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Abstract: 
 

The growth of urban areas and industrial development has diminished air quality across 

various cities globally, especially in low-and middle-income nations. This decline severely 

affects health and overall quality of life, resulting in an estimated annual death toll of three 

to seven million. Although the concentration of particulate matter (PM2.5) varies over time 

and space, its large-scale monitoring poses a challenge due to its complexity and cost. 

The first paper of this dissertation presents a low-cost exercise in the measurement of air 

quality to create a map of PM2.5 for Addis Ababa, Ethiopia. The data were collected during 

the dry and rainy seasons in various land-use areas and analyzed using a land-use regression 

(LUR) model. The results show that PM2.5 levels are affected by local land use, traffic, and 

weather conditions. Higher PM2.5 concentrations were found in commercial areas and areas 

with heavy road traffic, highlighting the importance of land use type in predictions of 

particulate matter levels. Additionally, meteorological factors significantly impacted 

concentration levels more than other factors, such as land use type. The methodology used 

here can be replicated in studies of other urban areas in developing countries where air quality 

monitoring is limited. 

Despite the health hazards related to air pollution, low- and middle-income countries lack air 

quality monitoring equipment and information. The US currently has fixed air quality 

monitors in its embassies in developing countries, but the data from single fixed sites provide 

only limited information and does not accurately reflect exposure levels in areas away from 

the Embassy. The second paper of this dissertation examines the extent to which a single site 
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placed arbitrarily at the US Embassy provides a guide to air quality information and its risks 

across the city. The discrepancy between air quality readings from a single monitor and 

readings from a low-cost monitor in four sub-cities of Addis Ababa is analyzed. The study 

used linear difference and multinomial logit estimations to identify the sources of 

discrepancies in the readings. The results show that the discrepancies are primarily influenced 

by land use, time, and weather variables, with the time of day playing the most significant 

role in the discrepancy. The findings suggest that relying on data from one air quality monitor 

positioned randomly does not provide a complete understanding of the intricate nature of air 

pollution. To achieve more precise measurements in the future, we propose a technique for 

positioning fixed air quality monitors to optimize monitor placement through minimizing the 

total expected cost of the discrepancies. This approach aids in achieving a more thorough 

decision-making process regarding air quality. Overall, the results of this study shed light on 

the challenges of air quality monitoring in developing countries and offer solutions for 

improving the accuracy and accessibility of air quality information. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1. Overview 
 Air pollution stands as a significant environmental apprehension in the contemporary world. 

In 2016 the World Health Organization (WHO) data shows that a staggering 91% of the 

global population resided in regions where air quality fell below recommended standards. 

Alarmingly, outdoor air pollution led to the premature deaths of 4.2 million individuals 

during that year. 1 Notably, cities in low and middle-income countries (LMICs) tend to 

grapple with more pronounced air pollution compared to their developed counterparts. 

Those who live, work, socialize, and commute in densely urbanized LMIC areas face 

escalated exposure to air pollution due to elevated concentration levels. Despite the evident 

link between air pollution and human well-being, air quality data and monitoring systems 

remain deficient in many LMICs. This deficiency translates to an inadequate grasp of 

exposure levels, concentrations, and pollution sources. The outcome is compromised 

decision-making and insufficient efforts to mitigate air pollution and enhance public health. 

Initiating a response to this quandary necessitates intensified research endeavors and the 

application of potent air pollution control strategies and technologies. Furthermore, 

cultivating awareness among the general public and policymakers regarding the severe health 

 
1 https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health 
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ramifications of air pollution can be instrumental in galvanizing change and promoting 

investments in clean air initiatives. 

Addressing this gap, the first paper of this dissertation employs a low-cost monitoring 

approach. By correlating the monitored pollution levels with spatial land use data, this 

method predicts pollution concentrations in unmonitored locations within Addis Ababa, 

Ethiopia's capital. The findings underscore the influence of local land usage, traffic, and 

weather conditions on PM2.5 levels. Notably, elevated PM2.5 concentrations are discerned 

in commercial zones and areas characterized by heavy vehicular movement. This accentuates 

the pivotal role of land usage in predicting particulate matter levels. Moreover, 

meteorological factors wield a substantial impact on concentration levels, surpassing the 

influence of other factors like land use patterns. 

While low-cost monitors can help predict air pollution in unmonitored locations with limited 

or no fixed air quality monitoring stations, it is crucial to implement a method for placing 

representative fixed air quality monitoring stations in developing cities like Addis Ababa that 

could reflect exposure levels. The WHO Global Ambient Air Quality Database 2018 shows 

a stark disparity in air quality monitoring between low-income and high-income countries. 

Low-income countries only have one PM2.5 monitor for every 65 million people, while high-

income countries have one monitor for every 370,000 people. For instance, many countries 

in Sub-Saharan Africa do not have permanent PM2.5 measuring stations, with only 12 

African countries having air quality monitoring sites, mostly in capital cities. East Africa, 

one of the regions with limited air quality monitoring, is facing a growing threat from poor 

air quality due to rapid urbanization, increasing population, and higher fuel consumption 
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from the high motorization rate  (Avis & Bartington, 2020). Like many cities in developing 

nations, Addis Ababa relies solely on a single fixed air quality monitoring site for 

information.2 While this site provides valuable time-series data, it does not give information 

for a comprehensive understanding of air quality distribution throughout the city. This data 

gap also prevents analysis of differences within the city and the impact of air pollution on 

urban, suburban, and rural areas. The measurement site may also not accurately reflect 

particulate matter exposure levels for the average resident.  

The second paper of the dissertation examines the extent to which the single fixed air quality 

monitor provides a guide to air quality and its risks throughout the city. The discrepancy of 

pollution information between the fixed air quality monitor is analyzed by comparing air 

quality data collected over six months in 2020 and 2021 across four sub-cities over a range 

of land use sites in Addis Ababa through a low-cost monitor. This study aims to fill the gap 

in understanding the accuracy of air quality information provided by a single fixed site and 

how it compares to low-cost monitor data collected throughout the four sub-cities of Addis 

Ababa. The findings suggest that relying on data from one air quality monitor positioned 

randomly does not provide a complete understanding of the intricate nature of air pollution. 

To achieve more precise measurements in the future, we propose a technique for positioning 

fixed air quality monitors to optimize monitor placement. This research's results will help 

improve decision-making and action toward reducing air pollution in Addis Ababa and other 

 
2 Currently, the only source of ground-level measurement of PM2.5 in Addis Ababa is from the US Embassy 

air quality monitor, which records hourly average PM2.5 installed at the parkland of the Embassy, The fixed 

monitor at Addis Ababa international community school (near Addis Ababa Golf club) is mostly offline and 

doesn’t record air quality data. 
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cities facing similar challenges. Finally, the findings can inform the deployment of air quality 

monitoring networks in developing countries, providing more comprehensive and accurate 

information for effective air pollution control and public health protection. In general, this 

research brings attention to the difficulties faced in monitoring air quality in developing 

nations and proposes remedies to enhance the precision and availability of air quality data. 

1.2. Organization of the dissertation 
 

The dissertation is organized into four chapters. The first chapter gives an overview and this 

road map. The second chapter uses a cost-effective approach to predicting air quality using 

a land use regression model in unmonitored areas. The third chapter explores the specific 

context of a developing country where a single air quality monitor is the primary ground-

level information source of air quality for city residents and air quality decision-making 

among policymakers. It evaluates the impact of this information on air quality decision-

making and proposes a method for determining the optimal location of air quality for 

additional monitor/s considering the currently available single monitor. Finally, the last 

chapter gives a conclusion and policy implications.
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CHAPTER TWO 

2. Low-Cost Mapping of PM2.5 in Addis Ababa 

2.1. Introduction 
 

East Africa, a region with limited air quality monitoring infrastructure, faces an ever-growing 

danger from declining air quality due to rapid urbanization, population growth, and a rise in 

fuel consumption due to high motorization rates (Avis & Bartington, 2020). The scarcity of 

air quality monitoring systems in the region exacerbates the situation and makes it 

challenging to address the problem effectively. In addition, the high expense of air quality 

monitoring equipment that has undergone proper calibration and certification makes it 

challenging to measure air quality in countries with low-income countries such as Ethiopia. 

However, low-cost mobile sensors have made air quality monitoring simple, attainable, and 

easily accessible, allowing for air quality modeling and evaluations of environmental impacts. 

The market for portable air pollution sensors, combined with GPS technology, has seen a 

decline in the cost of collecting air pollution data. As a result, low-cost mobile sensors have 

become widely used to map air quality at a local level, as reported in various studies 

(Karppinen et al., 2000; Habermann et al., 2015; Saori et al., 2008; Rivera et al., 2012; 

Hasenfratz et al., 2015; Lim et al., 2019). Ironically, much of this research has been 

conducted in developed countries with established networks of high-quality fixed monitoring 

stations. This disparity affirms the need for increased air quality monitoring in low- and 

middle-income countries, where air pollution levels are often higher due to a lack of 

regulations and infrastructure. Using low-cost mobile sensors in these areas can help shed 
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light on the extent of the air pollution problem and inform efforts to address it. This will 

improve the quality of life for citizens and contribute to global efforts to mitigate the impacts 

of air pollution on human health and the environment.  

The availability of low-cost mobile air quality sensors presents a unique opportunity to 

address the air pollution problem in low-income countries and create a more equitable and 

healthier world.3 Sensors can now be affixed to rental bikes as they travel around cities or are 

carried by individuals on foot. This approach was demonstrated in a study by Minet et al. 

(2017) in Kampala, Uganda, where sensors were mounted on motorbike taxis, known as 

Bodhas, and powered by the bikes' batteries. The sensors reported the levels of PM2.5 and 

their location. Despite recent advancements in low-cost data collection methods, a network 

of monitoring stations alone is insufficient for providing detailed information. The lack of a 

link between pollutant concentrations and geographic information in these networks requires 

a model to create a map of concentrations and determine the areas with the poorest air quality 

so that policies can be implemented to mitigate the effects (Vizcaino & Lavalle, 2018). 

PM2.5 is widely recognized as the most important indicator of urban air quality (Cohen et 

al., 2005) and has been linked to respiratory disease and elevated cardiovascular mortality 

due to ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. This is because 

PM2.5 particles are small enough to penetrate deeply into the lungs (Merbitz et al., 2012). 

This study aims to gather PM2.5 air quality data through low-cost mobile monitoring device 

 
3  There is no universally agreed definition of a “low-cost” sensor since anything costing less than the 

instrumentation cost required to demonstrate compliance with the air quality regulations can be termed low-

cost. However, the cost should be as low as possible to achieve a sensor-based system for monitoring air 

pollution, so that widespread deployment is commercially feasible (Kumar et al. 2017). 
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in four sub-cities of Addis Ababa and construct an air pollution exposure map by applying a 

land use regression model that associates pollution levels with geographic information. The 

study will further extrapolate the results obtained from the sample area (the four sub-cities) 

to produce a comprehensive air quality map for the entire city of Addis Ababa, the capital of 

Ethiopia. This information will provide valuable insights into the air pollution situation in 

Addis Ababa and highlight areas that are most affected by air pollution. This, in turn, will 

help inform decision-making regarding air quality management and mitigation strategies and 

contribute to improving public health in the city. Using low-cost mobile monitoring devices 

will also make air quality data collection more accessible and cost-effective, allowing for a 

more comprehensive understanding of air pollution across the city.  

The estimation results and hence the prediction shows that, local land use, traffic, and weather 

conditions have an impact on PM2.5 levels. The study revealed that commercial areas and 

areas with high road traffic had increased concentrations of PM2.5, indicating the 

significance of land use classification in forecasting particulate matter levels. Moreover, the 

study demonstrated that meteorological factors had a greater impact on PM2.5 concentration 

levels than other factors like land use classification.
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2.2. Survey of Related Literature 
 

LUR models have been widely used in air pollution studies in Europe and North America for 

more than a decade. However, the technique has recently been adopted in developing 

countries (Chalermpong et al., 2021; Lim et al., 2019) and used in Sub-Saharan Africa on 

rare occasions (Coker et al., 2021). A growing number of studies have been conducted in 

developing countries, where the PM2.5 problem has become more severe as economies and 

motorization rates have accelerated. Due to a lack of or inaccessibility of fixed monitoring 

stations in various developing countries, the research relied on purpose-designed 

measurement sites to collect PM2.5 data for LUR modeling. For example, a Spatiotemporal 

air quality prediction in Kampala, Uganda's capital, was developed using a network of locally 

developed low-cost sensors (Coker et al., 2021). The study used monthly average PM2.5 data 

from twenty-three sites collected with a low-cost sensor throughout 2020. Monthly 

precipitation, percentage of the population using solid fuel for cooking, distance to Lake 

Victoria, and green space within 500m of the air quality monitors were the most important 

spatial and temporal predictors of monthly PM2.5 levels. A survey of related mobile air 

quality monitoring is summarized in Table 2.1
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Table 2.1 Review of Mobile air quality monitoring  

Study Location Method of Data collection, estimation, and 

sampling 

Major results 

Lim et al. 

(2019) 

Seoul, 

South Korea 

The data collection was conducted using low-cost air 

quality monitors (Airbeams). The sampling campaign 

was implemented by repeatedly walking across five 

routes during a three-week period (July 23 to August 

11) in the summer of 2015. 

Pollutant of concern: PM2.5 

The constructed LUR models were used to create prediction 

maps of street-level PM2.5 concentration levels in Seoul that can 

be used for personal-level exposure in urban areas where there 

are more people on the streets than in cars.  

Hasenfratz 

et al. 

(2015) 

Zurich, 

Switzerland 

Mobile sensors were installed at the top of public 

transport vehicles for a two-year period to collect air 

pollution data. 

 Pollutant of concern: Ultrafine particles 

LUR was used to create pollution maps with a spatial resolution 

of 100m × 100m. In this study, pollution maps with different 

temporal resolutions, such as seasonal resolutions (winter-

spring, summer, and fall), were created. 
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Rivera et al 

(2012) 

Girona 

province, 

Spain 

Mobile sensor devices were installed on the 

sidewalk of 644 participants in twelve towns of 

Girona province at 25 sites in Spain. Measurements 

were conducted during non-rush traffic hours, 9:15-

12:45 and 15:15-16:45, between June 15 and July 31, 

2009. Measurements were conducted using P-Track 

counters located perpendicularly to the street above 

1.5 meters for 15 minutes in a site at a time. 

Pollutant of concern: Ultrafine particles 

The LUR models captured between 36-42% of the spatial 

variability of UFP in the study area. 

Masiol et 

al.  (2018) 

Monroe 

city, New 

York 

Hourly PM2.5 concentrations were measured by 

placing low-cost monitors outdoors (backyards) of 

volunteers’ homes during the heating seasons of 

2015/16 (December to March) and 2016/17 

(November to March) at 23 and 25 residential 

locations for those seasons, respectively. 

LUR models for each hour of the day and weekdays/weekend 

days were developed. Model outputs were illustrated by mapping 

PM2.5 concentrations for midnight and noon on a typical 

weekday and typical weekend day since these days were found 

to be times when weather parameters approximated the whole 
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Pollutant of concern: PM2.5 

 

season mean values. Maps were computed on a 250×250 m grid 

resolution. 

Jin et al. 

(2019) 

Gansu 

Province, 

Lanzhou 

city, China 

 Data collection was conducted by placing palm 

tubes 2.5 meters above the ground at light poles in 

Infront of small businesses (such as convenience 

stores or clothing shops) for a two-week period in 

the summer of 2015; the sampling strategy was 

designed in such a way for security reasons under the 

surveillance of owners. 

Stratified random sampling and purposeful selection 

were used to select sampling sites. 

Pollutant of concern: No2 

A predicted map of air pollution for a two-week period is 

generated and explains 71% of the variance in the measured No2 

concentration. 

Pope et al., 

(2018) 

 Kenya Three calibrated low-cost optical particle counters 

were deployed for two months (February-March 

2017); two monitors were deployed in the capital city 

It demonstrates low-cost sensors could be used to create an 

affordable network to monitor air quality in cities of developing 

countries. The results show that, during the research period, PM 
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Nairobi and one at the outskirts of Nanyunki, upwind 

of Nairobi. 

Urban and background sites were chosen as a 

criterion for selecting the sites, although no intra-

urban stratification was conducted. 

Pollutant of concern:PM1, PM2.5, PM10 

mass concentration peaks during morning rush hours and 

evening in Nairobi rush hours. 



 

9 
 
 

 

2.2.1. Air pollution and institutional arrangements in Ethiopia 
 

The Ethiopian Environmental Protection Authority (EEPA) and the Ministry of Environment, 

Forest, and Climate Change guide air quality management in Ethiopia. The EEPA 

implements and enforces environmental laws and regulations, including air quality. The 

Ministry of Environment, Forest and Climate Change develops and implements policies and 

programs for protecting the environment, including air quality (World Bank, 2022). The 

EEPA has developed National Ambient Air Quality Standards (NAAQS), which set limits 

for several pollutants, including particulate matter (PM10 and PM2.5). The  2003 ambient 

environment standards for Ethiopia set a 24-hour PM2.5 concentration not to exceed 65 

µm/𝑚3 and annual concentration not to excceed 15 µm/𝑚3 (Cao et al., 2016; EEPA, 2003). 

The Ethiopian government has implemented several measures to address air pollution in 

Addis Ababa and other urban areas, including promoting clean technologies and renewable 

energy sources and improving solid waste management. In addition, Ethiopia has enacted a 

comprehensive general environmental policy and legal framework, including pollution 

control. Ethiopia's Constitution (1995), environmental policy, conservation strategy, and 

various proclamations, regulations, and guidelines all contain provisions that demonstrate the 

country's legislative commitment to environmental, social, and sustainable development 

goals. To carry out this commitment, Ethiopia has developed and adopted a comprehensive 

set of environmental laws and regulations covering environmental and social management 

and pollution control (World Bank,2022). 
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Although Ethiopia has put various regulations and policies to improve air quality, 

enforcement of these regulations is often weak, and the EEPA lacks the resources and 

capacity to monitor and enforce compliance effectively. 

Addis Ababa recently prepared an air quality management including concrete steps to reduce 

emissions, baseline air quality characterization and projected emission trends, and a detailed 

air quality management implementation plan (AA EP, 2021). 

2.2.2. Air quality monitoring in Addis Ababa 
 

There are two permanent PM2.5 air quality monitors located in Addis Ababa, one BAM-

1020 located in the parkland setting of the US Embassy in Gulele sub-city, which is managed 

by the US State Department's monitoring program, and the other at an international school 

in Lideta sub-city (which is primarily offline and does not record data). However, despite 

efforts to monitor air quality in Addis Ababa, as outlined in Table 2.2, none have led to the 

creation of an air quality map for the city. 
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Table 2.2:  Air quality monitoring in Addis Ababa 

 

Authors  Number of sites Number 

of sites 

 Site selection criteria Major finding 

Kumie et 

al.( 2021) 

1 April 2017 – 31 

March 2020 

(Three years 

duration) 

One fixed 

site 

Availability of sustained power, 

height from the ground, instrument 

safety, and lack of any physical 

barrier that may restrict the free flow 

of air was considered as site selection 

criterion in this study. 

The study described levels of PM2.5 in Addis Ababa during the 

study period and examined temporal patterns, also examined the 

health impacts of PM2.5. The study illustrated two daily 

extremes of PM2.5, morning (high) and afternoon (low). Sunday 

has the lowest concentration, while Friday has the highest 

concentration of PM2.5; Mondays to Thursdays show a 

continuous increase in PM2.5 concentration.  

Watson 

(2005) 

26 January-28 

February 2004 

(One Month) 

Twelve 

sites  

Sites were selected to represent the 

urban core intended to represent 

ambient conditions at street level 

(which were located between 50 and 

100m from arterial roads with heavy 

motor-vehicle and pedestrian traffic), 

The study explored the temporal variation of PM10 and CO; the 

study found that PM10 and CO exhibited daily maxima around 

7:00 AM and secondary peaks in late afternoon and evening, 

suggesting that those pollutants were emitted during periods 

associated with motor-vehicle traffic. 
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other sites in the city were selected to 

represent variation in space, sites 

along the eastern periphery of Addis 

Ababa, were chosen to represent air 

quality levels outside the immediate 

urban area. 

Tefera et 

al. (2020) 

November 2015-

November 2016 

(61 days), samples 

were taken every 

six days. 

 One fixed 

site 

The station is in a typical downtown 

urban area surrounded by residential 

houses as well as public institutions 

and private businesses. 

The study characterized annual PM2.5 in both chemical 

composition and seasonal patterns. In almost 90% of sampled 

days, PM2.5 exceeded WHO`S guidelines during the study 

period. Furthermore, the study found that higher PM2.5 

concentrations were found during heavy rain season. Compared 

to WHO`s AQI, 31% and 36% of observed days were unhealthy 

for everyone and unhealthy for sensitive people. 
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The study also pointed out that Meteorological variables, 

vehicle emissions, biomass fuels, unpaved roads, and 

construction activity contribute to poor air quality. 
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2.2.3. Review of literature on calibration and use of low-cost air quality 

monitors   
 

There is currently no standard calibration protocol for low-cost sensors. Different calibration 

methods, such as chamber and field testing against various reference instruments, have been used 

in studies, making the inter-comparison of low-cost sensors impossible (Kumar et al., 2017).  

Nonetheless, studies provide critical information about the performance of low-cost sensors under 

a wide range of operating conditions. 

This section reviews calibration methods for low-cost air quality monitors (specifically for 

Particulate Matter sensors) and the method we used to select the air quality monitor. Kumar et al., 

(2017) examined the performance characteristics of several low-cost particle and gas monitoring 

sensors and discovered that, in general, sensors performed better (high 𝑅2  values) in the laboratory 

than in the field. The study discovered that performance deterioration during "on-the-field" 

conditions is caused by changing particle compositions, sizes, and environmental factors, which 

impact sensor response. This implies that on-site calibration is critical for reflecting reliability, 

whereas laboratory calibration is insufficient for assessing the device's performance. A study by 

Galatoulas et al. (2018) demonstrated the intended application of collecting fine-grained 

Spatiotemporal PM2.5 profiles in an on-road trial by mounting the developed air pollution 

monitors on an electric bike as a case study in the city of Mons, Belgium, on 1-minute resolution. 

In that study, roadside measurements from a mobile laboratory were compared using a calibrated 

instrument, demonstrating its accuracy. 
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Several researchers such as Amegah (2018), Galatoulas et al. (2018), Jovaevi-Stojanovi et al. 

(2015), Manikonda et al. (2016), Santiago et al. (2013), Semple et al. (2013), Sousan et al. (2016), 

Steinle et al. (2015), and Wang et al. (2015) have evaluated the performance of low-cost PM 

sensors. However, the lack of a standardized method for assessing the performance of low-cost 

PM sensors makes comparing the results of different studies difficult. Nonetheless, the 

performance characteristics of the various sensors are similar, with 𝑅2 values greater than 0.50 

compared to reference measurements in different environmental settings (Kumar et al., 2017). 

When selecting the low-cost monitor, we used Dylos 1700; we considered the device's data storage 

capacity, display system, and battery life.4 Researchers have compared the performance of the 

Dylos 1700 to that of a reference monitor (Manikonda et al., 2016; Semple et al., 2013; Sousan et 

al., 2016; Kumar et al., 2017). When compared to a standard reference air quality monitor, Susan 

et al. (2016) demonstrated that the Dylos 1700 helps estimate aerosol mass concentration at a 

workplace with 𝑅2 > 0.97. Manikonda et al. (2016) compare the performance of four low-cost PM 

sensors, including the Dylos 1700, to a well-characterized reference instrument. The study 

discovered that any monitors used in the calibration, including the Dylos 1700, tested performance 

with adequate precision for monitoring air quality. In addition, factors such as data download 

method, connectivity, and compatibility with a computer are considered when selecting the device, 

we used. 

 

 

 
4 The Dylos DC1700 is a battery-operated air quality monitor that measures particles in two size ranges: > 0.5 µm 

(Small particle number counts) and > 2.5 µm (large particle number counts) 

(http://www.dylosproducts.com/dc1700.html). 

http://www.dylosproducts.com/dc1700.html
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2.3. Sampling method and study area 

2.3.1. Description of the study area, Addis Ababa 
 

Addis Ababa, with an area of 521.47 𝑘𝑚2, is situated at the base of the "Intoto" mountain in the 

central region of Ethiopia. The city has a circular shape with a diameter ranging from 30-40 km 

and is situated between 2,200 to 2,800 meters above sea level (Kume et al., 2010). According to 

the 2007 census conducted by the Central Statistical Agency (CSA) of Ethiopia, the city had a total 

population of 2.7 million (Kume et al., 2010). However, projected population estimates show that 

the city's population has grown to 3.2 million as of 2013 (Central Statistical Agency, 2013). Census 

is still not conducted, and UN world pop data shows that Addis Ababa has an estimated 5.2 million. 

For our sampling purposes, we used the actual 2007 census data. 5 The population density in each 

sub-city is consistent with the projected data. Addis Ababa is surrounded by mountain ranges that 

stretch from the northeast to the western part of the city, with plains to the east and south. As a 

result, winds tend to carry emissions toward the western and northwestern areas of the city (Tefera 

et al., 2020). Inversion of temperatures is common during low-temperature seasons, particularly 

during early mornings and evenings (Tefera et al., 2020). 

Addis Ababa is divided into ten administrative districts with unique land areas and population 

densities.6 The sub-cities of Addis Ketema, Lideta, Arada, Kirkos, and Gulele have the highest 

population densities and rank first through fifth, while the sub-cities of Kolfe, Nefas Silk-Lafto, 

Yeka, Bole, and Akaki have the lowest population densities and rank last. In terms of land size, 

the sub-cities of Bole, Akaki, Yeka, Nefas Silk-Lafto, and Kolfe rank first, while the sub-cities of 

 
5 https://vizhub.healthdata.org/gbd-results/ 
6 

The number of sub-cities in Addis Ababa increased to 11 in October 2020; the new sub-city name is Lemi-Kura.
 

 



 

17 
 
 

Gulele, Kirkos, Arada, Lideta, and Addis Ketema rank last (see Table 2.3 for the population density 

of each sub-city). 

The climate of Addis Ababa exhibits three distinct seasons delineated by precipitation trends: the 

dry season (October to January and May), the period of light to moderate rainfall (February to 

April), and the primary rainy season (June to September), as documented by Tefera et al. 

(2020).The National Meteorology Agency (NMA) reports a monthly temperature range of 8 to 25 

degrees Celsius within the city. Monthly average rainfall varies from a minimum of 7 mm in 

November and December to a peak of 280/290 mm in July and August. Correspondingly, the mean 

monthly relative humidity fluctuates between 45.5% in December and 79.5% in July, according to 

data from the National Meteorology Agency in 2022 and Tefera et al. (2020). 

This interplay of precipitation, temperature, and humidity gives rise to a distinctive weather pattern 

in Addis Ababa, exerting a substantial influence on air quality. Consequently, comprehending 

these meteorological patterns and the underlying factors impacting air quality in the city becomes 

paramount. This comprehension is integral to formulating effective strategies for managing air 

quality and safeguarding the health and well-being of the city's inhabitants. 
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Table 2.3: Sub-cities in Addis Ababa with respective population density and area coverage 

Sub-city Name 
Population in 

2007 

Projected 

population in 

2014 

Land area in 

square km. 

Population 

density per square 

km. 

Akaki Kality 181,270 211,380 118.08 1,535.14 

Nefas Silk-Lafto 316,283 368,883 63.30 4,996.57 

Kolfe Keranio 428,895 500,163 61.25 7,002.36 

Gulele 267,624 312,096 30.18 8,867.10 

Lideta 201,713 235,246 9.18 2,1973.10 

Kirko 221,234 258,035 14.62 15,132.28 

Arada 211,501 246,680 9.91 21,342.17 

Addis Ketema 255,372 297,793 7.41 34,463.15 

Yeka 346,664 404,336 85.46 4,056.44 

Bole 308,995 360,387 122.08 2,531.08 

Total 2,739,551 3,194,999 521.47 5,253.51 
Source: Central Statistical Agency of Ethiopia (CSA) 

Note: The table describes the population density of Addis Ababa using the 2007 census of Ethiopia and 

projected data for 2014 from CSA. 
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Note: The figure shows the location of Addis Ababa in the country and the ten sub-cities of Addis Ababa 

Source: Author’s illustration using ArcGIS Pro 

Figure 2.1 Map of the study area Addis Ababa 

2.3.2. Selecting a sample sub-city from Addis Ababa 
 

The spatial variability of urban air quality is complex due to the variety of land use types and the 

complexity of the urban environment (Kerckho et al., 2017). To better understand air quality and 

its connection to the urban environment in developing countries, where air quality monitoring 

networks often lack careful monitoring network design, it is crucial to create high-resolution 

pollution maps and identify the local sources of air pollution. However, traditional air quality 

monitoring instruments can be costly to purchase and maintain, making it challenging to install a 

dense network of monitors to capture local-scale variability in pollution concentrations (Munir et 
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al., 2019). There is also a lack of clarity in the literature regarding the definition and regulations 

of determining the spatial representativeness of an air quality monitoring station, and no 

established method for determining the appropriate number of monitoring locations needed to meet 

a specific study goal and setting (Hoek et al., 2008).  

To effectively address the negative impacts of pollution on both human health and the environment, 

it is crucial to have a well-designed air quality monitoring system in place. This will allow for an 

accurate assessment of air quality and support decision-makers in developing policies to lower air 

pollution levels (Lozano et al., 2009). In the past, sample stations were typically placed in areas 

with high pollution levels. While this strategy provides information on the potential exposure to 

pollutants and the extent of risk, it does not provide insight into the effects of future pollution 

control measures or the level of exposure in areas outside the immediate vicinity (Nejadkoorki et 

al., 2011). 

 It may be beneficial to increase the frequency of pollution monitoring in areas with high 

population density (Kanaroglou et al., 2005). A study by Pope et al. (2018) conducted in Nairobi, 

Kenya, found that the dense population and heavy local traffic in urban areas contribute to the 

city's air pollution. Munir et al. (2019) proposed using Population-weighted Pollution 

Concentration (considering both population density and pollution levels) and Weighted Spatial 

Variability (which accounts for the spatial gradients of air pollutant concentration) as crucial 

factors in determining the placement of air quality monitors. The authors suggest that while the 

overall number of monitors is determined by budget constraints (Economic indicator), the 

distribution of monitors should be proportional to the Weighted Spatial Variability (WSV) in each 

area to account for population density (social indicator) and spatial variability of air pollutant 

concentrations (environmental indicator). 
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Human exposure to air pollution is directly tied to population density (residents per square 

kilometer) (Munir et al., 2019). Among the ten sub-cities of Addis Ababa, the inner core of four 

sub-cities (Ketema, Lideta, Arada, and Kirkos) have a significantly higher population density than 

the surrounding semi-rural areas. Given the large size of the city and the contrasting density 

between the center and outer suburbs, the focus is on measuring air quality in the four central sub-

cities with the highest population density: Addis Ketema, Arada, Kirkos, and Lideta (as shown in 

Figure 2.2). The combined area of these four sub-cities is 41.12 square kilometers, with the highest 

population density in Addis Ketema (34,463 people per square kilometer) and the lowest in the 

Kirkos sub-city (15,132 people per square kilometer). The other two sub-cities, Lideta and Arada, 

have population densities of 21,973 and 21,342 people per square kilometer, respectively. 

 
Note: The four sub-cities at the left bottom of the figure are the four central sub-cities of Addis Ababa which 

are the main study area of this study where air pollution sampling data were taken 

Source: Author’s illustration using ArcGIS Pro 

Figure 2.2: Location of selected sample sub-cities based on population density. 
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2.3.3. Selecting a sample site from a grid and the rationale for using a grid as 

a selection mechanism 
There is no set method for determining the number of sites required for a land use regression 

(LUR) analysis. Studies such as Hoek et al. (2008) utilize between 20-100 locations for studies in 

individual cities, often using a combination of a systematic and random sampling of land use 

(Munir et al., 2019). Systematic sampling, also known as grid or regular sampling, involves 

collecting samples at specific locations or over time in a defined pattern, which is used to select a 

cluster from a sub-city. This method is preferred for its uniform coverage, ease of use, and ability 

to ensure that the key features of the population are not missed. Additionally, samples taken at 

regular intervals, such as every node of an area defined by a grid, help estimate spatial or temporal 

correlations or identify patterns (EPA & Quality Management Division., 2002). To select a cluster 

from a sub-city sample, the four sub-cities were divided into a grid of 1 km by 1 km. The entire 

sampling area was divided into 1 km by 1 km squares in order to capture the variability of pollution 

exposure in the specified exposure area (1 km by 1 km) see Figure 2.3. 
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Note: The dots are centers of each grid of 1km square; we used ArcGIS pro software to create a fishnet that 

covers the four main sub-cities focused for this study 

Source: Author’s illustration using ArcGIS Pro 

Figure 2.3: Sample sub-cities in a grid of 1 km by 1km 

The entire study area, which encompasses the four sub-cities and the surrounding area, spans 

seventy-two km2. The four sub-cities occupy 41.12 km2, while the remaining 30.88 km2 belongs 

to the surrounding area. The surrounding area was included in the main study area because air 

pollution in the main study area can be influenced by the surrounding environment since small 

particles, which are the focus of this study, can travel long distances and therefore impact the 

concentrations in the main study area. Considering this and the time and money cost of the study 

to collect the data, we divided the study area into a 1km-by-1km grid for sampling. 

 We selected thirty-six clusters (1km by 1km square grid areas) from the 72 squares using 

systematic grid sampling, taking a cluster every 2km. When we look at the distribution of selected 
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grids by sub-city, we have 4, 5,7, 8, and 12 grids of 1 km by 1km for Addis Ketema, Arada, Lideta, 

Kirkos sub-city and the surrounding area that covers the main study area, respectively (Figure 2.4 

for the distribution of selected grids(clusters) between the four sub-cities and the surrounding area).  

Studies use different methods to maximize the contrast in variables hypothesized to be potentially 

significant predictors. Sampling sites were selected to represent different land use areas in the city 

by considering the distribution of locations to which the model will be applied. In each selected 

squared grid, we list three different land use types which we can find in common from each squared 

grid to reflect the spatial distribution of different land use patterns in the study area by using google 

map and ArcGIS identifier tool (two mixed land use, two asphalt road, two open areas). The 

definition of these three land use types depends on the area's economic activity and the land use's 

primary purpose. For example, asphalt roads in this classification are defined as main roads 

(including one-way and two-way asphalt roads) and bus stations. Mixed area land use includes 

where people use the area as a commercial and residential area. Open areas include parks, open 

areas inside churches, stadiums, playgrounds for youths in the city, cemetery areas, and city farms. 

The sampling frame contains eight mixed land use sites  (4 grids of 2 mixed lands), eight asphalt 

road sites (4 grids of 2 asphalt roads), eight open area sites (4 grids of 2 open areas)  for Addis 

Ketema sub-city, ten mixed land use sites  (5grids of 2 mixed land), ten asphalt road sites  (5 grids 

of 2 asphalt roads), ten open area sites  (5 grids of open area)  for Arada sub-city; 14  mixed area 

sites (7 grids of 2 mixed land uses), 14 asphalt road sites (7 grids of 2 asphalt roads), 14 open area 

sites (7 grids of 2 open areas) for Lideta sub-city; 16 mixed land use sites (8 grids of 2 mixed land 

uses), 16 asphalt road sites (8 grids of 2 asphalt roads), 16 open area sites (8 grids of 2 open areas) 

for Kirkos sub-city and  24  mixed land use (12 grids of 2 mixed land use), 24  asphalt road sites 

(12 grids of 2 asphalt roads), 24  open area sites (12 grids of 2 open areas) sites for the surrounding. 



 

25 
 
 

In this way, we end up with 216 potential locations for gathering data (36 grids of 6 sites) (see 

Table 2.4).  

TABLE 2.4: Sampling Frame 

  
Mixed Land 

(ML)  

Asphalt road 

(AR) 

Green area 

(GA)  
Total  

No of Cluster 

(1kmX1km grid) 

Addis Ketema 8 8 8 24 4 

Arada 10 10 10 30 5 

Lideta 14 14 14 42 7 

Kirkos 16 16 16 48 8 

Surrounding 

sub-cities 
24 24 24 72 12 

Total 72 72 72 216 36 

Note: The table illustrates the sampling frame by land use and by grid(cluster) 

                                 

 
Note: The six sites at each selected grid are sampling frames where we select two sites at random for 

monitoring air quality in Addis Ababa 

Source: Author’s illustration using ArcGIS Pro 

FIGURE 2.4: Sampling frame 
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We then use a random number generator to pick two sites out of the six in each grid. Since we do 

not know the pollution levels for different land use types in the study area, we give each site an 

equal chance of being selected (i.e., each land use site in a grid has a probability of 1/3 being 

selected). This gives us seventy-two sites in total.7 In addition, we selected a one-site adjacent to 

the US Embassy for calibration purposes. We will demonstrate detailed comparisons and analyses 

of our Dylos readings and the US Embassy data in Chapter 3, Section 3.2. 

The random draw from the total population gives two mixed land use, four asphalt road, and two 

open area sites for Addis Ketema sub-city; 4 mixed land use, three asphalt road, and three open 

area sites for Arada sub-city; 5 mixed land use, four asphalt road and five open area sites for Lideta 

sub-city; 5 mixed land use, six asphalt road and five open area sites for Kirkos sub-city; 4 mixed 

land use, seven asphalt road and 13 open area sites for the surrounding area which makes the total 

number of selected sites to be 20 mixed land use (ML), 24 asphalt road (AR) and 28 green areas 

(GA) sites Table 2.5 and Figure 2.5. 

TABLE 2.5: Selected sample sites by a random draw from each cluster 

Sub-city 

Mixed Land 

(ML) 

Asphalt road 

(AR) 

Green area 

(GA) Total  

Addis Ketema 2 4 2 8 

Arada 4 3 3 10 

Lideta 5 4 5 14 

Kirkos 5 6 5 16 

Surrounding sub-cities 4 7 13 24 

Total 20 24 28 72 

 

 
7 Though it is in the typical range for site selection, seventy-two is an arbitrary number, but it was chosen after we 

piloted the data collection and found that the maximum number of sites that could be visited in the battery life of the 

device was 10-12. 

Reconnaissance revealed that a small number of sites were not accessible (e.g., embassies or defense force properties), 

and in these cases, we substituted the proposed location with the nearest feasible site of the same kind. 
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Note: Sampling sites selected using a random number generator in Excel are shown by land use type 

 
Note: The two sites indicated in the selected grid are randomly selected sites from a total of six sites in each 

selected grid 

Source: Author’s illustration using ArcGIS Pro 

Figure 2.5: Selected sample sites by land use type 

2.3.4. How many sample sites and how long a sample site should be monitored 

every time? 
 

The selection of air quality monitoring stations is a crucial aspect of any air quality monitoring 

program, as emphasized by Munir et al. (2019). In this study, the number of sample sites was 

chosen with the aim of achieving uniform coverage of the study area through systematic grid 

sampling and by considering the limited data collection time, considering the battery life of the 

device used. To achieve this, thirty-six clusters were selected, spaced every 2 km. The sample sites 
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were visited based on the available time for this research and the estimated travel time in Addis 

Ababa. 

A preliminary investigation of travel time in Addis Ababa during August and September 2019 

indicated that during peak hours, typically in the morning from 6:30 to 11 am and in the afternoon 

from 4:30 pm to 9 pm, it took an average of 5 minutes to travel 1 km. During off-peak hours (11 

am-4:30 pm and after 9 pm), it took an average of 3 minutes per km. The average of these two 

gives 4 minutes per km. It must be noted that these travel times are only estimates and may vary 

significantly in specific areas of Addis Ababa. To minimize the impact of peak hour traffic, data 

collection during these times was considered to travel against the traffic flow. During the morning, 

traffic typically moves toward the city center, while in the afternoon and evening, it flows toward 

residential areas on the city's outskirts (see Table 2.6). 

Table 2.6: Travel time by car 

Date 
Travel time in 

minutes 
Distance traveled in Km Minutes/km 

10-Aug 26 4 6.5 

8-Aug 70 16 4.37 

8-Sep 26 13 2 

14-Sep 41 12 3.41 

14-Sep 67 23 2.91 

15-Sep 24 11 2.18 

16-Sep 184 35 5.25 

17-Sep 109 26 4.19 

22-Sep 19 5 3.8 

27-Sep 25 6 4.16 

27-Sep 193 37 5.21 

28-Sep 42 6 7 

29-Sep 72 15 4.8 

Total  898 209 4.29 

 

Note: Pilot travel time in minutes and distance in kilo meters by car in Addis Ababa during a pilot study in 

August and September 2019. 
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We also conducted a pilot study in August and September 2019 to determine the feasibility of 

individual sites and travel plans. With the sensor saving a reading every minute, the pilot 

demonstrated that after 10 minutes of recording, the sample variance becomes small, implying that 

waiting for a long time in a site does not add value. Instead, moving to different sites may add 

value to contrast the air quality due to land use and weather differences. Based on this, the device's 

battery life, and the average travel times between locations at various times, we determined that 9-

10 clusters per day were feasible (See Table 2.6 for the calculated variance trends). As a result, we 

set the reading time in each sample site to 15 minutes. Thus, we determined the sampling sites as 

73 because we chose 36 clusters and one calibration/validation site for a fixed site near the US 

Embassy. 

 

 

 

Note: Pilot variance difference, the pilot was conducted in August and September 2019 before the actual data 

collection 
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Figure 2.6: Variance calculation of monitoring duration 

We divided the number of clusters to be visited over four days based on the portable device's 

battery life and travel time. Hence, we visited nine clusters and the US Embassy site each day. The 

average travel time (within and between clusters) for nine clusters is almost 2 hours, excluding the 

travel time to the first cluster. Recording takes 4 hours and 45 minutes for nine clusters (18 sites) 

and one calibration site. Moving to the vehicle and packing time and some exceptional delays in a 

cluster or between clusters took 15 minutes. Hence the total working time each day was 7 hours, 

excluding travel to the US Embassy site and the first site in the morning. Each day's time 

breakdown on how many sample sites were visited in the morning, mid-day, and afternoon times 

are detailed in Table 2.7. 

TABLE 2.7: Activities and time breakdown each day. 

 Cluster(sites) Travel 

time 

within 

the 

cluster 

Travel time 

between 

cluster 

Moving to 

the vehicle 

and packing 

time  

Monitori

ng/readi

ng time 

Total working hours in 

a day  

Day 

1-

Day 

4 

9(18) Plus a 

visit to the 

US Embassy 

site 

45(5 

minutes 

for each 

cluster) 

1 hour and 12 

minutes 

(average 8 

minutes   

between 

consecutive 

clusters) 

15 minutes 

(as 

precautionar

y time for 

delay of a 

traffic jam) 

4 hours 

and 45 

minutes 

 Average 7 hours plus 

travel to US fixed site 

since travel time to US 

site depends on route 

for each day excluding 

travel to the first site. 
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2.3.5. Field visits and adjustments in site location 
 

During the data collection period, a visit to the planned sites was made in the first week (February 

10 -February 18, 2020) to ensure the feasibility of collecting air quality data on those sites that 

were planned to be visited from ArcGIS pro and Google maps. The actual site visit, however, 

reveals that a few site locations must be adjusted because some locations are inaccessible; thus, 

the nearest primary land use site is visited. As a result, the number of open areas, asphalt roads, 

and mixed land use sites has been reduced to 23, 26, and 23, respectively, from the previously 

planned 28, 24, and 20, implying that the number of sites from each land use did not change 

significantly, with only five open area sites reduced from the planned sites and changed to three 

mixed lands and two asphalt road sites. The change was because it was impossible to enter those 

open areas, some of which were embassies and some of which were prohibited areas, such as 

defense force areas, as previously explained. 

2.3.6. Route identification 
 

Due to our substantial number of sites and the limitation to only one measurement device, it is not 

feasible to cover all sites within one day during the pilot traveling time. Consequently, we followed 

different routes to capture the pollution variability when we collected the pollution data at various 

times. We diversify the time, and the land use sites during measurement days. We followed 

different routes to travel from one cluster to another (see Figure 2.7). We also reverse the route's 

order to maximize the variability of visiting a site. The idea behind each route is to travel in 

adjacent clusters (routes 1 and 2), travel across the study area (route 3), and travel locally (route 

4) so that each time when we take a sample of air quality, the time we arrive at that site will differ 

(e.g., site A is visited in the morning following route 1, and it is visited in the afternoon or during 
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mid-day following route 2) and the land use we visit will vary. There was a possibility of visiting 

each site in eight ways (4 routes traveling back and forth) during the first-round data collection 

period. However, during the actual data collection, we traveled all four routes once, and routes one 

and two were repeated in the opposite direction; due to time constraints, it was impossible to repeat 

routes three and four during the first-round data collection. 

The number of sites we visited each day was reduced to twelve in the second round of data 

collection (from 18 in the first round) due to the inability of an experienced driver to collect data 

in a day for an extended period. The routes were designed to follow a similar pattern to the first-

round routes we took. The first route we took during the second round of data collection is like 

route four in the first round of data collection in that the idea behind both routes is to travel locally, 

which means we visited nearby sites on each route. The second route we took for the second round 

of data collection is like route two for the first round of data collection in that it is intended to visit 

sites from north to south of Addis Ababa, and each site was visited twice during the second round 

of data collection. 
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A) First-round data collection routes 

                     Route 1                                                                                    Route 2                                       Route 3 

           

                        Route 4                                                                                                B) Second-round data collection routes 

                                                                                                                         Route 1       Route 2                                                                              

         

Note: The first four routes are routes followed in the first round of data collection, and the last two routes are routes of the second round                                         

Figure 2.7: Routes followed for data collection
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2.3.7. Method of data collection 
 

A car is used to travel from one site to another, following a predetermined route. A hired driver is 

responsible for driving, while the researcher is responsible for collecting data. After arriving at 

each site and turning off the engine, the device is taken away from the vehicle and held in shadow 

approximately 1.5 meters from the ground. The device automatically starts measuring. In some 

cases, we put the device on the top of the car since the engine is turned off and no dust is coming 

out from the car (we checked this from the screen on the device, and there is no interruption on the 

readings when we are near the car and away from the car). Starting and finishing times of data 

were recorded in a separate paper so that track records and time-stamped data from the device 

would be matched later.8 After recording the data, the device is turned off, and the researcher and 

the driver proceed to the following location (see Appendix 1). 

2.4. Data 

2.4.1. Description of collected PM2.5 data in Addis Ababa 
 

Air quality information was gathered in Addis Ababa, encompassing both the dry and rainy 

seasons. Specifically, data collection took place in February, March, October, and November of 

2020 during the dry season, as well as in August and September of 2021 during the rainy season. 

In the initial data collection phase, a total of 24 days' worth of air quality data were acquired, 

spanning from February 18, 2020, to March 19, 2020, for all 72 designated sites. Additionally, 12 

days' worth of data were collected between October 17 and November 1, 2020, focusing on the 

 
8 Each day in the evening, after downloading the data, the last 15 minutes readings for each site (the initial 1 to 2 and 

sometimes 5 minutes of data are not taken to allow the device to warm up) were added to the excel sheet of the PM2.5 

data file for final analysis. 
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dry season. For the rainy season, data were gathered from three selected sites out of the 72, with 

one of these sites located at the airport.9  As detailed in the sampling method, seventy-two sites 

were selected to represent the primary land use types in urban environments. The three sites 

selected during rainy season data collection (asphalt road, open area, and mixed land use) were 

selected based on convenience sampling as the research assistant collected the data due to the 

limitation of traveling back to Ethiopia for several reasons (time limitation, and the ongoing 

security situation in Ethiopia). The rainy season data were collected between August 21, 2021, and 

September 25, 2021. The first and second-round data was collected on twenty-four weekdays, and 

the rest twelve days of the data was collected during weekends. Each day eighteen sites were 

visited during the first-round data collection and twelve sites during the second-round data 

collection; during the rainy season data collection, all three sites and the airport site were visited. 

In each site, 15-minute air quality data were collected during the first and second rounds and 20 

minutes during the rainy season data collection. The data collection duration during the rainy 

season is extended by 5 minutes to increase the number of observations and to check the variability 

of air quality in a site during the rainy season. Details of rainy season data collection and summary 

are in Appendix 1. 

In total, 67.11% of this data is collected during weekdays, and 32.89 % of this data is collected on 

weekends see Table 2.8 A. Although morning time shows more polluted air than afternoon, a more 

detailed day classification shows that evening is the most polluted time, followed by early morning, 

late morning, late afternoon, and early afternoon. September shows the highest mean PM2.5 level, 

followed by August, March, February, October, and November. Looking at the average PM2.5 by 

 
9 The air pollution data at the airport site (Bole International airport) is collected to check the air quality situation at 

the airport as airports are special type of land uses and need verification to check the validity of maps predicted based 

on first and second round data collection. 
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land use shows that the highest average PM2.5 is observed at the Asphalt Road site (47.54), 

followed by open area (38.86) and Mixed land (38.02). Saturday shows the highest PM2.5 levels, 

followed by Monday, Thursday, Friday, Wednesday, and Tuesday, and the lowest pollution is on 

Sunday. The mean of PM2.5 collected was 41.68, with a minimum of 0 concentration observed on 

asphalt road evening time during the rainy season and a maximum of 410.98 observed in the open 

area early in the morning on a weekday during the dry season in February see Table 2.8,  Figure 

2.8 and Figure 2.9 for details of PM2.5 profile and see Appendix 1:Table 2.A.1  for details of 

PM2.5 by the site. 

The highest variance in PM2.5 is observed at route 4; the highest PM2.5 level is also observed in 

this route. This route was designed to capture variability in PM2.5 in short distances; the range 

indicates that higher variance is observed locally within short distances. The lowest PM2.5 and 

variance are observed in route one, where we travel to adjacent sub-cities, which cover a longer 

distance than route four. Routes three and four indicate the same variance in PM2.5 (Appendix 1 

Table 2.A.2), although routes one and two have the same design (traveling in adjacent sub-cities), 

while route three is designed to capture traveling across the study area with the longest distance. 
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TABLE 2.8: Summary statistics of PM2.5 data collected in Addis Ababa 

A) By season                                                                                   E) By land use 

 

B) Time of day (2 classifications)                                                

 

                                                   F) By the day of a week 

                                

 

 

C) By the time of day(5 classifications) 

 

 

 

 

 

 

  

 

               G) By data collection round in minutes                

D) By Month    

 

 

 

 

 

 

 

 

Note: Table A and B summarizes PM2.5 by data collection round and land use, Table B and C summarize by 

the time of day while Table D summarizes by month, Table F and G summarizes by day of a week

Data round Weekend weekday   Total 

Rainy 

season 

678 1,499 2,177 

Round one 2,160 4,314 6,474 

Round two 717 1,440 2,157 

Land 

use 

Mean Min    Max    SD 

AR 47.54 0 333 36.38 

ML 38.02 5.32 262 30.85 

OA 38.86 6.61 411 36.66 

Total 41.68 0 411 35.07 

Time Mean 

Afternoon 36.16 

Morning 49.62 

Total 41.68 Days in a 

Week 

     

Mean            
Percent 

Monday 46.14 11.92 

Tuesday 37.56 13.57 

Wednesday 38.58 16.07 

Thursday 42.21 11.09 

Friday 41.9 14.45 

Saturday 53.12 16.77 

Sunday 32.5 16.13 

Time 
Mean 

PM2.5 
Freq. Percent 

Early 

morning 
77.1 1,562 14.45 

Late 

morning 
34.69 2,872 26.57 

Early 

afternoon 
25.92 3,367 31.15 

Late 

afternoon 
29.34 1,974 18.26 

Evening 82.55 1,033 9.56 

Data round Rainy 

season 

Round 

one 

Round 

two 

Total 

Monday 298 810 180 1,288 

Tuesday 299 808 360 1,467 

Wednesday 298 1,079 360 1,737 

Thursday 299 540 360 1,199 

Friday 305 1,077 180 1,562 

Saturday 375 1,080 357 1,812 

Saturday     303 1,080 360 1,743 

Month Mean 

February 31.83 

March 42.32 

 August 50.1 

September 77.06 

October 24.52 

November 18.43 

Total 41.68 
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A)                                                                                                                                                     B) 

                                                

                                                                                                         C)                                                                                                                                     

                                                                                               

Note: Lowess graph in A shows PM2.5 by data collection round over time of  day. Dot graphs B and C illustrate PM2.5 by day of the week and time of the 

day, respectively. Colored reference lines on the y-axis in Figure C depicts US-EPA air quality index categories and WHO IT-III (green for good air quality 

level, yellow for the upper limit of moderate air quality, pink for WHO interim target III, orange for the upper limit of unhealthy for sensitive people).         

Figure 2.8: PM2.5 profile lowess smoother, and bar graphs 
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                              A                                                                       B                                                                       C 

               

                             D                                                                 E                                                                                   F 

           

Note: Figure A shows PM2.5 by land use type, B illustrates PM2.5 by month, C shows PM2.5 by land use type over time of  day, E shows PM2.5 by the 

time of  day, E shows PM2.5 by day of a week, F shows PM2.5 by wind direction 

Figure 2.9: Boxplot 
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2.4.2. Predictor variables and buffer size selection 
 

Two classes of predictor variables are used in the regression: the first class of variables are specific 

to each given location in the modeling domain and do not change over time; this class of variables 

includes land use variables; variables in this category include seven major land use types in 

addition to two types of roads (unpaved roads and asphalt roads) which were generated from the 

original data (see the table below). Asphalt roads are generated by adding primary roads, secondary 

roads, pathways, ruck, and trunk roads) obtained from OpenStreet map, which is freely available. 

The second class of variables included are general to the area and change over time; this class of 

variables includes Meteorological variables, weather data such as temperature, humidity, wind 

speed, and wind gusts were collected from Addis Ababa bole international airport where the data 

is updated every three hours and whose variability may affect the concentration of particulate 

matter (PM2.5), weather variables from, National Oceanic and Atmospheric Administration 

(NOAA) were also used. Using the recent available land use data from Addis Ababa municipality, 

land use variables are classified into seven broad categories in this study. This includes Existing 

mixed residences, High-density mixed residences, open areas, public facility land use, commercial, 

parking land use, and river buffer.10 Circular buffers were created for 100, 200, 300, 400, and 500m 

radii using ArcGIS pro to generate predictor variables for various distances from sample sites since 

there are unclear spatial scale effects of contributing characteristic variables in the literature, which 

 
10 Open area land use variable includes Embassy, urban agriculture, park, church, stadium, cemetery area, playground. 

public facility land use includes fire and emergency service area land, research centers, schools, various federal and 

regional bureaus, health centers, historical buildings, culture, and civic centers,  

Commercial land use includes hotels, festival sites, market area, plaza, secondary and cattle markets. 

Parking land use includes Intercity terminals, bus depot, freight terminal, parking building, bus, air and rail terminal, 

surface parking. 
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usually make results study-specific.  Studies on air quality monitoring, such as Amini et al. (2014), 

Chalermpong et al. (2021), Hoek et al. (2008), and Lim et al. (2019) have shown that the impact 

of a major road on concentrations of traffic-related air pollutants declines exponentially with 

distance to the road, suggesting that buffer sizes should be selected to take account of known 

dispersion patterns.  Hence following these studies, we restricted the maximum buffer size to 500m 

since the monitoring sites are at a small distance.  

Furthermore, a study by Zhai et al.(2016) developed a LUR model of PM2.5 concentrations at 

different spatial scales and found that PM2.5 concentrations in Houston were significantly 

influenced by area ratios of open space urban and medium intensity urban at a 100m scale as well 

as of high intensity. A study by Hoek et al.(2008) found that the impact of a major road on 

concentrations of traffic-related air pollutants declines exponentially beyond about 100m from a 

major urban road or 500 m from a major freeway variability is limited. In this study, buffer size 

selection for land use and road variables is considered from previous studies (Chen et al., 2010; 

Eeftens et al., 2012; Jin et al., 2019). The buffer sizes are selected based on results from previous 

studies showing an exponential decay of pollution away from roads and varying results for land 

use predictors. Total length and area predictor data were intersected with different buffers, and the 

sum of the length for roads and total area for land use variables were calculated within each buffer 

for each site.  

We categorized land use types based on primary economic activity that is taking place in that land 

use area. For instance, churches are included in an open area because church areas in Ethiopia are 

usually large areas covered by trees, which is also true for embassies and cemetery areas. In the 

public facility land use, we included mosques and various bureaus because mosques are usually in 
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small places with a large number of people, like federal and regional bureaus and other public 

places. A summary of the broad land use type classification is described in Table 2.9.  

Table 2.11 A and B show summary statistics of area predictor variables for 100m buffer radius 

and distance land use variables, respectively. The total area by land use in respective buffers shows 

that the area is covered by mixed area land use, high-density mixed area land use, road network 

(in terms of the total area of all types of road networks), open area land use, public facility land 

use, commercial area land use, river buffer, and parking area land use respectively from the highest 

to the smallest area except for the smallest buffer (100 m) where the road network and open area 

land use switch each other. The rest of the land use types followed the same order as the other 

buffer sizes. Summary statistics of land use predictor variables for various buffer radius is shown 

in Table 2.12. 

 The average temperature during the study period in a day is 20.70, with a minimum temperature 

of 12 0𝐶  and a maximum of 270𝐶 . The average air pressure is 775.34 hpa with a minimum of 772 

hPa and a maximum of 779 hPa. The average wind speed during the sampling period in Addis 

Ababa was   6.2 kts, equivalent to 11.48 km/h. The gust wind speed has an average speed of 7 with 

a min of 1kts. And a maximum of sixteen kts. The distribution of wind direction during the data 

collection shows the dominance of wind flow from the northern direction. About 47% of the wind 

direction is from the northern part of Addis Ababa, followed by the west, south, and east (Table 

2.10).  
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Table 2.9: Summary of Land use variable categories 

 

Variable class Variable sub classes (components) Measurement 

Open area land 

use 

Embassy, Urban agriculture, Park, Church, Stadium, 

Cemetery area, Playground 

Area in meter 

squares  

Public facility 

land use 

 

Fire and emergency service area land, research centers, 

schools, various federal and regional bureaus, health centers, 

historical buildings, culture, and civic centers 

Commercial land 

use  

 

Hotels, Festival sites, Market area, Plaza, secondary and 

cattle markets 

Parking land use 

includes 

 

Inter-city terminals, bus depots, freight terminals, parking 

buildings, bus, air, and rail terminal, surface parking 

Road network 

 

The sum of the area in square meters of all road types 

Asphalt road 

Motorways, primary roads, primary link roads, secondary 

roads, secondary link roads, service roads, tertiary roads,  

 

tertiary link roads, trunk roads, trunk link roads 

Unpaved roads 

 

Tertiary roads, path roads, step roads, secondary roads, track 

roads, footway roads 

 

Table 2.10:Summary statistics of meteorological variables 

Variable Mean 
Std. 

Dev. 
Min Max 

Wind 

direction 
Freq. Percent 

Wind speed 6.2 2.68 1 14 East 470 4.35 

Wind guests 7 3.06 1 16 North 5,091 47.1 

Air pressure 775.34 1.41 772 779 South 1,401 12.96 

Temperature 20.7 3.85 12 27 West 3,846 35.58 

Rain 0.61 1.46 0 7    
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Table 2.11: Predictor variables summary statistics  

A). Area of a predictor in a one-hundred-meter radius 

 

Predictor variables Seventy-two sites (sampling sites) 578 sites (out of sample sites) 

Mean SD Max Mean SD Max 

Manufacturing area 
   

550.29 3,725 30,800 

Mixed-area land use  9,349 10,916 30,791 8,836.94 11,938 30,802 

High-density mixed residence  6,913.35 9,374.16 30,792 1,164.08 4,500 30,791 

Total mixed-area land use  16,262.74 10,182.67 30,792 10,001.02 12,319 30,802 

River buffer  1,162.94 3,052.59 17,898 2,159.93 6,091 30,800 

Road network  3,588.96 3,872.36 15,590 1,784.84 3,106 19,065 

Open area  5,221.47 9,696.22 30,790 7,342.71 11,902 30,804 

Parking Land use  327.24 1,986.79 15,997 559.14 3,977 30,793 

Commercial area  1,620.21 4,929 30,268 506.1 2,723 25,019 

Public facility land use  2,411.39 4,451.47 22,677 1,582.07 5,237 30,800 

Asphalt road  262.06 291.8 1,118 86.93 185 1,378 

Unpaved road  357.97 240.59 879 286.46 289 1,348 

 

B). Distance from the centroid of a prediction point to the nearest land use. 

Predictor variables Seventy-two sites (sampling sites) Out of sample sites (578)  
Statistics  Mean Min SD Max Mean Min SD Max  

 Waste treatment   7,275 907 2,476 11,554 5,407 138 3,396 15,478  

 Commercial  415 21 285 1,757 2,118 32 1,703 7,218  

 Bus terminal  1,406 141 648 3,110 4,007 142 2,674 11,880  

Manufacturing area 2,774 220 1,021 4,527 2,610 57 1,736 9,046  

Forest 2,299 327 936 4,406 1,988 26 1,583 8,259  

Festival site 1,758 75 1,097 4,689 4,306 152 2,925 13,665  

Embassy 940 61 604 3,078 5,716 49 3,988 15,261  

Intercity bus terminal 1,307 - 657 2,898 3,033 7 1,840 8,873  

Christian cemetery 1,653 51 809 3,534 2,829 119 2,207 10,499  

Urban agriculture 1,151 9 695 2,994 2,243 82 1,745 8,548  

Federal bureau 793 58 575 2,919 3,229 26 2,180 11,022  

Woreda administration 491 15 304 1,322 2,072 55 1,495 7,267  

Primary roads 288 0 228 950 1,492 0 1,533 7,539  

Secondary road 522 1 746 3,588 1,964 3 1,697 7,559  

Tertiary road 435 1 327 1,297 1,443 1 1,340 6,992  

Foot way 560 41 353 2,127 4,957 8 3,914 15,027  

High-density mixed residence 415 21 285 1,757 2,118 32 1,703 7,218  

River  381 6 411 1,731 514 1 543 3,400  
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Table 2.12: Summary statistics of Predictor variables for each buffer 

VARIABLES The mean area of predictor variables in  𝑚2  by buffer size 
 

  500 400 300 200 100  

Mixed residential area(a) 293,465 186,050 100,751 42,462 9,349  

 

High-density mixed residential 

area(b) 

166,832 105,538 59,371 26,470 6,913  

 

Total residential area(a+b) 
460,296 291,588 160,123 68,931 16,263  

 

River buffer area 
26,848 17,529 10,874 5,148 1,163  

 

The total road network in sq meters 
85,099 55,324 32,128 13,890 3,589  

 

Open area land use 
71,685 48,762 29,290 15,476 5,221  

 

Parking area land use 
7,228 5,258 3,225 1,292 327.2  

 

Commercial area land use 
46,821 28,716 15,780 7,186 1,620  

 

Public facility land use 
65,685 41,580 23,671 10,340 2,411  
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2.5. Method of Prediction 

2.5.1. Land Use Regression (LUR) Model 
 

Land Use Regression (LUR) stands as a methodology employed for predicting air pollutant 

concentrations at a specific location. This prediction is rooted in the surrounding physical attributes, 

land usage patterns, and traffic factors. The approach involves amalgamating air pollutant 

concentration data from multiple sites and formulating stochastic models utilizing predictor 

variables typically acquired through Geographic Information Systems (GIS)(Chen et al., 2010). 

Land-Use Regression (LUR) outperforms certain Geographic Information System (GIS) 

interpolation techniques like kriging and inverse distance weighting. This is primarily because 

many GIS interpolation methods generate a uniform concentration distribution without 

incorporating relevant land-use details (Luke, 2017). Moreover, the interpolation of observed 

concentrations inadequately captures genuine spatial variations due to the typical sparsity of 

routine monitoring networks, which fails to represent the precise localized fluctuations in pollutant 

levels (Liu et al., 2015). Researchers use a stepwise forward/backward regression modelling 

approach, but in this research we used a standard linear regression since there is no reason to put 

specific criteria to include a land use variable a priori, rather finding the reason why a potential 

land use variable have such a relationship with the pollutant is a better approach to have a realistic 

model. 

Therefore, the primary model function in this study is,  

𝑦𝑖𝑡 = 𝜌 + Xiβ +Wtγ + Ttµ + 𝛼0𝐿𝑂𝑖 + 𝛼1𝐿𝐴𝑖 + ε𝑖𝑡                                 (1)                                                                
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Where 𝑦𝑖𝑡  Represents the PM2.5 reading for a site i and time t, X represents a vector of site 

characteristics-land use, W denotes a vector of weather variables at time t (wind speed, wind 

direction, temperature, humidity, rain), whereas  T denotes a time of day and day vector, 𝐿𝐴𝑖 

Refers to the latitude of the site i while, 𝐿𝑂𝑖 Refers longitude. 

2.5.2. Validation of the linear model 
 

LUR is a predictive tool (rather than to establish causation) used to predict air quality out of the 

sample, either temporally or spatially. For model validation, leave-one-out-cross-validation 

(LOOCV) is often used to assess the generalizability of the LUR model see Dong et al. (2021) and 

He et al. (2018))  see also Wu et al. (2017). The dataset is separated into a training set and a testing 

(validation) set in hold-out validation. The training set is used to develop the model, and the testing 

set is used to evaluate the model by using the model to predict the output values for the data in the 

testing set. In k-fold cross-validation, the data set is divided into k subsets, and the holdout method 

is repeated k times. However, the literature on air quality prediction does not have a standard on 

how many observations should be used as a training data set and how many data points should be 

used as a validation data set for an internal validation experiment. For instance, Jin et al. (2019) 

used different scenarios of training and validation data sets see also Wu et al. (2017) and He et al. 

(2018).  

We checked the generalizability of the model in prediction across buffers through LOOCV 𝑅2 , 

LOOCV 𝑅2 across buffers doesn’t change much, which means that the model can be applied for 

different buffers as the LOOCV 𝑅2 similar across all buffer’s specific regressions (see the LOOCV 

results in appendix A1: Table 2.A.3). Cook`s distance value was calculated to check for outliers 

of data points; Cook's distance greater than one is counted as an outlier in LUR studies (Cai et al., 
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2020; Li et al., 2020) but the calculated Cook`s D in this study is 0.016 which is lower than one 

showing that there is no significant outlier observation. 

We conducted spatial and temporal Cross-validation, and we can practically apply these validation 

techniques. The literature uses a random group of observations as a training set, and a testing or 

validation set,  an example of this is by Jin et al. (2019) and Masiol et al. (2018). However, putting 

a random group of observations as a training set and another as a testing set does not have practical 

applicability where a group of land use sites can be divided into a group. Our study has three major 

land use sites: asphalt road sites, open area sites, and mixed land use sites. To perform spatial 

cross-validation from the three major land-use sites, we used two major land-use sites to develop 

the model and one group of sites as a testing (validation) set. This process is repeated three times 

to check that all the groups of sites are separately used as a training (validation) set (see Table 

2.13:A). 

To conduct a temporal cross-validation exercise, we first considered the five time-of-a-day 

variables as a selection criterion to use a group of observations as a training set and a testing 

(validation) set. One group of observations (observed early in the morning) is used as testing 

(validation set), while the rest are used to develop a model. This process is repeated until the other 

observations are used as a testing set Table 2.13:B. 
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TABLE 2.13: Cross-validation (CV) results 

A) Spatial Cross-validation (CV) results 

 

Group of land use sites in the training set (# 

of observations) 

Name of testing 

(validation) set (# of 

observations)          𝐶𝑉 𝑅2 

Mixed and Open area (6,793) Asphalt road (3,744) 0.42 

Asphalt and open area (7,157) Mixed land (3,380) 0.40 

Asphalt road and Mixed land (7,124) Open area (3,413) 0.40 

 

B) Temporal Cross-validation results 

 

Number of 

observations in the 

training set                               

Name of testing (validation) set (N)                            

                                                                                           𝐶𝑉 𝑅2 

9,049 Early morning (1,488) 0.39 

7,251 Early afternoon (3,286) 0.36 

9,432 Evening (1,105) 0.41 

8,681 Late afternoon (1,856) 0.40 

7,735 Late morning (2,802) 0.42 

 

2.6. Model output and prediction 
Two types of variables are used in regression. First, the buffer area variables (land use variables 

and area of roads) and length (for roads); are local area-specific variables that are defined over a 

specific buffer (e.g., 100, 200m). Air quality is affected by local land use. However, it is unclear 

how to define local. Some significant effects may be lost if we use too big a buffer because the 

variation in the X variables goes down (if we use a buffer of, say, 20km, then X becomes a 

constant). On the other hand, there may be measurement errors in land use, and also air quality at 

a location may genuinely be affected by land use in the larger neighborhood; hence we varied our 

buffers considering this and following previous works that suggest some useful insight about 

buffer selection for explanatory variables see  Hoek et al.(2008)  see also Zhai et al. (2016). 
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The other group of variables (meteorological variables) is assumed to be uniform across the 

domain. These variables include rain with its lag, wind speed, temperature, and air pressure 

(humidity). Non-buffer predictor variables wind speed and lag rain are negatively related to PM2.5 

concentration, while air pressure (humidity) is positively related to PM2.5 concentration. 

When we look at the relationship between land use variables and PM2.5 concentration, most of 

the land use variables have expected signs, although some are insignificant. Road network (all 

types of roads) is positively related to particulate matter concentration (more roads mean more 

PM2.5 concentration). Public facility land use is negatively related to PM2.5, while commercial 

area land use variables have a positive relationship with PM2.5. The overall explanatory power of 

the model is not particularly sensitive to buffer size, as can be seen from the model 𝑅2. However, 

a smaller 100m buffer picks the most crucial land use variables. Therefore, a smaller buffer is more 

suitable for prediction on those grounds. Hence in the analysis, we considered the regression output 

that is based on 100m land use variables see Table 2.14 column 1 see also Appendix 1: Table 

2.A.5(a) for regression outputs using distance land use variables and Table 2.5 (b) for the calibrated 

version LUR results of the Dylos reading. 

The dummy for a time of the day indicates that evening contributes the highest concentrations, 

followed by early in the morning. Conversely, the early afternoon has the lowest concentration 

effects, followed by the late morning. This indicates that the concentration of particulate matter is 

associated with household activities and activities related to motor vehicles, as traffic flow is very 

high in the early morning and evening.
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TABLE 2.14: LUR of the full sample  

 Variables 100m 200m 300m 400m 500m 

 PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 

Rain 0.264 0.200 0.146 0.105 0.099 

 (0.545) (0.521) (0.492) (0.478) (0.479) 

One day lag rain -2.732*** -2.656*** -2.616*** -2.617*** -2.648*** 

 (0.825) (0.839) (0.844) (0.849) (0.852) 

Wind speed -0.818 -0.974 -1.046 -1.097 -1.101 

 (0.760) (0.758) (0.756) (0.757) (0.758) 

Humidity 1.821** 1.969** 1.989** 1.976** 1.959** 

 (0.740) (0.745) (0.753) (0.754) (0.750) 

Temperature -5.790* -6.050* -6.361* -6.439* -6.333* 

 (3.223) (3.301) (3.326) (3.369) (3.388) 

Temperature squared 0.136* 0.141* 0.148* 0.150* 0.148* 

 (0.073) (0.075) (0.076) (0.077) (0.078) 

High density mixed 

residence 4.110 3.599 0.657 -1.345 -2.435 

 (2.903) (3.796) (3.985) (4.541) (4.631) 

River buffer 6.218 2.544 10.222 21.218 31.767 

 (7.226) (8.761) (13.010) (18.835) (25.086) 

Open area -4.129 -2.873 -2.411 -4.919 -6.743 

 (2.721) (4.074) (5.957) (8.192) (9.484) 

Parking land use -0.792 12.830 49.458** 68.336*** 80.840*** 

 (4.243) (8.142) (19.351) (23.004) (28.112) 

Commercial area 4.778* 4.918 2.264 3.187 4.077 

 (2.683) (3.406) (5.061) (6.256) (6.615) 

Public facility land use -10.882** -8.804 -10.950 -11.573 -11.224 

 (4.535) (6.033) (7.582) (8.394) (7.974) 

Asphalt road 0.011*** 0.003** 0.001 0.001 0.000 

 (0.003) (0.001) (0.001) (0.001) (0.000) 

Peak hour#Asphalt -0.002 0.001 0.001 0.001 0.001 

 (0.008) (0.004) (0.002) (0.001) (0.001) 

East -13.620*** -13.480*** -13.180*** -12.904*** -12.743*** 

 (4.037) (3.940) (3.918) (3.915) (3.967) 

South -6.814 -7.006 -6.903 -6.741 -6.643 

 (4.337) (4.335) (4.302) (4.260) (4.223) 

West -7.513*** -7.744*** -7.686*** -7.527*** -7.529*** 

 (2.520) (2.566) (2.552) (2.528) (2.476) 

Late morning -37.341*** -36.314*** -34.831*** -32.575*** -31.009*** 

 (3.887) (4.105) (4.295) (4.678) (5.490) 

Early afternoon -43.551*** -42.758*** -41.381*** -39.137*** -37.614*** 
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 (3.822) (3.947) (4.048) (4.392) (5.163) 

Late afternoon -39.004*** -37.880*** -36.446*** -34.286*** -32.875*** 

 (4.136) (4.212) (4.318) (4.669) (5.525) 

Evening -3.009 -2.302 -2.405 -2.454 -2.076 

 (6.498) (6.136) (6.008) (5.983) (5.964) 

Tuesday -10.892*** -10.660*** -10.506*** -10.369*** -10.232*** 

 (3.111) (3.229) (3.281) (3.280) (3.254) 

Wednesday -9.153*** -8.884** -8.525** -8.259** -8.232** 

 (3.281) (3.396) (3.452) (3.462) (3.436) 

Thursday -11.857*** -11.572*** -11.096** -10.942** -10.868** 

 (4.205) (4.269) (4.305) (4.273) (4.267) 

Friday  -4.104 -3.952 -3.822 -3.750 -3.638 

 (3.912) (4.087) (4.156) (4.178) (4.172) 

Saturday -4.296 -4.210 -4.230 -4.132 -4.109 

 (4.278) (4.302) (4.311) (4.311) (4.284) 

Sunday -10.655*** -10.399*** -10.104*** -9.917*** -9.872*** 

 (3.197) (3.316) (3.373) (3.398) (3.391) 

Latitude 

189.350**

* 

169.436**

* 

160.753**

* 

166.222**

* 

171.859**

* 

 (37.885) (40.901) (42.458) (42.792) (43.399) 

Longitude -9.604 -16.472 -7.650 -15.353 -15.098 

 (39.166) (40.496) (40.844) (41.125) (42.449) 

Constant -1,209.079 -761.470 -1,022.848 -774.594 -837.764 

 (1,557.918) (1,594.348) (1,598.383) (1,600.255) (1,634.062) 

Observations 10,537 10,537 10,537 10,537 10,537 

R-squared 0.410 0.405 0.404 0.405 0.404 

    F test(7,71)       

 5.29 6.1 2.65 2.93 2.77 

  0 0 0 0 0 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
 

Note: Numbers in the first raw shows the buffer radius  of a land use variable used in the regression (e.g., 100m 

refers, in this column all land use variables used are measured in a 100m radius from the site). Land use 

measurements are expressed in  proportions (area of a land use at site i/ total area of  a land use at 72 sites) 
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2.6.1. Out-of-sample prediction 

To conduct out-of-sample prediction, we divided the whole city of Addis Ababa into 1km-by-1km 

grids, with the centroid of each grid being a point where all buffers (100m, 200m, 300m, 400m, 

500m) are created to generate land use variables, and all data points (sites) where air quality 

prediction is taken are counted 578. After obtaining all land use variables (area for land use and 

road length) for each site, the weather variables available at the city level were merged. The 

established LUR model predicted the PM2.5 concentrations at the centroids of each grid cell. 

2.6.2. Investigating the temporal and spatial structure of measured and 

predicted PM2.5 concentrations. 
 

Understanding the spatial structure of air pollution is critical for deciding where to place sampling 

sites, identifying major pollutants and taking corrective action, and developing future urban plans 

Jin et al., (2019). In this section, we compare measured and predicted PM2.5 concentrations within 

and outside of sample sites using US-EPA PM2.5 implied risk classifications (See US-EPA 

implied risk classifications for PM2.5 in Appendix 1: Table 2.A.4. Comparing predicted and raw 

observations within sampling sites shows that 73% of predicted and actual observations fall into 

the same US-EPA implied risk category for air quality. When comparing predicted and raw 

concentrations by land use type, open area sites agree at 91%, mixed land at 73%, and asphalt 

roads at 56% of the total data. That is, the model has the potential to identify areas/locations with 

poor air quality and areas/locations with good air quality. Similar temporal patterns of air quality 

are observed between predicted values and actual air quality readings from Dylos 1700 within 

sampling sites (poor early in the morning and late evening and lower pollution at other times of 

the day), indicating that the model captures temporal variability in air quality; see Table 2.16 (a) 

for in-sample actual and predicted values by the time of day and Table 2.16( b) for out of sample 
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prediction by the time of  day. Table 2.16 shows a comparison between overall actual PM2.5 

observations and predicted PM2.5 using US-EPA implied risk categories for PM2.5. 

TABLE 2.15: Comparison between raw concentrations and predicted values by land use type. 

 Overall matched 73% AR, Match 56% 

                                                                             

 

                                                    

Predicted 

→ 

Predicted| 

Dylos 

1700 

Good Moderate 

Unhealthy 

for 

sensitive 

people 

Unhealthy Good Moderate 

Unhealthy 

for 

sensitive 

people 

Unhealthy 

Good 0 0 0 0 0 0 0 0 

Moderate 0 48 8 0 0 20 16 0 

Unhealthy 

for 

sensitive 

people 

0 14 21 4 0 16 32 12 

Unhealthy 0 0 0 4 0 0 0 4 

 

 
 

   ML matched 73%       OA, Match 91% 

Predicted| 

Dylos 

1700 

(Mean) 

Good Moderate 

Unhealthy 

for 

sensitive 

people 

Unhealthy Good Moderate 

Unhealthy 

for 

sensitive 

people 

Unhealthy 

 Good 0 0 0 0 0 0 0 0 

Moderate 0 65 9 0 0 61 0 0 

Unhealthy 

for 

sensitive 

people 

0 17 4 0 0 9 26 0 

Unhealthy 0 0 0 4 0 0 0 4 
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TABLE 2.16: Comparison between raw concentrations and Predicted values by the time of 

day(within sample sites)  

a) Actual observations 

Actual 

observations 

Early 

morning 

Late 

morning 

Early 

afternoon 

Late 

afternoon 
Evening 

Good 0 1 3 1 0 

Moderate 2 16 21 12 1 

Unhealthy for 

sensitive 

people 

4 8 6 3 2 

Unhealthy 9 2 1 1 6 

 

b) Predicted values 

Predicted 

values 

Early 

morning 

Late 

morning 

Early 

afternoon 

Late 

afternoon 
Evening 

Good 0 0 0 0 0 

Moderate 0 14 28 14 0 

Unhealthy 

for 

sensitive 

people 

0 13 3 3 0 

Unhealthy 14 0 0 0 11 
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b) Out-of-sample prediction (578 sites) 

 

Out-of-sample 

prediction 

Early 

morning 

Late 

Morning 

Early 

afternoon 

Late 

afternoon 
Evening 

Good 0 0 1 0 0 

Moderate 0 19 20 10 0 

Unhealthy for 

sensitive people 
0 8 3 3 0 

Unhealthy 24 0 0 0 12 

 

 

C)    Comparison between predicted and actual Dylos 1700 reading within the model sites (72 

sites) 

 

Actual reading Dylos 1700↓ 

Predicted→ 

predicted↓ Dylos 

1700→ 
Good Moderate 

Unhealthy for 

sensitive people 
Unhealthy 

Good 0 0 0 0 

Moderate 5 40 10 2 

Unhealthy for 

sensitive people 
0 10 6 3 

Unhealthy 0 3 6 15 
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2.6.3. Mapping Predicted PM2.5 
 

 To better understand the spatial and temporal distribution of pollutant concentrations, the obtained 

values were spatially interpolated using the Inverse Distance Weighted (IDW) method. The 

concentration values obtained were spatially interpolated to assign a contamination value to each 

point in the studied area. For spatial interpolation, the Inverse Distance Weighted (IDW) method 

was used. This method assumes that nearby points will have a greater influence on the interpolating 

surface than distant points. The interpolating surface is a weighted average of the scatter points, 

with the weight of each scatter point decreasing with increasing distance between the interpolation 

point and the scatter point. IDW interpolation does not require any assumptions about the 

distribution or behavior of the measurements. This method yields exact results at the sampling 

points and behaves smoothly, with no abrupt changes in measurement points Lozano et al. (2009). 

Figure 2.11 depicts predicted PM2.5 by the time of day, while Figure 2.12 depicts predicted PM2.5 

by wind direction. The maps show that the city center is more prone to elevated pollution and 

hotspots, whereas less polluted areas are outside, which can be verified from the map for the whole 

city of Addis Ababa in Figure 2.A.4 and 2.A.5. The less polluted areas have lower population 

density, more forested areas, and lower road density. On the other hand, the areas with high road 

density, commercial establishments, and heavy traffic volumes in the city center have elevated 

pollution levels, emphasizing the influence of land use variables on predicting pollution. 

Moreover, the pollution level during peak hours is nearly twice as high as that observed during 

off-peak hours. This heightened pollution level is concentrated at the city center, where population 

density is at its peak, and significant commercial activities are bustling. Although the site type is 

not explicitly known during out-of-sample prediction, one can see that more polluted sites are in 
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the city center, and less polluted sites are in the outskirts. Furthermore, winds blowing to the south 

carry more polluted air than winds from other directions.  

Examining the pollution variation in the city based on wind direction reveals significant 

fluctuations, particularly concerning land use patterns when the wind originates from the north or 

south. This observation can be attributed to the unique topography of Addis Ababa, which features 

sloping terrain and a mountainous region in the north. These geographical factors influence the 

airflow within the city, subsequently affecting the dispersion of pollution. When the wind blows 

from the north or south, it encounters the varying land uses in the city, leading to diverse pollution 

levels across different areas. The mountain in the north may act as a barrier or channel for the 

airflow, causing variations in pollution concentration depending on the direction and strength of 

the wind. 

Understanding the impact of wind direction on pollution dispersion is vital for developing effective 

strategies to address pollution hotspots and improve overall air quality. By identifying the areas 

most affected by pollution under specific wind conditions, city planners and policymakers can 

implement targeted measures to mitigate pollution and promote a healthier environment for the 

city's residents. 

However, it is crucial to acknowledge the significant constraint of extending the prediction to 

additional sub-cities shown in appendix 1 Figure 2.A.3 and 2.A.4. For instance, while the inner 

sub-cities predominantly exhibit urban characteristics, certain outer sub-cities tend to reflect more 

rural attributes. Additionally, the lack of sufficient PM2.5 data during rainy and nighttime 

conditions further prevents us from drawing a conclusive judgment regarding the accuracy of the 

prediction. 
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Overall, the predicted PM2.5 concentration maps are consistent with land use distribution and 

traffic flow at various times of the day. The areas with the poorest air quality tend to be those 

closest to where the data was collected, primarily commercial activities with dense roads and 

residential areas. Nonetheless, a few suburbs to the east and south have higher PM2.5 levels. The 

maps, however, revealed similar spatial pollution patterns across the time of day. 

 When we look at the predicted pollution level across the city using US-EPA air quality 

classification and implied risk of PM2.5, 70% of the area in Addis Ababa exhibits unhealthy air in 

the morning and evening. In contrast, early afternoon (13:00-15:00) has the least polluted air, with 

approximately 70% of the area having moderate air quality and 28% having good air quality. Late 

morning (10:00-12:00) and late afternoon (16:00-18:00) show the second least polluted air in the 

city, with both times of the day having 60% of the area exhibiting moderate air quality. This 

information suggests that air pollution levels in Addis Ababa vary throughout the day, with the 

early afternoon having the best air quality and the morning and evening having the worst. It is 

important to note that prolonged exposure to unhealthy air can harm health, particularly respiratory 

health. Therefore, residents of Addis Ababa may want to consider taking precautions during times 

of high pollution, such as limiting outdoor activities, using air purifiers or masks, and staying 

informed about air quality levels in their area. Additionally, policymakers and city officials can 

use this information to develop and implement measures to reduce air pollution in the city. 

Analyzing prediction maps and their correlation with land use variables provides crucial 

information for understanding the spatial distribution of air pollution in urban areas. It can also 

help identify the factors contributing to elevated pollution levels in high-risk areas and inform the 

development of effective policies and interventions to mitigate pollution levels and promote public 

health. 
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Note: After getting the pollution levels using linear prediction from the land use regression, pollution levels 

were reclassified using US-EPA air quality classification using ArcGIS pro; areas for each level of air quality 

were also calculated using the ArcGIS Pro reclassify function. 

Figure 2.10 Air quality by area 

A) PM2.5 in Addis Ababa during Peak hours 
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B) PM2.5 in Addis Ababa off-peak hours 

 

 

Note: Pollution levels are categorized into six ranges to illustrate spatial and temporal variations.  

Source: Author`s illustration using ArcGIS Pro 

Figure 2.11: Map of predicted PM2.5 by the time of day for the four sub-cities in Addis Ababa 
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 Note: The maps based on wind direction are averages of the data collection period.  

Source: Author`s illustration using ArcGIS Pro 

Figure 2.12: Map of predicted PM2.5 by wind direction for the four sub-cities in Addis Ababa 

 

2.6.4. Comparison of this study with previous LUR studies 
 

A comparison with previous studies is presented in Table 2.17. The predictive performance of 

LUR models is mainly measured by 𝑅2 and robustness is measured by  LOOCV (Cai et al., 2020; 

Li et al., 2020).  𝑅2  and LOOCV of this study are 0.398 and 0.394 respectively which is 

comparably better than that of Chalermpong et al. (2021) in Thailand. This study performance is 

much lower than the one conducted in Uganda by Coker et al. (2021), where they used locally 

manufactured mobile air quality monitors (AirQo).  
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TABLE 2.17: Comparison of this study with LUR studies in Developing countries/Developed 

countries 

Study area Pollutants of 

concern 
 𝑅2 LOOCV Reference 

Addis Ababa, 

Ethiopia 

PM2.5 0.398  0.394 This work 

Taipei–Keelung 

metropolitan 

area  

 

PM2.5 0.72 0.53 Li et al. (2020) 

PM10 and O3 0.80 0.72 

NO2 0.91 0.88 

Aachen, 

Germany 

PM2.5 0.655 - Merbitz et al. (2012) 

PM10 0.79 - 

Lanzhou, China NO2 0.71 0.64 Jin et al. (2019) 

Bangkok, 

Thailand 

PM2.5 0.321 0.236 Chalermpong et al. (2021) 

Uganda, Cities 

include 

Kampala and 

Jinja, Mukono, 

a Wakiso 

PM2.5 0.84 - Coker et al. (2021) 
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2.6.5. The Social Benefits of changing land use and Meeting WHO annual  

interim targets. 
 

Quantifying the social cost of air pollution and the benefit of reducing it is a critical component of 

public health policy in many developing countries. The benefit of reducing PM2.5 pollution has 

been discussed by many researchers (Chen et al., 2017; Qu et al., 2020)  and the social cost of 

pollution (Roy, 2016; Yamada et al., 2023; Yin et al., 2017). In this part, I estimate the social 

benefit of a change in PM2.5 due to a change in a land use type, and I discuss how this policy 

could be a cost-effective way of reducing PM2.5. 

In recent years, Addis Ababa has undergone significant development with the aim of improving 

its livability and aesthetics. Two projects related to the transformation of land use from private to 

public have been initiated. The first project, the Addis Ababa Riverside Project, focuses on 

converting the city's riverside areas into green public spaces for leisure and recreation by 

developing parks, walkways, and cycle paths along the riverbanks. The second project, the Addis 

Ababa Beautification Project, aims to enhance the city's aesthetics by planting trees, flowers, and 

other greenery along streets, constructing roundabouts, and installing public art. These two projects 

are part of the larger effort by the Addis Ababa City Administration to make the city more livable, 

sustainable, and attractive to both residents and visitors. The Addis Ababa Riverside Project seeks 

to reclaim the city's urban rivers and create vibrant public spaces for leisure and recreation. This 

project aims to transform the banks of rivers, covering a total of 69 kilometers (AfDB, 2021). 11 

The Addis Ababa Beautification Project is focused on improving the city's aesthetics by 

introducing green spaces and public art. This project includes the planting of trees, flowers, and 

 
11 https://www.afdb.org/en/news-and-events/addis-ababa-beautifying-sheger-river-development-project-56625 

 

https://www.afdb.org/en/news-and-events/addis-ababa-beautifying-sheger-river-development-project-56625
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other vegetation, constructing roundabouts, and installing public art pieces. The aim of this project 

is to make Addis Ababa more attractive and inviting while improving air quality and creating more 

pleasant public spaces for people to enjoy. 

Overall, these two projects are aimed at improving the quality of life for residents and visitors to 

Addis Ababa. The city is undergoing rapid growth and urbanization, and these initiatives aim to 

ensure that growth is sustainable and people centric. By converting underutilized spaces into 

vibrant public areas, the city is working to create a more livable and inclusive urban environment. 

(AfDB, 2021.). 12   

The current low-cost monitor reading average PM2.5 is 42.39 which is unhealthy air for sensitive 

people. To change the average unhealthy PM2.5 into moderate air (35.4-the is the upper limit of 

moderate air) we need to change 13,679.06 square meters of commercial land to a public land use 

or include this amount of public land use in commercial land in each one-kilometer grid. Our 

intention behind transforming commercial land use into public land use is not centered around the 

transformation of commercial establishments or buildings into parks. In the context of a rapidly 

developing city like Addis Ababa in a developing nation, there exist vacant areas even within 

commercial zones. These spaces have the potential to be repurposed as modest green spaces. Such 

a conversion would contribute to the reduction of pollution levels. These small green spaces have 

the potential to mitigate environmental issues that often plague densely populated urban centers. 

Vegetation and greenery play a crucial role in absorbing pollutants, generating oxygen, and 

regulating temperature. As a result, converting neglected corners of commercial zones into green 

 
12 https://www.afdb.org/en/news-and-events/addis-ababa-beautifying-sheger-river-development-project 

 

https://www.afdb.org/en/news-and-events/addis-ababa-beautifying-sheger-river-development-project
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spaces through the currently undergoing beautification projects of Addis Ababa  can help combat 

air pollution and contribute to a healthier urban ecosystem. 

ΔPM2.5=-0.000363* Δ public facility land use+0.000151*(- Δcommercial land use)  

(42.39-35.4)= -0.000363∗ 𝑋 + 0.000151 ∗ (−𝑋) 

6.99=-0.000511X 

X=13,679.06 square meters in each 1 km  grid 

As part of estimating the health benefit of improved air quality due to a change in land use, I use 

a method used by (L. Chen et al., 2017; Qu et al., 2020) which was designed by the US 

Environmental Protection Agency (EPA) to assess the health benefits of improving air quality. 

Since death is the most significant endpoint of various health effects related to PM2.5 pollution,  

I choose all-cause death as the end point of health effects. 

The health benefits obtained by controlling the PM2.5 concentration can be represented by  

ΔY=𝑌0(1 − 𝑒
−𝛽ΔPM2.5)*pop 

 

𝛃=
𝐿𝑛(𝑅𝑅)

𝛥𝑃𝑀2.5
 

 

In the formula, 𝚫Y represents the change in deaths, 𝒀𝟎 represents the baseline death rate for all 

mortality, and 𝛃 is obtained from the relative risk (RR) linked to a change in exposure. Based on 

the findings of Hoek et al. (2013) and WHO (2013), the baseline mortality relative risk is taken as 

1.06 for a 10 μg/m3 PM2.5 increase. The death rate is obtained from the Global Burden of Disease 
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(GBD), which is seven per ten thousand people, while the total population of Addis Ababa is 

derived from the World population database and is 5.06 million.13  

To calculate the economic benefit of a reduction in air pollution we used the Value of Statistical 

Life approach. The VSL,  reflects the amount individuals are willing to pay to incrementally reduce 

their risks of death from adverse health conditions that might be caused by environmental pollution 

(Ho et al., 2023; World bank, 2016). For countries that lack VSL value, VSL is converted from 

another reference, such as the USEPA or the Organization for Economic Cooperation and 

Development (OECD).  

I used a VSL estimation method from the Organization for Economic Cooperation and 

Development (OECD) as implemented by the World Bank in 2016. The base VSL estimate 

represents the mean VSL estimate from a database of WTP studies conducted in high-income 

member countries of the Organization for Economic Co-operation and Development (OECD). The 

estimated 𝑽𝑺𝑳𝒃𝒂𝒔𝒆  by the World Bank in 2016 is $ 3.83 million. The average gross domestic 

product (GDP) per capita included for the OECD countries is about $37,000 (World bank, 2016). 

The VSL for Ethiopia is calculated using the following formula. 

𝑉𝑆𝐿𝐸𝑡ℎ = 𝑉𝑆𝐿𝑏𝑎𝑠𝑒 ∗ (
𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎𝐸𝑡ℎ2021
𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎𝑂𝐸𝐶𝐷

)
𝑒

 

 

Where  𝐺𝐷𝑃 𝑝𝑒𝑟𝑐𝑎𝑝𝑖𝑡𝑎𝐸𝑡ℎ2021 is Ethiopia's per capita income in 2021, 𝑒 is the income elasticity 

of VSL, for low- and middle-income countries, a central value of 1.2 is recommended by WHO, 

with a range from 1.0 to 1.4 for sensitivity analysis by the World Bank. The calculated VSL for 

Ethiopia is about   $154,494.74. The total economic benefits of a change in land use in this exercise 

 
13 https://vizhub.healthdata.org/gbd-results/ 

   https://worldpopulationreview.com/world-cities/addis-ababa-population 
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amounted to about $1.093 billion per year. That is, if we change the mean PM2.5 by 6.99 due to a 

change in land use from commercial to public or the inclusion of public land use in the commercial 

land use (to reach at the upper limit of moderate air), then 7078 deaths can be avoided per year, 

and the Economic benefit of this is $1.093 billion in one year.  In addition, we calculated the 

benefits of meeting WHO interim targets as interim targets were set by WHO to encourage 

developing countries in the difficult task of reducing pollution on the way to economic growth. 

Meeting the lowest annual interim target (Interim target one) of WHO has a monetary benefit of  

$1.1 billion per year, while meeting the highest interim(interim target I) target gives a benefit of 

$2.5 billion per year (See table 2.18). 

This exercise highlights the benefits of incorporating green spaces in commercial areas as a means 

to enhance public health and reduce mortality rates and the benefits of gradually meeting WHO-

recommended interim targets. It suggests that meeting the lowest interim target and a small 

increase in greenery can significantly impact the well-being of city residents. The exercise 

underscores the importance of considering the health benefits of urban green spaces in urban 

planning and development. Moreover, this exercise is particularly relevant to Addis Ababa, where 

rapid urbanization and industrialization have led to high pollution levels, posing significant health 

risks to the population. The results of this exercise provide valuable insights into how the city can 

mitigate the negative impacts of urbanization and improve the livability of the city by introducing 

more green spaces in commercial areas. Overall, urban green spaces can play in promoting public 

health and well-being. By incorporating more greenery in cities, policymakers can create more 

livable and sustainable environments that support the health and well-being of their citizens. 
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TABLE 2.18 The economic benefits of meeting WHO annual interim targets and a change in land 

use 

WHO Recommended AQG 
and Interim annual target PM2.5 

Total annual 
Economic Benefit in 

USD 
Avoidable deaths 

per year 

IT-4 35 1.1 billion 7,249 

IT-3 25 1.7 billion 11,160 

IT-2 15 2.2 billion 14,269 

IT-1 10 2.5 billion 15,610 

AQG 5 2.6 billion 16,837 
A change in LU 35.4 1.093 billion 7,078 

Note: IT- refers to Interim target; AQG- refers to air quality guideline 
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2.7. Conclusion 
 

The primary goal of this chapter was to develop a cost-efficient approach for predicting air 

quality using a land use regression model to predict pollution levels in areas that are not being 

monitored. The land use regression model used in this study was developed based on a range 

of variables, including traffic density captured by road types, land use patterns, and other 

environmental factors that are known to influence air quality. 

We created a PM2.5 pollution exposure map for Addis Ababa. The overall explanatory power 

of the model is not particularly sensitive to the buffer size. This is because essential factors 

in the model are wind speed, direction, air pressure (humidity), and time of day. Moreover, 

smaller buffers also pick up the effects of local land use variation. Therefore, a smaller buffer 

is more suitable for prediction on those grounds. Hence when developing the exposure map 

for Addis Ababa, we use the smaller buffers as a base for prediction. This way, the exposure 

map is shown explicitly for the city by the time of the day and wind direction. 

In general, in this study, we establish a regression model for predicting PM2.5 and reveal 

spatial and temporal distribution characteristics. Further, we analyze the relationship between 

the spatial distribution of PM2.5 with meteorological and land use characteristics and 

therefore provide a foundation for urban planning, land use regulation, air pollution control, 

and public health policymaking. This study also provides a basic model for population 

exposure assessment. Applying land use regression models to heavily polluted areas play a 
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positive role in achieving a sustainable urban environment and promoting sustainable 

development in urban environments. 

Due to the limited resources and time constraints to facilitate logistics to deploy a large 

number of low-cost monitors, we could not measure PM2.5 concentrations at multiple sites 

simultaneously, which is a major limitation of this study. In addition, the low-cost monitoring 

approach has some other significant limitations. First, the data we used are representative of 

the period in which we collected, which is typically a constrained time frame. The data 

collection in this dissertation was carried out in the daytime, between 6 a.m. and 19 p.m., for 

several days over a 6-month period. Maintaining measurements for longer periods and 

obtaining more extensive temporal coverage may be preferable. However, low-cost monitor 

data collection is frequently restricted to rush hours (e.g., commuting routine) or daytime 

moments for exposure assessments. However, given that this study was conducted within a 

short period, emission profiles in different locations will not be expected to change 

dramatically. Therefore, the measured PM2.5 spatial and temporal variation, at a minimum, 

suggests the heterogeneous pattern of PM2.5 in Addis Ababa. 

Care should be taken when using air pollution maps because the mode of transportation used 

determines the usefulness of the maps (Joris, 2016). In this study, we did not measure 

pollution levels while traveling from one location to another, but we used a car to get from 

one location to another. As a result, the exposure maps produced do not represent car users, 

residents, or pedestrians; rather, the maps depict pollution variability by time and location to 

investigate pollution exposure further or devise pollution control measures. 
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A low-cost monitoring strategy will always be spatially and temporally constrained, resulting 

in a map with insufficient spatial and temporal coverage. A typical low-cost air quality 

monitoring system is restricted to a few sites and time periods. Depending on the specific 

configuration, an opportunistic campaign utilizing multiple modes of transportation can 

result in increased spatial and temporal coverage. Using low-cost and high-performance 

sensors, data can be collected on a larger scale in an ad hoc, opportunistic fashion. As a result, 

participatory monitoring, which is based on mobile monitoring, has the potential to deliver 

large amounts of data needed for producing representative maps with high spatial and 

temporal coverage. 

To address air pollution in Addis Ababa, a comprehensive approach may be necessary. This 

could involve a combination of measures aimed at reducing emissions from various sources, 

improving public transportation, promoting alternative modes of transportation such as 

cycling and walking, and raising awareness about the health impacts of air pollution. For 

example, the government could incentivize the use of cleaner vehicles by offering tax breaks 

or subsidies. Additionally, regulations could be put in place to limit emissions from factories 

and other industrial sources. Improved public transportation options, such as more efficient 

buses or light rail systems, could encourage people to rely less on personal vehicles. 

Moreover, promoting cycling and walking can not only reduce emissions but also promote 

physical activity and overall health. This could be achieved by building more bike lanes and 

sidewalks and providing bike-sharing programs. 
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Finally, raising awareness about the health effects of air pollution could help mobilize public 

support for action. This could involve public education campaigns, school programs, and 

community outreach initiatives to inform residents about the risks of exposure to air pollution 

and how they can protect themselves and their families. By taking a comprehensive approach 

to reduce air pollution in Addis Ababa, it may be possible to improve air quality and promote 

public health and well-being in the city. 
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CHAPTER THREE 

3.  Improving Urban Air Quality Monitoring in a Developing Country 

Setting: The case of Ethiopia 
 

3.1. Introduction 
 

Despite the extensive links between ambient air pollution and adverse health impacts, there 

is a paucity of long-term, appropriately calibrated air quality data in low- and middle-income 

countries. This paucity of air quality information means that residents of these countries do 

not have sufficient information about the dangers of air pollution nor have the information to 

use appropriate measures to reduce exposure levels (Avis and Bartington., 2020). The World 

Health Organization (WHO) global ambient air quality database 2018 version reveals that 

there was only one PM2.5 ground-level monitor per 65 million people in low-income 

countries compared to one monitor per 370,000 people in high-income countries (WHO, 

2022). Many Sub-Saharan African countries have no permanent measuring stations for 

PM2.5. In 2022, for example, the WHO ambient air quality database showed that only twelve 

countries in Africa have air quality monitoring sites primarily located in the capital city. 

Specifically, one air quality monitor per 28 million people in Sub-Saharan Africa (WHO, 

2022). The United States Environmental Protection Agency (US-EPA) has established 

PM2.5 monitoring at US embassies and consulates in various countries, employing the 

Federal Equivalent Method (FEM) approved instrument Beta Attenuation Monitor (BAM-

Met One 1020) and providing hourly PM2.5 measurements in 27 countries through their 

website (Singh et al., 2021). Among these countries is Ethiopia, where the capital Addis 

Ababa provides an example of this paucity of monitoring. Addis Ababa has two air quality 
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monitoring stations, one located in the parkland setting of the US Embassy installed in 2016, 

and the other site located at Addis Ababa international community school near Addis Ababa 

golf club in Lideta sub-city, which is mostly offline and does not record data(Dhammapala, 

2019). Despite the installation of low-cost sensors by Addis Air and the United Nations 

Environment Program (UNEP) leading to a significant increase in the number of air quality 

monitoring stations, the majority of them remain offline and do not provide air pollution data 

to the public (WBG, 2021).14 

While a fixed air quality monitor provides valuable time-series data, a single site cannot give 

a clear sense of the spatial distribution of air quality in a city. Moreover, depending on the 

nature of the measurement site, it may also give a biased picture of the exposure to particulate 

matter for the average resident. In low-income countries where the ability of governments to 

regulate pollution emissions and work conditions is limited due to weak state capacity, 

awareness of the public through public broadcasting of air quality will impact pollution 

avoidance behavior, indirectly reducing the health cost due to pollution.  

The  US embassies and consulates data has been used to study PM2.5 levels in the urban 

environment for a variety of purposes, including determining the trend and characteristics of 

PM2.5 in four mega cities of India by Chen et al. (2020) to examine the variability, trend, 

and exceedance of PM2.5 levels against WHO and Indian national air quality standards in 

five Indian megacities by Singh et al. (2021), to assess the association between PM2.5 and 

 
14 This lack of available data poses a significant challenge in addressing air pollution issues, as the public is 

unable to access real-time information about the quality of the air they breathe. The installation of these 

monitoring stations was a positive step toward addressing air pollution. Still, more work needs to be done to 

ensure that the data collected is accessible to the public. 
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daily outpatient visits for allergic rhinitis in Beijing, China, by Wang et al. (2020),  to 

examine the association between air pollution exposure and gestational diabetes mellitus at 

trimester and weekly levels in Guangzhou, China a study by Zhang et al. (2020). Studies 

conducted using US embassies and consulates data so far have been focused on trend analysis 

of PM2.5 levels and health impact analysis using sparsely located PM2.5 monitors, one 

monitor for one major city.  

Relying on fixed-site air pollution data that is located in a haphazard manner, particularly for 

polluted cities in developing countries is misleading and is unrepresentative of the actual 

exposure levels in a particular area for PM2.5. Strand et al. (2006) discovered that as 

pollution levels increase, the difference between ambient pollutant concentration and average 

personal exposure tends to rise. Furthermore, Nerriere et al. (2005) found inconsistencies 

between measurements of ambient air pollution obtained from personal multipollutant 

samplers and measurements from sparsely located fixed sites. Therefore, caution is necessary 

when conducting epidemiological studies on the long-term effects of ambient pollution. 

This paper investigates the extent to which a single fixed air quality monitor (at the US 

Embassy) provides a guide to air quality and its risks across the city. To do this, we compared 

and contrasted data from a high-quality monitoring station based at the US Embassy in Addis 

Ababa with spatially rich PM2.5 data obtained using a low-cost mobile sensor across the city 

over a six-month period in 2020 and 2021. Furthermore, this study aims to identify the 

possible sources of discrepancy in air quality between measurements of the low-cost monitor 

and fixed air quality monitor. 
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The results indicate that depending on data from a single air quality monitor placed arbitrarily 

is inadequate for a comprehensive understanding of the complex characteristics of air 

pollution. To attain more accurate measurements in the future, we recommend a method for 

locating fixed air quality monitors that optimizes their placement by minimizing the total 

anticipated cost of inconsistencies. 

 This research illustrates the limitations of relying on a sole source of information and 

suggests using low-cost devices to guide policy interventions for air quality. Furthermore, 

we provided evidence on how this information could be improved by identifying the source 

of discrepancy between the two monitors reading and ways to improve air quality monitoring 

and public awareness in a developing country's major city. Furthermore, we suggest a method 

for placing fixed air quality monitors that reduces the expected cost discrepancy, considering 

the current position of existing monitors. By incorporating various factors such as cost (the 

cost of wrong advice or information), weather patterns and optimizing the placement of fixed 

monitors, we aim to increase the accuracy and precision of air quality monitoring systems in 

a developing country setting, thereby providing more comprehensive and actionable 

information to decision-makers and the public. Additionally, this approach can help to ensure 

that limited resources are used efficiently. 

3.2. Description of the data 

We used two main data sets for the PM2.5 profile in Addis Ababa: one from the US Embassy 

in Addis Ababa's AirNow website, which records hourly PM2.5 for 24 hours a day. 15 

 
15 AirNow is a partnership of the U.S. Environmental Protection Agency, National Oceanic and Atmospheric 

Administration (NOAA), National Park Service, NASA, Centers for Disease Control, and tribal, state, and local 
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Appendix 3 contains details on time series data from the US Embassy in Addis Ababa from 

2016 to 2022. The air quality status recorded by the US Embassy over the last six years shows 

moderate air quality in general, showing more polluted data early in the morning and evening.  

The second data set contains PM2.5 data collected over a six-month period in 2020 and 2021 

using a portable device-Dylos 1700 (which records PM2.5 every minute) at 72 sites across 

four inner sub-cities in Addis Ababa (this data set is the same as the data set, we used in the 

second chapter of this dissertation-refer part 2.4.1 of chapter 2 for details). The land use and 

weather data from chapter two are used again in this chapter. The land use data comes from 

the Addis Ababa municipality's land development and management office, which was 

published in 2015. National Aeronautics and Space Administration-National Oceanic and 

Atmospheric Administration (NASA-NOAA) and Addis Ababa Bole International Airport 

provided the weather data through their respective websites. NASA-NOAA weather data is 

updated hourly, whereas Addis Ababa International Airport data is updated every three hours. 

In this section, we compare air quality data readings from the US Embassy in Addis Ababa 

fixed air quality monitor (located inside the US Embassy's parkland) with data gathered over 

six months at 72 different land use sites in Addis Ababa using a low-cost hand-held mobile 

device Dylos 1700. When we compare the readings from the two monitors during the data 

collection period (2020/21), a difference in the information about air quality and implied risk 

is noticed, which varies depending on the time of day, land use type, and wind direction. We 

used the US-EPA air quality classification and health risks described in Appendix 1, Table 

 
air quality agencies. AirNow provides air quality data at US embassies and consulates around the world 

(https://www.airnow.gov/about-airnow/) 
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2.A.4, and WHO interim targets described in Table 3.A.4 to explain the discrepancy between 

the two monitors. 

To better describe the data, the device was collocated in Addis Ababa in various land use 

types for calibration exercise, with the results shown in Table 3.3.16  Details of checking the 

reliability of the portable device are explained in Appendix 2 (i). 

In comparison  Table 3.1 panel A, the percentages along the diagonal represent instances 

where observations from both monitors align. Conversely, disparities between the readings 

of the two monitors are highlighted off the diagonal. For instance, during the early morning, 

approximately 14% of the data recorded by the low-cost monitor indicates unhealthy air 

quality for sensitive individuals, whereas the fixed monitor registers the air quality as 

moderate. Notably, the cumulative values above the diagonal in the table exceed those below 

it, underscoring that the fixed air quality monitor documents less polluted levels of air, while 

the portable device indicates a higher level of air pollution. 

Table 3.1 panel B presents the disparities and corresponding matched observations between 

the two monitors categorized by time of day. For instance, within the data collection period, 

during the early morning, out of the total monitored data early in the morning, 89% (84% 

after calibration) indicates air quality above the moderate threshold according to the low-cost 

monitor. In contrast, the US data records 41% of the data as exceeding the moderate air 

quality level. The most pronounced discrepancy occurs during the early morning and evening, 

 
16 In the description, from now onwards, we use the term calibrated, which is the result of the low-cost 

monitor PM2.5 adjustment using a collocation exercise conducted at an open area site 
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with the smallest overlap in the air quality category readings during these peak hours of the 

day.  

During these peak hours, both monitors exhibit the lowest level of agreement in terms of 

recording the same air quality category. These findings underscore the significance of 

temporal patterns in the monitors' readings. This temporal variation in agreement could be 

attributed to factors such as atmospheric changes, temperature fluctuations, and human 

activity and land use differences. 

Discrepancy and matched observations by land use type are presented in Appendix 2: Table 

3.A.1(i) (before the low-cost monitor is calibrated) and Table 2. (ii) (after the low-cost 

monitor is calibrated). Overall discrepancy and matched observations after calibrating the 

low-cost monitor are presented in Appendix 2 Table 3.A.2.  
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    Table 3.1: Overall discrepancy and discrepancy by the time of day(in percentage) 

                   

  Panel A(%)  

  Dylos↓  

  % of total Good Moderate 

Unhealthy for 

sensitive 

people 

Unhealthy 

Very 

unhealthy 

and a 

hazard 

US→ Good 2 5 1 0 0 

  

 

Moderate 
3 40 14 11 1 

 

Unhealthy for  

sensitive people 

0 3 7 6 1 

 

Unhealthy 
0 0 0 3 0 

 

Very unhealthy  

and a hazard 

0 1 0 0 0 

 

 

 

 

 

  
 Panel B (%) 

Time of  

day 

Dylos raw Above 

moderate air quality 

Dylos 

Calibrated 

Above 

moderate 

air quality 

US above 

moderate 

air quality 

US and Dylos 

raw in the same 

category 

US and Dylos are 

calibrated in the same 

category. 

  

Early 

morning 
89 84 41 8 9 

Late 

morning 
38 32 21 33 33 

Early 

afternoon 
23 18 13 37 35 

Late 

afternoon 
27 21 10 19 18 

Evening 87 85 32 4 4 
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3.2.1. Air quality warnings and thresholds 
 

The World Health Organization (WHO) has set up three provisional objectives for PM2.5 

that require consistent and persistent pollution reduction efforts to be achieved. These 

objectives are deemed helpful in tracking progress over time in the difficult task of 

progressively lowering public exposure to PM (WHO, 2022). This section compares the low-

cost monitor PM2.5 reading with the measurement obtained from the US Embassy fixed 

monitor. We utilize the interim WHO benchmarks (Interim targets) for PM2.5 air quality, 

which are 37.5, 50, and 75 (micrograms per cubic meter), as a guide for air quality. Using 

these thresholds, we can evaluate the level of air quality and determine whether it falls within 

the acceptable range. It should be emphasized that PM2.5 concentrations at these levels 

negatively impact health and surpassing these levels have even more severe effects on public 

health, such as respiratory issues and cardiovascular diseases. 

Panel A of Table 3.2 shows the percentage of times the two monitors exceed WHO interim 

target III by land use, Panel B shows the percentage of times the two monitors exceed WHO 

interim target III by the time of day, and Panel C shows the percentage of time the two 

monitors exceed interim target I, interim target II, and interim target III. According to the 

low-cost monitor, 41% (36% after calibration) of the data exceeded WHO interim target III, 

while the fixed monitor records only 17% of the data exceeding interim target III. Comparing 

the two monitors' readings by the time of day in terms of meeting WHO interim target III 

shows that more than 80% of the data recorded by the low-cost monitor early in the morning 

and evening exceeded the interim target, while the fixed monitor shows 65% of the recorded 
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data meets the target. In general, the US Embassy data understates the pollution levels in the 

city both in terms of meeting interim targets and in terms of US-EPA implied risk 

classification of a pollution level. Furthermore, the spatial variation of pollution across the 

city is not captured, as the US Embassy data shows only the temporal variation of pollution.
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Table 3.2: PM2.5 profile in terms of meeting WHO interim targets 

Panel A 

Percentage of times exceeding WHO 24-hour interim target III 

Land Use PM2.5 Dylos raw 
PM2.5 Dylos calibrated to 

the fixed monitor reading 
US Embassy 

Airport 65 45 15 

Asphalt road 48 44 18 

Mixed land  34 28 14 

Open area 34 30 18 

Panel B  

Percentage of times exceeding WHO 24-hour interim target III 

Time of  day PM2.5 Dylos raw 
PM2.5 Dylos calibrated to 

the fixed monitor reading 
US Embassy 

Early morning 86 81 35 

Late morning 34 27 15 

Early afternoon 18 14 11 

Late afternoon 23 18 4 

Evening 87 84 30 

Panel C  

Percentage of times exceeding WHO 24-hour interim target  

Monitor Interim target III (37.5) Interim target II (50) 
Interim target I 

(75) 

PM2.5-Dylos raw 41 26 12 

PM2.5 Dylos 

calibrated 
36 22 9 

US Embassy 17 6 2 
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      A)                                                                       B)                                                               C) 

                                                                  
D)                                                                                   E)                                                              F)                                                                                                                    

     

Note: A compares the mean PM2.5 values of the two monitors by data collection round; B, C, and E depicts  PM2.5 of the two monitors by the 

time of day (colored reference lines in C are US-EPA air quality classifications: green for good, yellow for moderate, pink for WHO interim target 

III, orange for unhealthy for sensitive people); D compares the mean PM2.5 of the two monitors by day of the week; F compares the mean PM2.5 

of days after and before calibration by land-use type and compares with US Embassy reading.                                         

Figure 3.1: PM2.5 Profile 
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Research has been conducted on the importance of low-cost air quality monitors in reducing 

the cost of monitoring to provide the public with locally relevant pollution information 

(Maggos et al., 2019; Feenstra et al., 2019; Jova et al., 2015; Manikonda et al., 2016; Miskell 

et al., 2016; Popoola et al., 2018; Qin et al., 2020; Semple et al., 2013; Sousan et al., 2016; 

Wang et al., 2015; Williams et al., 2014;  Lanphear, 2017). However, the accuracy of low-

cost sensors when compared to a reference instrument is in question; as a result, efforts have 

been exerted to test and verify the accuracy of the low-cost monitors in laboratory and field 

experiments. In general, the performance of low-cost sensors was found to be in good 

agreement with high-grade fixed air quality monitors in laboratory experiments (where the 

environment is controlled) than in a complex field experiment with a range of environmental 

conditions (Liu et al., 2020).  

On-the-field calibration of the portable monitor is performed in two settings to help explain 

the discrepancy between the two monitors (the US Embassy monitor and the low-cost 

monitor we used) in this study.17 Device calibrations were conducted in Addis Ababa, where 

the research was conducted. The first calibration is carried out by placing the portable 

monitor near the fixed monitor on an asphalt road (approximately 20 meters away from the 

fixed monitor), and the second field experiment is carried out in Addis Ababa by placing the 

portable monitor on similar land use type to where the fixed air quality monitor is placed (at 

an open area land use-approximately 360 meters away from the fixed monitor).18 A list of 

 
17 Measurement is conducted by collocating the portable monitor to the fixed monitor at the nearest possible 

place and approximately 1.5 meters above the ground. 
18 I was unable to enter the office of the US Embassy in Addis Ababa with an electronic device for security 

reasons of the Embassy; the closest location is the main asphalt road in front of the Embassy, where the portable 

device could be placed for validation. 
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previous calibration exercises and calibration exercise results we conducted are summarized 

in Table 3.3. Based on model 𝑅2, in correlation to the fixed monitor, the calibration result 

conducted in a similar environment to the fixed monitor is chosen from all the field 

experiments and literature survey results. 

Table 3.3: Calibration results 

 Review of literature on calibration experiment   

Environment            Function       Source/comment 

Indoor 𝑃𝑀2.5 = 0.65 + 4.16 × 10−5[𝑃𝑁𝐶]
+ 1.57 × 10−11 × 𝑃𝑁𝐶2 

    Semple et al. (2013) 

Outdoor urban 𝑃𝑀2.5 = 4.75 + 2.8 × 10−5[𝑃𝑁𝐶]     Steinle et al. (2015)           

Outdoor rural 𝑃𝑀2.5 = 1.29 + 1.11 × 10−5[𝑃𝑁𝐶] 
PNC (Particle Number Count) =(Small-large) *0.01 

Steinle et al. (2015)  

 

 Results from this study's validation exercises  

Open area near 

Embassy 
    PM2.5=5.4+0.92Dylos-0.658 Hum      𝑅2=0.661 

      Correlation coefficient is 0.8                                  

                                                                                                                           

Calibrated values are 

highly correlated with 

the US Embassy data 

Asphalt road 

near US 

Embassy 

PM2.5=-0.41+0.86Dylos+0.75Hum-0.5DylosXHum  

𝑅2=0.5        

 Calibrated values are 

not strongly correlated 

with the US Embassy 

data  

 Use Dylos conversion formula as PM2.5, which means 

(Small-large) *0.01=Dylos 

 

Note: A summary of the literature review of Dylos 1700 is shown in the first three rows, and a summary 

of calibration results of the same low-cost monitor (Dylos 1700) monitor against the fixed monitor reading 

is shown in the last two rows The correlation between the fixed monitor and Dylos 1700 at the open area 

site is 0.8. 
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3.3. Estimating the discrepancy 
 

What is the source of discrepancy between the readings from the fixed air quality monitor 

and the readings from the portable air quality monitor? We specify two models to identify 

the sources of a discrepancy more precisely: linear estimation of the difference model and 

multinomial logit model. First, we estimated the linear difference model with the dependent 

variable being the difference between the US Embassy reading and the low-cost monitor 

reading indicated in equation (1). 

𝑦𝑖𝑡 = ( 𝑃𝑀2.5 𝑓𝑖𝑥𝑒𝑑 − 𝑃𝑀2.5 𝑝𝑜𝑟𝑡𝑎𝑏𝑙𝑒𝑖𝑡)  

= 𝜌 + Xi𝛽 +Wtγ + Ttµ + 𝛼0|𝐿𝑂𝑖 − 𝐿𝑂𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦| + 𝛼1|𝐿𝐴𝑖 − 𝐿𝐴𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦| + ε𝑖𝑡         (1) 

Where 𝑦𝑖𝑡 represents the difference in readings between the two monitors for site i and time 

t, 𝑃𝑀2.5 𝑓𝑖𝑥𝑒𝑑 represents the reading from the US Embassy at time t since it is an hourly 

average, 𝑃𝑀2.5 𝑝𝑜𝑟𝑡𝑎𝑏𝑙𝑒𝑖𝑡 Denotes the reading from the portable device at site i and time t. 

X represents vector site characteristics-land use, W denotes a vector of weather variables at 

time t (wind speed, wind direction, temperature, humidity, rain with its one-day lag), whereas 

T denotes the time of day and day vector. |𝐿𝑂𝑖 − 𝐿𝑂𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦| , |𝐿𝐴𝑖 − 𝐿𝐴𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦 | 

denotes the absolute value of longitude and latitude difference between each site and the US 

Embassy to capture the relationship between discrepancy and location difference. As can be 

seen in the linear regression results (Table 3.4 for regression using area land use variables) 

and (Appendix 2:Table 3.A.3 for regression using distance land use variables), in both 
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regression results, geographic features play a systematic role in explaining the discrepancy. 

Furthermore, meteorological variables have also explained the discrepancy more precisely. 

Comparing the results of the difference model using area land use and distance land use 

variables shows that distance land use variables (distance to the nearest land use from a site) 

have a more significant effect than area land use variables in explaining the discrepancy. In 

the second estimation method, we developed a multinomial dependent variable that primarily 

takes the form of a discrepancy and a no discrepancy in meeting the WHO interim target III. 

We used a multinomial logit model specified in equation (2) to identify the sources of 

discrepancy; the response variable (the dependent variable) takes four alternatives showing 

whether the information the two monitors provide is the same or has a discrepancy in terms 

of meeting WHO interim target III, indicated in Appendix 2 Table 3.A.4. 

P(y=j/x) =
𝑒
𝑥𝛽𝑗

1+∑ 𝑒𝑥𝛽ℎ4
ℎ=1

 ,    j=1,2,3,4                                                                                      (2) 

{
 
 

 
 
𝑗 = 1, 𝑖𝑓  𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 < 37.5  𝑎𝑛𝑑 𝑃𝑜𝑟𝑡𝑎𝑏𝑙𝑒 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑖𝑠 < 37.5
𝑗 = 2, 𝑖𝑓 𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 < 37.5 𝑎𝑛𝑑 𝑃𝑜𝑟𝑡𝑎𝑏𝑙𝑒 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ≥ 37.5

 
𝑗 = 3, 𝑖𝑓  𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ≥ 37.5 𝑎𝑛𝑑 𝑃𝑜𝑟𝑡𝑎𝑏𝑙𝑒 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 < 37.5
𝑗 = 4, 𝑖𝑓 𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ≥ 37.5 𝑎𝑛𝑑 𝑃𝑜𝑟𝑡𝑎𝑏𝑙𝑒 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ≥ 37.5

 

 

Table 3.5 shows the result of the estimated MNL using area land use variables, while Table 

3.A.5 in Appendix 2 shows the estimated result of the MNL model using distance land use 

variables. The odds of discrepancy and the match are indicated in columns 1 and 2 (the base 

is the match, j=1).  
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The multinomial logit estimation results show that it is more likely for the low-cost monitor 

to record air quality information that exceeds WHO interim target III and the US Embassy to 

record air pollution level that doesn`t exceed WHO interim target III when rain increases if 

the monitoring site is closer to high-density mixed residence, river buffer, parking land use, 

commercial area, asphalt road, and unpaved roads if the wind blows from the south when the 

distance between the fixed monitor and the monitoring sites increases (latitude difference). 

When compared to other times of the day and days of the week, the low-cost monitor is likely 

to show air pollution levels that exceed WHO interim target III early in the morning and on 

Friday.  

It is less likely for the low-cost monitor to report an air pollution level that exceeds WHO 

interim target III and the US Embassy to record an air pollution level that doesn`t exceed 

WHO interim target III when previous rain is higher, when wind speed increases, when the 

temperature increases, if the monitoring sites are open area sites and near to public facility 

land uses. For example, a study by Dhammapala (2019) showed that the difference between 

the US Embassy's air quality record and the other fixed site at a community school is lower 

when wind speed is higher than 20 km/h. 

We can infer from both estimation methods that the difference in readings between the two 

monitors is primarily caused by land use and weather variables, with weather variables 

playing a more significant role. When we compare the distance land use variables to the area 

land use variables (in the linear regression and the MNL regression), the result shows that 

the distance land use variables play a more significant role in explaining the discrepancy 

between the two monitors' readings; this means that the distance to the pollution source is 
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more important in explaining the discrepancy than how much area the pollution source 

occupied. As a result, we conclude that the US Embassy data does not capture important 

aspects of air quality that vary throughout the day and by local land use features.  

 

. 
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TABLE 3.4: Linear difference estimation results  

VARIABLES 

PM2.5 

Difference (No 

calibration) 

PM2.5 US 

Embassy 

PM2.5 

Difference 

(Calibrated)  
Rain  -0.159 0.328 -0.138  

 (0.568) (0.394) (0.537)  

Lag rain 1.193 -1.253*** 1.012  

 (0.765) (0.332) (0.714)  

Wind speed  -0.265 -1.258*** -0.352  

 (0.490) (0.397) (0.458)  

Humidity -0.516 1.196*** 0.242  

 (0.550) (0.376) (0.514)  

Temperature     0.696*** 1.038*** 0.708***  

           (0.197) (0.232) (0.184)  

High-density mixed 

residence  -0.177**  -0.168** 
 

 (0.083)  (0.077)  

River buffer -0.506*  -0.482*  

 (0.284)  (0.271)  

Road network -0.366  -0.324  

 (0.260)  (0.242)  

Open area 0.013  0.013  

 (0.111)  (0.105)  

Parking land use 0.231**  0.224**  

 (0.098)  (0.091)  

Commercial area -0.180  -0.163  

 (0.132)  (0.126)  

Public facility 0.339**  0.312**  

 (0.136)  (0.127)  

Asphalt roads -8.666**  -8.236**  

 (3.648)  (3.417)  

Unpaved roads -6.894  -6.491  

 (4.155)  (3.916)  

North -9.034** 3.895 -8.172**  

 (3.927) (2.676) (3.767)  

South -5.490 0.498 -5.114  

 (3.678) (1.855) (3.421)  

West -6.863* -2.121 -6.627*  

 (3.926) (2.207) (3.735)  

Late morning 22.571*** -14.382*** 19.820***  

 (3.240) (2.505) (2.988)  

Early afternoon 24.921*** -17.145*** 21.801***  

 (3.193) (2.757) (2.946)  
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Late afternoon 23.091*** -14.321*** 20.276***  

 (3.489) (2.897) (3.229)  

Evening -1.054 5.984 -0.789  

 (5.363) (4.360) (5.116)  

Monday -3.175 2.106 -2.878  

 (4.479) (2.696) (4.256)  

Tuesday 4.058 -2.070 3.590  

 (3.810) (2.045) (3.576)  

Wednesday 0.310 -4.243 -0.031  

 (3.426) (2.879) (3.240)  

Thursday 4.115 -3.554 3.515  

 (3.316) (3.177) (3.123)  

Saturday -5.743 -5.300 -5.757  

 (3.984) (3.817) (3.778)  

Sunday 1.238 -4.640 0.784  

 (3.397) (2.839) (3.235)  

Latitude difference 201.688***  187.012***  

 (34.590)  (32.628)  

Longitude difference -67.303  -65.451  

 (52.813)  (49.306)  

Constant -33.917*** 11.204 -35.157***  

 (11.380) (9.780) (10.561)  

Observations 10,462 11,143 10,462  

R-squared 0.30 0.26 0.27  

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Note: The dependent variable in the first column is the difference between the US Embassy PM2.5 reading 

and Dylos reading. The dependent variable in the second column is the US Embassy reading. The 

dependent variable in the third column is the difference between the US Embassy PM2.5 reading and the 

Calibrated PM2.5 reading. Land use explanatory variables are areas in meters within a one-hundred-

square-meter radius of the sampling sites. Coefficients of land use variables and standard errors are 

multiplied by 1000/1000.  
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TABLE 3.5: Multinomial logit model estimation results  

  MNL (base outcome=1) 

VARIABLES P(y=2) P(y=3) P(y=4) 

Rain  0.162*** 0.834** 0.355*** 

 (0.022) (0.139) (0.031) 

Lag rain -0.093*** -0.262** -0.575*** 

 (0.028) (0.112) (0.042) 

Wind speed  -0.299*** -0.583*** -0.330*** 

 (0.021) (0.076) (0.030) 

Humidity 0.030 -0.259* 0.01 

 (0.025) (0.136) (0.035) 

Temperature -0.036** 0.318*** 0.050** 

 (0.014) (0.061) (0.021) 

High-density mixed 

residence  0.009** -0.005 -0.023*** 

 (0.004) (0.011) (0.006) 

River buffer 0.052*** -0.315*** -0.027* 

 (0.011) (0.051) (0.015) 

Road network 0.008 -0.019 0.011 

 (0.013) (0.034) (0.018) 

Open area -0.028*** -0.048*** -0.054*** 

 (0.005) (0.013) (0.007) 

Parking land use 0.049*** 0.124** -0.594** 

 (0.013) (0.062) (0.288) 

Commercial area 0.039*** -0.130*** 0.054*** 

 (0.007) (0.034) (0.009) 

Public facility -0.025*** -0.011 -0.045*** 

 (0.008) (0.022) (0.011) 

Asphalt roads 1.397*** -0.813 0.751*** 

 (0.189) (0.507) (0.269) 

Unpaved roads 0.364** -4.933*** -0.647*** 

 (0.156) (0.616) (0.248) 

North 0.022 -0.633** 0.090 

 (0.190) (0.317) (0.193) 

South 0.428** -0.322 -0.373* 

 (0.204) (0.419) (0.226) 

West -0.539*** -4.812*** -2.444*** 

 (0.197) (0.700) (0.223) 

Late morning -2.429*** -4.430*** -3.183*** 

 (0.119) (0.389) (0.152) 

Early afternoon -3.320*** -5.176*** -4.320*** 

 (0.134) (0.425) (0.177) 

Late afternoon  -2.772*** -9.694*** -5.011*** 
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 (0.127) (1.125) (0.223) 

Evening -0.673*** -0.232 -0.438** 

 (0.161) (0.474) (0.195) 

Monday 0.097 -1.845*** 0.598*** 

 (0.128) (0.305) (0.146) 

Tuesday -0.132 -1.316*** -0.448*** 

 (0.122) (0.324) (0.159) 

Wednesday -0.151 -6.016*** -1.326*** 

 (0.117) (0.790) (0.160) 

Thursday -0.651*** -2.378*** -1.445*** 

 (0.137) (0.383) (0.183) 

Saturday -0.017 -21.970 -1.994*** 

 (0.115) (1,155.107) (0.170) 

Sunday -0.442*** -5.067*** -1.984*** 

 (0.116) (0.602) (0.182) 

Latitude difference -20.176*** -28.105*** -31.136*** 

 (1.700) (5.029) (2.439) 

Longitude difference 23.577*** 24.518*** 3.841 

 (2.485) (9.309) (3.837) 

Constant 3.184*** 3.645 4.471*** 

 (0.57) (2.66) (0.792) 

Observations 10,462 10,462 10,462 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Note: The base outcome is j=1(both monitors record WHO interim target III is met, P(y=2) {US 

Embassy<37.5 and Portable monitor≥37.5}, P(y=3) {US Embassy≥37.5 and Portable monitor >37.5}, 

P(y=4){US Embassy≥37.5 and Portable monitor ≥37.5}. Area land use variables (in a 100m buffer radius 

of a sampling site) are used in the regression. Coefficients of land use variables and standard errors are 

multiplied by 1000/1000.  
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3.4. Prediction results of the difference 
 

In this part, we present the prediction results of the linear difference model: using a difference 

map depicted in Figure 3.3 and graphically in Figure 3.2. The difference map is created first 

by interpolating the predicted results through inverse distance weighting (IDW) using 

ArcGIS pro, whereby the nearest sites get more weight during interpolation. The map shows 

that the discrepancy varies by land use and time of day. Looking across maps shows 

discrepancies by the time of the day; the highest discrepancy is observed early in the morning 

and evening. Observing the discrepancy by land use type shows (within each map) the highest 

discrepancy at the center of the city, which means land use types influence the discrepancy. 

Figure 3.3 a and b show the actual and predicted mean difference PM2.5 by the time of the 

day, showing a higher mean discrepancy in the evening and early in the morning, which is 

also the case from the difference map. Figure 3.3 c shows the mean discrepancy by land use 

types of monitoring sites; the mean difference is highest at an asphalt road, and lower in 

mixed land and open area sites d shows the actual mean difference and predicted mean 

difference with and without calibrations. The bar graphs show that the mean predicted 

difference without calibration is closer to the actual mean difference. 
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a)                                                                              b) 

      

   c)                                                                  d)     

     

Note: Figure A and B show the mean difference between the low-cost monitor reading and the fixed 

monitor at the US Embassy by the time of day; Figure C shows the mean difference between the two 

monitors by land use, while Figure D shows the mean difference by the hour in a day during the sampling 

period.  
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Figure 3.2: Predicted difference PM2.5 results 

 

           

 

Note: IDW interpolation using the four nearest sites was used to get the map of pollution difference from 

the fixed monitor and the portable monitor by the time of  day; the pollution levels were classified in a 

range of ten to show spatial and temporal variability in pollution difference 

Source: Author`s illustration using ArcGIS Pro 

Figure 3.3: Map of predicted air quality difference by the time of  day 
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Note: IDW interpolation using the four nearest sites was used to get the map of pollution difference from 

the fixed monitor, and from the portable monitor by wind direction, the pollution levels were classified in 

a range of ten to show spatial and temporal variability in pollution difference 

Source: Author`s illustration using ArcGIS Pro 

Figure 3.4. Map of predicted air quality difference by wind direction 
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3.5. Suggesting optimal location for air quality monitor 
 

The World Health Organization (WHO) does not have a specific recommendation for the number 

of air quality monitors used. Instead, they provide guidelines and recommendations for air quality 

monitoring programs considering the local context and the specific pollutants of concern. WHO 

recommends that air quality monitoring be conducted at locations representative of the 

population's exposure to air pollution. In general, this means that monitors should be placed where 

people spend a significant amount of time, such as in residential areas, schools, and workplaces. 

The number of monitors needed depends on factors such as the population's size, the area's 

geography, the sources of pollution, and the availability of resources. In general, it is recommended 

to have sufficient monitors to capture variations in air pollution levels across the area of interest. 

Ultimately, air quality monitoring aims to provide accurate and reliable information to inform 

policies and actions to reduce air pollution and protect public health (WHO, 2021). 

Several approaches have been employed to identify the ideal locations for air monitoring stations. 

In a study by Kanaroglou et al. (2005), a location-allocation algorithm was utilized to identify the 

optimal sites for a specified number of air pollution monitors to enhance the network's efficiency. 

Despite its widespread use, this method has received criticism due to the potential for choosing 

redundant monitoring sites. Alsahli et al. (2018) used a suitability analysis to find a location for a 

fixed monitor. However, this method does not give the exact location for a fixed monitor. Another 

study by Munir et al. (2019) used population-weighted pollution concentration and weighted 

spatial variability that took into account factors such as population density (social indicator), air 

pollutant levels (environmental indicator), and spatial variability of air pollutant concentrations as 

the primary elements for determining the placement of air quality monitoring stations.  However, 
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most of the research in this area has focused on cities or locations with a history of pollution data, 

which is often lacking in developing countries. 

Our approach to the optimal location of a fixed air quality monitor is linked to the maximal 

covering location problem (MCLP) first developed by Church & Revelle (1972) see also Fazel et 

al. ( 2011) and ReVelle et al. (2008) where resources for facilities are scarce and the aim is to reach 

a maximum population coverage. The objective of the problem is to place facilities in eligible 

positions on a network so that the greatest possible population or other demand metric is met. A 

population is deemed covered if it is within a predetermined time or distance from one or more 

facilities. Over time, the problem has been adapted to a variety of scenarios. 

To determine the placement of an additional fixed air quality monitor in Addis Ababa, we 

employed an optimization method to minimize the expected cost of discrepancy. Assume that both 

sites (the currently available fixed monitor and the proposed monitor) produce information and 

that everyone bases their decisions on the nearest monitor's information. Then, the further away 

they are from a monitor, the greatest the discrepancy, and the cost of this discrepancy increases in 

its square. In other words, the cost of wrong advice is assumed to be proportional to the square of 

the discrepancy; the farther people are from the monitor, the greater the discrepancy is; this is 

because air pollution is related to local land use in our discrepancy regression, so we aimed to 

select a site that would result in the minimum total cost. 

In this study, we explored two scenarios for locating "new site": 

1. Replicating the US embassy setup: through minimizing the total discrepancy in PM2.5 

reading between each monitoring site and the US embassy fixed monitor, and 

2. Positioning the proposed monitor in more typical conditions. 
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If we choose scenario (1), the model provided in appendix 2 (ii) will be applicable. On the other 

hand, if we opt for scenario (2), the discrepancy equation can be expressed as follows:  

𝑑𝑖𝑡 = 𝑃𝑀𝑖𝑡 − 𝑃𝑀𝑛                                                                                                                        (4) 

(𝑃𝑀𝑖𝑡 − 𝑃𝑀𝑓𝑖𝑥𝑒𝑑) - (𝑃𝑀𝑛 − 𝑃𝑀𝑓𝑖𝑥𝑒𝑑 ) = 𝜌 + 𝑋𝑖𝛽 +𝑊𝑡𝛾 + 𝑇𝑡µ + 𝛼0(𝐿𝑂𝑖 − 𝐿𝑂𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦)𝛿𝑖0 +

𝛼1(𝐿𝐴𝑖 − 𝐿𝐴𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦)𝛿𝑖1 -[ 𝜌 + 𝑋𝑛𝛽 +𝑊𝑡𝛾 + 𝑇𝑡µ + 𝛼0(𝐿𝑂𝑛 − 𝐿𝑂𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦)𝛿𝑖0 + 𝛼1(𝐿𝐴𝑛 −

𝐿𝐴𝑈𝑆 𝑒𝑚𝑏𝑎𝑠𝑠𝑦)𝛿𝑖1] 

Where dit refers to the discrepancy in PM2.5 reading between site i and n at time t, 𝑋𝑖 and 𝑋𝑛 is 

the site characteristics vector for site i and n (proposed monitor) respectively, 𝑊𝑡 is the weather 

variables vector for time t, 𝑇𝑡 is the time of day and week vector for time t. LO refers to longitude, 

i is the site's subscript, n is the subscript for the nearest fixed monitor, and LA refers to latitude. 

The deltas are either +1 or -1 and match the signs of the terms in parenthesis. In other words, we 

are using the absolute value difference of longitude and latitude in the discrepancy equation to pick 

up the effect of location difference as we used the absolute difference in the regression to show 

the effect of moving away from the fixed site. 

dit= β(Xi − Xn)+α0(LOi − LOn)δi0 + α1(LAi − LAn)δi1                                                                   (5) 

The discrepancy between site i and site n is just the difference in the land use impact plus the 

longitude and latitude terms difference. All the weather and time of day effects disappear. 

Hence, we aim to minimize the weighted sum of discrepancy squared with respect to an infinite 

small change in latitude and longitude of the proposed monitor. 

 

 

 



 

104 
 

 

Min ∑ ∑ E(𝑑𝑖𝑡
2 )𝑡

𝐿𝐴𝑛
𝑖

𝐿𝑂𝑛

= (𝛽(𝑋𝑖 − 𝑋𝑛) + 𝛼0(𝐿𝑂𝑖 − 𝐿𝑂𝑛 )𝛿𝑖0 + 𝛼1(𝐿𝐴𝑖 − 𝐿𝐴𝑛 )𝛿𝑖1)
2                              (6) 

 

As we move the longitude (𝐿𝑂𝑛) and latitude (𝐿𝐴𝑛)  of the proposed site, we differentiate the above 

expression with respect to 𝐿𝑂𝑛 𝑎𝑛𝑑 𝐿𝐴𝑛 , provided there is no location switches discrepancy 

changes and the change for a marginal change in latitude and longitude for a given time and 

location is given by the first order conditions in  equations (7) and (8) 

 

∂∑ ∑ E(dit
2 )ti

∂LOn
= -2α0∑ ∑ δi0( β(Xi − Xn) + α0(LOi − LOn)δi0 + α1(LAi − LAn)δi1)ti =0 

 
𝜕𝑑𝑖𝑡

2

𝜕𝐿𝑂𝑛
=-2𝛼0∑ ∑ E(δi0dit)ti   =0                                                                                                     (7)                                                                                                      

∂∑ ∑ E(dit
2 )ti

∂LAn
= -2α0∑ ∑ δi0( β(Xi − Xn) + α0(LOi − LOn)δi0 + α1(LAi − LAn)δi1)ti =0 

 
𝜕𝑑𝑖𝑡

2

𝜕𝐿𝐴𝑛
=-2𝛼1∑ ∑ E(δi1dit)ti  =0                                                                                              (8) 

Given that the sampling sites were selected randomly, our aim is to identify the optimal location. 

To achieve this, we calculate the expected total discrepancy across all sites and relevant times. As 

the derivatives are linear, we proceed to compute the expected values of the derivatives across sites 

and time, as our objective is to minimize the expected discrepancy. Consequently, we arrive at the 

expected value of the derivatives. 

E [
𝜕𝑑𝑖𝑡

2

𝜕𝐿𝑂𝑛
]=Min [ -2𝛼0∑ ∑ E(δi0dit)ti  ]                                                                              (9) 

E [
𝜕𝑑𝑖𝑡

2

𝜕𝐿𝐴𝑛
]=Min [-2𝛼1∑ ∑ E(δi1ditti )  ]                                                                             (10)           
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3.5.1. Implementation of the Method 
 

Assume that the new site has the mean land use of 72 sites from the four cities. We use this to find 

the optimal site out of the 72 squares in the four core sub-cities. 

To find the optimal location, we take the expectation of total discrepancy across all sites. Since the 

effect of weather variables has been ruled out in the discrepancy equation, we are only capturing 

the effect of land use and location difference to find the optimal location of a representative air 

quality monitor.  

The term β(Xi − Xn) is obtained by taking the coefficient β from the discrepancy regression, and 

(Xi − Xn) is  a measure of land use that is obtained by subtracting the mean land use from the 

respective measure of land use for each site; hence  β(Xi − Xn) varies by site. This term captures 

the effect of land use types and location difference on the discrepancy. After obtaining all these, 

we weight  (𝛿𝑖0dit) and (𝛿𝑖1dit ) by the respective sites' sub-city population density, the weight of 

sub-city s is calculated as (  Ws = 
Population density at sub−city  s

Population density of the  Addis Ababa
∗ share of sub −

city in total area)  and the weight for each site in a sub city s is  given by  

 Wis = 
 Ws

 ni
  where  ni is the number of sites in a given sub city; see the calculation of weights in 

appendix 2 (ii). The weighted sum of expected discrepancy for a marginal change in longitude 

and latitude is given in equations 11 and 12.  

The weighted sum of expected discrepancy for a marginal change in longitude  

 Wis E [
∂dit

2

∂LOn
]=  Wis {[-2α0 ∑ ∑ E(δi0dit)ti ]} = -2α0 ∑ ∑ E(Wis δi0dit)ti                                     (11) 

       The weighted sum of expected discrepancy for a marginal change in latitude                   
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 Wis E [
∂dit

2

∂LAn
]=  Wis {[-2α1∑ ∑ E(δi1dit)ti ]} = -2α1 ∑ ∑ E(Wisδi1dit)ti                                     (12)                      

After obtaining all the calculated values, we adjust the latitude and longitude of the proposed site 

until the two weighted first-order conditions are close to zero or until it sets the discrepancy to the 

minimum possible; if the calculated  dit  is positive, it means that LOn  and LAn  needs to be 

increased, if the calculated  dit is negative then LOn  and LAn Needs to be reduced. Zero 

discrepancies are impossible with finite sites as the model does not capture the entire land use 

types. We adjust longitude and latitude until the first two order conditions are close to zero or the 

gap is minimum and locate the new site at the point where it sets the discrepancy to a minimum.  

We used a trial and error to find the optimal location; we started with a reasonable guess; a location 

that splits the sampling sites into half makes some sense since we want to reduce the bad (wrong) 

advice from the monitor (the discrepancy) and the discrepancy is affected by land use; therefore 

we first took a location which is at the mid-point of the monitoring sites (study area) and started 

the location adjustment from that point.  After doing the algorithm the final location that minimize 

the total sum of discrepancies found to be a public facility land in one of the four sub-cities of the 

study area. This sub-city is the fourth most densely populated sub-city See Figure 3.5.  

Initially, we made the assumption that the ideal location would exhibit land use characteristics 

resembling the average of those observed among the 72 sites across the four cities. Now that we 

have determined the longitude and latitude of this optimal location for a representative monitor, 

the subsequent task involves developing the land use of the surrounding area in a manner that 

embodies the average land use characteristics found in the 72 sites, that is why we call it 

positioning it in a  “typical condition”. 
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Nevertheless, our proposition of a representative and stationary air quality monitoring approach 

stands as a viable choice for acquiring enduring pollution data. The potential for technological 

advancements in the future could offer cost-effective solutions for establishing multiple automated 

monitoring stations in urban areas. These stations would be furnished with both mobile/portable 

PM2.5 monitors and weather monitors, enabling continuous transmission of data through internet 

or mobile communication systems, particularly beneficial for developing nations. This, in turn, 

would empower policymakers and local authorities to make informed decisions regarding air 

quality regulations and interventions to mitigate pollution's adverse effects. 

Moreover, the integration of mobile/portable PM2.5 monitors and weather sensors within these 

stations enhances the monitoring capability, allowing for a more holistic assessment of air quality 

conditions. This comprehensive data collection can help identify pollution hotspots, track pollution 

dispersion, and provide insights into the interplay between atmospheric conditions and pollutant 

levels. While challenges related to data management, maintenance, and calibration of monitoring 

equipment must be considered, the potential benefits of this approach are substantial. Continuous 

and accessible air quality data could drive public awareness, advocacy, and community 

engagement, fostering a collective effort to address air pollution issues on both local and global 

scales. In summary, the suggestion of establishing a fixed air quality monitoring station, combined 

with advancing technology, offers a promising avenue to gather enduring pollution data. This 

strategy has the potential to revolutionize air quality management by providing valuable insights 

for informed decision-making and driving initiatives to combat the detrimental impacts of air 

pollution in developing countries. 
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3.5.2. Sensitivity Check 
 

To check the model sensitivity to changes in the model specification and measurement of  land use 

we conducted three sensitivity checks.  

1. The first sensitivity check involves utilizing land use measurements from unmonitored grid 

points. The outcome of this model suggests that the optimal location is situated in a short 

distance to the north of the main model suggested location.  

2. The second sensitivity assessment gives greater importance to locations neighboring the 

four primary sub-cities within the designated study area. The suggested monitoring site, as 

determined by this approach, is positioned in the northwestern quadrant of the study area 

and exhibits a somewhat relatively pulled out placement when compared to other 

sensitivity check. 

3. The third sensitivity assessment involves incorporating the average area of the two 

monitored sites within a grid. The result of this model indicates that the suggested 

monitoring site is positioned to the western side of the main model location (almost the 

same distance from the main model as from the first sensitivity check). 

All sensitivity analysis demonstrates that the suggested monitoring site should be situated in 

relative proximity to the central area of the four primary core sub-cities, as depicted in Figure 3.6. 
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FIGURE 3.5 Optimal location for a fixed monitor 
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3.5.3. Limitations of the model 
 

Despite its ability to give us the exact location for a fixed monitor, our model, however, has some 

weaknesses. 

1.  The impact of information away from sites is unknown in our model, and land use types of 

measurement may have a measurement error. Furthermore, land use measurement is not 

updated timely for developing countries, for example the land use data I used is the latest 

available for Addis Ababa which is the 2015, and land use has changed since then due to rapid 

change in the city infrastructure development. 

2. Our model is quadratic and the solution we get is a Taylors approximation, which is correct 

locally and may give a result which is not exactly to the global optimum value.  

3. Our cost function is quadratic, and we assumed that the cost of discrepancy increases in its 

square, but we do not have the data for the cost function, and it needs data to verify. Assume 

that the squared discrepancy is too high or too low than what it is (for example, the air quality 

outside is good), and someone about to exercise in the morning may decide to stay home than 

exercise. Is he better off staying home or exercising in polluted air? This needs data on the 

health benefit of exercising in polluted air or staying home with cleaner air but not exercising.  

3.6. Conclusion 
 

The focus of this chapter was to address three primary questions related to air pollution in cities of 

developing countries. The first objective was to examine whether a single fixed air quality monitor 

placed haphazardly can accurately reflect the air quality and its associated risks throughout the 

capital city of Ethiopia by comparing the air pollution data obtained from a low-cost handheld 

device. The second objective aimed to identify the reasons for the difference in pollution 
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information obtained from the fixed air quality monitor and the data collected using a low-cost 

monitor across the four main sub-cities of the Ethiopian capital. The third and final objective was 

to determine how to locate a fixed air quality monitor that could represent air pollution levels in 

the four sub-cities of Addis Ababa. 

We discovered a correlation between PM2.5 values measured using a low-cost monitor in the local 

area of Addis Ababa and those recorded at the US Embassy (fixed site). However, significant 

differences exist between the two data sources, which are systematically related to local 

environmental features and weather conditions. Therefore, relying solely on a single fixed site 

placed in an ad-hoc and air quality data from that site may not be adequate for predicting PM2.5 

and its risks in Addis Ababa. The air quality warnings generated from currently availed single 

fixed site data only provide limited guidance regarding local air quality conditions. Moreover, if 

low-cost devices are deemed accurate for estimating World Health Organization (WHO) interim 

levels of PM2.5, the guidance produced by the Embassy data is often inaccurate. Given the 

mortality and morbidity risks of poor air quality in developing countries, spatially rich data is 

valuable for policymaking. Our findings underscore the need for spatially rich and context-specific 

data in developing countries to inform policymaking and public health initiatives related to air 

quality. By adopting a multi-faceted approach incorporating locally collected air quality data from 

low-cost monitors and data from fixed air quality monitors located at US embassies, policymakers 

can better understand the complex factors influencing PM2.5 levels and take more targeted actions 

to protect public health. 

Although mobile monitoring data provides a cost-effective means of identifying spatial variations 

in ambient particulate matter across vast geographical areas, it is essential to acknowledge certain 

limitations of this study. First, the data collection period was short and did not capture seasonal 
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fluctuations. Additionally, all data was collected during daytime hours, meaning the model may 

overestimate ambient concentrations as nighttime levels are typically lower. However, since our 

aim here is to identify exposure variability, this may not be a big concern. 

The method proposed to identify the optimal locations for air quality monitors is (i) based on the 

expected sum of weighted discrepancies and (ii) by considering the available fixed monitor. This 

method can enhance the placement of monitors in areas where they are scarce, particularly in 

developing countries major cities like Addis Ababa. In addition, this approach can improve future 

air quality readings by providing critical information for public health and policymaking. 

This study sheds light on the challenges associated with air quality monitoring in developing 

countries and offers potential solutions for improving the accessibility of reliable air quality 

information. The proposed method here represents a promising approach for optimizing the 

placement of air quality monitors in resource-limited settings, where costly traditional fixed-site 

monitoring may be impractical on a large scale. By expanding access to reliable air quality 

information, this approach can potentially improve public health outcomes and inform evidence-

based policy decisions. 

Furthermore, the study results highlight the importance of considering the current location of fixed 

monitors when determining the optimal placement of air quality monitors. Considering the 

weighted sum of expected discrepancies, the proposed method can optimize the efficiency of 

limited monitoring resources when installing new fixed monitors. Overall, this study provides 

valuable insights into the challenges of air quality monitoring in developing countries and offers a 

practical solution for improving the accuracy and accessibility of air quality information. 

Optimizing the placement of air quality monitors can enable policymakers to make more informed 
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decisions to reduce exposure to air pollution, protect public health, and promote sustainable 

development. 

CHAPTER FOUR 

4. Concluding remarks and policy implications 
 

4.1. Concluding remarks  
 

Air pollution is responsible for causing illness and premature death in millions of individuals 

worldwide, especially in low- and middle-income countries (LMICs). Many of the world's most 

populated and polluted cities are in LMICs. Despite this, people living in LMICs are often unaware 

of the severity of air pollution risks or lack the information necessary to tackle the issue. Several 

factors contribute to this situation, including inadequate or missing measurement data, limited data 

accessibility, and ineffective communication strategies. In numerous instances, individuals in 

LMICs are not cognizant that air pollution is the cause of sickness in themselves and their children, 

and they do not know how to protect themselves. Air pollution levels in LMIC cities are 

significantly higher than those in high-income countries, which makes it challenging to alter 

behaviors and avoid exposure without implementing strict national regulations to curb air pollution. 

Additionally, addressing air pollution in LMICs is complicated by weak or nonexistent monitoring 

programs and scientific institutions.  

This dissertation has four main objectives related to assessing air pollution and mapping air quality 

in a developing country setting by taking the case of Ethiopia. The first objective was to develop 

a low-cost method for assessing air quality using a land use regression model to predict pollution 

levels in unmonitored areas. The second objective aimed to evaluate the accuracy of a single fixed 

air quality monitor placed randomly in Ethiopian capital in reflecting air quality and its associated 
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risks by comparing it with data collected from a low-cost handheld device. The third objective was 

to identify the reasons for the disparity in pollution information obtained from the single fixed air 

quality monitor and the data gathered from a low-cost monitor in the four main sub-cities of Addis 

Ababa. Finally, the fourth objective was to determine the optimal location for a fixed air quality 

monitor that could represent air pollution levels in the four sub-cities of Addis Ababa. 

The first paper of this dissertation involved collecting air quality data in Addis Ababa, the capital 

of Ethiopia, using a low-cost mobile air quality monitor and creating an air pollution exposure map 

for unmonitored locations by utilizing a land use regression (LUR) model to relate pollution levels 

to spatial land use data and weather variables. Field data were collected during dry and rainy 

seasons, covering a range of land uses at predetermined routes across four sub-cities of Addis 

Ababa in 2020/21. Each site was visited eight times for 15-20 minutes, with a Dylos 1700 air 

quality monitor at the four sub-cities in the center of Addis Ababa. The LUR model results showed 

that PM2.5 concentration levels were sensitive to local land use, traffic, and climatic conditions. 

Concentrations of PM2.5 were higher in commercial areas and areas with dense networks of roads, 

indicating the crucial role of land use types in predicting particulate matter concentration. 

Additionally, meteorological variables had a more significant impact on concentration levels. This 

modeling approach can be extended to other urban locations in developing countries that lack air 

quality monitors. 

In the second paper of this dissertation, we examined the extent of correlation between PM2.5 

levels measured by a low-cost monitor in the four sub-cities of Addis Ababa and those recorded at 

the US Embassy (fixed site). We discovered significant differences between the two data sources 

systematically related to local environmental features and weather conditions. Therefore, relying 

solely on a single fixed site placed in an ad-hoc and air quality data from that site may not be 
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adequate to inform the PM2.5 risks in Addis Ababa. The air quality warnings generated from the 

currently availed single fixed site data only provide limited guidance for local air quality 

conditions. Moreover, if the low-cost device is deemed accurate for World Health Organization 

(WHO) interim levels of PM2.5, the guidance produced by the Embassy data is often inaccurate. 

Given the mortality and morbidity risks associated with poor air quality in developing countries, 

spatially rich data is valuable for policymaking.  

The method proposed to determine the optimal locations for air quality monitors based on the 

weighted sum of expected discrepancies and by considering the available fixed monitor can 

enhance the placement of monitors in areas where they are scarce, particularly in developing 

countries like Addis Ababa. By doing so, the accuracy of future air quality readings can be 

improved, providing critical information for public health and policymaking. The study sheds light 

on the challenges associated with air quality monitoring in developing countries and offers 

potential solutions for improving the accessibility of reliable air quality information. The proposed 

method represents a promising approach for optimizing the placement of air quality monitors in 

resource-limited settings, where traditional fixed-site monitoring may be impractical on a large 

scale as they are costly. By expanding access to reliable air quality information, this approach can 

potentially improve public health outcomes and inform evidence-based policy decisions. 

4.2. Policy Implication 
 

The results of this dissertation suggest the following policy implications be considered by 

policymakers and air quality monitoring program agencies. 

4.2.1. Cost-effective spatially rich and context-specific data 
 

Our research underscores the need for spatially rich and context-specific data to inform 

policymaking and public health initiatives related to air quality in developing countries. By 
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adopting a multi-faceted approach that incorporates both locally collected air quality data through 

low-cost monitors and data from fixed air quality monitors usually located at US embassies in 

many developing countries, policymakers can assess air quality status in the cities and the 

associated risks.  

4.2.2. Opportunistic approach to air pollution exposure assessment 

 

Policy makers could consider developing policies that employ an opportunistic approach to collect 

data from diverse segments of society and the local environment to monitor exposure levels. For 

instance, utilizing public transportation to gauge exposure levels during travel and engaging street 

market vendors to evaluate exposure levels in busy local markets can be effective methods. By 

gathering data through such opportunistic methods, policymakers can better understand the several 

factors that contribute to exposure levels in different settings. This information can then be used 

to develop targeted policies that address specific sources of exposure and mitigate potential health 

risks. Moreover, involving distinct groups of society and the local context in data collection can 

promote community engagement and foster a sense of ownership and responsibility toward 

addressing environmental health issues. This can also help identify and address unique concerns 

and challenges specific to different communities. Overall, designing policies incorporating 

opportunistic data collection methods and involving diverse groups of society and the local context 

can be a valuable approach for policymakers to monitor exposure levels and develop effective 

strategies to promote environmental health. 
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4.2.3. Adopting the method of optimal location, which considers the current available 

fixed monitor. 
 

The proposed method of using a weighted sum of expected discrepancies and considering the 

available fixed monitor can significantly enhance the placement of air quality monitors, especially 

in areas where they are scarce, such as Addis Ababa. Policymakers may wish to consider adopting 

this method when installing additional fixed monitors to find the optimal location. 

This method can help improve the accuracy of future air quality readings, providing critical 

information for public health and policymaking. With accurate data, policymakers can make 

informed decisions to address air pollution and implement targeted interventions to improve air 

quality in the identified areas. Furthermore, this method can help save costs associated with 

monitoring air quality, as it ensures that monitoring is conducted in the most effective locations. 

This is particularly important in resource-constrained settings, where the cost of monitoring can 

be a significant challenge. In summary, the proposed method of determining optimal locations for 

air quality monitors can be an essential tool for policymakers in developing countries like Addis 

Ababa. By adopting this method, policymakers can improve the accuracy of air quality readings 

and make informed decisions to address air pollution, promoting public health and environmental 

sustainability. 
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4.3. Future research directions 
 

This dissertation highlights several future research directions related to air pollution in developing 

countries. One potential area for future research is the development and implementation of 

effective communication strategies to increase awareness and understanding of air pollution risks 

among the public in low- and middle-income countries and major cities like Addis Ababa. This 

could involve identifying the most effective channels for communicating information about air 

pollution. 

Another potential research direction is the development of cost-effective and accurate air quality 

monitoring methods for resource-limited settings. The study presented in this dissertation suggests 

that land use regression models and low-cost handheld monitors may be effective tools for 

assessing air quality in areas without fixed monitoring stations. Future research could explore 

opportunistic methods of data campaigns that involve distinct groups of society to monitor 

exposure levels; this might involve both indoor and/or outdoor pollution. 

Finally, future research could explore the links between air pollution and land use and land cover 

changes, for example in developing countries, major cities like Addis Ababa, land use change is 

so frequent from cleaner public land use (e.g., green areas and open spaces into a more polluted 

and high return commercial and residential areas). 
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Appendix 1. Supplementary figures and tables for chapter two 

 

Figure 2.A.1. Sampling Pictures of data collection 

  

 

 

Rainy season data summary in Addis Ababa (August - September 2021) 

For the rainy season, we collected PM2.5  data from four sites from August 21 to September 25, 

2021.  Three sites (Asphalt road, Mixed land use, and Open area) were selected based on 

convenience for sampling as the data were collected by a field data collector, and the airport data 

were collected to verify the predicted map of air quality with actual data on the ground, previously 

predicted map of air quality using data from round 1 and round 2 shows the air quality is healthy 

at the airport compound in Addis Ababa, against the expectation where transportation areas are 

supposed to be polluted. What we could learn from the data we collected during the rainy season 
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is that the airport compound has a lower pollution level (PM2.5 is the lowest when compared with 

the other three land use types visited during the rainy season). This might be because the airport 

area is well developed, where we could find clear asphalt roads, and most of the other space is an 

open area with green plants coverage, mostly grasses, or the other reason might be  the main 

pollutant of concern around airports is 𝑁𝑜2 or  CO, as a study by (Schlenker & Walker, 2016) 

found that airplanes raise the level of CO (carbon monoxide). PM2.5 is also of concern since 

particulate matter from jet exhausts is all in a fine fraction which depends on the amount of time 

planes spend idling on the tarmac. A further explanation might be the case that we collected the 

air quality data outside where the airplanes land but inside the airport compound, where most 

travelers use the place as a meeting compound and car parking. 

When we look at the air quality level in Addis Ababa by the time of the day for the rainy season 

(for August 21 to September 25, 2021), the data shows that air pollution levels are highest during 

morning rush hours (6:00 to 8:59) and evenings (from 18:30 to 23:01) figure 1 in this Appendix. 

This suggests that the variation in air quality levels in a day-by-time in Addis Ababa comes from 

transportation.  

Emissions from cars or emissions from morning activities at home need to be verified by 

measuring air pollution indoors. When we look at the air quality in Addis Ababa by the time of 

the rainy season from the four sites selected for sampling, Friday shows the most polluted air, 

followed by Saturday, and the lowest pollution level is observed on Thursday. 
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Figure 2.A.2. Rainy season PM2.5 data 
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Table 2.A.1. PM2.5 by site 

i) Asphalt road sites (AR) 

Site ID 
Land 

use 
    Mean      Min Median 

Observation 

in Minutes 
      SD      Max 

2 AR 50.61 13.56 47.84 120 25.11 113.11 

5 AR 37.91 11.57 26.64 120 31.52 152.98 

7 AR 63.77 12.87 47.85 120 63.28 332.91 

11 AR 44.69 16.83 40.77 120 18.66 106.12 

16 AR 39.76 12.21 32.19 120 27.90 136.60 

19 AR 46.80 10.29 30.62 120 42.62 177.31 

20 AR 52.10 10.07 28.07 120 68.61 264.04 

21 AR 36.72 8.03 33.98 120 17.00 83.88 

26 AR 38.57 12.39 35.81 120 17.79 122.56 

27 AR 28.17 6.98 27.50 120 12.73 59.12 

29 AR 32.51 7.25 29.94 120 14.92 65.27 

30 AR 32.97 8.82 27.61 120 17.66 83.45 

31 AR 39.54 15.13 38.00 120 18.05 106.34 

32 AR 30.39 13.27 29.12 120 11.80 69.45 

36 AR 60.04 8.40 48.25 120 54.51 265.54 

38 AR 32.56 12.58 26.91 120 17.42 84.22 

39 AR 48.01 18.15 45.12 119 19.17 159.02 

40 AR 37.97 12.22 39.34 119 12.17 73.01 

41 AR 43.27 13.92 30.91 120 30.76 128.44 

49 AR 60.55 9.03 48.63 119 37.53 165.67 

52 AR 47.18 17.48 37.24 120 36.01 222.40 

54 AR 31.72 10.34 28.54 120 15.33 88.31 

55 AR 28.82 7.84 25.33 120 15.99 73.01 

62 AR 68.73 0.00 58.67 853 41.91 258.07 

63 AR 41.98 11.96 38.33 119 22.14 92.46 

69 AR 31.21 11.80 28.36 120 12.12 77.72 

Total   47.54 0.00 36.89 3,849 36.38 332.91 
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ii) Mixed land-use sites(ML) 

Site ID 
Land 

use 

    

Mean 
     Min Median 

Observation 

in Minutes 
      SD      Max 

1 ML 33.53 8.47 28.54 120 21.83 81.50 

3 ML 23.64 8.12 22.29 120 11.52 56.22 

4 ML 24.90 7.84 24.20 120 10.82 68.00 

6 ML 31.43 9.90 22.72 120 27.29 106.78 

8 ML 39.87 8.26 26.96 120 34.99 123.73 

12 ML 31.95 9.26 23.64 120 30.50 143.97 

13 ML 29.42 7.40 25.95 120 18.15 81.74 

15 ML 33.20 8.33 24.57 117 24.13 105.96 

23 ML 32.71 11.84 32.41 120 15.24 80.34 

24 ML 27.03 10.54 23.40 120 12.52 75.48 

25 ML 28.27 12.40 26.31 120 13.06 122.10 

33 ML 27.13 10.96 26.07 120 8.92 52.60 

37 ML 35.03 12.57 26.68 120 22.47 127.89 

42 ML 43.14 11.64 30.35 120 36.27 170.31 

43 ML 27.50 7.61 24.10 120 12.50 64.79 

44 ML 22.45 8.70 20.97 120 11.78 53.71 

45 ML 27.76 10.85 24.07 120 12.00 76.04 

47 ML 33.16 11.31 27.33 120 17.76 96.48 

53 ML 24.31 8.65 23.30 120 8.89 43.87 

59 ML 34.68 9.27 25.52 120 25.07 140.21 

61 ML 61.81 5.32 50.49 833 42.16 261.99 

68 ML 26.58 9.28 23.53 120 15.08 69.29 

72 ML 33.57 8.25 24.43 120 29.23 126.13 

Total   38.02 5.32 29.13 3,470 30.85 261.99 

 

 

 

 

 

 

 

 



 

130 
 

 

 

 

iii) Open area sites(OA) 

 

Site ID 
Land 

use 

    

Mean 
     Min Median 

Observation 

in Minutes 
      SD      Max 

9 OA 30.91 10.62 26.19 120 16.58 79.94 

10 OA 26.33 10.75 24.11 120 10.40 52.32 

14 OA 26.66 6.82 24.76 120 16.49 87.20 

17 OA 23.38 7.63 22.36 120 12.68 89.29 

18 OA 20.31 9.17 13.14 120 10.86 41.01 

22 OA 21.84 6.61 19.74 120 12.45 50.71 

28 OA 26.01 9.23 19.81 120 13.31 81.63 

34 OA 26.77 12.83 28.68 119 7.92 50.00 

35 OA 35.29 6.97 28.03 120 24.32 89.09 

46 OA 30.21 9.76 31.91 120 11.12 54.90 

48 OA 31.77 11.80 25.58 120 17.28 83.42 

50 OA 47.04 9.64 32.97 120 40.21 173.43 

51 OA 34.63 11.28 32.91 120 17.46 93.17 

56 OA 30.14 9.34 28.05 120 14.96 84.78 

57 OA 20.82 9.64 21.64 120 6.45 37.69 

58 OA 27.45 9.41 23.98 120 19.27 78.41 

60 OA 61.93 9.16 53.76 851 47.07 313.27 

64 OA 41.67 11.63 34.73 120 23.53 86.72 

65 OA 49.00 11.50 28.63 120 55.95 221.18 

66 OA 52.15 9.30 25.60 120 66.09 299.66 

67 OA 22.44 9.86 22.43 119 7.60 38.11 

70 OA 25.32 9.11 21.24 120 11.68 50.30 

71 OA 40.97 10.02 23.07 120 59.51 410.98 

Total   38.86 6.61 27.49 3,489 36.66 410.98 
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Table 2.A.2. Spatial Statistics of PM2.5 for each route on round one and Round Two data collection period 

 

Round 

(Route) 
Period N days 

Observati

on in 

minutes 

sites per 

day 

Spatial 

Mean 

Spatial 

Median 
Min  Max 

Rang

e 
SD 

R-1(1) 
Feb, 

18-Feb24,28 

8 (two 

rounds) 
2160 18 31.55 22.95 

8.61 site 

14 

164.72 site 

71 

156.1

1 

26.01

8 

R-1(2) 
Feb  

29-March,8 

8 (two 

rounds) 
2160 18 45.01 38.39 

10.42 site 

44 

215.12 site 

66 
204.6 27.58 

R-1(3) 
March 

 9,11,13,14 
4(one round) 1080 18 40.8 31.64 

23.94 site 

43 

207.15 site 

7 
183.2 27.8 

R-1(4) 
 March 

 15,17,18,19 
4(one round) 1080 18 36.44 26.15 

11.29 site 

60 

231.04 site 

20 

219.7

4 
34.55 

R-2(1) 
Oct 

17,19,20,21,22,24 

6(One 

round) 
1077 12 29.25 23.68 

7.57 site 

22 
190.84 

183.2

7 
18.05 

R-2(2) 

Oct 

25,27,28,29,30, and 

Nov 1 

6(One 

round) 
1080 12 18.79 15.69 

7.63 site 

17 
122.1 

114.4

7 
10.1 
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Table 2.A.3. Leave one out cross-validation results across buffer (LOOCV) 

LOOCV 

  100m 200m 300m 400m 500m 

Root Mean Squared 

Errors 
26.57 26.63 26.63 26.63 26.59 

Mean Absolute Errors 16.212 16.29 16.26 16.23 16.24 

Pseudo-R2 0.39 0.39 0.39 0.39 0.39 

 

Table 2.A.4. US-EPA air quality and implied risk categories for PM2.5 

  

AQI 

Category/implied 

risk 

PM2.5 

Health recommendation 

  Good 0-12 Air quality is satisfactory and possesses little or 

no risk 

  Moderate 12.1-35.4 

Sensitive individuals should avoid outdoor 

activity as they may experience respiratory 

systems 

  
Unhealthy for 

sensitive people 
35.5-55.4 

The general public and sensitive individuals in 

particular, are at risk of experiencing irritation 

and respiratory problems. 

  Unhealthy  55.5-150.4 

Increased likelihood of adverse effects and 

aggravation to the heart and lungs among the 

general public. 

  Very Unhealthy 
150.5-

250.4 

The general public will be noticeably affected. 

Sensitive groups should restrict outdoor 

activities. 
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Table 2.A.5 (a). Land use regression results using distance land use variables. 

 

  (1) (2) 

VARIABLES PM25 PM25calib 

Rain  0.022 0.021 

 (0.559) (0.519) 

Lag rain -2.341*** -2.172*** 

 (0.777) (0.721) 

Wind speed  -1.430** -1.327** 

 (0.615) (0.570) 

Humidity 1.892*** 1.097** 

 (0.591) (0.548) 

Temperature 0.184 0.170 

 (0.241) (0.224) 

River 8.389 7.783 

 (29.742) (27.597) 

High-density mixed 

residence 151.453 140.528 

 (145.311) (134.830) 

Waste disposal -8,370.277 -7,766.529 

 (5,584.667) (5,181.844) 

Bus terminal 767.245 711.903 

 (1,499.117) (1,390.986) 

Manufacturing 2,397.562*** 2,224.626*** 

 (806.061) (747.920) 

Forest 715.892 664.254 

 (1,656.391) (1,536.916) 

Festival -357.289 -331.517 

 (267.102) (247.836) 

Embassy -601.211* -557.846* 

 (309.889) (287.537) 

Intracity bus terminal 1,349.954** 1,252.582** 

 (656.333) (608.992) 

Christian cemetery 480.818*** 446.137*** 

 (125.483) (116.432) 

Urban Agric -11.926 -11.065 

 (47.762) (44.317) 

Federal bureau 79.959 74.192 

 (125.552) (116.496) 

Woreda admin -31.104 -28.861 

 (58.813) (54.571) 

Primary roads 2.222*** 2.062*** 

 (0.585) (0.543) 

Secondary roads 2.993 2.777 
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 (5.148) (4.777) 

Tertiary roads 8.559** 7.942** 

 (3.418) (3.171) 

Footway 542.759** 503.610** 

 (224.672) (208.466) 

North 10.800*** 10.021*** 

 (3.232) (2.999) 

South 6.450 5.984 

 (4.091) (3.796) 

West 3.791 3.517 

 (2.881) (2.673) 

Late morning -39.923*** -37.043*** 

 (4.565) (4.236) 

Early afternoon -44.182*** -40.995*** 

 (4.474) (4.152) 

Late afternoon -41.106*** -38.141*** 

 (4.733) (4.391) 

Evening 0.990 0.918 

 (5.623) (5.218) 

Monday 3.521 3.267 

 (4.037) (3.746) 

Tuesday -6.054 -5.617 

 (4.089) (3.794) 

Wednesday -3.862 -3.584 

 (4.311) (4.000) 

Thursday -7.288 -6.762 

 (4.469) (4.147) 

Saturday -0.482 -0.448 

 (5.097) (4.729) 

Sunday -7.151* -6.635* 

 (3.765) (3.493) 

Latitude 94.612** 87.788** 

 (46.629) (43.266) 

Longitude 62.139 57.657 

 (50.468) (46.828) 

Constant -3,211.017 -2,974.003 

 (2,121.891) (1,968.839) 

Observations 11,099 11,099 

R-squared 0.399 0.382 

      Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2.A.5 (b) LUR full sample  

  (100m) (200m) (300m) (400m) (500m) 

VARIABLES PM25calib PM25calib PM25calib PM25calib PM25calib 

Rain 0.250 0.212 0.184 0.179 0.176 

 (0.497) (0.503) (0.494) (0.490) (0.485) 

Lag rain -2.384*** -2.337*** -2.258*** -2.244*** -2.22*3** 

 (0.769) (0.782) (0.789) (0.796) (0.797) 

Wind speed -1.132** -1.286** -1.306** -1.312** -1.282** 

 (0.564) (0.581) (0.588) (0.594) (0.595) 

Humidity 0.619 0.778 0.727 0.678 0.637 

 (0.562) (0.579) (0.597) (0.600) (0.590) 

Temperature 0.194 0.170 0.162 0.168 0.164 

 (0.219) (0.218) (0.212) (0.209) (0.206) 

High-density 

mixed 

residence 0.130 0.027 0.003 -0.003 -0.005 

 (0.082) (0.028) (0.014) (0.010) (0.007) 

River buffer 0.302 0.053 0.056 0.046 0.049 

 (0.221) (0.073) (0.046) (0.035) (0.030) 

Road 

network 0.563** 0.163 0.106 0.076 0.088* 

 (0.255) (0.105) (0.086) (0.064) (0.045) 

Open area 0.006 0.019 0.014 0.001 0.001 

 (0.103) (0.042) (0.026) (0.019) (0.015) 

Parking land 

use -0.064 0.050 0.112* 0.096* 0.063 

 (0.107) (0.052) (0.056) (0.051) (0.038) 

Commercial 

area 0.203** 0.051* 0.014 0.004 0.002 

 (0.093) (0.028) (0.019) (0.014) (0.010) 

Public 

facility  -0.360*** -0.051 -0.016 -0.007 -0.002 

 (0.126) (0.031) (0.016) (0.012) (0.008) 

Asphalt roads 5.343 1.594 0.599 0.229 -0.049 

 (3.347) (1.439) (0.805) (0.578) (0.405) 

Unpaved 

roads 5.615 1.418 0.692 0.146 0.070 

 (3.54) (1.520) (0.822) (0.616) (0.439) 

North 10.833*** 10.496*** 10.302*** 10.175*** 10.221*** 

 (3.418) (3.431) (3.490) (3.532) (3.552) 

South 4.855 4.419 4.383 4.458 4.651 

 (3.644) (3.665) (3.693) (3.724) (3.770) 

West 3.174 2.705 2.556 2.595 2.626 

 (2.805) (2.823) (2.884) (2.925) (2.985) 
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Late morning -35.280*** -35.302*** -35.618*** -35.937*** -35.939*** 

 (4.095) (4.159) (4.161) (4.187) (4.217) 

Early 

afternoon -40.316*** -40.385*** -40.608*** -40.925*** -40.884*** 

 (4.316) (4.409) (4.401) (4.410) (4.424) 

Late 

afternoon -36.338*** -36.285*** -36.594*** -36.940*** -37.063*** 

 (4.350) (4.417) (4.438) (4.462) (4.502) 

      

Evening 3.183 4.411 4.274 3.918 3.746 

 (5.150) (4.910) (4.891) (4.961) (5.053) 

Monday 3.496 3.399 3.059 2.965 2.761 

 (3.779) (3.916) (3.962) (3.978) (3.970) 

      

Tuesday -6.247 -6.511 -6.773* -6.857* -6.86* 

 (3.881) (3.913) (3.933) (3.948) (3.96) 

      

Wednesday -4.537 -4.705 -4.680 -4.585 -4.681 

 (4.149) (4.198) (4.243) (4.265) (4.266) 

      

Thursday -7.586* -7.239 -7.050 -7.003 -7.042 

 (4.381) (4.546) (4.637) (4.671) (4.668) 

      

Saturday 0.084 -0.1206 -0.394 -0.487 -0.542 

 (4.958) (5.036) (5.042) (5.045) (5.039) 

Sunday -5.885 -5.934 -5.918 -5.925 -5.935 

 (3.634) (3.624) (3.663) (3.680) (3.697) 

Latitude 185.920*** 157.163*** 139.192*** 138.284*** 129.351*** 

 (35.170) (39.782) (44.153) (46.022) (46.296) 

Longitude 16.069 4.515 2.200 -14.050 -17.514 

 (37.207) (39.681) (39.350) (39.288) (40.601) 

Constant -2248.396 -1541.710 -1290.210 -649.979 -437.078 

 (1,501.981) (1,551.185) (1,483.131) (1,483.193) (1,514.457) 

Observations 10,537 10,537 10,537 10,537 10,537 

R-squared 0.39 0.38 0.38 0.38 0.38 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1            
          Note: PM2.5 Used here is the calibrated version of Dylos reading 
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Table 2.A.6 Land use regression (Only land use variables used) 

VARIABLES 100 200 300 400 500 

 PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 

High density mixed 

residence -6.849 -8.852 -8.238 -8.326 -11.138* 

 (4.461) (5.360) (5.379) (5.932) (6.307) 

River buffer 26.862* 17.903 22.523 30.291 31.567 

 (15.480) (21.173) (23.405) (24.083) (28.167) 

Open area -11.673** -8.058 -2.196 -0.889 -8.345 

 (5.694) (8.455) (11.858) (13.888) (15.893) 

Parking land use -37.117*** -30.830 -27.546 -7.283 -4.639 

 (11.427) (21.370) (27.492) (26.214) (28.075) 

Commercial area -15.218** -18.787*** -20.114** -14.878 -9.216 

 (5.901) (6.346) (8.166) (9.686) (11.532) 

Public facility land 

use -10.199 2.807 15.740 24.956* 29.343** 

 (10.468) (13.925) (14.193) (14.554) (14.496) 

Asphalt road 0.019*** 0.004* 0.001 -0.000 -0.000 

 (0.005) (0.002) (0.001) (0.001) (0.001) 

Latitude 364.627*** 326.817*** 287.090*** 265.862*** 247.939*** 

 (51.447) (62.514) (61.316) (59.068) (56.508) 

Longitude 227.350*** 250.616*** 243.940*** 235.969*** 231.729*** 

 (67.670) (85.688) (87.911) (88.251) (85.577) 

Constant 

-

12,060.434*** 

-

12,620.811*** 

-

12,004.292*** 

-

11,503.191*** 

-

11,174.649*** 

 (2,792.651) (3,458.645) (3,527.682) (3,550.662) (3,405.806) 

Observations 10,537 10,537 10,537 10,537 10,537 

R-squared 0.128 0.105 0.104 0.105 0.108 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2.A.7 Correlation between PM2.5 and  weather, time, and day of a week 

Variables PM2.5 

Rain 0.482 

 (0.541) 

One day lag rain -2.094** 

 (0.860) 

Wind speed -0.673 

 (0.728) 

Humidity 2.078** 

 (0.887) 

Temperature -6.891** 

 (3.335) 

Temperature squared 0.161** 

 (0.076) 

East -13.244*** 

 (4.458) 

South -5.686 

 (4.328) 

West -7.065*** 

 (2.559) 

Late morning -39.411*** 

 (3.858) 

Early afternoon -45.519*** 

 (3.871) 

Late afternoon -40.221*** 

 (4.193) 

Evening -4.271 

 (6.336) 

Tuesday -8.193** 

 (3.391) 

Wednesday -7.200** 

 (3.548) 

Thursday -10.321** 

 (4.315) 

Friday -4.936 

 (3.770) 

Saturday -2.318 

 (4.438) 

Sunday -9.848*** 

 (3.407) 

Peak hours#Asphalt 

road 0.004 

 (0.006) 

Constant 136.927*** 
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 (29.218) 

Observations 10,537 

R-squared 0.397 

 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 2.A.8. LUR in a 100m buffer and interactions 

VARIABLES PM25 PM25 PM25 

Rain 0.264 0.265 0.145 

 (0.545) (0.547) (0.542) 

One day lag rain -2.732*** -2.730*** -2.777*** 

 (0.825) (0.826) (0.823) 

Wind speed -0.818 -0.815 -0.918 

 (0.760) (0.759) (0.749) 

Humidity 1.821** 1.820** 1.873** 

 (0.740) (0.742) (0.756) 

Temperature -5.790* -5.761* -5.940* 

 (3.223) (3.256) (3.233) 

Temperature squared 0.136* 0.136* 0.140* 

 (0.073) (0.074) (0.074) 

High-density mixed 

residence 4.110 4.104 2.355 

 (2.903) (2.905) (2.550) 

River buffer 6.218 6.212 6.069 

 (7.226) (7.222) (7.168) 

Open area -4.129 -4.124 -4.347 

 (2.721) (2.722) (2.769) 

Parking land use -0.792 -0.772 -1.527 

 (4.243) (4.261) (4.310) 

Commercial area 4.778* 4.982* 4.802* 

 (2.683) (2.768) (2.808) 

Public facility land use -10.882** -10.887** -10.984** 

 (4.535) (4.539) (4.465) 

Asphalt road 0.011*** 0.011*** 0.011*** 

 (0.003) (0.003) (0.003) 

Asphalt#Peak hour -0.002 -0.002 -0.002 

 (0.008) (0.008) (0.008) 

Commercial#Peak hour  -2.827 -1.618 

  (11.072) (11.843) 

High-density #peak hour   12.044 

   (12.631) 
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East -13.620*** -13.618*** -13.069*** 

 (4.037) (4.041) (4.023) 

South -6.814 -6.817 -6.737 

 (4.337) (4.337) (4.325) 

West -7.513*** -7.529*** -7.345*** 

 (2.520) (2.529) (2.520) 

Late Morning -37.341*** -37.404*** -35.459*** 

 (3.887) (4.030) (4.209) 

Early Afternoon -43.551*** -43.608*** -41.843*** 

 (3.822) (3.951) (4.219) 

Late Afternoon -39.004*** -39.059*** -37.347*** 

 (4.136) (4.268) (4.435) 

Evening -3.009 -3.000 -2.180 

 (6.498) (6.491) (6.833) 

Tuesday -10.892*** -10.887*** -10.547*** 

 (3.111) (3.116) (2.954) 

Wednesday -9.153*** -9.152*** -8.639*** 

 (3.281) (3.283) (3.077) 

Thursday -11.857*** -11.790*** -11.454*** 

 (4.205) (4.304) (4.152) 

Friday -4.104 -4.089 -3.911 

 (3.912) (3.920) (3.818) 

Saturday -4.296 -4.291 -3.971 

 (4.278) (4.283) (4.094) 

Sunday -10.655*** -10.648*** -10.245*** 

 (3.197) (3.206) (2.949) 

Latitude 189.350*** 189.366*** 197.135*** 

 (37.885) (37.890) (37.904) 

Longitude -9.604 -9.368 -9.996 

 (39.166) (39.379) (39.298) 

Constant -1,209.079 -1,218.667 -1,264.310 

 (1,557.918) (1,566.035) (1,562.350) 

Observations 10,537 10,537 10,537 

R-squared 0.410 0.410 0.411 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2.A.9. Pollution by area (using US-EPA air quality level by time of day) 

  Health impact  

Range of 

PM2.5 

Early 

morning 

Late 

morning 

Early 

afternoon 

Late 

afternoon Evening 

  Good 0-12 0 102.78 145.49 128.78 0 

  Moderate 12.1-35.4 8.8 309.02 358.59 325.92 4.7 

  
Unhealthy for 

sensitive people 
35.5-55.4 

132.38 107.25 14.97 64.34 122.3 

  Unhealthy  55.5-150.4 377.877 0 0 0 391.99 

  Very Unhealthy 150.5-250.4 0 0 0 0 0 

 

Table 2.A.10 Major land use types in Addis Ababa 

Land use type Area in Square km 

Commercial 9.69 

Public facility land use 15.77 

Parking Land use 10.69 

Open area 79.97 

Road network 34.59 

River buffer 38.68 

High-density mixed residence 24.27 

Existing manufacturing and storage 10.73 

Proposed Manufacturing & Storage 20.68 

Proposed Mixed Residence 34.48 

Multifunctional forest 60.7 

Existing mixed residence 165.38 

Other/unclassified 15.04 

Total 520.67 
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Figure 2.A.3 Map of predicted PM2.5 by time of day for Addis Ababa 

A. Peak hours 
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B. Off peak hours 

 

 

Note: Pollution levels were categorized into six ranges to illustrate spatial and temporal variations. Notably, the 

maps for peak and off-peak hours showed a significant difference in their range, prompting me to create separate 

maps for each time period. It's important to observe that while the colors in Figures A and B are identical, they 

correspond to distinct air quality levels. For instance, the red hue in Figure A signifies a different air quality 

level compared to its representation in Figure B. 
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Figure 2.A.4 Map of predicted PM2.5 by wind direction in Addis Ababa 
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Note: The maps based on wind direction are averages of the data collection period. That is we do not have a 

map based on wind direction for a specific time period in a day. It's important to observe that the same colors in 

the two sub-figures are identical, they correspond to distinct air quality levels. For instance, the red hue in the 

first Figure signifies a different air quality level compared to its representation in the second Figure. 
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2.A.5 Distribution of land use types in Addis Ababa 
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Appendix 2 Supplementary tables and figures for chapter three 

 

i. Checking the reliability of the Portable device (Dylos 1700) 

Validation of low-cost devices against high-quality equipment has been done in both field and 

laboratory settings. An example of the device we used is a study by Steinle et al. (2015), where 

the performance of Dylos 1700 was validated in comparison with equivalent instruments (TEOM-

FDMS) at two national monitoring network sites in the UK (𝑅2 = 0.9 at a rural background site, 

𝑅2  = 0.7 at an urban background site).  

For this device, the recorded data has two main components: date/time and particle number counts. 

The monitor counts particles in the form of two components (particles >0.5𝞵m per cubic fit/100, 

which includes both small particles and large) and (particle size > 2.5 𝞵m for large/coarse particles). 

By subtracting the coarse/large particles from the overall number counted, we can get an estimate 

for the total number of particles less than 2.5 𝞵m (Han et al., 2017, Dacuntoa et al., 2015); this 

calculation, however, does not include particles with diameters less than 0.5𝞵m which  contributes 

less to  mass concentration Dacuntoa et al (2015). 

In the validation experiment, the portable device (Dylos 1700) is placed as close as possible to the 

fixed air quality monitor location in Addis Ababa in two land use types, one at an asphalt road in 

front of the US Embassy which is nearly 50 meters away from the fixed monitor in Addis Ababa 

and one at an open area site which is nearly 360 meters away from the fixed monitor. The fixed 

air quality monitor uses a virtual impactor to separate particles by size and uses plastic scintillation 

as a detector, while the Portable device (Dylos 1700) uses light scattering technology to detect the 

particles. 

Placing the two devices close to each other will help to correct the slopes and offset the intercept 

values of the portable device to improve the accuracy of results Munir et al.,(2019). It is 
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recommended that the devices be collocated for several days or weeks in academic research, 

although there is no exact number of validity experiment days specified. Kumar et al. (2017)  

pointed out that before performing any PM monitoring task, the sensors should be properly 

calibrated since the long-term (more than a week) performance of the low-cost sensors remains 

unknown since environmental factors such as temperature and relative humidity might influence 

PM sensors. Furthermore, sensors' response might change due to “day of use” and dust 

accumulation Kumar et al., (2017).  In this pilot study, we placed 326 minutes at an asphalt road 

site and 104 minutes at an open area site in 2020 and 2021. We also included humidity in the 

validation experiment to check if these variables influence the performance of the portable device. 

In checking the validity of the device, the Portable (Dylos1700) device measurements are 

regressed against fixed device measurements, where the data from the fixed air quality monitor is 

taken as a dependent variable while the readings from the portable are taken as an independent(X 

value) following Munir et al., (2019). As has been shown in 3.3 of the main text, the calibration 

results from the open area site give us a better estimate of the fixed monitor data, and we used 

those calibration results to adjust the portable reading to the fixed monitor reading. 
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Table 3.A.1: Discrepancy and matches by land use and wind direction. 

 

Dylos Raw (i) 

Panel A   Panel B 

 Land 

use 

Dylos 

Above 

moderate 

air quality 

US above 

moderate 

air quality Matched   

 Wind 

direction 

Dylos 

Above 

moderate 

air quality 

US above 

moderate 

air quality Matched 

Airport 67 19 4  East 64 52 3 

Asphalt 

road 52 21 30  North 47 29 51 

Mixed 

land 38 20 32  South 74 28 9 

Open 

area 37 22 34   West 27 4 37 

 

Dylos calibrated(ii)  

Panel A  Panel B 

 Land 

use 

Dylos 

Above 

moderate 

air quality 

US Above 

moderate 

air quality Matched   

 Wind 

direction 

Dylos 

Above 

moderate air 

quality 

US Above 

moderate 

air quality matched 

Airport 60 19 4   East 61 52 3 

Asphalt 

road 47 21 31   North 42 29 50 

Mixed 

land 32 20 32   South 67 28 10 

Open 

area 33 22 33   West 23 4 37 

 

 

Table 3.A.2: Overall Discrepancy and matches after calibrating the portable device (in %) 

  

Panel C 

   Dylos 

calibrated↓   

US| Dylos 1700 Good Moderate 

Unhealthy for 

sensitive people Unhealthy 

Very 

unhealthy and 

a hazard 

US→    Good 2 5 1 0 0 

  

Moderate 4 44 14 9 1 

Unhealthy for 

sensitive people 0 4 7 5 1 

Unhealthy 0 0 1 0 0 
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Very unhealthy 

and a hazard 0 1 0 0 0 

 

Table 3.A.3. Linear difference estimation results using distance land use variables. 

  (1) (2) (3) 

VARIABLES 

Difference 

PM2.5 (No 

calibration 

PM2.5 US 

Embassy 

Difference 

PM2.5 

(Calibrated) 

Rain  0.356 0.328 0.353 

 (0.652) (0.395) (0.617) 

Lag rain 0.837 -1.253*** 0.679 

 (0.722) (0.332) (0.672) 

Wind speed  0.154 -1.259*** 0.053 

 (0.468) (0.397) (0.435) 

Humidity -0.754 1.197*** 0.050 

 (0.494) (0.376) (0.461) 

Temperature 0.999*** 1.039*** 1.006*** 

 (0.193) (0.232) (0.184) 

River -14.096  -12.575 

 (38.797)  (36.590) 

High-density mixed residence -45.373  -35.266 

 (165.821)  (154.783) 

Waste disposal 14,726.369**  13,201.634* 

 (7,215.208)  (6,738.198) 

Bus terminal -2,853.102*  -2,730.890* 

 (1,493.755)  (1,399.719) 

Manufacturing 23.618  57.768 

 (1,043.834)  (973.266) 

Forest 94.786  162.825 

 (1,758.352)  (1,665.629) 

Festival 406.250  388.967 

 (350.177)  (340.333) 

Embassy 354.930  317.537 

 (384.928)  (362.977) 

Intracity bus terminal -121.291  -85.906 

 (670.171)  (623.877) 

Christian cemetery -412.654*  -369.147* 

 (227.474)  (221.195) 

Urban Agric -13.199  -13.260 

 (67.599)  (63.492) 

Federal bureau 36.385  46.322 

 (170.657)  (163.225) 

Woreda admin 36.904  32.881 

 (45.339)  (42.205) 

Primary roads -2.353***  -2.204*** 
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 (0.555)  (0.517) 

Secondary roads -0.867  -0.820 

 (4.312)  (4.008) 

Tertiary roads -7.327  -6.574 

 (5.470)  (5.137) 

Footway -420.459***  -383.602*** 

 (150.810)  (139.689) 

North -7.581* 3.896 -6.772* 

 (3.840) (2.676) (3.687) 

South -5.387 0.498 -4.971 

 (3.434) (1.855) (3.180) 

West -5.113 -2.121 -4.897 

 (3.744) (2.207) (3.582) 

Late morning 26.075*** -14.382*** 23.188*** 

 (4.187) (2.506) (3.919) 

Early afternoon 26.990*** -17.145*** 23.828*** 

 (3.396) (2.758) (3.155) 

Late afternoon 25.776*** -14.322*** 22.879*** 

 (4.049) (2.898) (3.791) 

Evening 2.411 5.985 2.597 

 (5.502) (4.361) (5.257) 

Monday -2.502 2.106 -2.198 

 (4.268) (2.696) (4.056) 

Tuesday 2.971 -2.070 2.573 

 (3.535) (2.046) (3.298) 

Wednesday -0.923 -4.243 -1.185 

 (3.120) (2.879) (2.927) 

Thursday 4.004 -3.555 3.472 

 (2.989) (3.178) (2.805) 

Saturday -4.113 -5.301 -4.192 

 (3.933) (3.818) (3.732) 

Sunday 2.161 -4.641 1.658 

 (3.367) (2.839) (3.206) 

Latitude difference 86.255**  81.555** 

 (42.670)  (40.248) 

Longitude difference -180.765**  -170.941** 

 (78.260)  (73.516) 

Constant -43.698*** 11.204 -45.261*** 

 (9.195) (9.781) (8.746) 

Observations 11,024 11,143 11,024 

R-squared 0.299 0.266 0.266 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Note: The dependent variable in the first column is the difference between the US Embassy PM2.5 reading and 

Dylos reading. The dependent variable in the second column is the US Embassy reading. The dependent variable 
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in the third column is the difference between the US Embassy PM2.5 reading and the Calibrated PM2.5 reading. 

Land use explanatory variables are / distance in meters for ease of description. 

 

Table 3.A.4. WHO interim target levels and 24 hours mean concentration. 

Interim 

target level 

24 hours 

mean 

pm2.5 

(µ𝑚3 

Annual 

mean 

pm2.5 

(µ𝑚3 

The basis for the selected level 

Interim 

target I 

(IT-1) 

75 35 These levels are associated with about a 15% higher long-term 

mortality risk relative to the AQG level. 

 

Interim 

target-II 

(IT-2) 

50 25 In addition to other health benefits, these levels lower the risk 

of premature mortality by approximately 6% [2–11%] relative 

to the IT-1 level. 

 

Interim 

target-III 

 

(IT-3) 

37.5 15 In addition to other health benefits, these levels reduce the 

mortality risk by approximately 6% [2-11%] relative to the -IT-

2 level. 

 

Air quality 

Guideline 

(AQG) 

 

 

25 10 These are the lowest levels at which total cardiopulmonary and 

lung cancer mortality have been shown to increase with more 

than 95% confidence in response to long-term exposure to 

PM2.5.  
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Table 3.A.5 (a) Multinomial logit model estimation results using distance land use variables. 

  MNL (Base outcome j=1) 

VARIABLES P(y=2) P(y=3) P(y=3) 

Rain 0.130*** 1.159*** 0.303*** 

 (0.021) (0.105) (0.031) 

Lag rain -0.083*** 0.289*** -0.507*** 

 (0.027) (0.070) (0.039) 

Wind speed  -0.274*** -0.554*** -0.316*** 

 (0.021) (0.065) (0.029) 

Humidity 0.103*** -0.415*** 0.125*** 

 (0.024) (0.103) (0.034) 

Temperature -0.019 0.197*** 0.113*** 

 (0.015) (0.046) (0.021) 

River 4.287*** -22.574*** 7.812*** 

 (1.629) (7.342) (1.694) 

High-density residence -32.199*** -1.860 14.098* 

 (6.313) (19.069) (8.334) 

Waste treatment 348.220 -15,046.978*** -6,342.145*** 

 (396.918) (2,376.657) (983.763) 

Bus terminal 757.891*** 164.981 230.573** 

 (68.583) (295.594) (109.261) 

Manufacturing 62.049 476.624*** 741.330*** 

 (70.062) (154.433) (83.507) 

Forest 202.826* 1,002.917*** 886.898*** 

 (106.056) (265.858) (142.687) 

Festival site -197.090*** -125.731 57.897** 

 (43.246) (90.531) (23.724) 

Embassy -92.726*** -230.964*** -94.601*** 

 (16.658) (60.434) (22.131) 

Bus terminal -110.238*** -162.278 -91.079 

 (38.588) (199.134) (59.165) 

Christian cemetery 12.450 91.098*** -11.868 

 (15.497) (21.751) (17.874) 

Urban agriculture -8.392*** 9.683* -9.524*** 

 (2.840) (5.768) (3.477) 

Federal bureau 25.229*** 165.689*** 61.256*** 

 (8.412) (21.995) (10.131) 

Woreda admin -19.821*** 4.024 -80.119*** 

 (4.554) (9.045) (17.608) 

Primary roads 0.354*** -0.036 0.191*** 
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 (0.031) (0.084) (0.044) 

Secondary roads -0.216 -21.565** -0.090 

 (0.149) (10.273) (0.292) 

Tertiary roads -0.310 0.030 1.768*** 

 (0.459) (0.731) (0.535) 

Footway 74.193*** -40.288 4.217 

 (10.341) (50.395) (26.379) 

North 0.036 0.459 0.264 

 (0.174) (0.291) (0.187) 

South 0.544*** 1.187*** -0.058 

 (0.190) (0.444) (0.221) 

West -0.322* -2.383*** -2.214*** 

 (0.181) (0.350) (0.218) 

Late morning -2.802*** -2.412*** -3.547*** 

 (0.120) (0.357) (0.152) 

Early afternoon -3.276*** -3.065*** -4.482*** 

 (0.131) (0.375) (0.173) 

Late afternoon -2.769*** -9.133*** -5.078*** 

 (0.125) (1.147) (0.225) 

Evening -0.440*** 0.039 -0.302 

 (0.158) (0.444) (0.189) 

Monday 0.169 -1.108*** 0.600*** 

 (0.122) (0.254) (0.144) 

Tuesday 0.066 -1.265*** -0.238 

 (0.117) (0.283) (0.154) 

Wednesday -0.019 -8.909*** -1.074*** 

 (0.112) (0.872) (0.154) 

Thursday -0.773*** -3.525*** -1.425*** 

 (0.130) (0.390) (0.174) 

Saturday -0.132 -21.755 -1.957*** 

 (0.108) (570.878) (0.166) 

Sunday -0.546*** -4.155*** -1.605*** 

 (0.113) (0.438) (0.171) 

Latitude difference -15.170*** 18.024*** -12.527*** 

 (1.800) (6.211) (2.591) 

Longitude difference 23.191*** 97.735*** 6.036 

 (3.336) (11.020) (4.899) 

Constant 1.755*** 1.240 0.663 

 (0.548) (1.893) (0.759) 

Observations 11,024 11,024 11,024 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Note: The base outcome is j=1(both monitors record WHO interim target III is met), P(y=2){US 

Embassy<37.5 and Portable monitor≥37.5}, P(y=3){US Embassy≥37.5 and Portable monitor <37.5}, 

P(y=4){US Embassy≥37.5 and Portable monitor ≥37.5}. 

 

(b) Multinomial logit model estimation results with three categories 

  MNL (base outcome=1) 

VARIABLES P(y=2) P(y=3) 

Rain  0.09*** 0.78*** 

 (0.01) (0.13) 

Lag rain 0.14*** 0.01 

 (0.02) (0.11) 

Wind speed  -0.19*** -0.47*** 

 (0.01) (0.07) 

Humidity 0.0004 -0.37*** 

 (0.02) (0.13) 

Temperature -0.03** 0.28*** 

 (0.01) (0.06) 

High-density mixed residence  0.02*** 0.01 

 (0.03) (0.01) 

River buffer 0.05*** -0.30*** 

 (0.01) (0.05) 

Road network -0.01 -0.03 

 (0.01) (0.03) 

Open area -0.02*** -0.03** 

 (0.01) (0.01) 

Parking land use 0.06*** 0.12** 

 (0.01) (0.06) 

Commercial area 0.03*** -0.16*** 

 (0.01) (0.03) 

Public facility -0.02*** -0.01 

 (0.01) (0.02) 

Asphalt roads 1.25*** -0.98** 

 (0.18) (0.50) 

Unpaved roads 0.52*** -0.01*** 

 (0.14) (0.6) 

North 0.39*** -0.73** 

 (0.14) (0.30) 

South 0.76*** -0.29 

 (0.15) (0.40) 

West 0.34** -4.13*** 

 (0.15) (0.69) 

Late morning -1.25*** -2.67*** 

 (0.09) (0.37) 

Early afternoon -2.04*** -3.19*** 
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 (0.11) (0.41) 

Late afternoon -1.38*** -7.61*** 

 (0.10) (1.11) 

Evening -0.28** 0.13 

 (0.11) (0.46) 

Monday -0.25** -2.09*** 

 (0.11) (0.29) 

Tuesday 0.09 -1.08*** 

 (0.10) (0.32) 

Wednesday 0.16 -5.77*** 

 (0.10) (0.80) 

Thursday -0.41*** -1.94*** 

 (0.11) (0.37) 

Saturday 0.58*** -19.02 

 (0.10) (354.24) 

Sunday -0.15 -4.52*** 

 (0.10) (0.58) 

Latitude difference -13.80*** -18.85*** 

 (1.51) (4.90) 

Longitude difference 23.48*** 25.80*** 

 (2.28) (9.03) 

Constant 0.31 2.12 

 (0.49) (2.68) 

Observations 10,462 10,462 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Note: The base outcome is j=1(both monitors record WHO interim target III is met or unmet), P(y=2) {US 

Embassy<37.5 and Portable monitor≥37.5}, P(y=3) {US Embassy≥37.5 and Portable monitor <37.5} 
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Table 3.A.6 Categories of the dependent variable in the multinomial logit model 

Scenario (if 

we use the 

Multinomial 

model), y=j 

US 

Embassy 

Dylos 

1700 

Information difference Frequency Percent 

j=1 <37.5 <37.5 No 

[both interim record target is 

met] 

6265 55.85 

j=2 <37.5 ≥37.5 Yes 

[US Embassy record target is 

met, and Dylos records target is 

unmet] 

3086 27.51 

j=3 ≥37.5 <37.5 Yes 

[US Embassy record target is 

unmet, and Dylos record target 

is met] 

395 3.52 

j=4 ≥37.5 ≥37.5 No 

 [Both record target is unmet] 

1472 13.12 

Total    11,218 100 
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ii). Replicating the US embassy set up for locating a “new” fixed monitor. 

          Discrepancy  dit  is defined as, 

dit = 𝜌 + 𝛽𝑋𝑖 + 𝛾𝑊𝑡 + µ𝑇𝑡 + 𝛼0(𝐿𝑂𝑖 − 𝐿𝑂𝑈𝑆)𝛿𝑖0 + 𝛼1(𝐿𝐴𝑖 − 𝐿𝐴𝑈𝑆)𝛿𝑖1                                 (1) 

 

Where dit refers to the discrepancy for the site i at time t, 𝑋𝑖 is the site characteristics vector for 

site i, 𝑊𝑡 is the weather variables vector for time t, 𝑇𝑡 is the time of day and week vector for time 

t. LO refers to longitude, i is the site's subscript, n is the subscript for the nearest fixed monitor, 

and LA refers to latitude. The deltas are either +1 or -1 and match the signs of the terms in 

parenthesis. In other words, we are using the absolute value difference of longitude and latitude in 

the discrepancy equation to pick up the effect of location difference as we used the absolute 

difference in the regression to show the effect of moving away from the fixed site (i.e., the US 

Embassy). 

 Discrepancy squared for a given time and site is given by,  

𝑑𝑖𝑡
2=(𝜌 + 𝛽𝑋𝑖 + 𝛾𝑊𝑡 + µ𝑇𝑡 + 𝛼0(𝐿𝑂𝑖 − 𝐿𝑂𝑈𝑆 )𝛿𝑖0 + 𝛼1(𝐿𝐴𝑖 − 𝐿𝐴𝑈𝑆 )𝛿𝑖1)

2                              (2) 

 

We want to minimize the sum of expected discrepancies across sites for a relevant time. 

 

Min ∑ ∑ E(𝑑𝑖𝑡
2 )𝑡

𝑈𝑆
𝑖

𝐿𝑂𝑈𝑆

= (𝜌 + 𝛽𝑋𝑖 + 𝛾𝑊𝑡 + µ𝑇𝑡 + 𝛼0(𝐿𝑂𝑖 − 𝐿𝑂𝑈𝑆 )𝛿𝑖0 + 𝛼1(𝐿𝐴𝑖 − 𝐿𝐴𝑈𝑆 )𝛿𝑖1)
2             (3) 

 

As we move the longitude and latitude of the proposed site, we differentiate the above expression 

with respect to 𝐿𝑂𝑈𝑆 𝑎𝑛𝑑 𝐿𝐴𝑈𝑆, provided there is no location switches discrepancy changes and 
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the change for a marginal change in latitude and longitude for a given time and location is given 

by the first order conditions in  equations (4) and (5) 

 

𝜕∑ ∑ E(𝑑𝑖𝑡
2 )𝑡𝑖

𝜕𝐿𝑂𝑈𝑆
=-2𝛼0∑ ∑ 𝛿𝑖0( 𝜌 + 𝛽Xi + γWt + µTt + 𝛼0(𝐿𝑂𝑖 − 𝐿𝑂𝑈𝑆)𝛿𝑖0 + 𝛼1(𝐿𝐴𝑖 − 𝐿𝐴𝑈𝑆)𝛿𝑖1)𝑡𝑖 =0 

 
𝜕𝑑𝑖𝑡

2

𝜕𝐿𝑂𝑈𝑆
=-2𝛼0∑ ∑ E(δi0dit)ti  =0                                                                                                                 (4) 

𝜕∑ ∑ E(𝑑𝑖𝑡
2 )𝑡𝑖

𝜕𝐿𝑂𝑈𝑆
=-2𝛼1∑ ∑ 𝛿𝑖1( 𝜌 + 𝛽Xi + γWt + µTt + 𝛼0(𝐿𝑂𝑖 − 𝐿𝑂𝑈𝑆)𝛿𝑖0 + 𝛼1(𝐿𝐴𝑖 − 𝐿𝐴𝑈𝑆)𝛿𝑖1)𝑡𝑖 =0 

 
𝜕𝑑𝑖𝑡

2

𝜕𝐿𝑂𝑈𝑆
=-2𝛼1∑ ∑ E(δi1ditti ) =0                                                                                               (5)                                                                                                                                                                                                                                                

Since the sampling sites were chosen at random, to find the optimal location, we take the 

expectation of the total discrepancy across all sites and relevant times, and since the derivatives 

are linear, we take expected values of the derivatives across sites and time as we want to minimize 

expected discrepancy. Hence the expected value of the derivatives across sites and times that we 

want to get the minimum (close to zero in absolute terms) is given as, 

E [
𝜕𝑑𝑖𝑡

2

𝜕𝐿𝑂𝑈𝑆
]=Min [ -2𝛼0∑ ∑ E(δi0dit)ti  ]                                                                           (6) 

E [
𝜕𝑑𝑖𝑡

2

𝜕𝐿𝐴𝑈𝑆
]=Min [-2𝛼1 ∑ ∑ E(δi1ditti )  ]                                                                           (7)                                                                                                     

 

Implementation of the method 

To find the optimal location, we take the expectation of total discrepancy across all sites and 

relevant times. We obtained the values of (γWt + µTt) at their means. For example, in a seven-day 

week period, Thursday occurs one-seventh of the time; this applies to other days of the week. 

Meanwhile, in a 16-hour day (6:00-24:00- we do not have data from the low-cost monitor for other 
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times of the day), the early morning period occupies 3 hours, so its weight is 3/16. We calculated 

the weights of other times of the day similarly to get weights.  

 The term (γWt + µTt) does not vary by site, and it is common to all sites. The weather (γ) and 

time variables (µ) coefficients are obtained from the discrepancy regression. For wind direction, 

we took the coefficients from the respective wind directions dummy from the regression, and the 

weights were calculated from the population weather data (population weather data is defined as 

the weather data for the years 2020 and 2021). We used population weather data for winds; 2.19% 

of the wind is to the north; therefore, the weight given to the north dummy is 0.0219; see Table 

3.A.8 for a summary of weights given to weather and time variables in this appendix. 

The term βXi is obtained by taking the coefficient β from the discrepancy regression, and Xi is the 

respective measure of land use for each site; hence βXi varies by site. This term captures the effect 

of land use types on the discrepancy. After obtaining all these, we weight  (𝛿𝑖0dit) and (𝛿𝑖1dit ) by 

the respective sites' sub-city population density, the weight of sub-city s is calculated as ( Ws = 

Population density at sub−city  s

Population density of the  Addis Ababa
∗ share of sub − city in total area)  and the weight for each site 

in a sub-city s is  given by  

 Wis = 
 Ws

 ni
  where  ni is the number of sites in a given sub-city; see Table 3.A.8 for weights given 

to each sub-city. The weighted sum of expected discrepancy for a marginal change in longitude 

and latitude is given in equations 8 and 9.  

The weighted sum of expected discrepancy for a marginal change in longitude  

 Wis E [
∂dit

2

∂LOUS
]=  Wis {[-2α0∑ ∑ E(δi0dit)ti ]} = -2α0∑ ∑ E(Wis δi0dit)ti                                       (8) 

       The weighted sum of expected discrepancy for a marginal change in latitude                   
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 Wis E [
∂dit

2

∂LAUS
]=  Wis {[-2α1∑ ∑ E(δi1dit)ti ]} = -2α1 ∑ ∑ E(Wisδi1dit)ti                                       (9)                      

After obtaining all the calculated values, we adjust the latitude and longitude of the proposed site 

until the two weighted first-order conditions are close to zero or until it sets the discrepancy to the 

minimum possible if the calculated  dit  is positive, it means that LOUS  and LAUS needs to be 

increased, if the calculated  dit is negative then LOUS  and LAUS Needs to be reduced. Zero 

discrepancies are impossible with finite sites as the model does not capture the entire land use 

types. We adjust longitude and latitude until the first two order conditions are close to zero or the 

gap is minimum and locate the new site at the point where it sets the discrepancy to a minimum.  

We used a trial and error to find the optimal location; we started with a reasonable guess; a location 

that  is farthest from the US embassy site since we want to reduce the bad (wrong) advice from the 

monitor (the discrepancy) and the discrepancy is affected by land use; therefore, we first took a 

location which is farthest from the US Embassy and makes the location adjustment from that point.  

The final site of the new monitor location appears on a mixed land-use site in the middle of the 

study area. The population density of the new monitor location sub-city is the second highest of 

the whole city. We used distance land use variables as a sensitivity check to the model and the 

proposed site, which minimizes the weighted sum expected cost of the discrepancy that appears in 

the asphalt road site in the same sub-city to the results of the main model.  
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Note: Suggested location of the fixed monitor from the main model is in black dot, and the suggested monitor 

location is by altering the measurement type of the land use (using distance land use variables illustrated in red 

dot). 

Source: Author`s illustration using ArcGIS Pro 

Figure 3.A.1 Suggested optimal location for a fixed site in Addis Ababa 
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Sensitivity checks 

We conducted five different sensitivity checks as a supplement to the main model; the results are 

shown in Table 3.A.7  and Figure 3.A.2.  

1. We use the mean land use of the two sites in a grid. We calculate the average land use of 

the two sites in the monitored grid in a 100-meter buffer radius. To represent the two sites 

in this exercise, we used the midpoint of the two sites, and when calculating the distance 

from the fixed monitor, We used that midpoint.  

2. For the second sensitivity check, we used locations in unmonitored grids. These grids were 

located between two consecutive monitored grids.  

3. We selected sites at a center in a 1 km grid encompassing Addis Ababa. This was chosen 

due to its ability to capture land use variation in a previously unmonitored area, providing 

additional insight into air pollution levels in the wider region. During this exercise, we 

generated sites within a 1km grid using land use types measured within a 100m radius, 

which was consistent with the methodology used in the main model.  

4. The fourth check involved changing the model specification, which altered the 

measurement type of the land use variables. As part of this sensitivity check, we used the 

distance to nearby land use types from monitoring sites in the regression and the algorithm.  

5.  The last check involved altering the weights outside the main sub-cities with higher 

population density to check the model's sensitivity to changes in population density. We 

gave weight higher than the four main sub-cities of the study area.  

Overall, the results of the entire sensitivity check were that all the sensitivity checks 

resulted in the optimal location for the fixed monitor in the four main sub-cities of the study 

area.  



 

164 
 

Table 3.A.7.  Optimal locations of sensitivity check results 

The method used to locate an 
optimal location La

ti
tu

d
e 

Lo
n

gi
tu

d
e 

Description 
of its 

location 

Distance 
from the 
current 

fixed 
monitor 

It is in the 
four main 
sub-cities 

Latitude sum 
of weighted 
discrepancy  

Longitude 
sum of 

weighted 
discrepancy 

The mean land use of the two 
sites in monitored grids is 

used  
9.03444 

 

 

38.74006 
 

High-
density 
mixed 

residence 3.7 km 

Yes (Addis 
Ketema sub-

city) 5.36 -0.03 

Locations at the center of the 
unmonitored grid are used 

9.032 
 

 

38.75006 
 

High-
density 
mixed 

residence 3.29 km 
Yes (Arada 
sub-city) -1.51 2.00 

Sites that include the whole 
of Addis Ababa in a 1km-by-
1km grid at the center are 

used 
9.0393 

 

 

38.74996 
 

High-
density 
mixed 

residence 2.59 km 
Yes(Arada 
sub-city) 0.92 1.744 

Distance from monitored sites 
to the nearest land use is 
used as the main land use 

variable to do the algorithm 
9.023 

 

 

38.744 
 

Asphalt 
road site 4.48 km 

Yes (Lideta 
sub-city) -1.37 -0.82 

We gave more weights to 
other sub-cities in the analysis 

but not the four main sub-
cities of the study area 

9.024676 
 

 

38.74106 
 

High-
density 
Mixed 

land use 4.48 km 
Yes (Lideta 
sub-city) -4.03 -0.14 

Main Model result 

 

9.024676 
 

38.74106 
 

High-
density 
Mixed 

land use 4.48 km 
Yes (Lideta 
sub-city) -1.72 -1.35 
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 Note: Location of suggested fixed monitor location from the sensitivity analysis  

Source: Author`s illustration using ArcGIS Pro 

Figure 3.A.2 Map of sensitivity checks optimal locations. 
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Note: The location of sites in unmonitored grids is shown in red, while the midpoint of the two monitored sites 

is shown in blue 

Source: Author`s illustration using ArcGIS Pro 

Figure 3.A.3 Location of sites in unmonitored grids and mid-point of the two monitored sites in a 

grid 
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Table 3.A.8 Weights of time and weather variables used to calculate the first-order conditions of 

the discrepancy equation. 

Variable Observation 
Mean 

(weight 
Min Max   Day Weight 

Rain 16,455 5.06687 0 104.43  Monday 0.14 

Lag rain 16,454 5.067176 0 104.43  Tuesday 0.14 

Wind speed 16,455 3.328075 1.21 8.34  Wednesday 0.14 

Humidity 16,455 9.696551 2.32 13.12  Thursday 0.14 

Temperature 16455 15.73346 10.12 21.12  Friday 0.14 

       
 Saturday 0.14 

Wind speed Freq. Percent Cum. Weight   Sunday 0.14 

East 11,324 68.82 68.82 0.6882   Time of  day Weight 

North 360 2.19 71.01 0.0219   Early morning (6:00-9:00) 0.1875 

South 3,202 19.46 90.46 0.1946   
Late morning) 10:00-

12:00) 
0.1875 

west 1,569 9.54 100 0.0954   
Early afternoon (13:00-

15:00 
0.1875 

Total 16,455 100       
Late afternoon 16:00-

18:00) 
0.1875 

            Evening (19:00-22:00) 0.25 

 

 Weighting sub-cities for optimal location 

The weight of sub-city s in Addis Ababa is given by  

 Ws = 
Population density at subcity  s

Population density of   Addis Ababa
∗

Area of  sub−city  s

Total area of  Addis Ababa
 

      =
Total Population of  sub−city  s

The Total  area of   sub−city s 
/
Total Population of AA

Area of  Addis Ababa
 *

Area of Sub−city s

Area of  Addis Ababa
 

      =
Total Population   Sub city s

Total Population of  AA 
 

 

Since different sub-cities have different numbers of sites for each case in the sensitivity 

analysis then, for each site i in sub-city s, the weight can be calculated by  

 Wis =
Total Population   Sub city s

Total Population of  AA 
∗
1

ni
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Table 3.A.9. Calculated weight for the main model 

Sub-city 

Name 

Population 

in 2007 

Land area 

in square 

km. 

Population 

density per 

square km. 

Number of 
 Sites (ni) 

 

 Ws 

 Wis  

Main 

model 

Addis 

Ketema 
255,372 7.41 34,463.15 9 

0.093217 

 

0.010357 

 

Arada 211,501 9.91 21,342.17 9 
0.077203 

 

0.008578 

 

Bole 308,995 122.08 2,531.08 1 
0.11279 

 

0.037597 

 

Gulele 267,624 30.18 8,867.10 8 
0.097689 

 

0.012211 

 

Kirko 221,234 14.62 15,132.28 15 
0.080756 

 

0.005384 

 

Kolfe 

Keranio 
428,895 61.25 7,002.36 4 

0.156557 

 

0.039139 

 

Lideta 201,713 9.18 21,973.10 12 
0.07363 

 

0.006136 

 

Nefas Silk-

Lafto 
316,283 63.3 4,996.57 8 

0.115451 

 

0.014431 

 

Yeka 346,664 85.46 4,056.44 4 

0.12654 

 

0.03163 

 

Akaki Kality 181,270 118.08 1,535.14 0 
0.066168 

 

0 

Total  2,739,551 521.47 5,253.51 72   
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Table 3.A.10 Number of sites by sub-city for the main model and sensitivity analysis 

Sub-city 

No. sites, whole 

city case No sites, unmonitored grid 

No sites, main 

model 

Akaki kality 142 0 0 

Lideta 12 4 12 

Arada 10 5 9 

Kirkos 14 7 15 

Addis Ketema 7 4 9 

Gulele 35 2 8 

Bole 127 1 3 

Nefas silk lafto 64 7 8 

Yeka 93 4 4 

Kolfe keranio 74 2 4 

Total 578 36 72 
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Table 3.A.11 Fixed effects estimation results of the difference  

    

VARIABLES 

PM2.5 Difference 

(No calibration) 

PM2.5 Difference 

(Calibrated 

Rain  -0.183 -0.154 

 (0.605) (0.569) 

Lag rain 0.977 0.797 

 (0.799) (0.745) 

Wind speed  -0.459 -0.531 

 (0.517) (0.482) 

Humidity -0.025 0.711 

 (0.550) (0.503) 

Temperature 0.677*** 0.696*** 

 (0.187) (0.174) 

High-density mixed residence  0.003*** 0.003*** 

 (0.000) (0.000) 

River buffer 0.005*** 0.005*** 

 (0.001) (0.000) 

Road network -0.007*** -0.007*** 

 (0.001) (0.001) 

Open area 0.004*** 0.004*** 

 (0.000) (0.000) 

Parking land use -0.002*** -0.002*** 

 (0.001) (0.000) 

Commercial area 0.527*** 0.495*** 

 (0.058) (0.054) 

Public facility 0.007*** 0.006*** 

 (0.001) (0.000) 

Asphalt roads 0.157*** 0.147*** 

 (0.019) (0.017) 

Unpaved roads 0.125*** 0.117*** 

 (0.010) (0.010) 

North -9.211** -8.323* 

 (4.352) (4.186) 

South -5.756 -5.304 

 (4.209) (3.904) 

West -7.453* -7.151* 

 (4.213) (4.001) 

Late morning 21.628*** 18.871*** 

 (3.197) (2.934) 

Early afternoon 24.000*** 20.849*** 

 (3.225) (2.961) 

Late afternoon 22.906*** 20.026*** 

 (3.605) (3.316) 
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Evening -2.293 -2.097 

 (5.646) (5.422) 

Monday -1.940 -1.762 

 (5.007) (4.746) 

Tuesday 5.335 4.725 

 (3.877) (3.639) 

Wednesday 0.299 -0.136 

 (3.760) (3.549) 

Thursday 3.630 3.020 

 (3.743) (3.518) 

Saturday -5.454 -5.533 

 (4.200) (3.987) 

Sunday 1.640 1.079 

 (3.784) (3.595) 

Latitude difference -174.696*** -147.228*** 

 (19.183) (18.052) 

Longitude difference 1,138.919*** 1,023.700*** 

 (115.110) (106.216) 

Constant -176.492*** -168.722*** 

 (17.068) (15.843) 

Site FE Yes Yes 

Observations 10,462 10,462 

R-squared 0.341 0.310 

Robust standard errors in parentheses 

                              *** p<0.01, ** p<0.05, * p<0.1  
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Table 3.A.12 Discrepancy regression using only land use variables 

 

VARIABLES PM2.5 PM2.5 

High density mixed 3.917 1.969 

 
(3.532) (3.023) 

River buffer -20.728* -18.396* 

 
(11.725) (9.834) 

Open area 10.029** 8.208** 

 
(4.355) (3.743) 

Parking 27.686*** 23.379*** 

 
(6.555) (5.189) 

Commercial area 10.800** 7.839** 

 
(4.307) (3.676) 

Public facility 14.743** 12.740** 

 
(6.509) (5.310) 

Asphalt road -503.938*** -447.350*** 

 
(88.659) (75.097) 

Lattitude 353.208*** 306.591*** 

 
(39.034) (33.841) 

Longitude 139.930** 94.728* 

 
(60.709) (51.891) 

Constant -29.071*** -22.675*** 

 
(3.448) (2.680) 

Observations 10,462 10,462 

R-squared 0.127 0.108 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Note: Land use variables are expressed in percentages of total, the dependent variable in the first column is 

(PM2.5 fixed-PM2.5 Dylos) and the dependent variable in the second column is (PM2.5 fixed-PM2.5 Dylos 

claibrated) 
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Appendix 3 Air quality in Addis Ababa 

Figure 4.A.1: Air quality and weather in Addis Ababa (2016-2022) 

                       A                                                                          B                                                              C 

                

                                     D                                                                       E                                                                    F 

          

Note: All figures are for the years 2016-2022. Figure A, B, C, and F depict mean PM2.5 by the time of  day, by year, by month, and by the hour, 

respectively. Figures D and E shows mean precipitation and mean temperature by month over the years 2016-202
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