative to the recently developed

HANK model and its ability to provide an approximation of the impact of the HANK

model impact on aggregate variables. In comparison with the RANK model, where all

agents are assumed to be identical and have the same preferences, the TANK model

is more realistic, as it allows for some degree of heterogeneity in the population. As

existing studies show, the TANK models give a better explanation than the RANK

models of the effects of aggregate fluctuations on the economy. Our TANK model

incorporates price and wage rigidity dynamics, capital adjustment costs, and various

structural shocks related to technology, monetary policy, government spending, labor

income, and consumption tax. We also model real and nominal frictions nonlinearly,

with investment costs as a component of the former and price and wage frictions as part

of the latter. Regarding the estimation, estimations in existing studies with two-agent

structure are mainly linear. Since second-order approximation allows us to capture some

nonlinearities featured in macroeconomic data (which could be missing in the linearized

model) we estimate the model by means of the proposed likelihood-based approach using

the perturbation method of order one and two for the Korean economy with quarterly

aggregate data for 1999 Q4–2021 Q4.

The estimation result demonstrates that, unlike a growth model in Chapter 2, the

linear representation of the TANK model generates a better fit of the model to the data

(as measured by log-likelihood at the posterior mode). However, the nonlinear model is

preferable in terms of log marginal and predictive likelihoods than the linearized one.

Nevertheless, these results support the idea of including nonlinearities when analyzing

the behavior of the TANK model.

The posterior analyses show that the posterior distribution for some parameters
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diverts from the parameters estimated using the first-order perturbation method. Stan-

dard deviations of the parameters are estimated to be much higher for the second-order

approximation model than for the first-order, indicating that the posterior distribution

of the nonlinear model is more dispersed.

Bayesian impulse analyses show that expansionary spending shock positively impacts

aggregate output and consumption. It positively affects the consumption of constrained

agents in nonlinear and linear models. It should be noted that this effect is pronounced

for nonlinear models since the share of constrained agents is estimated to be higher than

for the linear model. However, increased public spending has a negative effect on the

consumption of unconstrained agents for both models due to a negative wealth effect.

In addition, we find an overall negative impact on aggregate output, consumption, and

hours worked from increased labor income and consumption tax shocks. This negative

effect is also pronounced for the nonlinear model.

Bayesian impulse analyses for positive monetary policy shocks have a contractionary

effect on the overall economy, which is in line with the findings of existing studies.

4.3 Policy implication

The findings of Chapter 2 argue in favor of the nonlinear estimation of DSGE models

to assess the role of monetary and fiscal policy rules on macroeconomic outcomes.

Linear DSGE models cannot capture important features such as consumer risk aversion,

time-varying variances, asset pricing, and welfare evaluations. Although nonlinear

DSGE models help address these issues, they present challenges for estimation. The

new method presented here facilitates the estimation of nonlinear DSGE models and

makes it possible to evaluate some nonlinear DSGE models that cannot be estimated

with existing methods. As a practical policy issue, for example, the design of optimal

monetary or fiscal policies to improve the welfare of individuals in an economy. As

mentioned above, there are already methods to do this in the literature; the method

proposed in this dissertation widens the tools for empirical analysis of these issues.

Moreover, our results show that the nonlinear model with changes in uncertainty

over time performs better empirically than all other estimated models. The findings of

this study tend to support to the rising interest shown by central banks in the estimation

of nonlinearly solved DSGE models, particularly in modeling and estimating DSGE

models with time-varying variances. The study also contributes to the understanding

120



the sources of uncertainty in the economy and the role of different shocks in driving

fluctuations in economic activity. This relevance has become even more significant in

the context of the recent situation surrounding the Covid-19 pandemic and ongoing

global conflicts.

In addition, the results of this study provide evidence that nonlinear models can

deliver a more accurate representation of the economy, allowing for nonlinear relationships

between variables. These features can affect the transmission of monetary policy and

the response of macroeconomic variables to aggregate shocks, which are important

considerations for central banks in their policy-making decisions. The implications of

the findings can be useful for central banks in their efforts to stabilize the economy and

achieve their policy objectives.

The findings from Chapter 3 on the expansionary effect of public spending support the

argument that despite wage rigidities, fiscal stimulus in the form of public spending can

have an expansionary effect on the economy and support economic recovery. Meanwhile,

the positive shocks to income and consumption tax have a hindering impact on the

entire economy. However, it is important to note that the effectiveness of fiscal stimuli

depends on various factors, including the magnitude of the stimulus, the timing of its

implementation, and the specific characteristics of the economy in question.

4.4 Study limitations and further research

The proposed estimation technique is a relatively new approach, and we recognize

several limitations to our study. First, the method is not applicable in all cases, as it

requires the policy function to be invertible concerning shocks. Furthermore, the analysis

is restricted to second-order approximation and to the case in which the number of

shocks equals the number of observed variables. Since these two assumptions are rather

restrictive, future studies could usefully address these challenges by further exploring

the estimation of nonlinear DSGE models. Therefore, subsequent research analysis can

investigate this issue further in order to work out how to relax these two assumptions.

As recent articles suggest, uncertainty shock can support comprehension of the

principal features of business cycle fluctuations. Time-varying uncertainty became the

object of a booming line of research during the last decade. In modeling these uncertainty

shocks, the macroeconomic literature has pointed out three main alternative approaches

to specifying changes uncertainty over time: stochastic volatility (SV), GARCH processes,
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and Markov regime switching (Fernández-Villaverde and A.Guerrón-Quintana (2020)).

In this dissertation, we analyze and estimate nonlinear models with heteroscedastic

structural shocks employing GARCH processes. However, some studies show that

regarding SV and GARCH models, the latter employs one shock, driving the dynamics

of the level of volatility of random variables of interest. Thus, separating a volatility

shock from a level shock is impossible: higher volatilities are triggered only by a large

past-level innovation. This assumption is partly restrictive in analyses of the DSGE

model. Furthermore, some studies show that SV models tend to fit the data better

(Nakajima (2012)). Therefore, modeling and analysis of SV in the context of a nonlinear

DSGE model would also be an intriguing direction for future research.

From the computation side, since DSGE models with uncertainty shocks are highly

dimensional, as in this work, future exploration cannot rely on linearizing the equilibrium

conditions of the model. The limitation of linearized models motivates us to develop

a new approach for estimating models resulting from a second-order approximation of

the solution of the DSGE model. Nevertheless, the literature shows that second-order

approximation involves uncertainty shock comprising only cross-products of level and

volatility shock. Thus, exploring the third-order perturbation method could extend the

insights gained in this dissertation.

From another perspective, the quantitative aspect of the macroeconomic model could

be fertile for future exploration. There are disputes arising regarding the utilization

of, for example, New Keynesian DSGE models, particularly to obtain quantitative

conclusions about the overall economic impact of a policy. While we acknowledge

that the estimated TANK model is simpler than other heterogeneous agent models,

we recognize that more complex models may be necessary to explain complex subjects

such as the monetary and fiscal mechanisms of the entire economy. Nonetheless, the

TANK model can be expanded in various ways while maintaining its relative tractability.

For instance, one possible extension is the inclusion of idiosyncratic income shocks, as

suggested by Debortoli (2018). However, estimating the parameters and evaluating the

likelihood of such an extended model may require a different approach.
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Steady State model, derivation

At the steady state we have: Ass = 1, Spss = 1, Swss = 1, Πw
ss = 1, Πw∗

ss = 1

W ∗
ss =

εw
εw − 1

(Ld,Rss )φ

ζRss(1− τ lss)
+ (θwβ)W

∗
ss (1)

and

W ∗
ss =

εw
εw − 1

(Ld,NRss )φ

ζNRss (1− τ lss)
+ (θwβ)W

∗
ss (2)

and

µw =
εw

(εw − 1)

We assume at steady-state:

CR
ss = CNR

ss = Css

Ldss = (LRss)
d = (LNRss )d

and Css = γcYss.

We have:

ζRss =
(CR

ss)
−σ
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−σ
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(3)

Substituting (3) in (1) we have:

W ∗
ss(1− θwβ) =
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φ(1 + τ css)(γcYss)

σ
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(4)

and noting: W ∗
ss = Wss

So, we have first steady-state equation for Yss
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(5)

From (3.24)
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From (3.13)
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Since we have previously received from (5):
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We fraction out Ldss:
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As for the consumption:

Css = Yss − Iss −Gss
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Css = Yss − δKss − γgYss

Css = Yss

(
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)
Since
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)
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Steady State model, aggregation

Steady state equations:

Ass = 1 (1)

Spss = 1 (2)
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