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Abstract

This dissertation makes several contributions to the stochastic volatility model lit-

erature. The key contribution is that it obtains a novel closed form expression of the

likelihood for a stationary inverse gamma Stochastic Volatility (SV) model. As a result,

using this expression of the log likelihood, it is possible to obtain the Maximum Likeli-

hood Estimator (MLE) for this class of non linear non gaussian state space models for

the univariate model. The dissertation provides two empirical studies to demonstrate

this approach.

First, chapter 3 proposes a novel method to explicitly calculate the likelihood for a

stationary inverse gamma Stochastic Volatility model, which is conventionally approxi-

mated using sampling methods. The derived likelihood is expressed by infinite series of

functions and its calculation is implemented by truncating higher order terms. This ex-

pression of the likelihood allows the estimation of the parameters and unobserved states

for this model class by MLE. Further, the chapter provides the analytical expressions for

both the filtering and smoothing distributions of the volatilities as mixture of gammas

and therefore it is able to provide the smoothed estimates of the volatility. The chap-

ter shows that by marginalising out the volatilities, the model that is obtained has the

resemblance of a GARCH in the sense that the formulas are similar, which simplifies

computations significantly. Another significant contribution of this chapter is that, the

computer code to perform the analysis has been publicly made available through a R

package that is freely available from the Comprehensive R Archive Network (CRAN).

The performance of the proposed method was evaluated using several macroeconomic

and financial data sets and its results show that the proposed method achieved accurate

calculation of the likelihood with low computational cost. The macroeconomic application

uses quarterly inflation data for four countries, that is, UK, USA, Japan and Brazil. A

range of other models are also estimated to evaluate the empirical performance of the

proposed model. The proposed model performs better than all other models in 50% of

the applications in terms of the Bayesian Information Criterion (BIC), with very large

gains for the Brazil dataset. The second application uses exchange rates data for 7

currencies (GBP, EUR, JPY, CND, AUD, BRL, ZAR) and finds that the empirical fit of
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the proposed model is overall better than alternative models in 4 of the 7 currencies in

terms of the BIC, being much superior in the case of currencies with turbulent episodes,

such as the Brazilian Real.

Lastly, using daily returns for 8 stocks on the Tokyo Stock Price Index (Topix) and

the Standards and Poors 500 (S&P500), the performance of the model is compared to

the stochastic volatility model with leverage. The proposed model performs better 62.5%

than the asymmetric SV model in terms of the Bayesian Information Criterion (BIC).

Chapter 4 extends the univariate approach to estimating large Vector Autoregressions

(VAR) in a multivariate common stochastic volatility (CSV) model. CSV models capture

the commonality that is often observed in volatility patterns. However, they assume that

all the time variation in volatility is driven by a single multiplicative factor. Given the

empirical evidence on fat tailed distributions, and the commonality that is observed in

volatility patterns, this model combines stochastic volatility, heavy tailed distributions

and a common heteroscedastic latent factor. The volatility for this novel CSV model

follows an inverse gamma process, which implies student-t type tails for the observed data.

An analytic expression for the likelihood is obtained for this CSV model, which facilitates

model comparison. This model is estimated using 4 macroeconomic applications that use

20 variables each for Japan, Brazil, US, and the UK. A second application uses financial

data of daily exchange rate returns for a small VAR of 4 currencies and a larger VAR of

8 currencies. The comparison method is based on marginal likelihoods and the one step

ahead out of sample predictive likelihoods. The proposed model is compared to other

CSV models proposed in the literature. Using two evaluation periods of 24 and 50 data

points and two priors, the empirical fit of the common factor inverse gamma SV model has

better forecasting accuracy compared to alternative CSV models for the macroeconomic

application in 13 of the 16 instances. The BVAR-CSV model is best for the Japan data

over a longer evaluation period. Using the alternative prior, over the shorter period, the

BVAR-CSV-MA-t is best for the UK while the BVAR-CSV-t model is best for Brazil.

In the financial application, the proposed model performs better than alternative models

when using the first prior, while the BVAR-CSV-t is best using the alternative prior.
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CHAPTER 1

INTRODUCTION

Stochastic volatility models by definition, are models in which the volatility itself is

stochastic. These models were first proposed by Black (1976) for financial econometrics

where they were found to have better fit to volatility that is observed in historical equity

returns and modelling the leverage effect between the returns and volatility. Early appli-

cations of stochastic volatility models for macroeconomics, using Bayesian methods were

proposed by Jacquier et al. (1994) whereby estimation of the algorithm was achieved by

sampling the volatilities individually.

Literature is replete with a wide class of varying stochastic volatility models as re-

searchers attempt to incorporate the desirable properties of traditional models and the

properties observed in macroeconomic and financial variables. One of the early influen-

tial and efficient formulations of stochastic volatility proposed by Kim et al. (1998) is

represented as follows:

yt = et exp

(
ht
2

)
ht+1 = µ+ ϕ(ht − µ) + δtσ

where yt represents the observed data, et is a multiplicative stochastic error , ht is the

log of the volatility which is a latent factor, µ is the mean of the log of volatility. ϕ in

this model is a parameter for the persistence of the term for the volatility. et and δt are

both gaussian with mean 0 and unit variance.

The initial distribution of the latent parameter has a Gaussian distribution as follows:

h1 ∽ normal

(
µ,

σ√
1− ϕ2

)
Kim et al. (1998), showed that the log volatilities of stochastic volatility models can

be marginalised out to estimate the unknown parameters. Their approach is based on a
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Markov Chain Monte Carlo (MCMC) method and is known in the literature to be efficient

and reliable and has been used liberally in both macroeconomic and financial applications.

Such an approach follows a log normal specification of the volatilities which implies that

the distributions have thin tails (Madan & Seneta, 1990). However, a key property of

macroeconomic and financial data is that they exhibit fat tails in their distribution. Thus,

one drawback of the above approach to stochastic volatility specifications is the inability

to capture the fat tails. In addition, this model does not allow for serial dependence in

the errors of the measurement equations. However, time series variables are known to

have serially correlated errors, a phenomenon called leverage effects in this field.

Succeeding studies to this highly efficient baseline approach to stochastic volatility

model estimation attempt to further capture other intrinsic properties of the data while

ensuring tractability of the model at the same time. Omori et al. (2007) extends the

above approach by providing an approach that can handle stochastic volatility models

with leverage effects. Regarding the log normal stochastic volatility model, the model

proposed by Omori et al. (2007) has a similar structure to that of the baseline approach

by Kim et al. (1998) above, where in this case et and δt are both gaussian as follows:

et
δt

 ∽ N(0,Σ)

where:

Σ =

 1 ρσ

ρσ σ2


The leverage effect is thus captured by the parameter ρ for this class of non linear state

space models. Yu (2005) and Wang et al. (2011), among other studies, provide detailed

discussions of alternative approaches that model the leverage effect in stochastic volatility

models, with the latter adding fat tailed distributions to this baseline model. Stochastic

volatility models continue to capture the interest of researchers because they tend to have

better forecasting accuracy than other families of state space models. However, they are

known to be challenging to estimate.

In linear gaussian state space models, the likelihood is available in closed form and
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can easily be calculated with the Kalman Filter algorithm (e.g. Durbin and Koopman

(2012)). However, few studies have attempted to obtain a closed form expression for

the likelihood in nonlinear non-Gaussian state space models. In the univariate case, for

example, Shephard (1994) obtains a closed form expression for the likelihood of a non-

stationary SV model known as Local Scale Model. Uhlig (1997) builds on and generalizes

Shephard (1994) to the multivariate case. They obtain an analytic expression for the

likelihood and posterior density of a SV non-stationary restricted singular Wishart model.

Creal (2017) obtains an analytic expression for the likelihood in a SV gamma model and

shows that analytic expressions for the likelihood could also be obtained for a family

of non linear non Gaussian state space models. The gamma SV model in Creal (2017)

implies a variance-gamma distribution for the data and this distribution has thin tails

(Madan & Seneta, 1990).

On account of the above, this dissertation adds to the literature by obtaining a closed

form expression of the likelihood for inverse gamma stochastic volatility models. In the

absence of a closed form expression of the likelihood, maximum likelihood estimation can

not be used to obtain the parameters of the model. In addition, the smoothed estimates

of the volatility can not be obtained. The approach to obtaining the likelihood in this

dissertation is used to analyse a univariate inverse gamma stochastic volatility model

and a multivariate approximate factor model resulting in the two studies covered in this

dissertation.

First, chapter 3 considers the univariate inverse gamma stochastic volatility model and

obtains the exact likelihood for this model. This expression of the likelihood allows the

estimation of the parameters and unobserved states for this non linear non gaussian model

class by Maximum Likelihood estimation. Further, it provides the analytical expressions

for both the filtering and smoothing distributions of the volatilities as mixture of gammas

and therefore it can provide the smoothed estimates of the volatility. The chapter shows

that by marginalising out the volatilities, the model that is obtained has the resemblance

of a GARCH in the sense that the formulas are similar, which simplifies computations

significantly.

The chapter provides two empirical applications using financial and macroeconomic

variables. The macroeconomic application uses quarterly inflation data for four countries,
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that is, UK, USA, Japan and Brazil. It examines the accuracy of this novel approach

by comparing the value of the log likelihood obtained using the value of the parameters

at the maximum to the log likelihood obtained using particle filters. A range of other

models are also estimated to evaluate the empirical performance of the proposed model.

The proposed model performs better than all other models in 50% of the applications in

terms of the Bayesian Information Criterion, with very large gains for the Brazil dataset.

The second application uses exchange rates data for 7 currencies (GBP, EUR, JPY, CND,

AUD, BRL, ZAR) and finds that the empirical fit of the proposed model is overall better

than alternative models in 4 of the 7 currencies in terms of the BIC, being much superior

in the case of currencies with turbulent episodes, such as the Brazilian Real.

Chapter 4 extends the univariate approach to estimating large Vector Autoregressions

(VAR) in a multivariate stochastic volatility model. Given the increase in fat tailed

events over the years and the empirical evidence on the co movement that is observed

in volatility patterns of macroeconomic data, this model combines stochastic volatility,

heavy tailed distributions and a common latent factor. The common latent factor is taken

as multiplicative. The chapter provides 2 applications to estimate this model. The first

application uses 20 macroeconomic variables each for Japan, Brazil, US, and the UK. The

second application uses financial data of daily exchange rate returns for a small VAR of

4 currencies and a larger VAR of 8 currencies. The comparison method uses marginal

likelihoods and the one step ahead out of sample predictive likelihoods. The proposed

model is compared to other common stochastic volatility models and a factor stochastic

volatility model. The empirical fit of the common factor inverse gamma SV model has

the better forecasting accuracy compared to other common stochastic volatility models

for both the macro economic and financial application. However, compared to the factor

stochastic volatility model, it is best at a cut point of 24 for all four macro applications.

Increasing the evaluation period, it has a better fit only for Japan and is second best to

the factor model overall.

The rest of the dissertation is structured as follows: chapter 2 provides an overview

of the study area with particular emphasis on economic factors that shape the data

used in the study. Chapter 3 covers the univariate case of the approach to estimating

stochastic volatility models using the closed form expressions of the likelihood that we
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obtain. Chapter 4 provides the multivariate approach using a CSV inverse gamma model.

Chapter 5 provides the R code and tutorial that is published on the CRAN repository,

and chapter 6 concludes and provides the policy implications for policy makers.
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CHAPTER 2

OVERVIEW OF THE STUDY AREA

2.1 Introduction

The macroeconomic empirical applications for both the univariate and the multivariate

chapters, are based on developed high income countries, that is, the US, UK and Japan,

and an emerging upper-middle income developing economy Brazil. These economic clas-

sifications are based on the World Bank income classifications (World Bank, 2022). The

financial application for the univariate model in chapter 3 is based on exchange rates

for a mix of developed and developing countries, that is, the EURO (EUR), the Great

British Pound sterling (GBP), Japanese yen (JPY), the Australian dollar (AUD), the

Canadian dollar (CAD), the South African Rand (ZAR) and the Brazilian Real. The

exchange rates application in Chapter 4 is based on Zimbabwe’s major trading partner

countries for both exports and imports for the year 2020. This list can be derived from

the World Integrated Trade Solution (WITS) section of the World Bank data series. As

such, the currencies considered are the EUR, GBP, ZAR, Chinese Yuan (CNY), Singapore

Dollar (SGD), Hongkong Dollar (HKD) and Indian Rupee (INR). This chapter provides

an overview of the monetary policies, exchange rate regimes and foreign exchange rate

interventions of all the economies discussed in the empirical applications for the period

under study.
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2.2 Overview of the Exchange Rate Policies and In-

terventions

2.2.1 South African Rand

The South African Reserve Bank maintains a floating exchange rate regime. A floating

exchange rate regime is whereby a currency’s exchange rate is determined by the market

forces of supply and demand of other currencies in the international money market. The

Reserve Bank occasionally intervenes and smoothes out exchange rate volatility to ensure

that the South African Rand is stable without necessarily targeting a specific exchange

rate. A key factor that affects floating exchange rates is the inflation rate. As a result,

the South African Reserve Bank uses inflation targeting to ensure that the South African

Rand is maintained relative to the domestic consumer price inflation index target. For

the period under study, that is, from 2019 to 2023, this consumer price inflation target

was set to between 3% and 6% (South African Reserve Bank, 2021). Exchange rates

typically play a very important role in monetary policy and in some instances can be

used as a monetary policy tool.

The major interventions to influence the exchange rate by the South African Reserve

Bank, during the period covered by this study were undertaken during the Covid-19 crisis.

In March 2020, the Reserve Bank used a number of instruments such as the amendment

of the end of day supplementary repo which was changed to the intra-day overnight

supplementary repos to inject liquidity into the money markets. The supplementary

repos are repurchase operations agreements by the Reserve Bank at a fixed repo rate. In

addition, a long term repo was introduced for up to 12 months.

2.2.2 Pound Sterling

Similar to the South African Rand, the pound sterling is a fiat currency whose exchange

rate is determined by the market forces of supply and demand. The Bank of England

uses monetary policy tools such as inflation targeting to intervene in the exchange rate

financial markets. The inflation target for the UK is set to 2%. To ensure alignment to
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the inflation target, the Bank of England uses mainly 2 tools. The key tool is the Bank

rate, which is the UK’s official interest rate. In March 2020, the Bank of England cut the

Bank rate to 0.1%. Besides the Bank Rate, the Bank of England in addition uses another

monetary policy tool termed Quantitative easing. Quantitative easing mainly involves

injecting money directly into the money markets by purchasing of government bonds as

well as purchasing other financial assets by a central bank. The amount of these bonds are

usually predetermined. The mechanism involved in buying these financial assets result

in the prices of these assets and bonds going up, and thus in the long term, interest

rates decrease. Lower interest rates inturn result in increase in an increase in household

consumption expenditure which in turn increases inflation. During the period March 2019

to March 2023, the bank increased the Quantitative easing amount in March, June and

lastly November 2020 (Statista Research Department, 2022). Since November 2022, the

Bank of England began reversing the Quantitative easing by selling the bonds. Reversing

Quantitative easing is referred to as Quantitative tightening. This has the reverse effect

of decreasing inflation rate and increasing the interest rate.

2.2.3 Japanese Yen

The Bank of Japan’s exchange rate policy for the Japanese Yen is perhaps closely defined

by a “free” floating exchange rate regime. A free floating exchange rate regime is one

whereby the monetary authorities do not intervene in the international money markets

and allow the exchange rate of the currency to be determined solely by market forces of

supply and demand of different foreign currencies. For instance, prior to September 2022,

the last intervention by the Japanese monetary authorities, to support the Yen were done

as far back as June 1988 (Jun Saito, 2022). The recent Covid−19 crisis however, resulted

in a rapid increase in the depreciation rate of the Japanese Yen since March 2022. The

Bank of Japan as a result intervened in September and October 2022 by drawing down

and selling the foreign reserve stocks of the United States Dollar and buying Japanese

Yen from the money market amounting to 2.8382 trillion yen in September and 6.3499

trillion yen in October 2022 (Jun Saito, 2022). Such an intervention results in decreasing

the amount of Japanese yen in the money market and thus strengthening the yen value
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against the US dollar by increasing demand for the yen. The immediate effect is a decrease

in the monetary base as deposits held by the private sector shift to the government. A

decrease in the monetary balance translates to a decrease in the current account balance

in the absence of counter measures to maintain the monetary base level.

2.2.4 Canadian Dollar

In close comparison to the Bank of Japan, the Bank of Canada manages a floating

exchange rate regime and is averse to intervening and influencing the exchange rate for

the Canadian dollar in the money markets. Foreign exchange interventions in the money

market are reserved for extreme volatility in the exchange rate and market breakdown

in price determination. Intervention methods for the Bank of Canada are mainly set to

involve using the exchange fund account which holds foreign reserves for the government

of the top 4 traded currencies, that is, the US dollar, Japanese yen, the pound sterling and

euro. The Bank of Canada last intervened to manipulate the exchange rate markets in

September 1998. Even though the bank does not intervene, the monetary policy objective

for Canada is largely influenced by inflation targeting, thus, exchange rate movements

were closely monitored to maintain the rate of inflation at a 2% for the period covered

by the study.

2.2.5 Australian Dollar

The Reserve Bank of Australia in similar fashion does not target any specific rate of

exchange for its Australian Dollar. It manages a floating exchange rate policy and in

parallel to the previous economies, the monetary policy in Australia is conducted under

the framework for inflation targeting. Typically intervention transactions in the foreign

exchange markets by the Reserve Bank of Australia are in the spot market. The inter-

ventions consist of buying and or selling the Australian dollars in the market to shift

ownership of the currency from and or to the government.

The Australian Reserve Bank typically uses foreign exchange swaps to sanitize and

balance out the effect of these foreign exchange market interventions. During the period

under study the Australian Reserve Bank made a number of interventions that directly
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affect the exchange rate. In March and November 2020, the cash rate target was reduced

to 0.25% and 0.1% respectively. The cash rate refers to the rate of interest paid in the

money market by banks when they borrow funds overnight from other banks. Lowering

the cash rate translates to lower interest rates, thereby reducing the cost of borrowing

for households and the private sector and ultimately reducing the exchange rate. The

cash rate was then increased back to normal levels in May 2022. In November 2022, the

Australian Reserve Bank also announced a government bonds purchase program for 100

billion bonds. These bond purchases were completed by April 2021. Subsequent simi-

lar valued bond purchase programs were announced from February 2021 and additional

weekly bonds of 4 billion dollars until February 2022. The effect of such a bond purchase

program ia an increase in money holding in the market, lower interest rates, which has

a similar effect as the cash rate reduction of lowering cost of borrowing and lowering the

exchange rate in favour of the Australian dollar.

2.2.6 Brazilian Real

The Central Bank of Brazil operates a floating exchange rate regime in line with the

inflation targeting monetary policy framework. Over the years the Central Bank has

been known to intervene frequently in the money market. Interventions in the foreign

exchange market are mostly carried out through forex swap auctions, typically to counter

excess volatility in the market operations. The forex swaps are currency combination

swap contracts consisting of both the spot and forward transactions. For example, the

Central Bank of Brazil may buy forex swap contracts in the spot market at a premium

to reduce the amount of the foreign currency in the market and smooth out depreciation

of the foreign currency exchange rate, and later sell the currency in the forward market.

The effect on the money market is similar to the Central Bank selling future sales of

the exchange currency which is typically the US dollar. When the bank sells the forex

swap contracts, this is termed a reverse forex swap. Such a sale has the reverse effect of

decreasing the exchange rate and smoothing out appreciation of the local currency.

During the period under study, the Brazilian Central Bank was arguably, of all the

currencies under study, the more volatile as the Brazilian Real depreciated its value

10



by over 30% at its lowest. As expected during this period the bank made numerous

interventions. For example, the bank increased the forex swaps stock to smooth out

volatility from the initial sharp depreciation of the Brazilian Real in the early onset of

Covid in 2020. In addition, the selic rate, which is the base interest rate for Brazil was

reduced to 2% in 2020. However, due to other macroeconomic factors and inflationary

shocks, the bank anticipated effect of reducing the selic rate was contrary to the measure

as instead, the Real depreciated even further. In response and to smooth out inflation

price inflation and devaluation of the local currency, the Brazilian Central Bank increased

the selic rate by 0.75%, and subsequent increases resulted in the selic rate level of 4.25%

by June 2021. Therefore, in 2021 the volatility of the Brazilian Real was particularly

high as can be seen on plots of the currency in Chapter 3. Furthermore, in November

2020 the Central Bank also announced the rolling over of $11.8 billion worth of foreign

exchange swap contracts with a maturity of January 2021. In September, and October

2020, the Central Bank sold in unscheduled auctions of $500 million and $1 billion foreign

exchange swap contracts.

2.2.7 Euro

The Euro is part of a currency union of 19 member states of the 27 European Union

countries. While for the member states that are part of the Euro, the exchange rate

policy is a hard peg, with other member states, the Euro regime is a floating exchange rate

against other currencies. A hard peg exchange rate is whereby the monetary authorities

target a specific exchange rate against other countries exchange rates. Involvement of the

monetary authority in determining the exchange rate instead of allowing the economic

forces of supply and demand to determine the rate is what distinguishes this regime from

the floating regime.

The European Central Bank manages the monetary policy for the Euro Zone. The

bank intervenes by using monetary policy tools such as interest rates and quantitative

easing. Interventions are done either as coordinated interventions where the bank inter-

venes with the assistance of other member state’s central banks, or sole interventions by

the bank itself in unilateral interventions. Prior to the period under study, the bank had
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only intervened in the foreign exchange rate market at inception in the year 2000 and in

2011. In response to the coronavirus pandemic, a major intervention by the European

Central Bank was the introduction of a pandemic emergency purchase program in March

2020 to safeguard the economy of the Euro area and to stabilise the money market. The

implementation of this program resulted in a purchase of securities amounting to $1.7

trillion between March 2020 and March 2022 from both the private and public sector in

the Euro area.

2.3 Overview of Monetary Policies

The macroeconomic applications in Chapter 3 and 4 are all based on 4 countries, that is,

the US, UK, Japan and Brazil. The applications for the first 3 countries cover the period

1960 to 2023, whereas for Brazil cover the period 1994 to 2023 due to unavailability of

historical observations. The main aspects of monetary policy strategies for the developed

countries above are largely similar, as such, the variables under study are expected in the

long run to be affected in a similar way by economic shocks all things being equal.

The main objective in their monetary policy strategy implementation for the Bank

of Japan, Federal Reserve of the US, and the Bank of England is price stability of both

goods and services through an inflation targeting framework. The target is set at 2% of

the inflation rate for all these countries. The Federal Reserve Bank is in charge of three

monetary policy tools, that is, the discount rate, open market operations and reserve

requirements. Using these tools the Federal Reserve can control the federal funds rate,

money supply and demand and deposits held by financial institutions. Thus monetary

policy ultimately affects the behaviour of variables in the economy.

The Bank of England uses quantitative easing explained above and the bank rate,

which is the rate at which banks are charged when borrowing money from the central

bank. Similar to the Federal Reserve, the Bank of Japan uses open market operations,

reserve requirements and the call rate as tools of monetary policy. The Central Bank of

Brazil uses the minimum reserve requirement, open market operations, and the discount

rate to influence the selic rate which is the main monetary policy tool. The monetary

policy framework follows an inflation targeting framework, with an inflation target of
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3.2% for 2023 which is higher in comparison to the 3 developed countries above. Com-

munication and transparency is another key instrument used in this inflation targeting

framework by the Central Bank of Brazil.
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CHAPTER 3

EXACT LIKELIHOOD FOR INVERSE GAMMA STOCHAS-

TIC VOLATILITY MODELS

3.1 Introduction

For most non-linear or non-Gaussian state space models it is difficult to obtain the like-

lihood function in closed form. This prevents the use of Maximum Likelihood Esti-

mation (MLE). As a result most studies use Bayesian estimation with Markov Chain

Monte Carlo (MCMC) methods. Generalized Autoregressive Conditional Heteroscedas-

ticity (GARCH) models are simpler to estimate than Stochastic Volatility (SV) models,

because the likelihood for a GARCH model can be easily calculated in closed form (e.g.

Engle (1982), Bollerslev (1987)). However, SV models have often been found to outper-

form GARCH models in empirical studies for both macroeconomic and financial data (e.g.

Chan & Grant (2016a) and Kim et al. (1998)). In addition, unlike GARCH models, SV

models provide not only filtered estimates but also smoothed estimates of the volatility.

Although in linear Gaussian state space models the likelihood is available in closed

form and can easily be calculated with the Kalman Filter algorithm (e.g. Durbin and

Koopman (2012)), few studies have attempted to obtain a closed form expression for

the likelihood in nonlinear non-Gaussian state space models. Shephard (1994) obtains a

closed form expression for the likelihood of a non-stationary SV model known as Local

Scale Model, showing the similarities to GARCH models. Uhlig (1997), builds on and

generalizes Shephard (1994) to the multivariate case. They obtain an analytic expression

for the likelihood and posterior density of a SV non-stationary restricted singular Wishart

model. Creal (2017) obtains an analytic expression for the likelihood in a SV gamma

model and shows that analytic expressions for the likelihood could also be obtained

for a family of non linear non Gaussian state space models. The gamma SV model in
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Creal (2017) implies a variance-gamma distribution for the data and this distribution

has thin tails (Madan & Seneta, 1990). In contrast, inverse gamma SV models imply a

student-t distribution, thus, they can account for the fat tails that are observed in most

macroeconomic and financial data (Leon-Gonzalez, 2018).

The purpose of this study is to obtain an analytic expression of the likelihood for

the inverse gamma SV model. This exact likelihood solution will allow the estimation of

the parameters and unobserved states for this non linear and non gaussian state space

model by MLE. Without the likelihood expression, estimation of non linear non gaussian

state space models generally involves bayesian methods such as Markov Chain Monte

Carlo. We show that by marginalising out the volatilities, the model that we obtain has

the resemblance of a GARCH in the sense that the formulas that we get are similar,

which simplifies computations significantly. Moreover, the likelihood function proposed

in this paper can be calculated efficiently using a simple recursion. The calculations

can be accelerated by doing computations in parallel, as well as by applying Euler or

other acceleration techniques to the Gauss hypergeometric functions in the likelihood.

In addition to obtaining the exact likelihood, we obtain analytically the expressions for

the smoothed and filtered estimates of the volatilities. We provide the computer code to

calculate the likelihood as a user-friendly R package that is available on CRAN.

Section 3.2 reviews the literature on previous attempts to obtain analytically the like-

lihood expressions for non linear non gaussian state space models. Section 3.3 describes

our model and derives the analytic expression of the likelihood. In addition, the sec-

tion provides the analytic expressions for the filtering and smoothing distributions of the

volatilities. Section 3.4 evaluates the empirical performance and computational efficiency

of the proposed novel algorithm with a comparison to other methods. We provide empiri-

cal applications using exchange rates data for 7 currencies to the US dollar and quarterly

inflation data for four countries. Section 3.5 concludes.
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3.2 Literature Review

3.2.1 Stochastic Volatility Models with an Exact Likelihood

There are very few non linear non gaussian state space models for which the likelihood

can be obtained exactly. In what follows we review some of the SV models for which an

analytic expression of the likelihood has been obtained.

To obtain the maximum likelihood estimates for a generalised non stationary local

scale model, Shephard (1994) uses the conjugacy between the gamma and the beta dis-

tribution. Using our notation, their model for a univariate observed variable yt can be

expressed as:

yt = xtβ + h
− 1

2
t et, et ∼ N(0, 1)

where xt is a vector of predetermined variables which could include lags of yt, and the

inverse of ht is the time varying volatility. The law of motion for the volatilities is:

ht+1 = ht
νt
λ

νt ∼ Beta(α1, α2) (3.2.1)

with α2 = 1
2
. The initial distribution is a gamma with parameters ν and S1 such that

h1 has the following density function:

f(h1|S1) = h
ν
2
−1

1 exp

(
− h1

2S1

)
1

Γ(ν/2)(2S1)
ν
2

(3.2.2)

where for mathematical convenience the initial density is restricted such that α1 = ν
2
.

The parameters to be estimated are β, ν, λ and S1. Note that, in contrast with the

other models in this paper, the volatility follows a non-stationary process. As shown

in Appendix A.1.6, defining Z = h1 − λh2 for ∈ (0,∞), the likelihood for this model

can be obtained by integrating over the state variable Z. Given that the process for the

stochastic volatility is multiplicative, the likelihood is as follows:

π(yt|y1:t−1) =
Γ(α1 + α2)

Γ(α1)
λα1

(
St+1

St

)α1 1√
2π

(
2

(
(yt − xtβ)

2 +
1

St

)−1)α2

(3.2.3)
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where St =
(
(yt−1 − xt−1β)

2 + 1
St−1

)−1 1
λ
and y1:t−1 = (y1, y2, ..., yt−1). To facilitate the

reading here and in the following we do not write explicitly xt as a conditioning argument.

The framework in Shephard (1994) provides a formal justification to Bayesian methods

of variance discounting used in earlier literature (West & Harrison (2006), p.p. 360-361).

Creal (2017) shows that closed form solutions for the likelihood can be obtained for a

family of non linear state space models with observation densities p(yt|ht, xt; θ), in which

the continuous valued time varying state variable ht can be analytically integrated out

conditionally on a discrete auxiliary variable zt. xt in these models are the predetermined

regressors and θ is a parameter vector. The models in this class are defined as follows:

yt ∽ p(yt|ht, xt; θ)

ht ∽ Gamma(ν + zt, c)

zt ∽ Poisson

(
ϕht−1

c

)
where c is a scale parameter and ϕ determines the persistence of the state variable. For

example Creal (2017) provides the following two alternative sufficient conditions for being

able to integrate analytically these densities conditional on zt:

p(ht|α1, α2, α3) ∝ hα1
t exp(α2ht + α3h

−1
t )

p(ht|α1, α2, α3) ∝ hα1
t (1 + ht)

α2 exp(α3ht)

where α1:3 are functions of only the observations and parameters of the model. Thus, the

contribution to the likelihood of one observation conditional on zt can be obtained by

integrating out the continuous state variables ht analytically. The model that is obtained

after integration simplifies to a Markov Switching model over the support of the non-

negative discrete state variables zt. The likelihood for these Markov Switching models

can therefore be obtained recursively. Creal (2017) gives the detailed recursive formulas

to obtain the likelihood for some specific models within this family, such as the gamma

stochastic volatility models, stochastic duration models, stochastic count models and cox

processes.
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The gamma SV model by Creal (2017) can be expressed as follows:

yt = µ+ xtβ + γht +
√
htet, et ∼ N(0, 1)

where γ determines the skewness. When γ = 0 the model implies a variance-gamma

distribution for the observed variable, which has thin tails (Madan & Seneta, 1990). The

initial stationary distribution is h1 ∽ Gamma
(
ν, c

1−ϕ

)
and the unconditional mean is

E(h1) =
νc
1−ϕ

.

More recently, Sundararajan & Barreto-Souza (2023) propose a composite likelihood

approach for the same model that we analyze in this paper, and which was estimated

with Bayesian methods earlier by Leon-Gonzalez (2018). While they do not obtain the

MLE as we do, their approach uses an expectation maximization algorithm to find the

maximum of the composite likelihood, albeit with some restrictions.

3.2.2 Bayesian Evaluation of Forecasting and Model Compari-

son Methods

The basis of comparison used in this paper are log likelihoods and the Bayesian Infor-

mation Criterion (BIC). When the number of parameters are the same, a larger value of

the likelihood typically implies better forecasts. The BIC sums the log likelihood with a

penalty term that accounts for model complexity as follows:

BIC = −2× log likelihood + d× (log(n)) (3.2.4)

where n is the sample size, d is the dimension of the estimated parameter space. Written

in this way, the BIC is thus 1
2
times the Schwartz Criterion (Schwarz, 1978).

The BIC puts more importance on forecasts and does so by penalising for the complex-

ity of a model imposed using the term d× (log(n)) to reduce and mitigate for over-fitted

models (Bishop, 2007). Thus, the BIC favours models with less parameters and of lower

dimensions (Schwarz, 1978).

An alternative Information criterion that is equally useful for forecasting is the Akaike

Information Criterion (AIC). The AIC does something similar to the BIC given the
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relation to the likelihood, and it is obtained as:

AIC = −2× log likelihood + 2× d

Akaike (1974). Thus, the BIC and AIC differ as a result of the penalty term. The

asymptotic property for the BIC is that of consistency (as proved in the papers cited

above). Shao (1997) proves for linear models that the AIC is asymptotically the same

as cross validation which is a method that is used to estimate the prediction error 1.

The AIC minimises the expected Kullback-Leibler divergence as a result. Shibata (1981)

similarly proves the asymptotic optimality property of the AIC for the non-parametric

regression case where the dimension is infinite, where he used the AIC as a selection rule

to determine the number of terms required to be retained in a Fourier series expansion.

This optimality property means that supposing all of the models are false, provided that

the number of similar sized models does not grow exponentially, the AIC tends to result

in choosing the model that is the closest in terms of similarity to the true model see e.g

Shibata (1983) and Shao (1997).

Supposing instead that a true model exists, then the BIC tends to select the true

model with probability approaching to 1 as the sample size n goes to infinity as proved

in e.g Nishii (1984) and Schwarz (1978). In this case the AIC would instead tend to

choose more complex models asymptotically. However, for finite samples, because of the

heavier penalty for complexity of models imposed by the BIC compared to the AIC, the

former is known to often choose too simple models. Thus, the choice of BIC or AIC

for model selection is not so clear (Hastie et al., 2009). Generally, the BIC is known to

be more appropriate for explanatory modelling whereas the AIC tends to be preferred

for prediction(i.e to measure predictive accuracy). All these considerations will thus

have an impact on the forecasts. Sakamoto et al. (1986) provide a detailed discussion

on the applications of the AIC. Arguments in their analysis point out that, given the

formulations and comparing the two criterion together, the AIC tends to be less accurate

in the case where the number of parameters of the model are too many, or the actual and

true model is small. The AIC is connected to statistical modelling as shown by (Konishi

1Stone (1977) also proves albeit under some weak conditions, the asymptotic equivalence of the AIC
to the Leave One Out cross validation
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& Kitagawa, 2008).

The BIC is an approximation to the marginal likelihood asymptotically. Schwarz

(1978) proves this property for the family of observations with a density that come from

the Koopman-Darmois family 2. Given the BIC formula in (3.2.4) and given that the

marginal likelihood denoted as p(y), can be conveniently written as:

p(y) =

∫
Θ

p(y|θ)π(θ)dθ

where p(y|θ) is proportional to the likelihood for the model and π(θ) is the prior den-

sity, the marginal likelihood relates to the BIC in that minus 2×log marginal likelihood

approaches the BIC value asymptotically. Since the parameters θ are marginalised out,

the marginal likelihood is sometimes known as the integrated likelihood. In addition, the

marginal likelihood in Bayesian analysis is a normalising constant given that it allows the

posterior density to integrate to 1.

The marginal likelihood itself is an accumulated evaluation of out of sample forecasts

like the predictive likelihood. Predictive likelihoods are an alternative method for model

evaluation and are used to evaluate density forecasts. Predictive likelihoods do this by

evaluating the predictive density for a model M at some horizon h ex ante, evaluated

at the actual value ex post. The predictive likelihood is larger the more likely it is for

the actual outcome to be realised given the density forecast. Thus, given the parameter

vector θM , conditional on the previous data yt−1 and the model under comparison M, the

one step ahead predictive likelihood can be evaluated as follows:

p(y◦t |y◦t−1,M) =

∫
ΘM

p(y◦t |y◦t−1, θM ,M)p(θM |y◦t−1,M)dθM

A compelling merit of predictive likelihoods is that they are not very sensitive to

the prior distribution of the density, Geweke & Amisano (2010) has a more complete

discussion on this and shows how this integral can be approximated.

The marginal likelihood can be construed as the product of one step ahead predictive

likelihoods as follows:

p(y◦T |M) =
T∏
t=1

p(y◦t |y◦t−1,M)

2see also Murphy (2012) for a more recent detailed explanation
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Geweke & Amisano (2010) provide a more detailed analysis on how the predictive

likelihood is connected to the marginal likelihood 3. Another method that is similar to

the log of the predictive likelihood is the log score.

Good (1952) initially proposed the log scoring rule defined as the log predictive density

of an outcome yt+k that is evaluated at the realised outcome y◦t+k. Predictive density

forecasts can be evaluated based on the average logarithmic score (Diebold & Lopez,

1996). The log score for a model is defined as follows:

Log Score(y◦t ,M) =
T∑
t=1

log(p(y◦t ; y
◦
t−1,M))

as in Geweke & Amisano (2011), where p(y◦t ; y
◦
t−1,M) is the predictive density. Bernardo

(1979) demonstrates for the continuous case of {yt} that given the scoring rule is based

on its predictive density value at the realised outcome y◦t , a key property of the log score

is that it is ‘the only proper local score’4.

A score is called proper where it satisfies some necessary conditions. For example, the

log score penalises heavily those density forecasts that would have resulted in an actual

outcome being assigned very low probability, that is , where y◦t is located in a region of

low predictive density (Gneiting & Raftery, 2007), (Mitchell & Hall, 2005), (Amisano &

Giacomini, 2007) and (Winkler & Murphy, 1968). In addition, the score assigns high

scores where the actual outcome is assigned a high probability and thus is located in a

region of high predictive density.

This ‘the only proper local score’ is as described in Geweke & Amisano (2011) in the

following form:

g(y◦t ) + c
T∑
t=1

log(p(y◦t ; y
◦
t−1,M))

where c > 0. Thus, for the discrete case, the proper local scoring rule is just a linear

transformation of the log score defined above over the support of at least three discrete

points of a finite set of {yt} as proved by Shuford Jr et al. (1966)5.

3For a discussion on how the likelihood is linked to the predictive density see Geweke (2005)
4Gneiting & Raftery (2007, p.366) also discusses this continuous case in detail
5See Geweke & Amisano (2011), Winkler (1969), DeGroot & Fienberg (1981) and Clemen et al. (1995)

for additional discussion of the discrete outcome
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3.2.3 Why Forecasting is Important for Policy

Policy makers rely on forecasts to assess the impact of reforms ex ante. The role played by

forecasting on policy making decisions cuts across various policy making decisions such as

seasonal climate forecasting (e.g Lemos et al. (2002)), or macroeconomic forecasting, (e.g

Leon-Gonzalez et al. (2021)). Central banks for example largely depend on forecasting

because of the time lag in the transition mechanisms of monetary policy. As a result of

this lag, macroeconomic variables such as inflation, have to be forward looking as they

take time to respond to this mechanisms.

The importance of the role played by forecasting on policy dates back to the pio-

neering works by Tinbergen (n.d.) and Theil (1958). These pioneering works provided

practical examples on the role required to be played by forecasting in policy areas such as

employment policy. Given how broad the role of forecasts is in policy making, we narrow

the review on this topic by providing a few high impact examples.

A good practical example of using forecasting in policy making is the ‘Fan charts’

produced by central banks such as the Bank of England see e.g Bank of England (2022),

the Reserve Bank of Australia see e.g David, Reifschneider and Peter, Tulip (2017) and

the Federal Reserve of the United States see e.g the announcement in Par (2006). The use

of these Fan charts was introduced by the Bank of England in 1996 mainly as a means

of communicating publicly their inflation forecasts in terms of potential implications

and uncertainty Britton et al. (n.d.). The Fan charts such as those used by the Bank of

England use predictive density to illustrate and project where inflation levels could be and

measure forecast uncertainty ((Mitchell & Hall, 2005) and Groen et al. (2009)). The Fan

charts are currently provided for many other variables such as GDP growth projections

and not just inflation following the literature advocating for the release of more forecast

information to the public e.g Svensson (1997)’s argument for including output forecasts.

On the other hand, a diverging literature such as in Mishkin (2004) asserted against

providing the forecasts for some variables such as output gap or the objective function of

a bank given the risk of misinterpretation by the public. Brian et al. (2007) analyse the

effect of publishing forecasts through, for example, Fan charts by nine central banks on

communicating the central banks monetary policy to the public and in conducting their
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monetary policy.

Wieland & Wolters (2013) provide an empirical analysis to show whether, regarding

interest rates, policy makers decisions for the Federal Reserve bank and the European

Central Bank adjust to forecasts directly. They evaluate policy rules that were made

basing on forecasts and find evidence of the interest rate having been set or changed in a

way that is in alignment with a response to forecast changes. A very recent application

that demonstrates the importance of forecasting for policy is in the prediction of the

effect of the Covid 19 crisis on for example GDP by many governments.

3.3 Model Specification, Likelihood and Volatility Es-

timates

The model that we analyze is the same as in Leon-Gonzalez (2019) and assumes that the

distribution of the one dimensional yt conditional on an observed predetermined vector

of regressors xt can be described as follows:

yt = µ+ xtβ + et, et|kt ∼ N

(
0,

1

ktB2

)
(3.3.1)

where β is a conformable vector of coefficients, µ and B2 are scalar parameters and et is

i.i.d. stationary and independent of xt. The predetermined regressors xt are assumed to

be either stationary or trend-stationary. The state variable kt follows an autoregressive

Gamma process (Gouriéroux & Jasiak, 2006) which can be described by writing kt = z′tzt,

where zt is a n× 1 vector that has the following Gaussian AR(1) representation:

zt = ρzt−1 + εt εt ∼ N(0, θ2In) (3.3.2)

where ρ is a scalar that controls the persistence of the volatility, with |ρ| < 1 and εt is

i.i.d. and stationary. The stationary and initial distribution of the time varying inverse

volatility kt is a gamma with n degrees of freedom, such that k1 ∽ Gamma
(
n/2, 2θ2

1−ρ2

)
.

Therefore we have that E( 1
ktB2 ) = E(V ar(et|kt)) = 1

B2
1−ρ2

n−2
, provided that n > 2, where as

a normalization we assume θ2 = 1 because we have B2 in (3.3.1). For 0 < n ≤ 2 the model
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is well-defined but the volatility does not have a finite mean. The conditional distribution

of kt|kt−1 is a non central chi-squared times a parameter constant that can be written as

a mixture of gammas. The noncentral chi squared is well defined for non-integer values

of n, so we will treat the unknown parameter n as a continuous parameter.

Then, given the properties of a gamma, the conditional mean of the inverse volatility

kt given previous history of kt is a weighted average of the unconditional mean of kt and

its previous value kt−1.

E(kt|kt−1) = ρ2kt−1 + (1− ρ2)E(kt)

where ρ2kt−1 represents the non centrality parameter. kt is correlated with its previous

value and this generates the persistence in the squared residuals, a characteristic feature

of time-varying variance models.

The inverse gamma specification implies a student-t distribution with n degrees of

freedom for yt thus enabling us to model heavy tailed distributions. In contrast, the

gamma SV model (Creal, 2017) implies a variance-gamma distribution, which has thin

tails (Madan & Seneta, 1990). The local scale model of Shephard (1994) is non-stationary,

unlike ours which is stationary. In addition, the local scale model requires a restriction

on the initial distribution for conjugacy (i.e. ν = 2α1).

Integrating out analytically the volatilities in our model not only allows us to get

an analytical expression for the likelihood, but also to see the similarity of our model

to GARCH models. In particular we can see that the variance at each point in time

given previous data is a (nonlinear) function of previous residuals. Using the filtering

distributions in subsection 3.3.2, we obtain the following:

� y1|k1 ∼ N(µ+x1β, (B
2k1)

−1), where k1 is a gamma. Therefore the first observation

is a student-t with n degrees of freedom.

� Similarly for the second observation y2|y1, k2 ∼ N(µ + x2β, (B
2k2)

−1), where k2|y1
is a mixture of gammas. E(k2|y1) is a nonlinear function of past residuals.

� For any t, yt|yt−1, ..., y1, kt ∼ N(µ+xtβ, (B
2kt)

−1), where kt|yt−1, ..., y1 is a mixture

of gammas, whose expected value is a nonlinear function of all past residuals.
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Thus, integrating out the volatilities gives a structure similar to GARCH models, but

with a different functional form and distribution.

3.3.1 The Likelihood

The following proposition, whose proof is in Appendix A.1.2, gives the likelihood for the

model described in equations (3.3.1)-(3.3.2).

Proposition 3.3.1. Let et = yt − µ − xtβ for t = 1, ..., T . The likelihood for the first

observation is:

L(y1) = (2π)−
1
2

√
B22

1
2
Γ(n+1

2
)

Γ(n
2
)

∣∣B2e21 + V −1
1

∣∣−n+1
2 V

−n
2

1

for the second is:

L(y2|y1) = (2π)−
1
2

√
B2

2
n+1
2

2
n
2

Γ
(
n+1
2

)
Γ
(
n
2

) (B2e22 + 1)−
n+1
2

(1− δ2)
−n+1

2

Ĉ2

for the third is:

L(y3|y2, y1) = (2π)−
1
2

√
B2

1

c3

∞∑
h2=0

C̃2,h2

Γ
(
n+1+2h2

2

)
(B2e23 + 1)

n+1
2

(2S3)
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for the fourth is:
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and for any t ≥ 3 is

L(yt|y1:t−1) = (2π)−
1
2

√
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1
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where:

V1 = (1− ρ2)−1

Ṽ −1
2 = V −1

1 +B2e21

δ2 = ρ2(Ṽ −1
2 + ρ2)−1

Z2 = (1 +B2e22)
−1δ2

C̃2,h2 =
[(n+ 1)/2]h2

[n/2]h2

(
1

2
ρ2(Ṽ −1

2 + ρ2)−1

)h2 1

h2!

C̃3,h3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
[(n+ 1)/2 + h2]h3

[n/2]h3

(
1

2
ρ2S3

)h3 1

h3!
(2S3)

n+1+2h2
2
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2
,
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2
;
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2
; δ3

)
Γ

(
n+ 1

2

)
(1− ρ2S3)
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2 (2S3)

n+1
2

Ĉt = 2F1

(
n+ 1 + 2ht−1

2
,
n+ 1

2
;
n

2
;Zt

)
for t ≥ 2 and where h1 = 0

for T ≥ t ≥ 3

St = (1 +B2e2t−1 + ρ2)−1

Ṽ −1
t = 1 +B2e2t−1

Zt = (B2e2t + 1)−1Stρ
2

δt =

(
(1− ρ2St)

−1Stρ
2(Ṽ −1

t−1 + ρ2)−1

)

and for T + 1 ≥ t ≥ 4

ct =
∞∑
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(
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)
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(
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)
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2
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and ST+1 = (1 +B2e2T )
−1
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The rising factorial is denoted as [x]h and 2F1 denotes a hypergeometric function

(e.g. Muirhead (2005, p. 20)). There are a number of transformations to the 2F1

hypergeometric functions above to accelerate their convergence. Abramowitz et al. (1988,

p.559) defines several transformations such as the Euler transformation:

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z)

or a linear combination approach:

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z)

for (|arg(1− z)| < π)

The expression for Ĉt above transformed using the Euler transformation becomes:

Ĉt = (1− Zt)
−n+2+2ht−1

2 2F1

(
− 1 + 2ht−1

2
,−1

2
;
n

2
;Zt

)
for t ≥ 2 and where h1 = 0

In our coding we used the Euler acceleration only for Ĉ2 and c3, because for larger values

of t the acceleration did not converge when h was large. Regarding the linear combination

approach, although we did not implement it in our code for the R package, the acceleration

converges. We accelerated the calculations by implementing parallel computing in the

code. This is possible because many of the coefficients in the series are the same for

every t, therefore they only need to be computed once, which can be done in parallel.

We also calculate all the Ĉt in parallel. As shown in Section 3.4, this drastically reduces

computation time. The derivatives of the log-likelihood can be obtained as a byproduct

of the likelihood calculation.

After integrating out the volatilities, this likelihood can be calculated recursively

starting with y1, which is the first observation, to yT . This likelihood is easy to compute

and it always converges since |Zt| < 1 for all values of t. We truncate the number of terms

to calculate the hypergeometric functions to around 350 to ensure convergence, and the

sums are truncated at about h = 350. These truncation values seemed to be sufficient as
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explained in Table 1 in our application using inflation data.

3.3.2 Joint Smoothing and Filtering Distributions

In this subsection, we provide the analytical expressions for both the joint smoothing

and filtering distributions for the volatilities. Propositions 3.3.2, 3.3.3 and 3.3.4, proved

in the Appendix, provide the smoothing distributions in alternative forms. Proposition

3.3.2 and 3.3.3 give the conditional distributions π(kt|k(t+1):T , y1:T ), and π(kt|k1:(t−1), y1:T ),

respectively, while Proposition 3.3.4 gives the marginals π(kt|y1:T ). The filtering distri-

butions are stated after Proposition 3.3.4.

Proposition 3.3.2. The joint posterior distribution π(k1:T |y1:T ) can be obtained from the

following conditional densities each of which is a mixture of gammas:

π(kt|k(t+1):T , y1:T ) ∝ |kt|
n+1−2

2 exp

(
− 1

2
S−1
t+1kt

) ∞∑
h=0

(
Ct,h|kt|h

)
, t = 1, ..., T

where

C1,h =
1

h!

1

[n/2]h

(
1

4
ρ2k2

)h

S2 = (1 +B2e21)
−1

ST+1 = (1 +B2e2T )
−1

for 3 ≤ t ≤ T

St = (1 +B2e2t−1 + ρ2)−1

and for 2 ≤ t < T :

Ct,h =
h∑

ht=0

C̃t,h−ht

1

[n/2]ht

(
1

4
ρ2
)ht kht

t+1

ht!

while for t = T , Ct,h = C̃t,h, and where C̃t,h has been defined in Proposition 3.3.1.

Proposition 3.3.3. The density π(kt|k1:(t−1), y1:T ) is a mixture of gamma distributions

and its kernel is proportional to:
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π(kT-s|k1:(T-s-1), y1:T ) ∝ |kT-s|
n+1−2
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ãT-s,h−hT-s

1

(hT-s)!

1

[n/2]hT-s

(
1

4
ρ2
)hT-s

khT-s
T-s−1, s = 1, . . . , T − 2

and
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For the case when s = T − 1, we have aT-s,h = a1,h = ã1,h.

We can integrate π(k1:T )π(y1:T |k1:T ) with respect to k1:(t−1) and with respect to k(t+1):T

to obtain the following proposition which gives the marginal density π(kt|y1:T ) for t =

2, . . . , T−1. Note that for t = T or t = 1 the marginal densities are given by Propositions

3.3.2 and 3.3.3, respectively.

Proposition 3.3.4. The density of π(kt|y1:T ) is that of a mixture of gammas and its

kernel is given by:

π(kt|y1:T ) ∝ |kt|
n+1−2

2 exp

(
− 1

2
S−1
t+1kt

) ∞∑
h=0

D̃t,h|kt|h

for t = 2, . . . , T − 1, where for 2 ≤ t < T − 1:

D̃t,h =
h∑
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C̃t,h−ht
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(
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)
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and for t = T − 1:

D̃T−1,h =
h∑

hT−1=0

C̃T−1,h−hT−1

1

[n/2]hT−1

(
1

4
ρ2
)hT−1 1

(hT−1)!

Γ
(
n+1
2

+ hT−1

)
(S−1

T+1/2)
n+1
2

+hT−1

where ãt+1,h was defined in Proposition 3.3.3 and C̃t,ht was defined in Proposition 3.3.1.

Regarding the filtering distributions, they were obtained in the proof of Proposition

3.3.1. They are a mixture of gammas and the kernel is given by:

π(kt|yt−1, yt−2, ..., y1) ∝ |kt|
n−2
2 exp

(
− 1

2
kt

) ∞∑
h=0

(
C̃t,h|kt|h

)
, t = 1, ..., T

where the recursive constants are defined in Proposition 3.3.1.

3.4 Empirical Applications

3.4.1 Macroeconomic Data

To illustrate the efficiency and usefulness of our proposed novel addition to the SV litera-

ture, we provide macroeconomic applications using inflation data for the UK, Japan, US

and Brazil. The data series were all sourced from the Federal Reserve Bank of St Louis

Fred database as the Consumer Price Index (CPI) data and inflation was constructed

using the following formula:

Inflation =
CPIt − CPIt−1

CPIt−1

× 100

The number of observations for each series were determined by availability of data. UK

data thus covers the period 1960Q2 to 2022Q1 and Japan data is obtained for the period

1960Q4 to 2022Q1. The US inflation data covers the period 1960Q1 to 2021Q4. Due

to unavailability of data for earlier years for Brazil we have observations for the period

1981Q1 to 2021Q4. yt is the level of inflation and xt contains a constant and 4 lags of yt.

Therefore, for each series we have 244, 242, 244 and 160 observations, respectively, after
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constructing the lags.

Figure 3.1 illustrates the quarterly inflation series for the four countries in levels. The

trend for the evolution of inflation for the US, UK and Japan in the early 1970’s and

1980’s have slight similarities. However, in later years across all series, inflation evolves

differently.

Figure 3.1: Inflation Rates

The x-axis plots the dates that correspond to the end of each year for the quarterly observations. The

y-axis plots the Inflation Rates

Figure 3.2 shows the Ordinary Least Squares (OLS) residuals for the four countries

over the sample period, after regressing the level of inflation on its 4 lags and an intercept.

The spikes in volatility observed for Brazil inflation show that the series accumulates

periods of consistent high volatility continuously. Overall for all countries, volatility

patterns exhibit some extreme values suggesting that models that assume heavier tailed

distributions might fit better and improve forecasting.
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Figure 3.2: Residuals Plots

The x-axis plots the time period. The y-axis plots the OLS Residuals

In the maximization algorithm, the initial values for the slope coefficients are equal

to the OLS estimates, and for the rest of the parameters we choose values such that the

mean volatility implied by the model equals that of the data. We truncate the calculation

of hypergeometric functions at 350 terms and we truncate ht in the likelihood at ht = 350

to ensure convergence.

Smoothed Estimates of the Volatilities

Using the smoothing distributions we are able to obtain an estimate of the variance of

et at each point of time given all available data: E(var(et|kt)) = E(var(yt|xt, kt)), where
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the expectation is with respect to the smoothing distribution of kt (i.e. π(kt|y1:T )). This

is in contrast to the commonly used GARCH MLE estimates, which can only provide

the filtered estimates of the variance: var(et|y1:(t−1)). Figure 3.3 compares the MLE

smoothed estimates of the variance at each point in time for each country, to the moving

average of the squared OLS residuals obtained from 5 contiguous squared residuals.

Figure 3.3: Smoothed Estimates of the Volatilities

The red lines show the smoothed estimates of the volatilities compared to the moving average of OLS

squared residuals displayed in blue

The periods with high residuals coincide with periods of high estimated stochastic

volatility each point in time for all the four countries. In particular for the US and UK the
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estimates reflect the expectations for high volatility trends observed during periods such

as the Great recession and smaller peaks in volatility representing the covid recessions.

Accuracy Check

We compare our novel algorithm to the Particle Filter to check the accuracy of our

computations. Particle filters are commonly used in practice for calculating the likelihood

function. Literature has it that they provide an unbiased estimate of the likelihood (see

e.g Moral (2004), proposition 7.4.1). We use the UK inflation data for this exercise.

Parameter values for both algorithms are set at the maximum likelihood estimates. To

evaluate each value of the likelihood we use the average of 110 independent replications

of the particle filter proposed in Chan et al. (2020). We set the number of particles to

twice the sample size T , that is each particle filter has T ∗ 2 particles. We obtained 100

values for the log-likelihood using this method and plot them in Figure 3.4 together with

the value provided by our algorithm.

The exact log likelihood estimate for the UK inflation data is -229.87. The figure

shows that the particle filter value for the log-likelihood goes above and below our exact

value. Therefore our solution seems accurate.
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Figure 3.4: Particle Filter Estimates UK Inflation

The horizontal blue line represents the exact value obtained using our novel algorithm. Small circles show

the 100 log-likelihood estimates, each of which was obtained by averaging 110 runs of the particle filter

Computational Efficiency

In order to calculate the likelihood, we need to truncate the number of terms that are

added for the hypergeometric functions (niter), and also we need to truncate h. For

simplicity we use the same truncation points for both. Table 3.1 shows the values of the

log likelihood obtained for several truncation values, using the MLE estimates for the

parameter values and the four datasets. The value of the log-likelihood remains stable at
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truncation points of 150 (Japan), 200 (US), 300 (UK) and 350 (Brazil)6.

Using a truncation point of 350, the computation time for one evaluation of the

likelihood in seconds for the UK inflation dataset (T = 244) is 0.24, 0.39, 0.72 and 2.60

when using 18, 8, 4, or just one computing thread, respectively. For the UK exchange

rate dataset (T = 999) that we use in Section 4.2 a truncation point of 350 was also

adequate, and the computation times for the same increase to 0.82, 1.42, 2.72, 10.07,

respectively. The coding was done in C++, linked to the R software and executed in a

Ryzen threadripper 3970x processor.

Table 3.1: Likelihood at different truncation parameter values

UK Japan US Brazil

niter = h = 100 -234.59 102.58 -124.61 -392.51

niter = h = 150 -230.48 102.67 -124.58 -387.29

niter = h = 200 -229.91 102.67 -124.57 -385.91

niter = h = 300 -229.87 102.67 -124.57 -385.63

niter = h = 350 -229.87 102.67 -124.57 -385.62

niter = h = 400 -229.87 102.67 -124.57 -385.62

Parameter Estimates and Model Comparison

Maximum likelihood parameter estimates are reported in Table 3.2 for our model using

quarterly inflation data for the UK, Japan, US and Brazil and their standard errors in

parenthesis. β0 is the coefficient of the intercept while β1:4 are the coefficients of the lags.

Throughout the maximum likelihood estimation, we imposed the constraint 0 < ρ < 1

on the persistence of volatility.

6The determining factors for the truncation point, are the sample size. That is, the larger the sample
size the larger the truncation point, albeit not linearly. In addition, data with fat tails e.g. that of Brazil
requires a larger truncation point. Lastly, when n is close to 0 and rho is close to 1, the truncation point
required would be larger
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Table 3.2: Inverse Gamma SV Model Maximum Likelihood Estimates

Parameter UK Japan US Brazil

B2 0.0653 2.2868 0.2845 0.0127

(0.0354) (1.2679) (0.1670) (0.0064)

ρ 0.9849 0.9734 0.9577 0.9964

(0.0091) (0.0159) (0.0252) (0.0048)

n 2.2527 2.0529 3.2136 0.7010

(0.6534) (0.4724) (0.8377) (0.1374)

β0 0.1148 0.0053 0.1053 -0.1030

(0.0492) (0.0078) (0.0418) (0.0810)

β1 0.1256 0.0222 0.5772 1.0604

(0.0529) (0.0557) (0.0701) (0.0607)

β2 0.1627 0.2592 0.0500 -0.4053

(0.0479) (0.0537) (0.0731) (0.0499)

β3 -0.1005 0.0247 0.3304 0.4889

(0.0483) (0.0517) (0.0719) (0.0924)

β4 0.6140 0.4291 -0.0747 -0.0652

(0.0485) (0.0530) (0.0638) (0.0315)

The coefficients of the lags are mostly significant, and the estimates of ρ indicate high

persistence of the volatility in all countries. In all cases except Brazil, the estimated

values of n are bigger than 2, implying a finite value for the expected value of volatility.

For Brazil we have n = 0.7, implying that yt has very fat tails, similar to those of a

Cauchy distribution.

We compare the empirical performance of the following 7 models:

M1: Homoscedastic

M2: Local scale model (Shephard, (1994))

M3: Univariate GARCH(1,1) with normal errors

M4: Univariate GARCH(1,1) with student t errors

M5: Log Normal stochastic volatility (e.g. Kim et al. (1998))
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M6: Gamma stochastic volatility

M7: Inverse Gamma stochastic volatility

Except M5 all models are estimated by MLE. The model M5 is estimated using

Bayesian methods with the R package stochvol (Kastner (2016)), using the default non-

informative priors implemented in the package. For this model the value of the log-

likelihood at the posterior mean of parameters is evaluated by averaging 50 independent

replications of a bootstrap particle filter, with each particle filter having a number of

particles equal to 60 times the sample size. Thus, the model is estimated at the posterior

mean of the parameters and not the posterior mode. It is possible that estimating the

likelihood at the posterior mode of the parameters may increase the value of the likeli-

hood. The numerical standard error of the log-likelihood estimate was smaller than 0.02

in all cases. Both the Gaussian and Student t GARCH are specified as GARCH(1, 1),

thus they have 8 parameters and 9 parameters respectively given that we have 4 lags and

an intercept. The stochastic volatility models have 8 parameters except for the gamma

SV model which has an additional parameter for the skewness of volatility.

Table 3.3 reports the log likelihood values at the maximum likelihood estimates and

Table 3.4 reports the values of the Bayesian Information Criterion (BIC, Schwarz 1978).

As expected the homoscedastic model is the worst of all models for all countries. In terms

of the log-likelihood the inverse gamma model is the best for the US, and the gamma

SV model is the best for the UK and Japan. For Brazil the GARCH(1,1) with student-t

errors has the best value of the log-likelihood, but when penalizing for the number of

parameters using the BIC (the smaller the better) the inverse gamma SV model is the

best. In summary, using the BIC the gamma SV model is the best for the UK and Japan,

and the inverse gamma SV model is the best for the US and Brazil. In the case of the

UK and Japan the asymmetry parameter of the Gamma SV model was estimated to be

large, which might be the reason for the better performance of this model. In the case

of Brazil and the US the residuals appear to have more abrupt changes, which might be

the reason for the better performance of the inverse Gamma SV model.
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Table 3.3: Inflation Rates Model Comparisons: Log Likelihood

Model UK Japan US Brazil

M1 -306.74 18.39 -165.42 -763.33

M2 -230.04 100.17 -129.90 -395.30

M3 -233.01 90.87 -147.72 -387.76

M4 -227.74 107.06 -133.34 -383.97

M5 -229.08 101.96 -126.74 -389.63

M6 -220.88 112.09 -129.33 -475.07

M7 -229.87 102.67 -124.57 -385.62

Table 3.4: Inflation Rates Model Comparisons: BIC

Model Parameters UK Japan US Brazil

T 244 242 244 160

M1 6 646.46 -3.85 363.83 1557.12

M2 8 504.05 -156.42 303.77 831.21

M3 8 509.99 -137.83 339.41 816.11

M4 9 504.95 -164.73 316.15 813.61

M5 8 502.13 -160.00 297.47 819.85

M6 9 491.24 -174.79 308.14 995.81

M7 8 503.72 -161.43 293.12 811.84

3.4.2 Exchange Rates Data Application

We use 1000 daily exchange rate observations for 7 currencies (GBP, EUR, JPY, CND,

AUD, BRL, ZAR) to the USD. The data for the first 6 currencies were obtained from

the Board of Governors of the Federal Reserve and covers the period beginning 5 March

2019 and ending 3 March 2023. ZAR was obtained from the South African Reserve Bank

for the period 7 May 2019 to 3 March 2023. In this analysis yt is the first differences of

the log exchange rate. All models include an intercept but we include no regressors (i.e.
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xt is empty).

Figure 3.5 shows the normalised exchange rates for the 7 countries. We calculate

the percentage of times that the absolute value of the normalised exchange rate goes

beyond 1.96 standard deviations. The JPY, BRL, GBP, CAD, EUR, and AUD have

thicker tails than a normal distribution with 5.8%, 5.7%, 5.9%, 5.2%, 6.5% and 6.1%

proportions respectively. The ZAR has slightly thinner tails to the normal with 4.8% of

the proportion going beyond 1.96 standard deviations.

In addition, we obtain the proportion where the absolute value of the normalised

exchange rate goes beyond 3.0902 standard deviations, which is 0.2% for a normal distri-

bution. The ZAR has the lowest proportion, with 0.4%, but still larger than the normal.

The JPY, BRL, GBP, CAD, EUR, and AUD distribution proportions are 1.8%, 1.0%,

1.6%,1.3%, 1.2%, 0.9%, respectively, all of them much greater than the normal.
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Figure 3.5: Normalised Exchange Rates

yt was normalised by subtracting its mean and dividing by the standard deviation. The x-axis plots the

dates that correspond to the end of each year for the daily observations. The y-axis plots the

normalised yt

When the same size is larger, the approximation error tends to accumulate. To check

the accuracy of our novel algorithm over a larger sample size, we do the same exercise as

with the UK inflation data, for the exchange rates data which has 999 observations for

the Great British Pound. Parameter values for both algorithms are set at the maximum

likelihood estimates as before. Figure 3.6 plots the result. The value of the log likelihood

using our model is 3762.81. The figure shows that the particle filter value for the log-

likelihood goes above and below our exact value as before even with a larger sample

size.
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Figure 3.6: Particle Filter Estimates GBP

The horizontal blue line represents the exact value obtained using our novel algorithm. Small circles show

the 100 log-likelihood estimates, each of which was obtained by averaging 110 runs of the particle filter

Similarly, with a larger sample size, we expect that the truncation point will be

larger, the larger the sample size is. To see by how much this increase tends to be we

again evaluate the likelihood at different truncation parameter values for the Exchange

rates data. We begin with the truncation
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Table 3.5: Likelihood at different truncation parameter values Exchange Rates

Model GBP EUR JPY CAD AUD BRL ZAR

niter = h = 200 3762.05 4022.94 3973.79 4023.11 3618.08 3152.75 3251.88

niter = h = 250 3762.74 4040.93 3973.79 4032.97 3631.00 3163.01 3251.90

niter = h = 300 3762.81 4049.34 3973.79 4036.66 3636.62 3166.89 3252.42

niter = h = 350 3762.81 4053.12 3973.79 4037.86 3638.98 3168.27 3252.42

niter = h = 400 3762.81 4054.69 3973.79 4038.17 3639.87 3168.70 3252.42

niter = h = 450 3762.81 4055.26 3973.79 4038.35 3640.14 3168.81 3252.42

niter = h = 500 3762.81 4055.44 3973.79 4038.36 3640.21 3168.84 3252.42

niter = h = 550 3762.81 4055.48 3973.79 4038.36 3640.23 3168.94 3252.42

niter = h = 600 3762.81 4055.50 3973.79 4038.36 3640.23 3168.94 3252.42

Table 3.5 shows the values of the log likelihood obtained for several truncation values,

using the MLE estimates for the parameter values and the seven data sets. The value

of the log-likelihood remains stable at truncation points of 300 (GBP), 600 (EURO),

200 (JPY), 500 (CAD), 550(AUD), 600 (Brazil) and, 300 (ZAR). The increase in the

truncation point is not linearly proportional to the increase in sample size. For example,

the JPY data is stable after just 200 points.

Table 3.6 shows the log likelihood values and Table 3.7 the BIC values (the smaller

the better) across all the 7 models listed above. The best model for the ZAR, which

has the thinnest tails, is the Gamma SV model, both in terms of the likelihood and the

BIC. For all the other currencies the GARCH(1,1) with student-t errors has the highest

log-likelihood values. However, when taking into account the number of parameters using

the BIC, this model is the best only for the EUR and JP. The inverse Gamma SV model

is the best for all the other currencies, GBP, CAD, AUD, BRL, with the log normal SV

model being equally good for the GBP and BRL.
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Table 3.6: Exchange Rates Model Comparisons: Log likelihood

Model GBP EUR JPY CAD AUD BRL ZAR

M1 3659.66 3962.76 3770.79 3976.17 3551.11 3123.64 3236.27

M2 3754.46 4053.28 3962.96 4034.74 3637.23 3167.60 3244.68

M3 3747.26 4044.27 3927.91 4027.51 3632.31 3165.52 3249.98

M4 3765.21 4059.93 3987.26 4041.50 3641.47 3171.54 3253.80

M5 3762.50 4055.48 3971.76 4036.88 3638.15 3168.97 3251.93

M6 3759.35 4053.41 3967.96 4034.91 3633.98 3168.72 3257.63

M7 3762.81 4055.50 3973.79 4038.36 3640.23 3168.94 3252.42

Table 3.7: Exchange Rates Model Comparisons: BIC

Model Parameters GBP EUR JPY CAD AUD BRL ZAR

T 999 999 999 999 999 999 999

M1 2 -7305.51 -7911.71 -7527.77 -7938.52 -7088.41 -6233.46 -6458.73

M2 4 -7481.30 -8078.92 -7898.28 -8041.86 -7246.83 -6307.58 -6461.73

M3 4 -7466.89 -8060.91 -7828.19 -8027.39 -7236.99 -6303.42 -6472.33

M4 5 -7495.89 -8085.33 -7939.98 -8048.47 -7248.40 -6308.55 -6473.07

M5 4 -7497.37 -8083.33 -7915.89 -8046.13 -7248.67 -6310.31 -6476.23

M6 5 -7484.16 -8072.29 -7901.38 -8035.29 -7233.42 -6302.92 -6480.73

M7 4 -7497.99 -8083.37 -7919.96 -8049.09 -7252.83 -6310.25 -6477.22

3.4.3 Stochastic Volatility Model with Leverage

Omori et al. (2007) suggest an approach that can handle stochastic volatility models

with leverage effects. Regarding the log normal stochastic volatility model, the model

proposed by Omori et al. (2007) has a similar structure to that of the baseline approach

by Kim et al. (1998) above, where in this case et and δt are both gaussian as follows:

et
δt

 ∽ N(0,Σ)
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where:

Σ =

 1 ρσ

ρσ σ2


The leverage effect is thus captured by the parameter ρ for this class of non linear

state space models. Literature is replete with papers that find that this leverage effect is

particularly a key property of high frequency financial data. In what follows, we compare

our novel inverse gamma stochastic volatility model to the model proposed by Omori et

al. (2007).

We use daily returns for the top 4 stocks each on the Tokyo Stock Price Index (Topix)

and the Standards and Poors 500 (S&P500), which are ranked by market capitalisation

as of November 2023. The 4 stocks with the assigned stock codes or ticker symbols for

TOPIX are Toyota (7203.T ), Keyence Corporation 6861.T , Sony(6758.T ) and, Nippon

Telegraph and Telephone Corporation(9432.T ). The S&P500 stocks are APPLE(AAPL),

Microsoft Corporation(MSFT),NVIDIA Corporation(NVDA) and Amazon(AMZN). The

stock returns are obtained from Yahoo finance, and consist of 1000 observations for each

historical return for the period 29 November 2023 to 17 November 2023. The observations

are transformed by taking first differences of the log returns.

The asymmetric stochastic volatility model with leverage is estimated using Bayesian

methods with the R package asv (Omori (2024)), using the default non-informative priors

implemented in the package. For this model, the model parameters are estimated using

MCMCmethods. Then, the value of the log-likelihood, given the estimated parameters, is

evaluated using an auxiliary particle filter provided with the package with 5000 particles.

The number of simulations used throughout the application was 150000 with a burn in of

15000. We also add the Gamma stochastic volatility model and the log normal stochastic

volatility models above to the comparison. The models have either 4 or 5 parameters

given that we have an intercept. Table 3.8 shows the log likelihood values and the BIC

values (the smaller the better) for these models.
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Table 3.8: Log Likelihood and BIC Comparison against SV model with leverage

Log Likelihood BIC

Model IGSV ASV GammaSV LNSV IGSV ASV GammaSV LNSV

Parameters 4 5 5 4 4 5 5 4

AAPL 2574,25 2572,55 2566,46 2572,60 −5120,87 −5110,57 −5098,38 −5117,57

MSFT 2611,36 2615,31 2605,87 2612,21 −5195,08 −5196,08 −5177,19 −5196,79

AMZN 2413,43 2413,19 2409,46 2412,35 −4799,23 −4791,85 −4784,38 −4797,07

NVDA 2052,70 2053,87 2051,91 2053,66 −4077,77 −4073,20 −4069,28 −4079,69

6861.T 2564,39 2565,19 2565,00 2564,86 −5101,16 −5095,84 −5095,46 −5102,09

7203.T 2744,62 2746,58 2748,77 2746,98 −5461,60 −5458,62 −5463,00 −5466,33

6758.T 2577,20 2576,27 2572,45 2574,81 −5126,78 −5118,00 −5110,36 −5121,99

9432.T 2622,33 2630,20 2614,81 2621,75 −5217,04 −5225,86 −5195,09 −5215,87

Notes:IGSV is the Inverse Gamma SV model, ASV is Asymetric SV model, GammaSV is the Gamma

SV model, while the LNSV is the log normal SV model.

In terms of the log likelihood, the Inverse Gamma SV model is best model for the

AAPL, AMZN and 6758.T . The asymetric SV model is the best for MSFT, 6861.T , and

9432.T . On the other hand the Log normal SV model is, better for NVDA and, 7203.T .

Of these models the Inverse gamma SV model has the thicker tails. Taking into account

the number of parameters using the BIC, the results are similar for the Inverse gamma

SV model. However, the Log normal SV is the best 50% of the time, with the ASV model

being substantially best for the 9432.T .

3.5 Conclusions

This paper obtained an analytic expression for the likelihood of an inverse gamma SV

model. As a result, it is possible to obtain the Maximum Likelihood estimator. The

exact value of the likelihood is also useful for Bayesian estimation and model comparison.

Within the literature of nonlinear or non Gaussian state space models this novel approach

is one of the very few methods that allow MLE because we are able to obtain the likeli-

hood exactly. We provide the explicit formulas for this likelihood as well as the code to

calculate it. Furthermore, we obtained the filtering and smoothing distributions for the

inverse volatilities as mixture of gammas, allowing exact sampling from these distribu-

tions. Inverse gamma SV models can account for fat tails, which are observed in most
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macroeconomic and financial data. The approach that we use to obtain the likelihood

expression is a result of integrating out the volatilities in the model. This approach is

computationally efficient, simple and accurate. The empirical fit of the inverse gamma

SV model is better than other alternative models in the literature with inflation data

for two countries and for 4 exchange rates series as shown in the empirical exercises.

Lastly, using daily returns for 8 stocks on the Tokyo Stock Price Index (Topix) and the

Standards and Poors 500 (S&P500), the performance of the model is compared to the

stochastic volatility model with leverage. The proposed model performs better 62.5%

than the asymmetric SV model in terms of the Bayesian Information Criterion (BIC).

The Inverse Gamma SV model can be extended to the multivariate case by using a factor

model framework such as proposed in Kim et al. (1998), however, we leave the derivation

of the exact likelihood for future research.
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CHAPTER 4

COMMON INVERSE GAMMA STOCHASTIC VOLATILITY

FACTOR IN VECTOR AUTOREGRESSIONS

4.1 Introduction

The literature on VARs with many outcome variables is receiving increased attention.

Papers that have compared the structural analysis and forecasting performance of small

VARs of less than 8 variables to that of large VARs with more than a dozen variables

have often found these large VARs to outperform models with fewer outcome variables

(e.g. Giannone et al. (2015), Carriero et al. (2016), Koop (2013) and Banbura et al.

(n.d.)). The baseline models in the literature made the assumption that the variance

is constant and the errors are gaussian. However, macroeconomic and financial data

has been found to exhibit fat tails and time varying volatility. Thus, to introduce time

variation in the volatility of the errors, macroeconomic and financial data literature has

favoured the use of stochastic volatility models as they tend to provide better forecasts

(e.g.Kim et al. (1998), C. Sims & Zha (2006) and Chan & Grant (2016a)). Empirical

studies, such as Leon-Gonzalez (2018), Chiu et al. (2017) and Cross & Poon (2016) point

out the improved forecasting performance of stochastic volatility models when fat tailed

distributions are modelled in the error structure of macroeconomic variables.

Carriero et al. (2016) observed that the volatility estimate patterns across macroe-

conomic variables exhibit similarities across the variables in support of their common

drifting volatility model. They employ a common factor model whose volatility is log

normal such that the variance of the error structure is var(et) = σ2
tΣ. A number of

papers either apply or build on this specification of the variance to model this feature

of macroeconomic variables (e.g Hartwig (2022), Mumtaz (2016), Poon (2018), Götz &

Hauzenberger (2021) and Hou et al. (2023)) with the latter also including variations for
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this Common Stochastic Volatility (CSV) model such as adding t innovations so that

var(et) = λtσ
2
tΣ, where λt is iid inverse gamma. Inclusion of this common volatility

feature in the error structure consistently increased forecasting accuracy in the above

literature.

Motivated by these findings, this paper proposes to improve the efficiency of CSV

models by combining both properties of the heavy tailed distributions observed in most

macroeconomic and financial applications, and the common factors. First, we obtain an

analytical expression of the likelihood for the variance of the error structure such that

var(et) = σ2
tΣ, where the time varying volatility in this case σ2

t is inverse gamma. This

specification allows for heavy tails, which are an important feature of economic and finan-

cial data empirically. We show that by marginalising out the volatilities, the analytical

expression of the likelihood that we obtain is simple to estimate and computationally

efficient. Using this likelihood, we then obtain numerically, the marginal likelihood and

the one step ahead out of sample forecasts that are the basis of comparison. We compare

our method with related CSV models in the literature. We provide 2 applications for

this comparison. The first application uses 20 macroeconomic variables each for Japan,

Brazil, US, and the UK. Another application uses daily exchange rate returns for a small

VAR of 4 currencies and a larger VAR of 8 currencies.

Section 4.2 reviews the literature. Section 4.3 describes the novel inverse gamma CSV

model, derives the expression of the likelihood and provides some tests for a section of

our algorithm. Section 4.4 details the models that will be used for comparison with our

model and explains how we obtain the marginal likelihood and the average log predictive

likelihood. In Section 4.5 we illustrate our novel algorithm to large data sets of quarterly

macroeconomic data and financial data to compare the empirical performance of different

models and finally section 4.6 concludes.

4.2 Literature Review

VARs are widely used in the structural analysis and forecasting literature ever since they

were proposed by C. A. Sims (1980) because of their forecasting ability. Empirical analysis

tends to use these VARs for model comparison as a benchmark for new approaches
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because of their general simplicity. However, VARs tend to require the estimation of many

parameters, thus, earlier analysis on Bayesian VAR (BVAR) methods such as Doan et

al. (1984) typically analysed a small number of dependent variables. Bayesian methods

are incorporated into VARs to allow for shrinkage by introducing informative priors.

The forecasting performance for VARs of these small models of less than 10 dependent

variables as a result was greatly improved (eg in Litterman (1986)).

Empirical macroeconomic applications however, tend to require an analysis of a very

large number of dependent variables to reduce the omitted variable bias. Traditional

approaches to estimating these large VARs, include panel VARs (e.g Poon (2018) and

Canova et al. (2007)) or the factor models of (e.g Stock & Watson (2002) and Forni et al.

(2000). The introduction of large BVARs that are unrestricted by Bańbura et al. (2010)

provides an alternative approach to estimating a large number of variables. These large

BVARs have been found to have better forecasting edge compared to smaller VARs (e.g

Bańbura et al. (2010) Giannone et al. (2015) and Koop (2013)).

4.2.1 Minnesota Prior

Minnesota priors were first introduced by Doan et al. (1984) and further developed by

Litterman (1986) as shrinkage priors for small VARs for auto regressive parameters. The

basic principle behind the Minnesota prior comes from the belief that for a variable

yi,t, the coefficients of the lags closest to that variable e.g yi,t−1, provide more accurate

information compared to later lags yi,t−2, . . . , yi,t−p. In addition, a variable’s own lags

have more information that can explain its own variable compared to other explanatory

variable’s lags. This prior belief has the effect of reducing the dimensionality problem

arising from too many parameters associated with VARs significantly. The belief is

expressed, by shrinking the values of the coefficients of later lags of own variables and

all lags of other explanatory variables towards 0. Moreover, the diagonal elements of the

coefficient of the earliest own lags can be shrunk towards 1. Shrinking the coefficients

this way underpins the random walk preference for the Minnesota prior (Karlsson, 2013).

Variants of this prior with specifications for stationary and persistent processes are also

available.
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To illustrate the Minnesota prior, we follow the specification in Bańbura et al. (2010):

Yt = µ+ θ1Yt−1 + · · ·+ θpYt−p + et

where et is normal distributed, E(ete
′
t) = Σ and θ = (θ′1, . . . , θ

′
p)

′ is a n× n matrix of

coefficients of the lags of Yt. This model has many parameters for the variance covari-

ance matrix Σ and the matrix of coefficients, which can cause many problems for bigger

dimensions of n. More specifically, Bayesian analysis of the Minnesota prior corresponds

to imposing a prior on the parameters (µ, θ,Σ) as follows for the prior mean of the coef-

ficients θ:

E[(θp)ij] =

1, for i = j, and p=1

0, otherwise

Litterman applies a tighter shrinkage as p gets longer in line with prior beliefs ex-

pressed above for later lags of own variables. To apply a tighter shrinkage to lags of other

explanatory variables, Litterman suggests setting the prior for the variance of a VAR

with m variables as:

V ar[(θp)ij] =


π2
1

(pπ3 )2
, for the coefficient of lag p of yi , where i = (p− 1)m+ j

(π1π2sj)
2

(pπ3sr)2
, for the coefficient of lag p of yr ̸=j, where i = (p− 1)m+ r

∞, deterministic variables, i = mp+ 1, . . . , k

where π2
1 is the overall variance, π2

2 is the variance for constant and deterministic

components or relative tightness of other variables, π2
3 is the rate of lag decay and

s2j
s2r

accounts for the different variances, that is, s2j is the OLS residual variance for equation j

and s2r is the equivalent for equation r. The prior mean for the deterministic components

is usually set to 0. Alternatively, often times the very first lag is identified as an identity

matrix.

The Minnesota prior is completed by imposing normal priors for the coefficients such
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as:

vec(θ) ∽ N(θ̄, Ω̄⊗ Σ)

where θ̄ includes intercepts, coefficients of a variables own lags and of lags of other

explanatory variables, ⊗ is the Kronecker product and Σ ∽ Inverse Wishart(s̄, ῡ). For

data in growth rates θ̄ is typically shrunk to 0 consistent with the prior belief that data

in growth rates is not persistent, whereas, for data in levels θ̄ is shrunk to zero for all

coefficients excluding the one for a variable’s own lag that is shrunk to one also consistent

with prior beliefs on the high persistence associated with data in levels.

The Minnesota prior sets Ω̄ as a diagonal matrix with diagonal elements depending on

π2
1, π

2
2, π

2
3 which are the key hyperparameters, thus reducing the prior elicitation process

considerably. Litterman reviewed this prior by estimating the VAR equation by equation.

Consequently, a number of variations to this prior can be found in the literature. For

instance, Bańbura et al. (2010), Kadiyala & Karlsson (1997) and C. Sims & Zha (1998)

modify the Minnesota prior so that the beliefs on the coefficients are symmetrical across

all equations and thus make the posterior probability density function tractable with

some restrictions.

4.2.2 Stochastic Volatility Models

To extend the literature on large BVARs, recent analysis introduce non linear time varia-

tion in the errors, which is a feature of macroeconomic and financial data literature. One

way to do this is by using stochastic volatility models (e.g Kim et al. (1998), C. Sims &

Zha (2006)). Early ideas of stochastic volatility were first proposed by Black (1976) for

financial econometrics, and the first model for macroeconomics, using Bayesian methods

was proposed by Jacquier et al. (1994). The model proposed by Jacquier et al. (1994)

implied that the var(et) = σ2
t and estimation of the algorithm was achieved by sampling

the volatilities individually. A drawback of this approach was the tendency to converge

slowly as a result of the ‘single-move’ estimation of the volatilities.

Uhlig (1997), Shephard & Pitt (1997) and Cogley & Sargent (2001) among others,

proposed to improve the convergence of these stochastic volatility models by sampling

52



the volatilities in blocks at a time. In an influential paper, Kim et al. (1998), show

that the log volatilities of SV models can be marginalised out to estimate the unknown

parameters. Both these approaches follow a log normal specification of the volatilities

which implies that the distributions have thin tails (Madan & Seneta, 1990).

A key property of macroeconomic data is the heavy tails observed in their distribu-

tions. Empirical works, such as, Leon-Gonzalez (2018), Chiu et al. (2017) and Cross &

Poon (2016) show that when fat tailed distributions are modelled in the error structure of

macroeconomic variables these stochastic volatility models often provide better forecasts.

Inverse gamma SV models imply student-t marginals, thus, they can account for fat tails

that are observed in most macroeconomic and financial data (Leon-Gonzalez, 2018). Re-

cent literature extends the stochastic volatility models by imposing varying assumptions

on the error structure to improve evaluation and forecasting performance. We take a look

at some of the specifications that have been proposed to model multivariate stochastic

volatility models.

4.2.3 Common Stochastic Volatility Models

Carriero et al. (2016) observed that the volatility estimate patterns across macroeconomic

variables, exhibit similarities across the variables. They proposed a common stochastic

volatility approach to estimate stochastic volatility models. Including this common fea-

ture of macroeconomic data in the error structure, resulted in an increase in forecasting

accuracy e.g Carriero et al. (2016). The results motivated the recent increase in speci-

fying common stochastic volatility models whose specifications we now discuss in what

follows.

The CSV literature capture the common factors using a log-normal process such that

σ2
t = eht , where the law of motion of the log volatilities ht, for t = 2, . . . , T is specified as

a stationary AR(1) process as follows:

ht = φht−1 + εht , εht ∼ N(0, α2)

and where |φ| < 1 and h1 is normally distributed as h1 ∼ N(0, α2/(1− φ2).

Models such as in (Carriero et al. (2016), Hartwig (2022), Poon (2018) and Götz &
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Hauzenberger (2021)) employ this specification of common factor model whose volatility is

log normal such that the variance of the error structure is var(et) = σ2
tΣ. Specified in this

way, the assumption is that the volatilities are proportional to each other given that they

are all scaled by the same time varying parameter. This assumption though seemingly too

restrictive, is supported nonetheless by empirical evidence on the co-movements observed

in the volatility of macroeconomic variables e.g Carriero et al. (2018).

Adding t innovations to this CSV framework to account for heavy tailed distributions

entails adding an additional hyper parameter for student t innovations so that we have

var(et) = λte
htΣ, where λt has an inverse gamma distribution with n degrees of freedom.

λ1, . . . , λt are assumed to be uncorrelated.

4.2.4 Moving Average Common Stochastic Volatility Models

The literature above assumes, mostly for computational convenience that the error terms

are independent from each other. However, the error structure of time series variables

are known to be serially correlated as illustrated in the seminal paper by Slutzky (1937).

Early applications of the dependency in the error structure referred to this as the Moving

Average structure. Chan (2013) models this property in a univariate moving average

stochastic volatility model by assuming that the errors in the measurement equation are

serially dependent. The framework for this approach to stochastic volatility models is as

follows:

yt = µt + et

et = ut + ψ1ut−1 + . . . ψqut−q ut ∼ N
(
0, eht

)
ht = µh + ϕh(ht−1 − µh) + ηt ηt ∼ N

(
0, σ2

h

) (4.2.1)

where q is the lag order of the moving average process and ut and ηt are assumed to

be uncorrelated. Both ψ1 and ϕh are less than 1 to satisfy invertibility conditions. Chan

(2013) found in their application to inflation that their model that specified the moving

average structure in stochastic volatility models resulted in a better fit compared to the

models that assume serial independence.

Serially dependent errors can be added to the general framework of the common
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stochastic volatility models to provide richer dynamics of the error structure. Chan

(2020) propose a framework that combines the MA structure in (4.2.1) and falls within

the CSV framework proposed by Carriero et al. (2016) such that the variance of the error

structure is log normal as before, that is var(et) = σ2
tΣ. Assuming that et is described

by a moving average process with 1 lag MA(1), that is

et = ut + ψ1ut−1

Then the covariance matrix Ω structure would be as in Chan (2020) as follows:

Ω =





(1 + ψ2
1)e

h1 ψ1e
h1 0 · · · 0

ψ1e
h1 ψ2

1e
h1 + eh2

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . ψ2

1e
hT−2 + ehT−1 ψ1e

hT−1

0 · · · 0 ψ1e
hT−1 (1 + ψ2

1)e
hT

(4.2.2)

Adding student-t innovations would result in the model having an additional hyper

parameter as before and thus the diagonal of the covariance matrix would be multiplied

by the hyper parameter λ1:t.

4.2.5 Testing MCMC Samplers

Occasionally when coding MCMC samplers, there are bound to be errors. The errors

could be in the algorithm itself in which case it may be incorrect mathematically or in

other instances the algorithm may fail to converge to the correct solution. To check

errors in implementing the code for these posterior simulators, that is, the mathematical

correctness of the MCMC algorithms Geweke (2004) provides a test that is often referred

to as the Geweke test. This test has proved to be one of the preferred standards for

checking and testing errors in MCMC samplers.

The test exploits a very simple idea that supposing one wishes to test the MCMC pos-

terior simulator for a generative model with data denoted by Y and parameters denoted
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as θ for the posterior π(θ|Y ). There are two ways that can be used to draw from the

joint distribution π(θ, Y ). One way is to draw M values of θ from the prior, θ1, . . . , θM

and calculate some statistic for the moments X = f(θ1, . . . , θM). An alternative way is

to sequentially, for i = 1, . . . ,M do as follows:

Step 1. Draw θi from its prior distribution π(Θ)

Step 2. Draw Yi from the conditional distribution π(Y |θi)

Step 3. Use MCMC sampler to obtain θ̃i from the posterior π(θ|Y = Yi)

Then compute the moments Y = f(θ̃1, . . . , θ̃M). Either draws will preserve the sam-

ples as draws from the stationary distribution such that its like sampling from the joint

distribution π(θ, Y ). If there is no error in the MCMC Sampler, then if one compares

the moments X and Y the difference will not be statistically significant. Geweke (2004)

proposes formal frequentist hypothesis tests to check whether the joint distributions are

significantly different. Geweke (2004) does so by comparing, moments of the distributions

such as the mean and the standard deviation. One way to compare the moments of the

two distributions can be implemented using Z-tests under the null hypothesis that the

MCMC sampler is correct as follows:

Z =
X − Y

√
V ariance of X + V ariance of Y ∗

√
1/n

We will use this test to check our implementation of the code that we use to draw the

unknown time varying volatilities.

4.3 Inverse Gamma CSV Model

The model can be described as follows:

Yt = xtβ + et, withet|xt ∼ N

(
0, σ2

tΣ

)
, t = 1, . . . , T, (4.3.1)

where Yt is a r × 1 vector, β is a matrix of unknown parameters, xt is a vector of

predetermined variables, and et is a r × 1 vector of unobserved errors .
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Define the time varying stochastic process as kt = (σ2
t )

−1, and assume that kt = z′tzt,

where zt is an n×1 vector. The vector zt has the following Gaussian AR(1) representation:

zt = zt−1ρ+ ϵt vec(ϵt) ∼ N(0, θ2In)

The parameter ρ controls the persistence of the volatility and n represents the degrees

of freedom of the non central chi squared distribution and this parameter will be esti-

mated. As a normalization we assume θ2 = 1 so that we have two volatility parameters to

estimate. This representation of zt implies that the conditional distribution of kt|kt−1 is a

non central chi squared. The non central chi-squared distribution is well defined for non

integer values of n, therefore we will treat the unknown parameter n as continuous. Given

the properties of a gamma, the conditional mean of the inverse time varying volatility kt,

given its previous history is a weighted average of the unconditional mean of kt and its

previous value kt−1 as follows:

E(kt|kt−1) = ρ2kt−1 + (1− ρ2)E(kt)

where ρ2kt−1 represents the non centrality parameter. As is characteristic of time

varying variance models, kt is correlated with its previous value. Assuming that kt is

drawn from a stationary distribution with n degrees of freedom and using the properties

of a gamma distribution, we have that the stationary and initial distribution of k1 is:

k1 ∽ Gamma

(
n

2
,

2

1− ρ2

)
To ensure stationarity, a necessary condition is |ρ| < 1. Thus, this model falls within

the same framework as in the CSV literature that follows the seminal paper of Carriero

et al. (2016) in that only σ2
t varies with time. In this model however, σ2

t is inverse gamma

whereas the CSV literature has σ2
t following a log normal distribution. The inverse

gamma specification implies a student-t distribution for yt thus enabling us to model

heavy tailed distributions. By integrating out the volatilities analytically, we obtain

analytical expressions of the likelihood that are simple as follows:
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4.3.1 Likelihood

Define ε2t = e′tΣ
−1et, then, the conditional likelihood function given the gaussian assump-

tion on et, is as follows:

L(Y1, . . . , YT | Σ, k1:T ) =
(

1

(2π)
r
2

)T( T∏
t=1

|Σ|−
1
2

)( T∏
t=1

|k−1
t |−

r
2

)
exp

(
− 1

2

T∑
t=1

ε2tkt

)
(4.3.2)

k1:T however, is not known, so we marginalise it out to obtain the likelihood conditional

on Σ , that is, L(Y1, . . . , YT |Σ). Thus, marginal on the unknown time varying volatility

kt, the expressions of the likelihood are as in the proposition below, the proof of which is

in the Appendix:

Proposition 4.3.1.

L(Y1) = (2π)−
r
2 |Σ|−

1
22

r
2
Γ(n+r

2
)

Γ(n
2
)

∣∣ε21 + V −1
1

∣∣−n+r
2 V

−n
2

1

for the second is:

L(Y2|Y1) = (2π)−
r
2 |Σ|−

1
2
2
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2

2
n
2

Γ
(
n+r
2

)
Γ
(
n
2
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2

(1− δ2)
−n+r

2

Ĉ2

for the third is:

L(Y3|Y2, Y1) = (2π)−
r
2 |Σ|−

1
2
1

c3

∞∑
h2=0

C̃2,h2

Γ
(
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(
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for the fourth is:

L(Y4|Y3, Y2, Y1) = (2π)−
r
2 |Σ|−

1
2
1

c4

∞∑
h3=0

C̃3,h3

Γ
(
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2
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2
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(
n
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and for any t ≥ 3 is
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L(Yt|Y1:t−1) = (2π)−
r
2 |Σ|−

1
2
1

ct

∞∑
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(
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where:

V1 = (1− ρ2)−1

Ṽ −1
2 = V −1

1 + ε21

δ2 = ρ2(Ṽ −1
2 + ρ2)−1

Z2 = (ε2t + 1)−1δ2

C̃2,h2 =
[(n+ r)/2]h2

[n/2]h2

(
1

2
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)h2 1
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)
for t ≥ 2 and where h1 = 0

for T ≥ t ≥ 3

St = (ε2t−1 + 1 + ρ2)−1

Ṽ −1
t = ε2t−1 + 1

Zt = (ε2t + 1)−1Stρ
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−1Stρ
2(Ṽ −1
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and for T + 1 ≥ t ≥ 4
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and ST+1 = (1 + εT )
−1

[x]h denotes the rising factorial and 2F1 a gauss hypergeometric function (e.g. Muir-

head (2005, p. 20)). These hypergeometric functions can be transformed to accelerate

their convergence in a number of ways. Abramowitz et al. (1988, p.559) defines several

transformations such as the Euler transformation where:

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z)

or a linear combination approach:

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z)

for (|arg(1− z)| < π)

Ĉt above transformed using the Euler transformation is thus:

Ĉt = (1− Zt)
−n+2r+2ht−1

2 2F1

(
− r + 2ht−1

2
,−r

2
;
n

2
;Zt

)
for t ≥ 2 and where h1 = 0

However, in our coding we used the Euler acceleration only for Ĉ2 and c3. Instead,

we accelerated the calculations by implementing parallel computing in the code. This is

possible because many of the coefficients in the series are the same for every t, therefore

they only need to be computed once, which can be done in parallel. We also calculate all

the Ĉt in parallel.

4.3.2 Geweke’s test

To test the implementation of the algorithm that we use to draw the unknown time

varying volatilities k1:t for this approach, we use the Geweke test described above as

follows:

Step 1. Draw k1:t from a gamma distribution which is our prior for π(k1:t)
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Step 2. Draw the data from the normal distribution π(Y1:t|k1:t)

Step 3. Draw k1:t|Y1:t using the posterior simulator

This is done repeatedly. If our implementation of this algorithm is correct, we expect by

checking the simulation that the distribution of k1:t should be the same in step 1 and in

step 3. We use the Z-test to test whether the means for the time varying volatility k1:t

drawn from the prior in step 1 (labelled as X in 4.1) are significantly different from the

ones drawn using the posterior simulator in step 3 k1:t (labelled as Y). We obtain the

following Z statistics, which under the null hypothesis that the algorithm is correct follow

Z ∽ N(0, 1):

Table 4.1: Z test statistics for the mean

X Y

Standard Deviation 19.56542 19.91627

Mean 36.79686 36.65944

Mean Difference = 0.17169

Critical value (two tails) at 0.05 significance level =1.96

Z= 0.95268

The Z score is less than the critical value corresponding to the 0.05 significance level

of 1.96, thus we fail to reject the null hypothesis that the algorithm implementation is

correct.

4.4 Models for Comparison

We compare our proposed model to 5 model specifications to demonstrate its merits.

First we compare with a plain homoscedastic BVAR. We then compare with four other

CSV models, that is, Carriero et al. (2016)’s specification of heteroscedastic innovations.

As Hou et al. (2023) and Chan (2020), have done in these applications we label the model

a BVAR-CSV and its variance structure is such that var(et) = σ2
tΣ. The third model

adds t innovations to this specification such that var(et) = λtσ
2
tΣ, where λt is iid inverse
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gamma. This is the BVAR-CSV-t model. The fourth model is the BVAR-CSV-MA model

that adds moving average (MA)innovations to the error such that et = ϵt + ψϵt−1. We

add t innovations to this MA specification to get the BVAR-CSV-MA-t model. All these

CSV models have the same description as in (4.3.1) with the exception of the variance of

the error term. These models have the advantage of having a kronecker product in the

structure of their covariance which speeds up computations significantly in large models.

In comparison to our proposed model, the BVAR-CSV model has the same number of

parameters. The only difference is the change of distribution. Thus, the comparison

of the two models adds to the literature on the merits or lack thereof, of including the

property of heavier tailed distributions observed in macroeconomic and financial data.

Table 4.2 lists the comparison models.

Table 4.2: Models for Comparison

Model Code Description

BVAR M1 Standard BVAR with homoscedastic errors

BVAR-CSV M2 BVAR with a CSV

BVAR-CSV-t M3 BVAR with both CSV and t innovations

BVAR-CSV-MA M4 BVAR with CSV and MA(1) innovations

BVAR-CSV-MA-t M5 BVAR with CSV, MA(1) and t innovations

BVAR-CSV-IG M6 BVAR with CSV and inverse gamma innovations

The priors for those parameters that are common to all models are similar for com-

parison purposes.

4.4.1 Comparison Methods

We use the marginal likelihood and predictive likelihood to compare the models. The

closed form expression of the marginal likelihood for the homoscedastic BVAR with a nat-

ural conjugate prior is as proposed by Karlsson (2013). The expressions of the marginal

likelihood for the other models under comparison can be obtained numerically by follow-

ing the method proposed by Chib (1995), which is known as the Chib’s method. This is
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the method that we use for all the models, except for the inverse gamma CSV, for which

we use importance sampling. Chib‘s method uses the Bayes Theorem as follows:

π(θ|Y ) =
π(θ)π(Y |θ)

π(Y )
(4.4.1)

where π(θ|Y ) is the posterior of the vector of parameters θ given Y, the numerator

is the prior for the parameters multiplied by the likelihood and the denominator is the

marginal likelihood. For a large class of state space models π(Y |θ) is not known, thus

numerical methods such as particle filters or importance sampling are used to approximate

it. For the inverse gamma with Σt = Σ, we have the analytical expressions of the

likelihood, thus we do not need numerical methods. Then, given the likelihood, (4.4.1)

can be rearranged to obtain:

π(Y ) =
π(θ)π(Y |θ)
π(θ|Y )

The log marginal likelihood can thus be obtained as:

log(π(Y )) = log(π(θ̂)) + log(π(Y |θ̂))− log(π(θ̂|Y ))

where log(π(Y |θ̂)) is the log likelihood obtained above for some value of θ, e.g the

posterior mean θ̂ = E(θ|Y ).

To implement Chib’s method, Chan (2020) does so by evaluating the integrated like-

lihood marginal on the state variables. To evaluate the marginal likelihood in this way is

itself computationally challenging, more so for more complex models as it involves high

dimensional integration. Let z represent the state variables, then the integrated likelihood

proposed in Chan (2020) can be obtained as follows:

π(Y |θ) =
∫
π(Y |θ, z)π(z|θ)dz (4.4.2)

where π(z|θ) is the prior density of the latent variables conditional on θ. For the

BVAR models with a common stochastic volatility specification and t innovations in the

comparison models above, this integrated likelihood can be evaluated numerically by

marginalising out all the state variables in z. Chan (2020) uses an importance sampling
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approach proposed in Chan & Grant (2016b). Details of the approach proposed in this

paper to evaluate the integrated likelihood for each of the models above can be obtained

from the online appendix of their paper.

Importance sampling in general works well provided that a “good” approximation to

the posterior density π̂(z|Y, θ) is known. This importance sampling density should be

such that π(Y |θ, z)π(z|θ) is dominated by it. Then, (4.4.2) can be written as follows:

π(Y |θ) =
∫
π(Y |θ, z)π(z|θ)dz =

∫
π(Y |θ, z)π(z|θ)π̂(z|Y, θ)

π̂(z|Y, θ)
dz =

∫
W (z(π̂(z|Y, θ)dz

where π̂(z|Y, θ) is the importance density, and W (z) = π(Y |θ,z)π(z|θ)
π̂(z|Y,θ) is the importance

weight which ideally should have a small variance.

Consequently, if z1, . . . , zN ∽iid π̂(z|Y, θ), then this integral is approximately equal

to averaging the ratio
∑M

i=1Wi(zi) where Wi are the weights representing the ratio of

densities (Kroese et al., 2013). Therefore, for this approach to work, the weight has to

have a small variance, meaning that the importance sampling density π̂(z|Y, θ) has to be

similar to the conditional density of the latent variables π(z|Y, θ), which may be difficult

in big dimensions.

Obtaining the marginal likelihood for our model is simpler, because we have an ex-

act analytical expression for the integrated likelihood. We use an importance sampling

approach. We assume as follows, given our parameters θ̃ = (θ, n, ρ), where θ = β,Σ. Let

M1 be a VAR model with a time varying variance such that var(M1)=Σσ̂t. We further

assume that σ̂t is known, thus, for this model the marginal likelihood is known. Let M2

be our CSV-IG model, in which f̂(n, ρ) is an approximation of the conditional posterior

π(n, ρ|Y,M2). Because the prior π(n|M2) ∼ is a log normal, we choose f̂(n) to be a log

normal, with mean and variance from the posterior. Similarly, because the prior π(ρ|M2)

is a beta distribution, we specify ⇒ f̂(ρ) as a beta distribution with parameters chosen

to match the posterior mean and variance of ρ.

Thus, we can approximate the marginal likelihood by first approximating the following

Bayes factor:
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π(Y |M1)

π(Y |M2)
=

∫
π(θ|M1)π(Y |θ,M1)f̂(n, ρ)

π(θ|M2)π(Y |θ̃,M2)π(n, ρ|M2)
π(θ̃|Y,M2)dθ̃

This integral can be calculated by importance sampling, where the weight for each θ̃

is thus defined as

W (θ̃i) =
π(θi|M1)π(Y |θi,M1)f̂(ni, ρi)

π(θi|M2)π(Y |θ̃i,M2)π(ni, ρi|M2)

where θ̃i = (θi, ni, ρi) are obtained with the MCMC sampler for M2. Thus, the Bayes

Factor can be approximated with 1
M

∑M
i=1W (θ̃i), where M is the number of random draws

from the posterior.

Figure 4.1 shows the importance sampling ratios obtained from 15000 iterations with

a burn in of 1000 of the sampler using our approach for the macroeconomic data. The

horizontal line indicates the estimated value of the Bayes factor. Approximately 5% of

the weights go beyond the horizontal line indicating good performance.
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Figure 4.1: Importance Sampling Ratios

Importance Sampling Ratios obtained from 15000 iterations.

We also evaluate the performance of the models by using predictive likelihoods which

measure the one step ahead out of sample forecasting accuracy. We provide one step

ahead out of sample density forecasts computed from the predictive density. To evaluate

the one step ahead density forecasts, a popular metric used is the predictive likelihood.

The predictive likelihood, can be obtained from the marginal likelihood as follows:

Predictive LikelihoodT0+1:T =
Marginal Likelihood1:T
Marginal Likelihood1:T0

Taking logs we can obtain the log predictive likelihood as:

log(π(Y(T0+1):T )|Y1:T0) = log(π(Y1:T ))− log(π(Y1:T0))

One way to evaluate this log predictive likelihood is to obtain the log marginal likeli-

hoods given data to the time periods above and obtain the difference. Another approach
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is to estimate the model repeatedly, that is, estimate the model using data for t = T0 and

then forecast for T0 + 1 and obtain π(YT0+1|Y1:T0) =
∑M

i=1

π(YT0+1|θi,Y1:T0
)

M
. Then move one

step forward and repeat the process using data up to T0 + 1 and forecast for T0 + 2, and

so forth. We use the former approach.

The Average Log Predictive Likelihood (ALPL), can be obtained by averaging over

the number of periods, that is:

ALPL =
log(π(Y(T0+1):T )|Y1:T0)

T − T0

A larger ALPL implies better forecasting accuracy compared to the benchmark.

Whenever the prior is based on the data, for example in the Minnesota prior, we use

only data up to T0 to train the prior in all cases.

4.5 Empirical Application

To illustrate the efficiency and usefulness of our proposed model addition to the CSV

literature, we provide 2 applications. The first application uses 20 macroeconomic and

financial variables each for Japan, Brazil, US, and the UK. Another application uses daily

exchange rate returns for a small VAR of 4 currencies and a larger VAR of 8 currencies.

4.5.1 Macroeconomic Application

Vintage US macroeconomic data for the empirical application was obtained from the

Federal Reserve Bank of Philadelphia while the financial variables were sourced from

the Federal Reserve Bank of St Louis. For consistency with previous literature on CSV

applications, these variables are the same as those used in e.g Chan (2020), Carriero et al.

(2016) and Koop (2013) updated to 2022Q2. The variables include Real output, personal

consumption expenditures, Investments, federal interest rates and the S&P500.

Variables for Japan were obtained from the Federal Reserve Bank of St Louis with

the exception of three variables that were obtained from CEIC data. That is, the foreign

effective exchange rate and the monetary base cited by CEIC as sourced from the Bank

of Japan while the industrial production index was obtained from the International Mon-
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etary Fund. All variables were chosen to closely match the 20 US variables, as such, the

index of aggregate weekly hours for Japan represent hourly earnings for manufacturing

whereas housing starts are obtained as data for work started on construction, dwellings

or residential buildings as a total.

UK variables were obtained from the Federal Reserve Bank of St Louis. Long term

government 10 year bond yields replace the 10 year treasury constant maturity rate.

The Import price index for the UK is for all goods and services classified by origin.

The variables for Brazil were also obtained from the Federal Reserve Bank of St Louis

with the exception of 7 variables obtained from CEIC data sourced from various sources.

The industrial production index, producer price index and the payroll index was cited

as sourced from the Brazilian Institute of Geography and Statistics. The import price

index was sourced from the Centre for Foreign Trade Studies Foundation. Government

bond yields were sourced from the National Treasury Secretariat. The monetary base

was sourced from the Central Bank of Brazil. Lastly, the Equity Market Index Sao Paulo

Stock Exchange was calculated from the daily BOVESPA index.

Monthly data is converted to quarterly observations by obtaining their 3 monthly

average values for the corresponding quarter. The comprehensive list with descriptions

for the variables and the transformation employed is listed in Table 4.3.
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Table 4.3: Variables Description

Variables Description Transformation US UK JP BR

Real GNP/GDP 400 ∆ log ◦ ◦ ◦ ◦

Real Personal Consumption Expenditure 400 ∆ log ◦ ◦ ◦ ◦

Real Gross Private Domestic Investments:Nonresidential 400 ∆ log ◦

Real Gross Private Domestic Investments:Residential 400 ∆ log ◦ ◦ ◦

Real Net Exports of Goods and Services None ◦ ◦ ◦ ◦

Nominal Personal Income 400 ∆ log ◦

Industrial Production Index 400 ∆ log ◦ ◦ ◦ ◦

Unemployment Rate None ◦ ◦ ◦ ◦

Nonfarm Payroll Employment 400 ∆ log ◦ ◦

Indexes of Aggregate Weekly Hours:Total 400 ∆ log ◦ ◦ ◦

Housing Starts 400 ∆ log ◦ ◦ ◦

Price Index for Personal Consumption Expenditures, Constructed 400 ∆ log ◦ ◦ ◦

Price Index for Imports of Goods and Services 400 ∆ log ◦ ◦ ◦

Effective Federal Funds Rate None ◦ ◦

1 Year Treasury Constant Maturity Rate None ◦ ◦

10 Year Treasury Constant Maturity Rate None ◦ ◦ ◦

Moody’s Seasoned Baa Corporate Bond Minus Federel Funds Rate None ◦

ISM Manufacturing PMI Composite Index None ◦

ISM Manufacturing New Orders Index None ◦

S&P500 400 ∆ log ◦

Producer Production Index 400 ∆ log ◦ ◦ ◦

Consumer Price Index 400 ∆ log ◦ ◦ ◦

Interest Rates ,Government Securities, Government Bonds None ◦ ◦

Spot Exchange Rates 400 ∆ log ◦ ◦ ◦

M1 400 ∆ log ◦ ◦ ◦

M2 400 ∆ log ◦ ◦ ◦

Foreign Effective Exchange Rate 400 ∆ log ◦ ◦ ◦

Total Share Prices for All Shares 400 ∆ log ◦ ◦ ◦

Basic Discount Rate None ◦ ◦ ◦

Monetary Base 400 ∆ log ◦ ◦

Nikkei225 400 ∆ log ◦

Equity Market Index Sao Paulo Stock Exchange 400 ∆ log ◦

4.5.2 Estimation Results

We use marginal likelihoods and the one step ahead, out of sample average log predictive

likelihoods to compare the models using the data variables in Table 4.2 for the 4 countries.

The ALPL are obtained as the difference in marginal likelihoods log(π(Y1:T )−log(π(Y1:T0)

divided by T − T0 where T0 represents observations for the 4th quarter of 2015. A larger

value of the ALPL implies better forecasting performance. We use two types of priors for
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Σ for all model estimations for easy comparison. The first prior is centered in the identity

matrix where the prior mean E(Σ) = I with r + 3 degrees of freedom. The second prior

has the prior mean estimated as E(Σ) = Σ̂OLS, where Σ̂OLS is a diagonal matrix estimated

with OLS residuals. In both cases, the prior for the slope coefficients is of Minnesota type.

The hyperparameters are set to be π1 = 0.04 and π2 = 102 following related literature.

Table 4.4 shows the values of the Marginal likelihood for the BVAR-CSV-IG Model and

the related standard errors.

Table 4.4: BVAR-CSV-IG Model Marginal Likelihoods and Standard Errors

Prior Evaluation Period Marginal Likelihoods(Standard Errors)

UK Japan US Brazil

E(Σ) = I 24 -9325.0 -10693.5 -11826.8 -7333.9

(0.1065) (0.1319) (0.1132) (0.0446)

50 -9334.2 -10668.3 -11786.4 -7335.6

(0.0933) (0.0933) (0.1203) (0.0540)

E(Σ) = Σ̂OLS 24 -8926.9 -10318.6 -11436.9 -6980.8

(0.0932) (0.1110) (0.0638) (0.1369)

50 -8937.0 -10339.4 -11434.3 -6990.8

(0.0942) (0.1381) (0.1147) (0.1094)

The marginal likelihoods have a standard error which is smaller than 1 in all cases.

Thus, when you divide by the number of observations in the evaluation period, then the

standard errors become very small.

The marginal likelihood estimates in Table 4.5 for model 2 to 5 are obtained from

150000 simulations with 20000 burns. A larger value of this comparison metric implies

that the observed data is more likely under that model. Following related literature

the lag length is set to 4. The model with the better marginal likelihood and ALPL is

indicated in double asterisks while the second best model has one asterisk.
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Table 4.5: Marginal Likelihood and ALPL for T − T0 = 24, E(Σ) = I

Marginal Likelihood ALPL

Model US UK Japan Brazil US UK Japan Brazil

M1 −9916,9 −11 351,1 −12 229,1 −8062,9 −57,92 −59,67 −44,53 −71,76

M2 −9367,7 −10 702,4 −11 836,1 −7330 −42,92 −47,29 −42,88* −71,34

M3 −9351,17 −10 679,2** −11 830,2* −7323,8* −42,55* −47,62 −43,02 −71,17*

M4 −9297,5* −10 707,1 −11 840,8 −7328,9 −43,08 −47,28* −42,9 −71,32

M5 −9279,3** −10 681,8* −11 834,6 −7328,2* −42,63 −47,55 −43,21 −71,18

M6 −9325,0 −10 693,5 −11 826,8** −7333,9 −41,47** −47,15** −42,83** −71,08**

Notes: The best model is marked by ∗∗ and the second best by ∗.

Comparing the marginal likelihoods, heavy tailed distribution models with t innova-

tions, that is, the BVAR-CSV-MA-t, the BVAR-CSV-t and BVAR-CSV-IG consistently

outperform their complementary models with gaussian errors, thus reinforcing the ev-

idence for error structures with t innovations. This is consistent with e.g Chiu et al.

(2017) and Chan (2020) who also find that allowing for heavy tails improves model fit.

A known drawback of the marginal likelihood is its sensitivity to the prior distribution,

more so when t is small ((Gelman et al., 2013) and (Chan & Grant, 2016b)). The ALPL

on the other hand is less sensitive to the prior distribution. The table shows that the

BVAR-CSV-IG model has a better fit among all the CSV models under comparison thus,

this added feature of Inverse Gamma innovations also improves the density forecasts.

Table 4.6 shows the marginal likelihood and ALPL comparisons for T − T0 = 50 to

allow for a longer evaluation period.

Table 4.6: Marginal Likelihood and ALPL for T − T0 = 50, E(Σ) = I

Marginal Likelihood ALPL

Model US UK Japan Brazil US UK Japan Brazil

M1 −9923,17 −11 360,91 −12 232,17 −8076,98 −45,03 −50,85 −42,51 −56,70

M2 −9378,34 −10 716,44 −11 844,52 −7331,87 −37,67 −43,54* −41,41** −67,89

M3 −9362,01 −10 689,85* −11 837,01 −7326,00** −37,47 −43,63 −41,50* −67,83*

M4 −9305,53* −10 721,28 −11 847,73 −7330,7 −37,54 −43,57 −41,58 −67,92

M5 −9288,22** −10 694,24 −11 835,46* −7330,39* −37,32* −43,96 −41,60 −67,86

M6 −9334,2 −10 668,3** −11 786,4** −7335,6 −36,96** −43,44** −42,19 −67,78**

Notes: The best model is marked by ∗∗ and the second best by ∗.

When the cut off point is increased to 50 periods, the BVAR-CSV-IG model has the
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best fit for US, UK and Brazil data while the BVAR-CSV has the best fit for Japan data

in terms of the average log predictive likelihood.

We compare the models using an alternative prior for the var-cov matrix that is

centered on previous OLS estimates of the variance in the Minnesota prior style. The

prior mean for Σ is thus a diagonal matrix, where the diagonal is estimated using OLS

residuals with observations up to T0, that is, E(Σ) = Σ̂OLS where Σ ∽IW(S0, df). Such

that the expected value of Σ is:

E(Σ) =
S−1
0

df − (r + 1)
= Σ̂OLS

The degrees of freedom are the same as the first prior, that is, r+3. Table 4.7 shows

the marginal likelihood estimates and the ALPL obtained using this prior.

Table 4.7: Marginal Likelihood and ALPL for T − T0 = 24, E(Σ) = Σ̂OLS

Marginal Likelihood ALPL

Model US UK Japan Brazil US UK Japan Brazil

M1 −9499,86 −10 892,89 −11 771,41 −7139,51 −57,93 −59,70 −44,32 −70,60

M2 −8969,69 −10 322,77 −11 446,59 −6983,87 −42,95 −47,69 −43,06 −67,82

M3 −8950,27 −10 301,28* −11 440,66* −6971,64** −42,44* −48,01 −42,90* −67,49**

M4 −8899,89* −10 324,70 −11 441,11 −6988,97 −42,88 −47,43** −43,23 −68,00

M5 −8883,16** −10 299,36** −11 446,32 −6977,68* −42,57 −47,55* −43,10 −67,80

M6 −8926,9 −10 318,6 −11 436,9** −6980,8 −41,47** −47,67 −42,69** −67,77*

Notes: The best model is marked by ∗∗ and the second best by ∗.

Similar to Table 4.5 the models that account for t-innovations tend to have better

performance than those that do not. Regarding the ALPL comparison method, the

BVAR-CSV-IG model is best for the US and Japan application, while it is second best for

Brazil compared to all models. The moving average specification models perform better

than all models for the UK application, where the BVAR-CSV-MA is best followed by

BVAR-CSV-MA-t. The BVAR-CSV-t is best for the Brazil application. Table 4.8 shows

a similar analysis with an increased cut-off point of 50 periods.
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Table 4.8: Marginal Likelihood and ALPL for T − T0 = 50, E(Σ) = Σ̂OLS

Marginal Likelihood ALPL

Model US UK Japan Brazil US UK Japan Brazil

M1 −9503,30 −10 905,57 −11 767,64 −7138,90 −44,99 −50,80 −42,61 −65,80

M2 −8977,68 −10 346,62 −11 437,87 −7004,30 −37,58 −43,82* −41,61 −64,55

M3 −8960,91 −10 324,74* −11 439,84 −6986,23** −37,34 −43,95 −41,60* −64,27

M4 −8911,51* −10 353,05 −11 435,72 −6999,26 −37,48 −43,93 −41,60* −64,20**

M5 −8887,29** −10 322,66** −11 432,12** −6989,29* −37,11* −43,88 −41,74 −64,31

M6 −8937,0 −10 339,4 −11 434,3* −6990,8 −36,91** −43,75** −41,51** −64,20**

Notes: The best model is marked by ∗∗ and the second best by ∗.

Comparing the ALPL for the CSV models over a longer evaluation period, the BVAR-

CSV-IG has a better fit for all countries. The BVAR-CSV-MA model performs equally

good for the Brazil data.

4.5.3 Financial Data application

We use 1000 observations of daily exchange rate data for 8 currencies that constitute

the top trading partners for Zimbabwe in terms of both exports and imports whose ISO

Codes are (GBP, EUR, CNY, HKD, INR, ZAR, SGD, ZWD) to the USD. The data for

the first 7 currencies was obtained from the Board of Governors of the Federal Reserve

and covers the period beginning 29 April 2019 and ending 28 April 2023, while the ZWD

series was obtained from the Reserve Bank of Zimbabwe for the same period. Table 4.9

shows the values of the Marginal likelihood for the BVAR-CSV-IG Model and the related

standard errors. The evaluation period is 200 for all the exchange rate exercises. As

before, the marginal likelihoods have a standard error which is smaller than 1 in all cases.
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Table 4.9: BVAR-CSV-IG Model Marginal Likelihoods and Standard Errors Exc

Prior Marginal Likelihoods(Standard Errors)

EXC4 EXC8

E(Σ) = I 15312.5 33953.7

( 0.1158) (0.0882)

E(Σ) = Σ̂OLS 15437.6 34490.0

( 0.1470) (0.0855)

Table 4.10 shows the results for a small VAR which estimates the marginal likelihood

and ALPL for 4 of the 8 currencies, that is (CNY, ZAR, SGD, ZWD) and a large VAR

with all 8 currencies using the prior centred on the Identity matrix.

Table 4.10: Marginal Likelihoods and ALPL T0 = 800, E(Σ) = I

Marginal Likelihoods ALPL

Model EXC4 EXC8 EXC4 EXC8

BVAR 7461.55 15536.84 9.11 18.89

BVAR-CSV 11332.75 23944.97 10.82* 21.53*

BVAR-CSV-t 12621.33* 27054.99* N/A N/A

BVAR-CSV-MA 9770.38 23806.39 N/A N/A

BVAR-CSV-MA-t 12448.37 24843.39 N/A N/A

BVAR-CSV-IG 15312.5** 33953.7** 14.42** 33.17**

Notes: The best model is marked by ∗∗ and the second best by ∗. Numbers marked with N/A are

numerically very unstable.

The results in the table marked with n.a are numerically very unstable. We obtained

very different results in different runs of 150000 iterations each with a burn in of 20000.

The BVAR-CSV-IG model has a better fit compared to all models in terms of both the

marginal likelihoods and the average log predictive likelihood. This is true for both the

smaller VAR with 4 exchange rates and the larger VAR.

Using the alternative prior the results are as follows:
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Table 4.11: Marginal Likelihoods and ALPL T0 = 800,E(Σ) = Σ̂OLS

Marginal Likelihoods ALPL

Model EXC4 EXC8 EXC4 EXC8

BVAR 14 002,95 32 989,11 13,55 31,81

BVAR-CSV 15 335,40 34 408,31 14,35 33,12

BVAR-CSV-t 15 474,51** 34 546,71** 14,47** 33,25**

BVAR-CSV-MA 15 339,91 34 427,03 14,41 33,18

BVAR-CSV-MA-t 15 454,32* 34 474,12 14,42 33,23*

BVAR-CSV-IG 15 437,6 34 490,0* 14,44* 33,20

Notes: The best model is marked by ∗∗ and the second best by ∗.

The BVAR-CSV-t model is best in terms of ALPL for both the small VAR and the

large VAR. Comparing the BVAR-CSV model and the BVAR-CSV-IG model alone, given

that they have the same number of parameters and the only difference is the distribution

we see that the proposed model performs much better in both cases. This we find as

compelling evidence for including the property observed in macroeconomic and financial

data of heavier tailed distributions.

4.6 Conclusion

We obtained an analytical expression for the likelihood in an inverse gamma CSV model

that allows us to obtain a better approximation of the marginal likelihood. Our approach

is a result of marginalising out the volatilities and the latent common factor in the

model. We compare our approach to popular approaches in the literature using marginal

likelihoods and ALPL.

Using 4 macroeconomic applications of datasets for the US, UK, Japan and Brazil that

have 20 variables each, we showed that the empirical fit of the common factor inverse

gamma SV model is best compared to alternative CSV models in 13 of the 16 data

applications. The BVAR-CSV model is best for the Japan data over a longer evaluation

period. Over a shorter period using the alternative prior, the BVAR-CSV-MA-t is best for

the UK data while the BVAR-CSV-t model is best for Brazil. In the financial application,
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the proposed model performs better than alternative models when using the first prior,

while the BVAR-CSV-t is best using the alternative prior.

The CSV models with heavier tailed distributions, which is a key property of macroe-

conomic and financial data, performed much better overall compared to their alternatives

thereby indicating strong empirical evidence for using these distributions. The Inverse

Gamma CSV model can also be extended to include additional factors, that is to allow

the variance Σt to vary with time, by using a factor model framework such as proposed

in Kim et al. (1998), however, we leave the derivation of the exact likelihood for future

research.
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CHAPTER 5

R PACKAGE AND TUTORIAL

1 #include <RcppArmadillo.h>

2 // [[Rcpp::depends(RcppArmadillo)]]

3 #define ARMA_DONT_PRINT_ERRORS

4 using namespace Rcpp;

5 // #define ARMA_NO_DEBUG

6 #include <omp.h>

7 // [[Rcpp::plugins(openmp)]]

8 // [[Rcpp::plugins("cpp11")]]

9 #include <chrono>

10 #include <iostream>

11 #include <random>

12 #include <cmath>

13 #include <stdio.h>

14

15

16 //Function to calculate the log of the rising factorial up to p

17 double lrfact(double n, int p)

18 {double calcu=std::log(n); // the result for p=1

19 if (p>1){

20 for (int ii=1; ii<=(p-1); ii++)

21 {calcu=calcu+std::log(n+ii);}

22 }

23 else if (p==0){

24 calcu=std::log(1);

25 }

26 return calcu;

27 }

28

29 void CalcuLogfac(int niter, int NIT, double n,

30 arma::mat &alogfac, arma::mat &alogfac2,

31 arma::mat &alfac, int nproc)

32 { int donde=(niter>NIT)*niter+(NIT>=niter)*NIT;

33 omp_set_num_threads(nproc);

34 #pragma omp parallel for

35 for (int h=0; h<=donde; h++)

36 {for (int hold=0; hold<=NIT; hold++)

37 {alogfac(hold,h)=lrfact((n+1)*0.5+hold,h);}

38 alogfac2(h,0)=lrfact(n*0.5,h);

39 alfac(h,0)=lrfact(1,h);

40 }
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41 }

42

43 // Hypergeometric function that uses the rising factorials as inputs

44 double ourgeoef(int h, arma::mat alogfac, arma::mat alogfac2, arma::mat alfac,

45 double zstar, int niter=500)

46 { double aux1, aux2, aux3, aux4, aux5, termo;

47 aux4=std::log(zstar);

48 double sum=1;

49 for (int s=1; s<niter; s++)

50 {aux1=alogfac(h,s);

51 aux2=alogfac(0,s);

52 aux3=alogfac2(s,0);

53 aux5=alfac(s,0);

54 termo=aux1+aux2-aux3+aux4-aux5;

55 sum=sum+std::exp(termo);

56 aux4=aux4+std::log(zstar);}

57 return(sum);

58 }

59

60 //Computes the 2F1 Hypergeometric Function

61 // [[Rcpp::export]]

62 double ourgeo(double a1, double a2,double b1,double zstar, int niter=500)

63 { int s1, s2; double aux1, aux2, aux3, aux4, aux5, termo;

64 s1=-1+2*(a1>0);

65 aux1=std::log(std::abs(a1));

66 aux2=std::log(std::abs(a2));

67 s2=-1+2*(a2>0);

68 aux3=std::log(b1);

69 aux4=std::log(zstar);

70 aux5=std::log(1);

71 double sum=1 ;

72 for (int s=1; s< niter; s++)

73 { termo=aux1+aux2-aux3+aux4-aux5;

74 sum=sum+s1*s2*std::exp(termo);

75 aux1=aux1+std::log(std::abs(a1+s));

76 s1=s1*(-1+((a1+s)>0)*2);

77 aux2=aux2+std::log(std::abs(a2+s));

78 s2=s2*(-1+((a2+s)>0)*2);

79 aux3=aux3+std::log((b1+s));

80 aux4=aux4+std::log(zstar);

81 aux5=aux5+std::log(s+1);

82 }

83 return(sum);

84 }

85

86 //Computes the log likelihood for an Inverse Gamma Stochastic Volatility Model

87 // [[Rcpp::export]]

88 Rcpp::List lik_clo(arma::mat Res, double b2, int T, double n, double rho, int NIT=300,

89 int niter=300, int nproc=4, int nproc2=4)
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90 // NIT is the degree of approximation

91 {

92 arma::mat logLik=arma::zeros(T,1);

93 arma::vec oldctil=arma::zeros(NIT+1,1);

94 arma::vec newctil=arma::zeros(NIT+1,1);

95 arma::mat alln=arma::zeros(NIT+1,1);

96 arma::mat allctil=arma::zeros(T,NIT+1);

97 arma::mat allc=arma::zeros(T,NIT+1);

98 int accel=0; // whether to accelerate or not

99 int donde=(niter>NIT)*niter+(NIT>=niter)*NIT;

100 arma::mat alogfac=arma::zeros(NIT+1,donde+1);

101 arma::mat alogfac2=arma::zeros(donde+1,1);

102 arma::mat alfac=arma::zeros(donde+1,1);

103 omp_set_num_threads(nproc);

104 #pragma omp parallel for

105 for (int h=0; h<=donde; h++)

106 {for (int hold=0; hold<=NIT; hold++)

107 {alogfac(hold,h)=lrfact((n+1)*0.5+hold,h);

108 }

109 alogfac2(h,0)=lrfact(n*0.5,h);

110 alfac(h,0)=lrfact(1,h);

111 }

112 double Vinv=1-rho*rho;

113 double St, Vinvtil, deltaht, normsum, liksum;

114

115 // for t=0

116 double et=Res(0);

117 double useme=b2*et*et;

118 double l0 =-0.5*(n+1)*std::log(0.5*(Vinv+useme));

119 l0 = l0 + 0.5*n*std::log(0.5*Vinv) + (std::lgamma(0.5*(n+1))-std::lgamma(0.5*n))

120 - 0.5*std::log(2*arma::datum::pi)+0.5*log(b2);

121 logLik(0)=l0;

122

123 // for t=1

124 Vinvtil=Vinv+b2*et*et;

125 double bc =(0.5*rho*rho)/(rho*rho+Vinvtil);

126 Vinv=1-rho*rho/(Vinvtil+rho*rho);

127 et=Res(1);

128 double deltah2=rho*rho*1.0/(rho*rho+Vinvtil);

129 double z=deltah2/(b2*et*et+1);

130 // double wz=z/(z-1);

131 double ccc=std::lgamma(0.5*(n+1));

132 double c2= (std::pow(1-z,-0.5*(n+2)))*ourgeo(-0.5,-0.5,0.5*n,z,niter);

133 double c2h=std::log(c2);

134 l0 = -0.5*std::log(2*arma::datum::pi)+0.5*std::log(b2)+ 0.5*(n+1)*std::log(2);

135 l0 = l0 + ccc - 0.5*(n+1)*std::log(b2*et*et+1);

136 normsum = (std::pow(2,0.5*n))*(std::tgamma(0.5*n))*(std::pow(1-deltah2,-0.5*(n+1)));

137 logLik(1)=l0+c2h-log(normsum);

138
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139 // for t=2

140 double S3=1/(b2*et*et+1+rho*rho);

141 double deltah3=(1/(1-S3*rho*rho))*S3*((rho*rho)/(Vinvtil+rho*rho));

142 double c3=(std::pow(1-deltah3,-0.5*(n+2)))*ourgeo(-0.5,-0.5,0.5*n,deltah3,niter)

143 * std::tgamma(0.5*(n+1))*std::pow(1-S3*rho*rho,-0.5*(n+1))*std::pow(2*S3,0.5*(n+1));

144 et=Res(2);

145 Vinvtil=1+b2*et*et;

146 double z3=(S3*rho*rho)/Vinvtil;

147 l0 = -0.5*log(2*arma::datum::pi)+0.5*log(b2)-log(c3);

148 liksum=0;

149 double useful=1/std::pow(Vinvtil,0.5*(n+1))*(std::tgamma(0.5*(n+1))

150 useful=useful/std::tgamma(0.5*(n)))*(std::pow(2,0.5*(n+1))/std::pow(2,0.5*n));

151 useful=std::log(useful);

152 for (int h=0; h<=NIT; h++){

153 double a,b,c, auxx, chat;

154 if (accel)

155 { a=-0.5*(1+2*h); b=-0.5; c=0.5*n;

156 auxx=ourgeo(a,b,c,z3,niter);

157 chat=-0.5*(n+2+2*h)*std::log(1-z3)+std::log(std::abs(auxx));

158 }

159 else {

160 auxx=ourgeoef(h, alogfac,alogfac2, alfac, z3,niter);

161 chat=std::log(std::abs(auxx));

162 }

163 double c2til=alogfac(0,h)-alogfac2(h,0)+h*std::log(bc)-alfac(h,0);

164 int sign0=-1+2*(auxx>0);

165 double aux1= c2til+ccc+alogfac(0,h)+0.5*(n+1+2*h)*std::log(2*S3)+chat+useful;

166 liksum=liksum + sign0*std::exp(aux1);

167 oldctil(h)=c2til; // This is the log

168 }

169 logLik(2)=l0+std::log(liksum);

170 allctil.row(1)=arma::trans(oldctil);

171

172 //for all t

173 arma::mat AllVinv=arma::zeros(T,1); arma::mat Allzt=arma::zeros(T,1);

174 arma::mat AllSt=arma::zeros(T+1,1); arma::mat Alldelta=arma::zeros(T,1);

175 St=S3;

176 AllSt(2)=St;

177 for (int tt=3; tt<=T-1; tt++){

178 double zt;

179 St=1/(b2*et*et+1+rho*rho);

180 deltaht=(1/(1-St*rho*rho))*St*((rho*rho)/(Vinvtil+rho*rho));

181 et=Res(tt);

182 Vinvtil=1+b2*et*et;

183 zt=(St*rho*rho)/Vinvtil;

184 AllSt(tt)=St; Alldelta(tt)=deltaht; AllVinv(tt)=Vinvtil; Allzt(tt)=zt;

185 }

186 arma::mat AllGeo=arma::zeros(T,(NIT+1));

187 #pragma omp parallel for
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188 for (int tt=3; tt<=T-1; tt++){

189 double zt=Allzt(tt);

190 for (int h=0; h<=NIT; h++){

191 AllGeo(tt,h)=std::log(ourgeoef(h, alogfac,alogfac2, alfac, zt,niter));

192 }

193 }

194 double pSt;

195 l0 = -0.5*std::log(2*arma::datum::pi)+0.5*std::log(b2);

196 for (int tt=3; tt<=T; tt++){

197 double ct,zt;

198 pSt=AllSt(tt-1);

199 if (tt<T){

200 St=AllSt(tt); deltaht=Alldelta(tt); Vinvtil=AllVinv(tt); zt=Allzt(tt);

201 }

202 liksum=0;

203 ct=0;

204 arma::mat allik=arma::zeros(NIT+1,1);

205 arma::mat alct=arma::zeros(NIT+1,1);

206 double NITper=floor((NIT+1)/nproc2); // iterations per processor

207 int remain=NIT+1-NITper*nproc2;

208 arma::vec nitvec=arma::ones<arma::vec>(nproc2)*NITper;

209 if (remain>0){nitvec.row(nproc2-1)+=remain;}

210 arma::vec limits=arma::cumsum(nitvec);

211 arma::vec trick=arma::zeros(1,1);

212 limits=arma::join_cols(trick, limits);

213 omp_set_num_threads(nproc2);

214 #pragma omp parallel for

215 for (int ii=0; ii<=nproc2-1; ii++){

216 for (int h=limits(ii); h<=(limits(ii+1)-1); h++)

217 {

218 double auxt, chat, ctil, auxi1, auxi2, auxi3;

219 double scale0=alogfac(NIT,h);

220 for (int hold=0; hold<=NIT; hold++)

221 {

222 ctil= oldctil(hold)+ccc+alogfac(0,hold)

223 + alogfac(hold,h)+0.5*(n+1+2*hold)*log(2*pSt)-scale0;

224 newctil(h)=newctil(h)+std::exp(ctil);

225 }

226 newctil(h)= std::log(newctil(h))-alogfac2(h,0)+h*std::log(0.5*rho*rho*pSt)

227 - alfac(h)+scale0;

228 if (tt<T){

229 auxi1=newctil(h);

230 auxi2=-0.5*(n+1+2*h)*std::log(1-rho*rho*St);

231 auxi3=ccc+alogfac(0,h)+0.5*(n+1+2*h)*std::log(2*St);

232 alct(h)=auxi1+auxi2+auxi3;

233 if (accel){

234 chat= - 0.5*(n+2+2*h)*std::log(1-zt)

235 + std::log(ourgeo(-0.5*(1+2*h),-0.5,0.5*n,zt,niter));}

236 else {
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237 chat=AllGeo(tt,h);

238 }

239 auxt=newctil(h)+ccc+alogfac(0,h)+0.5*(n+1+2*h)*std::log(2*St)+chat;

240 allik(h)=auxt;

241 }

242 }

243 }

244 if (tt<T){

245 double cc0=alct.max()+7; double ll0=allik.max()+7;

246 ct=arma::accu(arma::exp(alct-cc0));

247 liksum=arma::accu(arma::exp(allik-ll0));

248 liksum=liksum/(std::pow(Vinvtil,0.5*(n+1)))*((std::tgamma(0.5*(n+1))

249 /std::tgamma(0.5*(n)))*((std::pow(2,0.5*(n+1)))/std::pow(2,0.5*n)));

250 logLik(tt)=l0+std::log(liksum)-std::log(ct)+ll0-cc0;

251 }

252 newctil=newctil-(newctil(0));

253 allctil.row(tt-1)=arma::trans(newctil);

254 oldctil=newctil ;

255 newctil=arma::zeros(NIT+1,1);

256 }

257

258 // For periods 2 and (T+1)

259 et=Res(0);

260 AllSt(1)=1/(b2*et*et+1);

261 et=Res(T-1);

262 AllSt(T)=1/(b2*et*et+1);

263 double finalLK=arma::accu(logLik);

264 double q2=1.0/arma::trace(arma::var(Res));

265 double VarLik=-0.5*arma::trace(q2*arma::trans(Res)*Res);

266 VarLik+=+0.5*T*std::log(q2);

267 VarLik+=-T*0.5*std::log(2*arma::datum::pi);

268 return Rcpp::List::create(finalLK, logLik, AllSt, allctil, alogfac,

269 alogfac2, alfac);

270 }

271

272 // Computes the smoothed estimates of the volatility

273 // [[Rcpp::export]]

274 arma::vec DrawK0(arma::mat AllSt, arma::mat allctil, arma::mat alogfac,

275 arma::mat alogfac2, arma::mat alfac, int T, int NIT,

276 double n, double rho, double b2, int nproc2=1)

277 { arma::mat allc=arma::zeros(T, NIT+1);

278 arma::mat AllW=arma::zeros(T,NIT+1);

279 arma::mat AllK=arma::zeros(T,1);

280 arma::mat rowW=arma::zeros(1,NIT+1);

281 arma::mat sand;

282 // For t=T

283 int cualt=T; double sss;

284 for (int h=0; h<=(NIT); h++){

285 allc(cualt-1,h)=allctil(cualt-1,h);
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286 sss=allc(cualt-1,h)+alogfac(0,h)+0.5*(n+1+2*h)*std::log(2*AllSt(cualt));

287 rowW(0,h)=sss;

288 }

289 double sss0=rowW.max()+7;

290 rowW=arma::exp(rowW-sss0);

291 sss=arma::accu(rowW);

292 rowW=rowW*(1.0/sss);

293 AllW.row(cualt-1)=rowW;

294 std::mt19937 generator((std::chrono::steady_clock::now().time_since_epoch().count()));

295 std::uniform_real_distribution<double> distu(0.0,1.0);

296 double drawu, Khere, fredom; int where;

297 drawu=distu(generator);

298 sand=arma::cumsum(arma::trans(rowW));

299 where=std::round(arma::accu(sand<drawu)); // This gives indices from 0 to NIT+1

300 fredom=(n+1)*0.5;

301 std::gamma_distribution<double> distgam((fredom+where),2*AllSt(cualt));

302 Khere=distgam(generator);

303 AllK(cualt-1)=Khere;

304 cualt=T-1; // for t=T-1, ..., 1

305 omp_set_num_threads(nproc2);

306 for (int cualt=(T-1); cualt>=1; cualt--)

307 {

308 #pragma omp parallel for

309 for (int h=0; h<=(NIT); h++){

310 double auxil1=0; double auxil2, sss1;

311 if (cualt>1){

312 for (int ht=0; ht<=h; ht++)

313 {

314 auxil2 = allctil(cualt-1,h-ht)+ht*std::log(Khere)+ht*std::log(0.25*rho*rho)

315 - alogfac2(ht,0)-alfac(ht,0);

316 auxil1+=std::exp(auxil2);

317 }

318 }

319 else if (cualt==1)

320 {

321 auxil1=h*std::log(Khere)+h*std::log(0.25*rho*rho)-alogfac2(h,0)-alfac(h,0);

322 auxil1=std::exp(auxil1);

323 }

324 allc(cualt-1,h)=std::log(auxil1);

325 sss1=allc(cualt-1,h)+alogfac(0,h)+0.5*(n+1+2*h)*std::log(2*AllSt(cualt));

326 rowW(0,h)=sss1;

327 }

328 sss0=rowW.max()+7;

329 rowW=arma::exp(rowW-sss0);

330 sss=arma::accu(rowW);

331 rowW=rowW*(1.0/sss);

332 AllW.row(cualt-1)=rowW;

333 drawu=distu(generator);

334 sand=arma::cumsum(arma::trans(rowW));
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335 where=std::round(arma::accu(sand<drawu)); //indices from 0 to NpartHere-1

336 std::gamma_distribution<double> distgam((fredom+where),2*AllSt(cualt));

337 Khere=distgam(generator);

338 AllK(cualt-1)=Khere;

339 }

340 return AllK;

341 }

342

343 /*** R

344 */

345

346

5.1 Package description and installation

The main function lik clo computes the log likelihood for an inverse gamma stochastic

volatility model using a closed form expression of the likelihood. The closed form expres-

sion is obtained for the log likelihood of a stationary inverse gamma stochastic volatility

model by marginalising out the volatilities. This allows the user to obtain the maximum

likelihood estimator for this non linear non Gaussian state space models. In addition, we

can obtain the smoothed estimates of the volatility using draws from the exact posterior

distribution of the inverse volatility by invoking the function DrawK0. Lastly one can

evaluate the 2F1 hypergeometric function using ourgeo. The package can be installed

in R as:

install.packages("invgamstochvol")

and using the library

library(invgamstochvol)

5.1.1 lik clo

The function computes the log likelihood for an inverse gamma stochastic volatility model

using a closed form expression of the likelihood.

Usage

lik clo(Res, b2, n, rho, NIT=200, niter=200, nproc=2, nproc2=2)
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Arguments

Res Matrix of OLS residuals, usually resulting from a call to priorvar.

b2 Level of volatility.

n Degrees of freedom

rho The parameter for the persistence of volatility.

NIT The degree of approximation to truncate the log likelihood sum. The default

value is set at 200.
niter The degree of approximation to truncate the hypergeometric sum. The default

value is set at 200.
nproc The number of processors allocated to evaluating the hypergeometric function.

The default value is set at 2. Increase this value to speed up the processes.

nproc2 The number of processors allocated to computing the log likelihood. The

default value is set at 2. Increase this value to speed up the processes.

The function returns a list of 7 items.List item number 1, is the sum of the log

likelihood, while the rest are constants that are useful to obtain the smoothed estimates

of the volatility.

Example

We provide example data used in this paper with the package. This data is for the US

inflation data. The data frame has 247 observations for the period 1960Q1 to 2022Q3.

The following example obtains the likelihood for this data:

##Example using US data

data1 <- US_Inf_Data

Ydep <- as.matrix(data1)

littlerho=0.95

r0=1

rho=diag(r0)*littlerho

p=4

n=4.1

T=nrow(Ydep)

Xdep <- Ydep[p:(T-1),]

if (p>1){

for(lagi in 2:p){

Xdep <- cbind(Xdep, Ydep[(p-lagi+1):(T-lagi),])

}

85



}

T=nrow(Ydep)

Ydep <- as.matrix(Ydep[(p+1):T,])

T=nrow(Ydep)

unos <- rep(1,T)

Xdep <- cbind(unos, Xdep)

## obtain residuals

bOLS <- solve(t(Xdep) %*% Xdep) %*% t(Xdep) %*% Ydep

Res= Ydep- Xdep %*% bOLS

Res=Res[1:T,1]

b2=solve(t(Res) %*% Res/T) %*% (1-rho %*% rho)/(n-2)

Res=as.matrix(Res,ncol=1)

##obtain the log likelihood

LL1=lik_clo(Res,b2,n,rho)

Maximum likelihood estimation can then be used to obtain the value of the likelihood

at the maximum and parameter estimates.

5.1.2 DrawK0

The function obtains the smoothed estimates of the volatility, by obtaining a random

draw from the exact posterior of the inverse volatilities.

Usage

DrawK0(AllSt, allctil, alogfac, alogfac2, alfac, n, rho, b2, nproc2=2)

Arguments

AllSt Some constants obtained from the evaluation of the log likelihood using the

function lik clo.
allctil Some constants obtained from the evaluation of the log likelihood using the

function lik clo.
alogfac Some constants obtained from the evaluation of the log likelihood using the

function lik clo.
alogfac2 Some constants obtained from the evaluation of the log likelihood using the

function lik clo.
alfac Some constants obtained from the evaluation of the log likelihood using the

function lik clo.
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n Degrees of freedom.

rho The parameter for the persistence of volatility.

b2 Level of volatility.

nproc2 The number of processors allocated to the calculations. The default value is

set at 2.

The function returns a vector with a random draw from the posterior of the inverse

volatilities. To obtain the smoothed estimates of the volatility using this package, one

has to save the constants obtained from evaluating the function lik clo as follows:

Example

1 deg=200

2 niter=200

3 AllSt=matrix(unlist(LL1[3]), ncol=1)

4 allctil=matrix(unlist(LL1[4]),nrow=T, ncol=(deg+1))

5 donde=(niter>deg)*niter+(deg>=niter)*deg

6 alogfac=matrix(unlist(LL1[5]),nrow=(deg+1),ncol=(donde+1))

7 alogfac2=matrix(unlist(LL1[6]), ncol=1)

8 alfac=matrix(unlist(LL1[7]), ncol=1)

Then by averaging draws from the exact posterior distribution of the inverse volatili-

ties, the smoothed estimates of the volatility can be obtained.

1 milaK=0

2 repli=5

3 keep0=matrix(0,nrow=repli, ncol=1)

4 for (jj in 1:repli)

5 {

6 laK=DrawK0(AllSt,allctil,alogfac, alogfac2, alfac, n, rho, b2,nproc2=2)

7

8 milaK=milaK+1/laK*(1/repli)

9 keep0[jj]=mean(1/laK)/b2

10 }

11 ccc=1/b2

12 fefo=as.vector(milaK)*ccc

13 ##obtain moving average of squared residuals

14 mRes=matrix(0,nrow=T,ncol=1)

15 Res2=Res*Res

16 bandi=5

17 for (iter in 1:T)

18 { low=(iter-bandi)*(iter>bandi)+1*(iter<=bandi)

19 up=(iter+bandi)*(iter<=(T-bandi))+T*(iter>(T-bandi))

20 mRes[iter]=mean(Res2[low:up])

87



21 }

22

23 ##plot the results

24 plot(fefo,type="l", col = "red", xlab="Time",ylab="Volatility Means")

25 lines(mRes, type="l", col = "blue")

26 legend("topright", legend = c("Stochastic Volatility", "Squared Residuals"),

27 col = c("red", "blue"), lty = 1, cex = 0.8)

28

where repli is the number of replications. Lastly, to evaluate a 2F1 hypergeometric

function, one can use the function ourgeo as follows:

5.1.3 ourgeo

The function computes the 2F1 Hypergeometric Function.

Usage

ourgeo(a1, a2, b1, zstar, niter = 500)

Arguments

a1 Parameter (Real)

a2 Parameter (Real)

b1 Parameter (Real)

zstar Primary real argument

niter The degree of approximation to truncate the hypergeometric sum. The default

value is set at 500.

The function returns the value of the hypergeometric function

Example

ourgeo(1.5,1.9,1.2,0.7)
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CHAPTER 6

CONCLUSION, LIMITATIONS AND FUTURE RESEARCH

6.1 Introduction

In this chapter, we present the conclusions, limitations, policy implications for the studies

covered in the dissertation. The policy implications are derived from the findings in all

the chapters. In addition, this chapter suggests directions for future research.

6.2 Conclusion

We propose a novel approach to obtaining the analytical expressions of the likelihood

for stationary inverse gamma Stochastic Volatility models. In the absence of analytical

expressions of the log likelihood, it is not possible to obtain the Maximum Likelihood

Estimator (MLE) for this class of non linear non gaussian state space models for the

univariate model. In addition, the smoothed estimates of the volatility can not be ob-

tained. We use the approach to obtaining the likelihood in this dissertation to analyse

a univariate inverse gamma stochastic volatility model and a multivariate approximate

factor model resulting in the two studies covered in this dissertation.

First, chapter 3 considers the univariate inverse gamma stochastic volatility model and

obtains the exact likelihood for this model. This expression of the likelihood allows the

estimation of the parameters and unobserved states for this model class by maximum

likelihood. Further, we provide the analytical expressions for both the filtering and

smoothing distributions of the volatilities obtained as mixture of gammas and therefore we

provide the smoothed estimates of the volatility. The chapter shows that by marginalising

out the volatilities, the model that is obtained has the resemblance of a GARCH in the

sense that the formulas are similar, which simplifies computations significantly.

To demonstrate this approach and to compare its performance in the univariate case,
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we provide two empirical applications using financial and macroeconomic variables. The

macroeconomic application uses quarterly inflation data for four countries, that is, UK,

USA, Japan and Brazil. A range of other models are also estimated to evaluate the em-

pirical performance of the proposed model. We find that the proposed model performs

better than all other models in 50% of the applications in terms of the Bayesian Infor-

mation Criterion, with very large gains for the Brazil dataset. The second application

uses exchange rates data for 7 currencies (GBP, EUR, JPY, CND, AUD, BRL, ZAR)

and finds that the empirical fit of the proposed model is overall better than alternative

models in 4 of the 7 currencies in terms of the BIC, being much superior in the case of

currencies with turbulent episodes, such as the Brazilian Real.

In Chapter 4, we extend the univariate approach to estimating large Vector Autore-

gressions (VAR) in a multivariate stochastic volatility model. Given the increase in fat

tailed events over the years and the empirical evidence on commonality that is observed

in volatility patterns, this model combines stochastic volatility, heavy tailed distributions

and a common latent factor. The common latent factor is taken as multiplicative. This

model is estimated using 4 macroeconomic applications that use 20 variables each for

Japan, Brazil, US, and the UK. A second application uses financial data of daily ex-

change rate returns for a small VAR of 4 currencies and a larger VAR of 8 currencies.

The comparison method is based on marginal likelihoods and the one step ahead out

of sample predictive likelihoods. The proposed model is compared to other common

stochastic volatility models and a factor stochastic volatility model with varying number

of factors.

The empirical fit of the common factor inverse gamma SV model fares very signifi-

cantly better compared to other common stochastic volatility models for both the macro

economic and financial application. Using 4 macroeconomic applications of datasets for

the US, UK, Japan and Brazil that have 20 variables each, we showed that the empirical

fit of the common factor inverse gamma SV model is best compared to alternative CSV

models in 13 of the 16 data applications. The BVAR-CSV model is best for the Japan

data over a longer evaluation period. Over a shorter period using the alternative prior,

the BVAR-CSV-MA-t is best for the UK data while the BVAR-CSV-t model is best for

Brazil. In the financial application, the proposed model performs better than alternative
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models when using the first prior, while the BVAR-CSV-t is best using the alternative

prior.

The CSV models with heavier tailed distributions, which is a key property of macroe-

conomic and financial data, performed much better overall compared to their alternatives

thereby indicating strong empirical evidence for using these distributions.The BVAR-

CSV-IG model performed substantially better than all the models. These findings suggest

that the BVAR-CSV-IG specification significantly improves computations of models with

a common stochastic volatility specification and therefore, further research into these

models would be advantageous.

We provide the computer code publicly as an R package on the CRAN repository that

is used to obtain the likelihood for a univariate inverse gamma stochastic volatility and

also the smoothed estimates of the volatility. The code and tutorial is detailed in chapter

5 above.

6.3 Policy Implications

Given that policy makers rely on forecasts to assess the impact of reforms ex-ante, the

findings from the empirical applications in this dissertation are of paramount importance.

To start with, central banks across the economies tend to rely on predictive densities to

illustrate and project variables such as inflation levels and the GDP growth rate among

other variables. The models proposed in the dissertation aim to provide alternative

models that improve forecasting accuracy while at the same time remaining simple and

efficient. The comparison exercise results in both the univariate and multivariate appli-

cations showed that a number of datasets tend to prefer the inverse gamma specification

as it improves forecasting accuracy marginally and thus, will improve density forecasts.

This inverse gamma specification can account for fat tails that are observed in most

macroeconomic and financial data. Thus, central banks and other macroeconomic insti-

tutions would largely benefit from using these models and approaches that we suggest

in their forecasting exercises. We provide the computer code publicly as an R package

on the CRAN repository that is used to obtain the likelihood for a univariate inverse

gamma stochastic volatility that relevant institutions can use in their various exercises.
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This R package also allows the user to obtain the smoothed estimates of the volatility as

an estimate of the variance of et at each point of time given all available data that will

be useful in forecasting exercises by the relevant authorities.

6.4 Limitations and Directions for Further Research

While the models, derivations and analysis proposed in this dissertation are robust, they

are not without limitations. Considering the univariate stochastic volatility model in

chapter 3 for instance, one such limitation is that for some datasets characterised with

sporadic marginal jumps in volatility such as the Zimbabwean Dollar exchange rate, the

analysis will fail to converge to a global maximum at least without further manipulations

to the algorithm. However, this limitation is not peculiar to the inverse gamma model

alone but all models that were used in the comparison exercise in this chapter.

Regarding the study in chapter 4, the main limitation is a result of the restrictions on

hyperparameters for the minnesota priors used in common stochastic volatility models

that are fixed at some values mentioned in the discussion of the prior values. These

restrictions though seemingly restrictive, are supported nonetheless by empirical evidence

on the co-movements observed in the volatility of macroeconomic variables.

In future research, it would be useful to extend the proposed approach to allow Σ to

also vary with time. We consider this approach in future empirical exercises. In addition,

it may be useful to extend the current approach to allow for the estimation of more

complex data such as the data that has jumps in volatility which will especially be useful

in forecasting exercises for developing economies.
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Appendix

A.1 Appendices to Chapter 3

A.1.1 Proof of Lemma

To derive the likelihood we will make use of the following lemma, which is a slightly

modified version of Theorem 7.3.4 in Muirhead (2005).

Lemma A.1.1. For integers p ≤ q

∫
|K|

n+1−2
2 exp

(
− 1

2
AK

)
pFq

(
a1, ..., ap; b1, ..., bq;

1

4
BK

)
dK = Γ

(
n+ 1

2

)∣∣∣∣12A
∣∣∣∣−n+1

2

×

p+1Fq

(
a1, ..., ap,

n+ 1

2
; b1, ..., bq;

1

2
BA−1

)

where (n+1)/2 > 0 and pFq(.) is a hypergeometric function of scalar argument, provided

that in the case p = q we have that |0.5BA−1| < 1.

Proof. We apply Theorem 7.3.4 in Muirhead (2005) after making a change of variables.

Let X = 1
4
BK such that K = 4XB−1. Thus we have:

pFq

(
a1, ..., ap; b1, ...., bq;

1

4
BK

)
= pFq

(
a1, ..., ap; b1, ..., bq;X

)

Therefore the integral becomes as follows:

∫
|X|

n+1−2
2 |4B−1|

n+1−2
2 exp

(
− 1

2
4AXB−1

)
pFq

(
a1, ..., ap; b1, ..., bq;X

)
dK

We use the Jacobian dK = |4B−1|dX to integrate with respect to X:

∫
|X|

n+1−2
2 exp(−2XB−1A)pFq

(
a1, ..., ap; b1, ..., bq;X

)
dX|4B−1|

n+1
2
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This integral is the same as in the theorem, therefore, when we integrate out X we get

the following:

∫
|X|n+1−2

2

|4B−1|−n+1
2

exp(−X2B−1A)pFq

(
a1, ..., ap; b1, ..., bq;X

)
dX = Γ

(
n+ 1

2

)∣∣∣∣12A
∣∣∣∣−n+1

2

×

p+1Fq

(
a1, ..., ap,

n+ 1

2
; b1, ..., bq;

1

2
BA−1

)

A.1.2 Proof of Proposition 3.3.1

Proof. k1 is a gamma, Bauwens et al. (2000) gives the prior density for k1 as:

|k1|
n−2
2 exp

(
− 1

2

(
k1(1− ρ2)

)) 1

c0
(A.1.1)

where c0 =
Γ(n

2
)

( 1−ρ2

2
)
n
2
, is a constant and Γ is a gamma function. Let V −1

1 = (1− ρ2), thus,

the likelihood for the first observation is as follows:

L(y1) =

∫
L(y1 | k1)π(k1)dk1

=

∫
(2π)−

1
2

√
B2k

1
2
1 exp

(
− 1

2
e21B

2k1

)
k

n−2
2

1 exp

(
− 1

2
(1− ρ2)k1

)
1

c0
dk1

(A.1.2)

The integral is with respect to k1, so after rearranging and combining like terms we have;

L(y1) =

∫
(2π)−

1
2

√
B2k

n+1−2
2

1 exp

(
− 1

2
(B2e21 + V −1

1 )k1

)
1

c0
dk1

where k
n+1−2

2
1 exp(−1

2
(B2e21 + V −1

1 )k1) is the kernel of a gamma with n + 1 degrees of

freedom. Let Ṽ2 = (B2e21 + V −1
1 )−1, therefore, the density of k1|y1 is:

π(k1|y1) = k
n+1−2

2
1 exp

(
− 1

2
k1Ṽ2

−1
)
1

c̄0
(A.1.3)

with c̄0 =
Γ(n+1

2
)

(
Ṽ2

−1

2
)
n+1
2

. Thus, we have the likelihood as:

L(y1) = (2π)−
1
2

√
B2Γ

(
n+ 1

2

)∣∣∣∣B2e21 + V −1
1

2

∣∣∣∣−n+1
2 1

c0
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Taking into account c0 we can write the likelihood for t = 1 as:

L(y1) = (2π)−
1
2

√
B22

1
2
Γ(n+1

2
)

Γ(n
2
)

∣∣B2e21 + V −1
1

∣∣−n+1
2 V

−n
2

1

Define k1:2 = (k1, k2), then we have the likelihood for the second observation as:

L(y2|y1) =
∫
L(y2|k1:2, y1)π(k1:2|y1)dk1:2

where π(k1:2|y1) = π(k1|y1)π(k2|k1, y1) . The prior for kt unconditionally is a gamma.

However, kt|kt−1 is a non central chi-squared. Muirhead (2005, p. 442) gives this non

central chi-squared density as follows:

π(kt|kt−1) = k
n−2
2

t exp

(
− 1

2
kt

)
0F1

(
n

2
;
1

4
ρ2kt−1kt

)
exp

(
− 1

2
ρ2kt−1

)(
Γ

(
n

2

))−1
1

c
(A.1.4)

where 0F1 is a hypergeometric function, ρ2kt−1 is the non-centrality parameter and c = 2
n
2 .

We can then write the likelihood for the second observation given the first as :

L(y2|y1) =
∫

(2π)−
1
2

√
B2k

1
2
2 exp

(
− 1

2
B2e22k2

)
π(k1:2|y1)dk1:2 (A.1.5)

We integrate first with respect to k1. Define l2 as representing all the elements in π(k2|k1)

as given by (A.1.4) that do not depend on k1 as follows:

l2 =

(
k

n−2
2

2 exp

(
− 1

2
k2

))−1(
1

Γ(n
2
)

)−1(
1

c

)−1

(A.1.6)

Given that π(k2|k1, y1) = π(k2|k1), and given (A.1.4) and (A.1.3), we can write

π(k2|y1) as follows:

π(k2|y1) =
∫
π(k2|k1, y1)π(k1|y1)dk1 =∫

1

c̄0
k

n+1−2
2

1 exp

(
− 1

2
(Ṽ2

−1
k1)

)
exp

(
− 1

2
(ρ2k1)

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
1

l2
dk1

where we have used the expression for π(k1|y1) in (A.1.3). We can write the above integral

more compactly as:
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∫
π(k2|k1, y1)π(k1|y1)dk1 =

∫
1

c̄0
k

n+1−2
2

1 exp

(
− 1

2
(Ṽ2

−1
+ ρ2)k1

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
1

l2
dk1

Applying Lemma 6.1 the solution to this integral is as follows:

π(k2|y1) =
∫
π(k2|k1, y1)π(k1|y1)dk1 =

1

c̄0
Γ

(
n+ 1

2

)∣∣∣∣ Ṽ2−1
+ ρ2

2

∣∣∣∣−n+1
2

1F1

(
n+ 1

2
;
n

2
;
1

2
k2ρ

2(Ṽ2
−1

+ ρ2)−1

)
1

l2

(A.1.7)

Given (A.1.6) and (A.1.7), the distribution of k2|y1 is a mixture of gammas as follows:

π(k2|y1) ∝ k
n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ 1

2
;
n

2
;
1

2
k2ρ

2(Ṽ2
−1

+ ρ2)−1

)
(A.1.8)

The normalising constant for this density function can be obtained in closed form. Lemma

6.1 gives the solution to this integral, thus, we have:

∫
k

n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ 1

2
;
n

2
;
1

2
k2δ2

)
dk2 = Γ

(
n

2

)
2

n
2 2F1

(
n+ 1

2
,
n

2
;
n

2
; δ2

)
(A.1.9)

where δ2 = ρ2(Ṽ2
−1

+ ρ2)−1. This 2F1

(
n+1
2
, n
2
; n
2
; δ2

)
function has the same terms in the

denominator and the numerator thus they cancel out and we have:

2F1

(
n+ 1

2
,
n

2
;
n

2
; δ2

)
= 1F0

(
n+ 1

2
; δ2

)
(A.1.10)

Therefore, this function simplifies to a known solution for |δ2| < 1, see Muirhead

(2005, p.261) .

1F0

(
n+ 1

2
; δ2

)
= (1− δ2)

−n+1
2 (A.1.11)

Therefore the normalising constant becomes:
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Γ

(
n

2

)
2

n
2 1F0

(
n+ 1

2
; δ2

)
= Γ

(
n

2

)
2

n
2 (1− δ2)

−n+1
2

Given this normalising constant, we have the density for π(k2|y1) from A.1.8 as follows:

π(k2|y1) =
1

c1
k

n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ 1

2
;
n

2
;
1

2
k2ρ

2(Ṽ2
−1

+ ρ2)−1

)
where c1 = Γ

(
n
2

)
2

n
2 (1 − δ2)

−n+1
2 . Thus, the likelihood for the second observation is as

follows:

L(y2|y1) =
∫
π(y2|k2, y1)π(k2|y1)dk2

=

∫
(2π)−

1
2

√
B2k

n+1−2
2

2 exp

(
− 1

2
(B2e22 + 1)k2

)
1

c1
1F1

(
n+ 1

2
;
n

2
;
1

2
k2ρ

2(Ṽ2
−1

+ ρ2)−1

)
dk2

Using again Lemma 6.1 and taking into account c1, the likelihood for the second

observation is:

L(y2|y1) = (2π)−
1
2

√
B2

2
n+1
2

2
n
2

Γ
(
n+1
2

)
Γ
(
n
2

) (B2e22 + 1)−
n+1
2

(1− δ2)
−n+1

2
2F1

(
n+ 1

2
,
n+ 1

2
;
n

2
; (B2e22+1)−1δ2

)

Thus we get a Gauss hypergeometric function which can be evaluated easily. Let

Z2 = (B2e22+1)−1δ2 and Ĉ2 = 2F1

(
n+1
2
, n+1

2
; n
2
;Z2

)
. This series converges because |Z2| < 1

(Abramowitz et al., 1988). To accelerate the convergence of this series we apply the Euler

transformation as in Abramowitz et al. (1988) and thus we get:

2F1

(
n+ 1

2
,
n+ 1

2
;
n

2
;Z2

)
= (1− Z2)

−n+2
2 2F1

(
− 1

2
,−1

2
;
n

2
;Z2

)
(A.1.12)

Thus Ĉ2 = 2F1

(
n+1
2
, n+1

2
; n
2
;Z2

)
= (1−Z2)

−n+2
2 2F1

(
− 1

2
,−1

2
; n
2
;Z2

)
, then we can write

the L(y2|y1) as follows:

L(y2|y1) = (2π)−
1
2

√
B2

2
n+1
2

2
n
2

Γ
(
n+1
2

)
Γ
(
n
2

) (B2e22 + 1)−
n+1
2

(1− δ2)
−n+1

2

Ĉ2

The density of kt for the third observation is given by:
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π(k3|y2, y1) =
∫
π(k3|k2)π(k2|y2, y1)dk2

where π(k2|y2, y1) ∝ π(k2|y1)L(y2|k2, y1). The distribution for π(k2|y1) in (A.1.8) can

be written as follows:

π(k2|y1) ∝
∞∑

h2=0

C̃2,h2k
n+2h2−2

2
2 exp

(
− 1

2
k2

)

where C̃2,h2 =
[(n+1)/2]h2

[n/2]h2

(
1
2
ρ2(Ṽ2

−1
+ ρ2)−1

)h2 1
h2!

. Thus we have:

π(k2|y2, y1) ∝
∞∑

h2=0

C̃2,h2k
n+1+2h2−2

2
2 exp

(
− 1

2
k2(B

2e22 + 1)

)
(A.1.13)

Given (A.1.4) and (A.1.13) we have:

π(k3|y2, y1) ∝
∫
k

n−2
2

3 exp

(
− 1

2
k3

)
0F1

(
n

2
;
1

4
ρ2k2k3

)
exp

(
− 1

2
ρ2k2

)
×

∞∑
h2=0

C̃2,h2k
n+1+2h2−2

2
2 exp

(
− 1

2
k2(B

2e22 + 1)

)
1

Γ
(
n
2

)
2

n
2

dk2

which simplifies to:

π(k3|y2, y1) ∝
∫
k

n−2
2

3 exp

(
− 1

2
k3

)
0F1

(
n

2
;
1

4
ρ2k2k3

)
exp

(
− 1

2
(B2e22 + 1 + ρ2)k2

)
∞∑

h2=0

C̃2,h2k
n+1+2h2−2

2
2

1

Γ
(
n
2

)
2

n
2

dk2

Using Lemma 6.1 the density of k3|y2, y1 is thus:

π(k3|y2, y1) =
1

c3
k

n−2
2

3 exp

(
− 1

2
k3

) ∞∑
h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)

1F1

(
n+ 1 + 2h2

2
;
n

2
;
1

2
k3ρ

2S3

)
(2S3)

n+1+2h2
2

1

Γ
(
n
2

)
2

n
2

(A.1.14)

where S3 = (B2e22 + 1+ ρ2)−1 and c3 is the normalising constant as in (A.1.9) as follows:
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c3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
(2S3)

n+1+2h2
2 2F1

(
n+ 1 + 2h2

2
,
n

2
;
n

2
; ρ2S3

)

Similar to (A.1.10) and (A.1.11), the hypergeometric function simplifies to get:

c3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
(2S3)

n+1+2h2
2 (1− ρ2S3)

−n+1+2h2
2

Collecting terms dependent on h2 we can write c3 as

c3 =

( ∞∑
h2=0

[(n+ 1)/2]h2

[n/2]h2

[(n+ 1)/2]h2

δh2
3

h2!

)
Γ

(
n+ 1

2

)
(1− ρ2S3)

−n+1
2 (2S3)

n+1
2

where δ3 =
(
(1− ρ2S3)

−1S3ρ
2(Ṽ2

−1
+ ρ2)−1

)
. This can be written as:

c3 = 2F1

(
n+ 1

2
,
n+ 1

2
;
n

2
; δ3

)
Γ

(
n+ 1

2

)
(1− ρ2S3)

−n+1
2 (2S3)

n+1
2

Using Euler’s acceleration in (A.1.12) we can transform c3 as:

c3 = (1− δ3)
−n+2

2 2F1

(
− 1

2
,−1

2
;
n

2
; δ3

)
Γ

(
n+ 1

2

)
(1− ρ2S3)

−n+1
2 (2S3)

n+1
2

Therefore the likelihood for t = 3 is as follows:

L(y3|y2, y1) =
∫
π(y3|k3, y2, y1)π(k3|y2, y1)dk3

Thus we have from (A.1.14)

L(y3|y2, y1) =
∫

(2π)−
1
2

√
B2

1

c3
k

n+1−2
2

3 exp

(
− 1

2
k3(B

2e23 + 1)

) ∞∑
h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)

1F1

(
n+ 1 + 2h2

2
;
n

2
;
1

2
k3ρ

2S3

)
(2S3)

n+1+2h2
2

1

Γ
(
n
2

)
2

n
2

dk3
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and using Lemma 6.1 we get:

L(y3|y2, y1) = (2π)−
1
2

√
B2

1

c3

∞∑
h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
(2S3)

n+1+2h2
2 Γ

(
n+ 1

2

)
2

n+1
2

(B2e23 + 1)−
n+1
2 2F1

(
n+ 1 + 2h2

2
,
n+ 1

2
;
n

2
; (B2e23 + 1)−1ρ2S3

)
1

Γ
(
n
2

)
2

n
2

Letting Z3 = (B2e23 + 1)−1ρ2S3, we can define Ĉ3 = 2F1

(
n+1+2h2

2
, n+1

2
; n
2
;Z3

)
. Thus,

we have:

L(y3|y2, y1) = (2π)−
1
2

√
B2

1

c3

∞∑
h2=0

C̃2,h2

Γ

(
n+1+2h2

2

)
(B2e23 + 1)

n+1
2

(2S3)
n+1+2h2

2
2

n+1
2

2
n
2

Γ
(
n+1
2

)
Γ
(
n
2

) Ĉ3

The filtering density of kt for t = 4 is given by:

π(k4|y3, y2, y1) =
∫
π(k4|k3, y1, y2, y3)π(k3|y3, y2, y1)dk3 (A.1.15)

where π(k3|y3, y2, y1) ∝ π(k3|y2, y1)L(y3|y2, y1). Let:

C̃3,h3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
[(n+ 1)/2 + h2]h3

[n/2]h3

(
1

2
ρ2S3

)h3 1

h3!
(2S3)

n+1+2h2
2

(A.1.16)

Then from (A.1.14) we have that the filtering distribution k3|y2, y1 is a mixture of

gammas as follows:

π(k3|y2, y1) ∝
∞∑

h3=0

C̃3,h3k
n+2h3−2

2
3 exp

(
− 1

2
k3

)
As before, when we include the third observation, the distribution of k3|y3, y2, y1 is

also a mixture of gammas and can be written as follows:

π(k3|y3, y2, y1) ∝
∞∑

h3=0

C̃3,h3k
n+1+2h3−2

2
3 exp

(
− 1

2
k3(B

2e23 + 1)

)
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Let Ṽ4
−1

= (B2e23 + 1). Then, using (A.1.15) and (A.1.4), we have the distribution of

k4|y3, y2, y1 as follows:

π(k4|y3, y2, y1) ∝
∫
k

n−2
2

4 exp

(
− 1

2
k4

)
0F1

(
n

2
;
1

4
ρ2k3k4

)
exp

(
− 1

2
ρ2k3

)
1

Γ
(
n
2

)
2

n
2

×
∞∑

h3=0

C̃3,h3k
n+1+2h3−2

2
3 exp

(
− 1

2
k3Ṽ4

−1
)
dk3

(A.1.17)

Taking this integral with respect to k3 we get:

π(k4|y3, y2, y1) ∝ k
n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ 1 + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

1

Γ
(
n
2

)
2

n
2

where S4 = (Ṽ4
−1

+ ρ2)−1 = (B2e23 + 1 + ρ2)−1. Let c4 be the normalising constant, that

is:

c4 =

∫
k

n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ 1 + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

1

Γ
(
n
2

)
2

n
2

dk4

Thus we get:

c4 =
∞∑

h3=0

C̃3,h32F1

(
n+ 1 + 2h3

2
,
n

2
;
n

2
; ρ2S4

)
Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

Using (A.1.10) and (A.1.11), this simplifies to:

c4 =
∞∑

h3=0

C̃3,h3(1− ρ2S4)
−n+1+2h3

2 Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

Thus,
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π(k4|y3, y2, y1) =
1

c4
k

n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ 1 + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

1

Γ
(
n
2

)
2

n
2

Therefore the likelihood for t = 4 is as follows:

L(y4|y3, y2, y1) =
∫
π(y4|k4, y3, y2, y1)π(k4|y3, y2, y1)dk4

Thus we have:

L(y4|y3, y2, y1) =
∫

(2π)−
1
2

√
B2

1

c4
k

n+1−2
2

4 exp

(
− 1

2
k4(B

2e24 + 1)

) ∞∑
h3=0

C̃3,h3Γ

(
n+ 1 + 2h3

2

)

1F1

(
n+ 1 + 2h3

2
;
n

2
;
1

2
k4ρ

2S4

)
(2S4)

n+1+2h3
2

1

Γ
(
n
2

)
2

n
2

dk4

This is similar to t = 3 therefore we have:

L(y4|y3, y2, y1) = (2π)−
1
2

√
B2

1

c4

∞∑
h3=0

C̃3,h3

Γ

(
n+1+2h3

2

)
(B2e24 + 1)

n+1
2

(2S4)
n+1+2h3

2
2

n+1
2

2
n
2

Γ
(
n+1
2

)
Γ
(
n
2

) Ĉ4

and the likelihood for any t is:

L(yt|y1:t−1) = (2π)−
1
2

√
B2

1

ct

∞∑
ht−1=0

C̃t−1,ht−1

Γ

(
n+1+2ht−1

2

)
(B2e2t + 1)

n+1
2

(2St)
n+1+2ht−1

2
2

n+1
2

2
n
2

Γ
(
n+1
2

)
Γ
(
n
2

) Ĉt

where for t ≥ 4:
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δt =

(
(1− ρ2St)

−1Stρ
2(Ṽ −1

t−1 + ρ2)−1

)
Zt = (B2e2t + 1)−1Stρ

2

Ĉt = 2F1

(
n+ 1 + 2ht−1

2
,
n+ 1

2
;
n

2
;Zt

)
Ṽ −1
t = 1 +B2e2t−1

St = (B2e2t−1 + 1 + ρ2)−1 = (Ṽ −1
t + ρ2)−1

ct =
∞∑

ht−1=0

C̃t−1,ht−1(1− ρ2St)
−n+1+2ht−1

2 Γ

(
n+ 1 + 2ht−1

2

)
(2St)

n+1+2ht−1
2

C̃t−1,ht−1 =

∞∑
ht−2=0

C̃t−2,ht−2Γ

(
n+ 1 + 2ht−2

2

)
[(n+ 1)/2 + ht−2]ht−1

[n/2]ht−1

(
1

2
ρ2St−1

)ht−1 (2St−1)
n+1+2ht−2

2

ht−1!

A.1.3 Proof of Proposition 3.3.2

Proof. Combining the prior density for k1 in (A.1.1) with the transition equation in

(A.1.4) and the likelihood, we get:

π(k1|k2:T , y1:T ) ∝ |k1|
n+1−2

2 exp

(
− 1

2
S−1
2 k1

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
= |k1|

n+1−2
2 exp

(
− 1

2
S−1
2 k1

) ∞∑
h=0

(
C1,h|k1|h

) (A.1.18)

with C1,h = 1
h!

1
[n/2]h

(
1
4
ρ2k2

)h

.

The integral of (A.1.18) with respect to k1 is proportional to:

1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2k2S2

)
and therefore:

π(k2|k3:T , y1:T )

∝ |k2|
n+1−2

2 exp

(
− 1

2
S−1
3 k2

)
1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2k2S2

)
0F1

(
n

2
;
1

4
ρ2k3k2

) (A.1.19)
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where we have used that S−1
3 = 1 +B2e22 + ρ2. Combining the series we get that:

1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2k2S2

)
0F1

(
n

2
;
1

4
ρ2k3k2

)
=( ∞∑

h1=0

[(n+ 1)/2]h1

[n/2]h1

(1
2
ρ2S2)

h1kh1
2

h1!

)( ∞∑
h2=0

1

h2!

1

[n/2]h2

(
1

4
ρ2k3

)h2

kh2
2

) (A.1.20)

By making the change of variables h = h1 + h2 we get that (A.1.20) can be written as:

∞∑
h=0

h∑
h2=0

((
[(n+ 1)/2]h−h2

[n/2]h−h2

(1
2
ρ2S2)

h−h2

(h− h2)!

)
1

h2!

1

[n/2]h2

(
1

4
ρ2
)h2

kh2
3

)
kh2 =

∞∑
h=0

C2,hk
h
2

(A.1.21)

where:

C2,h =
h∑

h2=0

C̃2,h−h2

1

h2!

1

[n/2]h2

(
1

4
ρ2
)h2

kh2
3

and C̃2,h−h2 has been defined in proposition 3.1 as:

C̃2,h−h2 =
[(n+ 1)/2]h−h2

[n/2]h−h2

(1
2
ρ2S2)

h−h2

(h− h2)!

Using (A.1.21) we obtain that:

π(k2|k3:T , y1:T ) ∝ |k2|
n+1−2

2 exp

(
− 1

2
S−1
3 k2

) ∞∑
h=0

(
C2,hk

h
2

)
(A.1.22)

as we wanted to prove.

The integral of (A.1.22) with respect to k2 is proportional to:

∞∑
h=0

(
C2,h

Γ
(
n+1+2h

2
)

(S−1
3 /2)

n+1+2h
2

)
=

∞∑
h=0

( h∑
h2=0

C̃2,h−h2

1

h2!

1

[n/2]h2

(
1

4
ρ2
)h2

kh2
3

)
Γ
(
n+1+2h

2
)

(S−1
3 /2)

n+1+2h
2

(A.1.23)

Making the change of variables h1 = h− h2, equation (A.1.23) can be written as:

∞∑
h1=0

∞∑
h2=0

(
C̃2,h1

1

h2!

1

[n/2]h2

(
1

4
ρ2
)h2

kh2
3

)
Γ
(
n+1
2

+ h1 + h2
)

(S−1
3 /2)

n+1
2

+h1+h2
(A.1.24)
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Note that Γ
(
n+1
2

+ h1 + h2
)
= Γ

(
n+1+2h1

2

)[
n+1+2h1

2

]
h2
. Then (A.1.24) can be written as:

∞∑
h2=0

∞∑
h1=0

C̃2,h1Γ

(
n+ 1 + 2h1

2

)[
(n+ 1)/2 + h1

]
h2

[n/2]h2

(
1

2
ρ2S3

)h2 1

h2!
(2S3)

n+1+2h1
2 kh2

3

(A.1.25)

Using the definition of C̃3,h2 in proposition 3.1, we can write (A.1.25) as:

∞∑
h2=0

C̃3,h2k
h2
3

Recall that the transition density is in (A.1.4). Therefore, we have:

π(k3|k4:T , y1:T ) ∝
( ∞∑

h2=0

C̃3,h2k
h2
3

)
0F1

(
n

2
;
1

4
ρ2k3k4

)
|k3|

n+1−2
2 exp

(
− 1

2
S−1
4 k3

)

with S−1
4 = 1 +B2e23 + ρ2. As before, we can multiply the two series as follows:

( ∞∑
h2=0

C̃3,h2k
h2
3

)
0F1

(
n

2
;
1

4
ρ2k3k4

)
=

( ∞∑
h2=0

C̃3,h2k
h2
3

)( ∞∑
h3=0

1

[n/2]h3

(
1

4
ρ2k3

)h3

kh3
4

1

h3!

)

=
∞∑
h=0

h∑
h3=0

|k3|hC̃3,h−h3

1

[n/2]h3

(
1

4
ρ2
)h3

kh3
4

1

h3!
=

∞∑
h=0

|k3|hC3,h

where

C3,h =
∞∑

h3=0

C̃3,h−h3

1

[n/2]h3

(
1

4
ρ2
)h3 kh3

4

h3!

and therefore, π(k3|k4:T , y1:T ) can be written as:

π(k3|k4:T , y1:T ) ∝ |k3|
n+1−2

2 exp

(
− 1

2
S−1
4 k3

) ∞∑
h=0

|k3|hC3,h (A.1.26)

as we wanted to prove.

Since π(k3|k4:T , y1:T ) in (A.1.26) and π(k2|k3:T , y1:T ) in (A.1.22) have the same struc-

ture, and, since the transition density of kt is always the same, we get analogous results

for any t < T , as we wanted to prove. For t = T the only difference is that there is no
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transition density from kT to kT+1. For this reason we do not need to multiply two series,

and hence CT,h = C̃T,h and ST+1 = (1 +B2e2T )
−1

A.1.4 Proof of Proposition 3.3.3

Proof. We need to integrate π(k1:T )π(y1:T |k1:T ) with respect to kT first. The terms that

depend on kT are the following:

exp

(
− 1

2
e2TB

2kT

)
|kT |

1
2 |kT |

n−2
2 exp

(
− 1

2
kT

)
0F1

(
n

2
;
1

4
ρ2kTkT−1

)
=

exp

(
− 1

2
S−1
T+1kT

)
|kT |

n+1−2
2

∞∑
h=0

aT,h|kT |h
(A.1.27)

with aT,h = 1
h!

1
[n/2]h

(
1
4
ρ2kT−1

)h
. This proves the result for s = 0. The integral of (A.1.27)

with respect to kT is proportional to:

1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2kT−1ST+1

)

Therefore, the terms that depend on kT−1 in π(k1:T )π(y1:T |k1:T ) after integrating out

kT are the following:

|kT−1|
n+1−2

2 exp

(
− 1

2
S−1
T kT−1

)
1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2kT−1ST+1

)
0F1

(
n

2
;
1

4
ρ2kT−1kT−2

)
(A.1.28)

Equation (A.1.28) has the product of two series, that can be written as:

1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2kT−1ST+1

)
0F1

(
n

2
;
1

4
ρ2kT−1kT−2

)
=

=

( ∞∑
hT=0

[(n+ 1)/2]hT

[n/2]hT

(1
2
ρ2ST+1)

hT khT
T−1

hT !

)( ∞∑
hT−1=0

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2kT−2

)hT−1

k
hT−1

T−1

)
(A.1.29)

Making the change of variables h = hT + hT−1 we get that (A.1.29) is equal to:
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∞∑
h=0

( h∑
hT−1=0

[(n+ 1)/2]h−hT−1

[n/2]h−hT−1

(1
2
ρ2ST+1)

h−hT−1

(h− hT−1)!

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2
)hT−1

k
hT−1

T−2

)
khT−1 =

∞∑
h=0

aT−1,hk
h
T−1

where:

aT−1,h =
h∑

hT−1=0

(
[(n+ 1)/2]h−hT−1

[n/2]h−hT−1

(1
2
ρ2ST+1)

h−hT−1

(h− hT−1)!

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2
)hT−1

k
hT−1

T−2

)

which can be written as:

aT−1,h =
h∑

hT−1=0

ãT−1,h−hT−1

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2
)hT−1

k
hT−1

T−2

and:

ãT−1,h =
[(n+ 1)/2]h

[n/2]h

(1
2
ρ2ST+1)

h

h!

Therefore, π(kT−1|k1:T−2, y1:T ) which is given by (A.1.28), can be written as:

π(kT−1|k1:T−2, y1:T ) ∝ |kT−1|
n+1−2

2 exp

(
− 1

2
S−1
T kT−1

) ∞∑
h=0

(
aT−1,hk

h
T−1

)
(A.1.30)

which proves the result for s = 1.

The integral of (A.1.30) with respect to kT−1 gives:

∞∑
h=0

(
aT−1,h

Γ
(
n+1+2h

2
)

(S−1
T /2)

n+1+2h
2

)
=

=
∞∑
h=0

h∑
hT−1=0

ãT−1,h−hT−1

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2
)hT−1

k
hT−1

T−2

Γ
(
n+1+2h

2
)

(S−1
T /2)

n+1+2h
2

(A.1.31)
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Making a change of variables h = hT + hT−1, equation (A.1.31) can be written as:

∞∑
hT=0

∞∑
hT−1=0

(
ãT−1,hT

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2
)hT−1

k
hT−1

T−2

)
Γ
(
n+1
2

+ hT + hT−1

)
(S−1

T /2)
n+1
2

+hT+hT−1
(A.1.32)

Noting that Γ
(
n+1
2

+hT +hT−1

)
= Γ

(
n+1
2

+hT
)[

n+1
2

+hT
]
hT−1

, (A.1.32) can be written

as:

∞∑
hT−1=0

( ∞∑
hT=0

ãT−1,hT
Γ

(
n+ 1

2
+ hT

)[
(n+ 1)/2 + hT

]
hT−1

[n/2]hT−1

(
1
2
ρ2ST

)hT−1

(hT−1)!
(2ST )

n+1+2hT
2

)
k
hT−1

T−2

=
∞∑

hT−1=0

ãT−2,hT−1
k
hT−1

T−2

(A.1.33)

where:

ãT−2,hT−1
=

∞∑
hT=0

ãT−1,hT
Γ

(
n+ 1

2
+ hT

)[
(n+ 1)/2 + hT

]
hT−1

[n/2]hT−1

(
1
2
ρ2ST

)hT−1

(hT−1)!
(2ST )

n+1+2hT
2

Therefore, we have that the integral of (A.1.30) with respect to kT−1 gives (A.1.33).Therefore,

collecting the terms that depend on kT−2 we have that:

π(kT−2|k1:(T−3), y1:T ) ∝

|kT−2|
n+1−2

2 exp

(
− 1

2
S−1
T−1kT−2

)( ∞∑
hT−1=0

ãT−2,hT−1
k
hT−1

T−2

)
0F1

(
n

2
;
1

4
ρ2kT−2kT−3

)
(A.1.34)

Equation (A.1.34) depends on the product of two series, which can be written as

follows:
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( ∞∑
hT−1=0

ãT−2,hT−1
k
hT−1

T−2

)
0F1

(
n

2
;
1

4
ρ2kT−2kT−3

)
=

( ∞∑
hT−1=0

ãT−2,hT−1
k
hT−1

T−2

)( ∞∑
hT−2=0

(
1
4
ρ2kT−2kT−3

)hT−2

(hT−2)!

1

[n/2]hT−2

)
=

∞∑
h=0

( h∑
hT−2=0

ãT−2,h−hT−2

1

(hT−2)!

1

[n/2]hT−2

(
1

4
ρ2kT−3

)hT−2
)
khT−2 =

∞∑
h=0

aT−2,hk
h
T−2

where:

aT−2,h =
h∑

hT−2=0

ãT−2,h−hT−2

1

(hT−2)!

1

[n/2]hT−2

(
1

4
ρ2kT−3

)hT−2

Therefore, we can write (A.1.34) as:

π(kT−2|k1:(T−3), y1:T ) ∝ |kT−2|
n+1−2

2 exp

(
− 1

2
S−1
T−1kT−2

) ∞∑
h=0

aT−2,hk
h
T−2 (A.1.35)

which proves the result for s = 2.

Because π(kT−2|k1:(T−3), y1:T ) in (A.1.35) and π(kT−1|k1:T−2, y1:T ) in (A.1.30) have the

same structure, and because the transition density is always the same, we can conclude

the result is proven for any s = 0, . . . , T − 2. For s = T − 1 there is no transition density

from k0 to k1, therefore there is no need to multiply two series, so we get a1,h = ã1,h and

S2 = (1 +B2e21)
−1.

A.1.5 Proof of Proposition 3.3.4

Proof. To find π(kt|y1:T ) we need to integrate π(k1:T )π(y1:T |k1:T ) with respect to k1:(t−1)

and with respect to k(t+1):T . From the proofs of propositions 3.2 and 3.3, we have that

when 2 ≤ t < (T − 1):
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∫ ∫
π(k1:T )π(y1:T |k1:T )dk1:(t−1)dk(t+2):T ∝ |kt|

n+1−2
2 exp

(
− 1

2
S−1
t+1kt

)( ∞∑
h=0

Ct,h|kt|h
)

× |kt+1|
n+1−2

2 exp

(
− 1

2
S−1
t+2kt+1

)( ∞∑
h=0

at+2,h

Γ
(
n+1
2

+ h
)

(S−1
t+3/2)

n+1+2h
2

)
(A.1.36)

In the proof of proposition 3.3, it is shown that:

∞∑
h=0

at+2,h

Γ
(
n+1
2

+ h
)

(S−1
t+3/2)

n+1+2h
2

=
∞∑
h=0

ãt+1,hk
h
t+1

Therefore (A.1.36) can be written as:

π(kt, kt+1|y1:T ) ∝ |kt|
n+1−2

2 exp

(
− 1

2
S−1
t+1kt

)( ∞∑
h=0

Ct,h|kt|h
)

× |kt+1|
n+1−2

2 exp

(
− 1

2
S−1
t+2kt+1

)( ∞∑
h=0

ãt+1,hk
h
t+1

) (A.1.37)

The product of the two series can be written as:

( ∞∑
h=0

Ct,h|kt|h
)( ∞∑

h=0

ãt+1,hk
h
t+1

)
=

∞∑
ht+1=0

∞∑
h=0

h∑
ht=0

C̃t,h−ht

1

[n/2]ht

(
1

4
ρ2
)ht (kt+1)

ht+ht+1

ht!
|kt|hãt+1,ht+1

(A.1.38)

where neither ãt+1,ht+1 nor C̃t,h−ht depend on kt+1. Therefore, we can integrate out kt+1

from (A.1.37) using (A.1.38) to obtain:

π(kt|y1:T ) ∝ |kt|
n+1−2

2 exp

(
− 1

2
S−1
t+1kt

)( ∞∑
h=0

D̃t,h|kt|h
)

where

D̃t,h =
h∑

ht=0

∞∑
ht+1=0

C̃t,h−ht

1

[n/2]ht

(
1

4
ρ2
)ht 1

ht!

Γ
(
n+1
2

+ ht + ht+1

)
(S−1

t+2/2)
n+1
2

+ht+ht+1
ãt+1,ht+1
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as we wanted to prove.

In the case t = T − 1, expression (A.1.37) becomes:

π(kT−1, kT |y1:T ) ∝ |kT−1|
n+1−2

2 exp

(
−1

2
S−1
T kT−1

)( ∞∑
h=0

CT−1,h|kT−1|h
)
|kT |

n+1−2
2 exp

(
−1

2
S−1
T+1kT

)
(A.1.39)

Thus, in this case we only have one series, not the product of two. Integrating with

respect to kT we get:

π(kT−1|y1:T ) ∝ |kT−1|
n+1−2

2 exp

(
− 1

2
S−1
T kT−1

) ∞∑
h=0

D̃T−1,h|kT−1|h

with

D̃T−1,h =
h∑

hT−1=0

C̃T−1,h−hT−1

1

[n/2]hT−1

(
1

4
ρ2
)hT−1 1

(hT−1)!

Γ
(
n+1
2

+ hT−1

)
(S−1

T+1/2)
n+1
2

+hT−1

as we wanted to prove.

A.1.6 Proof of Local Scale Model Likelihood

To facilitate the reading we do not explicitly write xt as a conditioning argument. Given

that we have a gamma distribution for the initial condition (3.2.2) and a Gaussian error

term, we have that the joint density (y1, h1, ν1) is :

π(y1, h1, ν1) =
1√
2π

(h1)
1
2 exp

(
− 1

2
(y1 − x1β)

2h1

)
f(h1|S1)

Γ(α1 + α2)

Γ(α1)Γ(α2)
να1−1
1 (1− ν1)

α2−1

where f(h1|S1) is the density of the initial condition given as:

f(h1|S1) = h
ν
2
−1

1 exp

(
− h1

2S1

)
1

Γ(ν/2)(2S1)
ν
2

(A.1.40)

The volatility process is represented by a non stationary process as in (3.2.1). We make a

change of variables from (y1, h1, ν1) to (y1, Z, h2) where Z = h1 −λh2, and v1 =
h2λ
h1

. The
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Jacobian of this transformation is λ/(Z + λh2). Therefore π(y1, Z, h2) can be written as:

π(y1, Z, h2) =
1√
2π

(Z + λh2)
1
2 exp

(
− 1

2
(y1 − x1β)

2(Z + λh2)

)
(Z + λh2)

ν
2
−1 exp

(
− 1

2S1

(Z + λh2)

)
×

(
(Z + λh2)

λ

)−1
1

Γ(ν/2)(2S1)
ν
2

Γ(α1 + α2)

Γ(α1)Γ(α2)

(
h2λ

Z + λh2

)α1−1(
Z

Z + λh2

)α2−1

which simplifies to:

π(y1, Z, h2) =
1√
2π

exp

(
−1

2

(
(y1−x1β)2+

1

S1

)
(Z+λh2)

)
Γ(α1 + α2)

Γ(α1)Γ(α2)

(Z + λh2)
ν
2
+ 1

2
−(α1+α2)

Γ(ν/2)(2S1)
ν
2

λα1Z
α2−1hα1−1

2

Note that for mathematical convenience, α1 is restricted as α1 =
ν
2
and α2 =

1
2
. Therefore,

ν
2
+ 1

2
− (α1 + α2) = 0, and π(Z|y1, h2) is a gamma distribution. Using the properties of

the gamma distribution, we can integrate over the state variable Z:

π(y1, h2) =

∫
π(y1, Z, h2)dZ

=
Γ(α2)√

2π

exp

(
− λh2

2

(
(y1 − x1β)

2 + 1
S1

))
(
2

(
(y1 − x1β)2 +

1
S1

)−1)−α2

Γ(α1 + α2)

Γ(α1)Γ(α2)

λα1h
ν/2−1
2

Γ(ν/2)(2S1)
ν
2

(A.1.41)

From equation (A.1.41) we can see that h2|y1 is a gamma distribution with parameters(
ν
2
, 2S2

)
, where S2 =

(
(y1−x1β)

2+ 1
S1

)−1 1
λ
. Let f(h2|S2) be defined as in (A.1.40), that

is, the density of a gamma distribution:

f(h2|S2) = h
ν
2
−1

2 exp

(
− h2

2S2

)
1

Γ(ν/2)(2S2)
ν
2

. (A.1.42)

Then equation (A.1.41) can be written as follows:

π(y1, h2) =
Γ(α2)

Γ(α2)

Γ(α1 + α2)

Γ(α1)

λα1

Γ(ν/2)(2S1)
ν
2

1√
2π

(
2

(
(y1−x1β)2+

1

S1

)−1)α2

f(h2|S2)Γ(ν/2)(2S2)
ν
2

Therefore, h2|y1 is a gamma distribution, such that π(h2|y1) = f(h2|S2), which is defined

in (A.1.42).

From these derivations we can get the likelihood as follows. First, for t = 1, we have

113



that

π(y1|h1) =
1

(
√
2π)

h
1
2
1 exp

(
− 1

2
h1(y1 − x1β)

2

)
and the initial condition for h1 is a gamma distribution given in (A.1.40). Therefore,

π(y1) is a student-t and we have:

π(y1) =
Γ(α1 + α2)

Γ(α1)
λα1

(
S2

S1

)α1 1√
2π

(
2

(
(y1 − x1β)

2 +
1

S1

)−1)α2

(A.1.43)

For t = 2, π(y2|h2) is also a normal. Thus the conditional distribution for the second

observation given h2 is as follows:

π(y2|h2) =
1

(
√
2π)

h
1
2
2 exp

(
− 1

2
h2(y2 − x2β)

2

)

and π(h2|y1) is the gamma distribution defined in (A.1.42). Therefore, we have the same

structure as in t = 1, and using the properties of the gamma distribution , we get that

the likelihood π(y2|y1) is a student-t as follows:

π(y2|y1) =
Γ(α1 + α2)

Γ(α1)
λα1

(
S3

S2

)α1 1√
2π

(
2

(
(y2 − x2β)

2 +
1

S2

)−1)α2

(A.1.44)

where S3 =
(
(y2 − x2β)

2 + 1
S2

)−1 1
λ
.

Because the kernels are the same for t = 1 and for t = 2, then we have proved it for

every t.

A.2 Appendices to Chapter 4

A.2.1 Proof of Lemma 4.1

To derive the likelihood we will make use of the following lemma.

Lemma A.2.1.∫
|K|

n+r−2
2 exp

(
− 1

2
AK

)
0F1

(
n

2
;
1

4
BK

)
dK =

Γ

(
n+ r

2

)∣∣∣∣12A
∣∣∣∣−n+r

2

1F1

(
n+ r

2
;
n

2
;
1

2
BA−1

)
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where 0F1(.)and 1F1(.) are hypergeometric series.

whose proof is as below:

Proof. The integral is a gamma multiplied by a hypergeometric function. Therefore,

the integral is very standard so we can use the properties of hypergeometric functions.

We apply Theorem 7.3.4 in Muirhead (2005) to get the result, thus, we transform the

functions by applying a change of variables. Let X = 1
4
BK such that K = 4XB−1 thus

we have:

0F1

(
n

2
;
1

4
BK

)
= 0F1

(
n

2
;X

)
Then;

∫
|X|

n+r−2
2 |4B−1|

n+r−2
2 exp

(
− 1

2
4AXB−1

)
0F1

(
n

2
;X

)
dK

We use the Jacobian dK = |4B−1|dX to integrate with respect to X;

∫
|X|

n+r−2
2 exp(−2XB−1A)0F1

(
n

2
;X

)
dX|4B−1|

n+r
2

This integral is the same as in the theorem, therefore, when we integrate out K we

get the following:

∫
|X|

n+r−2
2 exp(−X2B−1A)0F1

(
n

2
;X

)
dX|4B−1|

n+r
2 =

Γ

(
n+ r

2

)∣∣∣∣12A
∣∣∣∣−n+r

2

1F1

(
n+ r

2
;
n

2
;
1

2
BA−1

)

A.2.2 Proof of Proposition 4.2

Proof. To obtain the likelihood for the first observation, we have that k1 is a gamma,

Bauwens et al. (2000) gives the prior density for k1 as:
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|k1|
n−2
2 exp

(
− 1

2
tr
(
k1(1− ρ2)

)) 1

c0
(A.2.1)

where c0 =
Γ(n

2
)

( 1−ρ2

2
)
n
2
, is a constant and Γ is a gamma function. Let V −1

1 = (1 − ρ2),

thus, the likelihood for the first observation is as follows:

L(Y1) =

∫
L(Y1 | k1)π(k1)dk1

=

∫
(2π)−

r
2 |Σ|−

1
2k

r
2
1 exp

(
− 1

2
ε21k1

)
k

n−2
2

1 exp

(
− 1

2
(1− ρ2)k1

)
1

c0
dk1

(A.2.2)

The integral is with respect to k1, so after rearranging and combining like terms we

have;

L(Y1) =

∫
(2π)−

r
2 |Σ|−

1
2k

n+r−2
2

1 exp

(
− 1

2
(ε21 + V −1

1 )k1

)
1

c0
dk1

where k
n+r−2

2
1 exp(−1

2
(ε21 + V −1

1 )k1) is the kernel of a gamma with n + r degrees of

freedom. Let Ṽ2 = (ε21 + V −1
1 )−1, therefore, the density of k1|Y1 is:

π(k1|Y1) = k
n+r−2

2
1 exp

(
− 1

2
k1Ṽ2

−1
)
1

c̄0
(A.2.3)

with c̄0 =
Γ(n+r

2
)

(
Ṽ2

−1

2
)
n+r
2

. Thus, we have the likelihood as:

L(Y1) = (2π)−
r
2 |Σ|−

1
2Γ

(
n+ r

2

)∣∣∣∣ε21 + V −1
1

2

∣∣∣∣−n+r
2 1

c0

Taking into account c0 we can write the likelihood for t = 1 as:

L(Y1) = (2π)−
r
2 |Σ|−

1
22

r
2
Γ(n+r

2
)

Γ(n
2
)

∣∣ε21 + V −1
1

∣∣−n+r
2 V

−n
2

1

Define k1:2 = (k1, k2), then we have the likelihood for the second observation as:

L(Y2|Y1) =
∫
L(Y2|k1:2, Y1)π(k1:2|Y1)dk1:2

where π(k1:2|Y1) = π(k1|Y1)π(k2|k1, Y1) .

The prior for kt unconditionally is a gamma. However, kt|kt−1 is a non central
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chisquared. (Muirhead, 2005, p.442) gives this non central chisquared density as follows:

π(kt|kt−1) = k
n−2
2

t exp

(
− 1

2
kt

)
0F1

(
n

2
;
1

4
ρ2kt−1kt

)
exp

(
− 1

2
ρ2kt−1

)(
Γ

(
n

2

))−1
1

c
(A.2.4)

where 0F1 is a hyper geometric function and ρ2kt−1 is the non-centrality parameter

and c = 2
n
2 . Then we can write the likelihood for the second observation conditional on

the first as :

L(Y2|Y1) =
∫

(2π)−
r
2 |Σ|−

1
2k

r
2
2 exp

(
− 1

2
ε22k2

)
π(k1:2|Y1)dk1:2 (A.2.5)

We integrate first with respect to k1. Define l2 as representing all the elements in

(A.2.4) that do not depend on k1 as follows:

l2 =

(
k

n−2
2

2 exp

(
− 1

2
k2

))−1(
1

Γ(n
2
)

)−1(
1

c

)−1

(A.2.6)

Given that π(k2|k1, Y1) = π(k2|k1), and given (A.2.4) and (A.2.3), we can write

π(k2|Y1) as follows:

π(k2|Y1) =
∫
π(k2|k1, Y1)π(k1|Y1)dk1 =

1

c̄0

∫
k

n+r−2
2

1 exp

(
− 1

2
(Ṽ2

−1
k1)

)
exp

(
− 1

2
(ρ2k1)

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
1

l2
dk1

where we have used the expression for π(k1|Y1). We can write the above integral more

compactly as:

∫
π(k2|k1, Y1)π(k1|Y1)dk1 =

∫
1

c̄0
k

n+r−2
2

1 exp

(
− 1

2
(Ṽ2

−1
+ ρ2)k1

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
1

l2
dk1

Applying Lemma 5.1, we have the solution to this integral is as follows:
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π(k2|Y1) =
∫
π(k2|k1, Y1)π(k1|Y1)dk1 =

1

c̄0
Γ

(
n+ r

2

)∣∣∣∣ Ṽ2−1
+ ρ2

2

∣∣∣∣−n+r
2

1F1

(
n+ r

2
;
n

2
;
1

2
k2ρ

2(Ṽ2
−1

+ ρ2)−1

)
1

l2

(A.2.7)

Given (A.2.6) and (A.2.7), the distribution of k2|Y1 is a mixture of gamma’s as follows:

π(k2|Y1) ∝ k
n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ r

2
;
n

2
;
1

2
k2ρ

2(Ṽ2
−1

+ ρ2)−1

)
(A.2.8)

The normalising constant for this hypergeometric function can be obtained in closed

form, see Muirhead (2005, p.260). Thus, we have:

∫
k

n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ r

2
;
n

2
;
1

2
k2δ2

)
dk2 = Γ

(
n

2

)
2

n
2 2F1

(
n+ r

2
,
n

2
;
n

2
; δ2

)
(A.2.9)

where δ2 = ρ2(Ṽ2
−1

+ ρ2)−1. This 2F1

(
n+r
2
, n
2
; n
2
; δ2

)
function has the same terms in

the denominator and the numerator thus they cancel out and we have:

2F1

(
n+ r

2
,
n

2
;
n

2
; δ2

)
= 1F0

(
n+ r

2
; δ2

)
(A.2.10)

This function simplifies to a known solution for |δ2| < 1, see Muirhead (2005, p.261) .

1F0

(
n+ r

2
; δ2

)
= (1− δ2)

−n+r
2 (A.2.11)

The normalising constant becomes:

Γ

(
n

2

)
2

n
2 1F0

(
n+ r

2
; δ2

)
= Γ

(
n

2

)
2

n
2 (1− δ2)

−n+r
2

Given this normalising constant, we have the density for π(k2|Y1) from A.2.8 as follows:

π(k2|Y1) =
1

c1
k

n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ r

2
;
n

2
;
1

2
k2ρ

2(Ṽ2
−1

+ ρ2)−1

)
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where c1 = Γ
(
n
2

)
2

n
2 (1− δ2)

−n+r
2 . Thus, the likelihood for the second observation is as

follows:

L(Y2|Y1) =
∫
π(Y2|k2, Y1)π(k2|Y1)dk2

=

∫
(2π)−

r
2 |Σ|−

1
2k

n+r−2
2

2 exp

(
− 1

2
(ε22 + 1)k2

)
1

c1
1F1

(
n+ r

2
;
n

2
;
1

2
k2ρ

2(Ṽ2
−1

+ ρ2)−1

)
dk2

Using Muirhead (2005, p.261) and taking into account c1, the likelihood for the second

observation is:

L(Y2|Y1) = (2π)−
r
2 |Σ|−

1
2
2

n+r
2

2
n
2

Γ
(
n+r
2

)
Γ
(
n
2

) (ε22 + 1)−
n+r
2

(1− δ2)
−n+r

2
2F1

(
n+ r

2
,
n+ r

2
;
n

2
; (ε22 + 1)−1δ2

)

Thus we get a Gauss hypergeometric function which can be evaluated easily. Let

Z2 = (ε22 + 1)−1δ2. This series converges because |Z2| < 1 (Jentschura et al., 1999). To

accelerate the convergence of this series we apply the Euler transformation as in Srivastava

& Choi (2012, p.67) and thus we get:

2F1

(
n+ r

2
,
n+ r

2
;
n

2
;Z2

)
= (1− Z2)

−n+2r
2 2F1

(
− r

2
,−r

2
;
n

2
;Z2

)
(A.2.12)

Let Ĉ2 = (1−Z2)
−n+2r

2 2F1

(
− r

2
,− r

2
; n
2
;Z2

)
, then we can write the L(Y2|Y1) as follows:

L(Y2|Y1) = (2π)−
r
2 |Σ|−

1
2
2

n+r
2

2
n
2

Γ
(
n+r
2

)
Γ
(
n
2

) (ε22 + 1)−
n+r
2

(1− δ2)
−n+r

2

Ĉ2

The density of kt for the third observation is given by:

π(k3|Y2, Y1) =
∫
π(k3|k2)π(k2|Y2, Y1)dk2

π(k2|Y2, Y1) ∝ π(k2|Y1)L(Y2|k2, Y1). The distribution for π(k2|Y1) in (A.2.8 ) can be

written as follows:

119



π(k2|Y1) ∝
∞∑

h2=0

C̃2,h2k
n+2h2−2

2
2 exp

(
− 1

2
k2

)

where C̃2,h2 =
[(n+r)/2]h2

[n/2]h2

(
1
2
ρ2(Ṽ2

−1
+ ρ2)−1

)h2 1
h2!

. Thus we have:

π(k2|Y2, Y1) ∝
∞∑

h2=0

C̃2,h2k
n+r+2h2−2

2
2 exp

(
− 1

2
k2(ε

2
2 + 1)

)
(A.2.13)

Given ( A.2.4) and (A.2.13) we have:

π(k3|Y2, Y1) ∝
∫
k

n−2
2

3 exp

(
− 1

2
k3

)
0F1

(
n

2
;
1

4
ρ2k2k3

)
exp

(
− 1

2
ρ2k2

)
×

∞∑
h2=0

C̃2,h2k
n+r+2h2−2

2
2 exp

(
− 1

2
k2(ε

2
2 + 1)

)
1

Γ
(
n
2

)
2

n
2

dk2

which simplifies to:

π(k3|Y2, Y1) ∝
∫
k

n−2
2

3 exp

(
− 1

2
k3

)
0F1

(
n

2
;
1

4
ρ2k2k3

)
exp

(
− 1

2
(ε22 + 1 + ρ2)k2

)
∞∑

h2=0

C̃2,h2k
n+r+2h2−2

2
2

1

Γ
(
n
2

)
2

n
2

dk2

Using Lemma 5.1 the density of k3|Y2, Y1 is thus:

π(k3|Y2, Y1) =
1

c3
k

n−2
2

3 exp

(
− 1

2
k3

) ∞∑
h2=0

C̃2,h2Γ

(
n+ r + 2h2

2

)

1F1

(
n+ r + 2h2

2
;
n

2
;
1

2
k3ρ

2S3

)
(2S3)

n+r+2h2
2

1

Γ
(
n
2

)
2

n
2

(A.2.14)

where S3 = (ε22 + 1+ ρ2)−1 and c3 is the normalising constant as in (A.2.9)as follows:

c3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ r + 2h2

2

)
(2S3)

n+r+2h2
2 2F1

(
n+ r + 2h2

2
,
n

2
;
n

2
; ρ2S3

)

Similar to (A.2.10) and (A.2.11), the hypergeometric function simplifies to get:
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c3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ r + 2h2

2

)
(2S3)

n+r+2h2
2 (1− ρ2S3)

−n+r+2h2
2

Collecting terms dependent on h2 we can write c3 as

c3 =

( ∞∑
h2=0

[(n+ r)/2]h2

[n/2]h2

[(n+ r)/2]h2

δh2
3

h2!

)
Γ

(
n+ r

2

)
(1− ρ2S3)

−n+r
2 (2S3)

n+r
2

where δ3 =
(
(1− ρ2S3)

−1S3ρ
2(Ṽ2

−1
+ ρ2)−1

)
. This can be written as:

c3 = 2F1

(
n+ r

2
,
n+ r

2
;
n

2
; δ3

)
Γ

(
n+ r

2

)
(1− ρ2S3)

−n+r
2 (2S3)

n+r
2

Using Euler’s acceleration in (A.2.12) we have therefore:

c3 = (1− δ3)
−n+2r

2 2F1

(
− r

2
,−r

2
;
n

2
; δ3

)
Γ

(
n+ r

2

)
(1− ρ2S3)

−n+r
2 (2S3)

n+r
2

Therefore the likelihood for t = 3 is as follows:

L(Y3|Y2, Y1) =
∫
π(Y3|k3, Y2, Y1)π(k3|Y2, Y1)dk3

Thus we have from (A.2.14)

L(Y3|Y2, Y1) =
∫

(2π)−
r
2 |Σ|−

1
2
1

c3
k

n+r−2
2

3 exp

(
− 1

2
k3(ε

2
3 + 1)

) ∞∑
h2=0

C̃2,h2Γ

(
n+ r + 2h2

2

)

1F1

(
n+ r + 2h2

2
;
n

2
;
1

2
k3ρ

2S3

)
(2S3)

n+r+2h2
2

1

Γ
(
n
2

)
2

n
2

dk3

and we get:
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L(Y3|Y2, Y1) = (2π)−
r
2 |Σ|−

1
2
1

c3

∞∑
h2=0

C̃2,h2Γ

(
n+ r + 2h2

2

)
(2S3)

n+r+2h2
2 Γ

(
n+ r

2

)
2

n+r
2

(ε23 + 1)−
n+r
2 2F1

(
n+ r + 2h2

2
,
n+ r

2
;
n

2
; (ε23 + 1)−1ρ2S3

)
1

Γ
(
n
2

)
2

n
2

Applying the Euler transformation in (A.2.12) and letting Z3 = (ε23 + 1)−1ρ2S3, we

can define Ĉ3 = (1− Z3)
−n+2r+2h2

2 2F1

(
− r+2h2

2
,− r

2
; n
2
;Z3

)
. Thus we have:

L(Y3|Y2, Y1) = (2π)−
r
2 |Σ|−

1
2
1

c3

∞∑
h2=0

C̃2,h2

Γ

(
n+r+2h2

2

)
(ε23 + 1)

n+r
2

(2S3)
n+r+2h2

2
2

n+r
2

2
n
2

Γ
(
n+r
2

)
Γ
(
n
2

) Ĉ3

The density for the fourth observation is given by:

π(k4|Y3, Y2, Y1) =
∫
π(k4|k3, Y1, Y2, Y3)π(k3|Y3, Y2, Y1)dk3 (A.2.15)

with π(K3|Y3, Y2, Y1) ∝ π(K3|Y2, Y1)L(Y3|Y2, Y1). Let:

C̃3,h3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ r + 2h2

2

)
[(n+ r)/2 + h2]h3

[n/2]h3

(
1

2
ρ2S3

)h3 1

h3!
(2S3)

n+r+2h2
2

(A.2.16)

Then from (A.2.14) we have:

π(k3|Y2, Y1) ∝
∞∑

h3=0

C̃3,h3k
n+2h3−2

2
3 exp

(
− 1

2
k3

)
As before, when we include the third observation, the distribution of k3|Y3, Y2, Y1 is a

mixture of gammas and can be written as follows:

π(k3|Y3, Y2, Y1) ∝
∞∑

h3=0

C̃3,h3k
n+r+2h3−2

2
3 exp

(
− 1

2
k3(ε

2
3 + 1)

)

Let Ṽ4
−1

= (ε23 + 1). Then, using (A.2.15), we have the distribution of k4|Y3, Y2, Y1 as

follows:
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π(k4|Y3, Y2, Y1) ∝
∫
k

n−2
2

4 exp

(
− 1

2
k4

)
0F1

(
n

2
;
1

4
ρ2k3k4

)
exp

(
− 1

2
ρ2k3

)
1

Γ
(
n
2

)
2

n
2

×
∞∑

h3=0

C̃3,h3k
n+r+2h3−2

2
3 exp

(
− 1

2
k3Ṽ4

−1
)
dk3

(A.2.17)

Taking this integral with respect to k3 we get:

π(k4|Y3, Y2, Y1) ∝ k
n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ r + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

1

Γ
(
n
2

)
2

n
2

where S4 = (Ṽ4
−1

+ ρ2)−1 = (ε23 + 1+ ρ2)−1. Let c4 be the normalising constant, that

is:

c4 =

∫
k

n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ r + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

1

Γ
(
n
2

)
2

n
2

dk4

Thus we get:

c4 =
∞∑

h3=0

C̃3,h32F1

(
n+ r + 2h3

2
,
n

2
;
n

2
;
1

2
ρ2S4

)
Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

Using (A.2.10) and (A.2.11), this simplifies to:

c4 =
∞∑

h3=0

C̃3,h3(1− ρ2S4)
−n+r+2h3

2 Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

Thus,
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π(k4|Y3, Y2, Y1) =
1

c4
k

n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ r + 2h3

2
;
n

2
;
1

2
k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

1

Γ
(
n
2

)
2

n
2

Therefore the likelihood for t = 4 is as follows:

L(Y4|Y3, Y2, Y1) =
∫
π(Y4|k4, Y3, Y2, Y1)π(k4|Y3, Y2, Y1)dk4

Thus we have:

L(Y4|Y3, Y2, Y1) =
∫

(2π)−
r
2 |Σ|−

1
2
1

c4
k

n+r−2
2

4 exp

(
− 1

2
k4(ε

2
4 + 1)

) ∞∑
h3=0

C̃3,h3Γ

(
n+ r + 2h3

2

)

1F1

(
n+ r + 2h3

2
;
n

2
;
1

2
k4ρ

2S4

)
(2S4)

n+r+2h3
2

1

Γ
(
n
2

)
2

n
2

dk4

This is similar to t = 3 therefore we have:

L(Y4|Y3, Y2, Y1,Σ) = (2π)−
r
2 |Σ|−

1
2
1

c4

∞∑
h3=0

C̃3,h3

Γ

(
n+r+2h3

2

)
(ε24 + 1)

n+r
2

(2S4)
n+r+2h3

2
2

n+r
2

2
n
2

Γ
(
n+r
2

)
Γ
(
n
2

) Ĉ4

and the likelihood for any t is:

L(Yt|Y1:t−1) = (2π)−
r
2 |Σ|−

1
2
1

ct

∞∑
ht−1=0

C̃t−1,ht−1

Γ

(
n+r+2ht−1

2

)
(ε2t + 1)

n+r
2

(2St)
n+r+2ht−1

2
2

n+r
2

2
n
2

Γ
(
n+r
2

)
Γ
(
n
2

) Ĉt

where:
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δt =

(
(1− ρ2St)

−1Stρ
2(Ṽ −1

t−1 + ρ2)−1

)
Zt = (ε2t + 1)−1Stρ

2

Ĉt = (1− Zt)
−n+2r+2ht−1

2 2F1

(
− r + 2ht−1

2
,−r

2
;
n

2
;Zt

)
Ṽ −1
t = 1 + ε2t−1

St = (ε2t−1 + 1 + ρ2)−1 = (Ṽ −1
t + ρ2)−1

ct =
∞∑

ht−1=0

C̃t−1,ht−1(1− ρ2St)
−n+r+2ht−1

2 Γ

(
n+ r + 2ht−1

2

)
(2St)

n+r+2ht−1
2

C̃t−1,ht−1 =

∞∑
ht−2=0

C̃t−2,ht−2Γ

(
n+ r + 2ht−2

2

)
[(n+ r)/2 + ht−2]ht−1

[n/2]ht−1

(
1

2
ρ2St−1

)ht−1 (2St−1)
n+r+2ht−2

2

ht−1!
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