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Abstract

We obtain a novel analytic expression of the likelihood for a stationary inverse gamma

Stochastic Volatility (SV) model. This allows us to obtain the Maximum Likelihood Estima-

tor for this non linear non Gaussian state space model. Further, we obtain both the filtering

and smoothing distributions for the inverse volatilities as mixtures of gammas and therefore

we can provide the smoothed estimates of the volatility. We show that by integrating out

the volatilities the model that we obtain has the resemblance of a GARCH in the sense that

the formulas are similar, which simplifies computations significantly. The model allows for

fat tails in the observed data. We provide empirical applications using exchange rates data

for 7 currencies and quarterly inflation data for four countries. We find that the empirical

fit of our proposed model is overall better than alternative models for 4 countries currency

data and for 2 countries inflation data.

Keywords: Hypergeometric Function, Particle Filter, Parallel Computing, Euler Accel-

eration.
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1 Introduction

For most non-linear or non-Gaussian state space models it is difficult to obtain the likelihood

function in closed form. This prevents the use of Maximum Likelihood Estimation (MLE).

As a result most studies use Bayesian estimation with Markov Chain Monte Carlo (MCMC)

methods. Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models are

simpler to estimate than Stochastic Volatility (SV) models, because the likelihood for a

GARCH model can be easily calculated in closed form (e.g. Engle (1982), Bollerslev (1986)).

However, SV models have often been found to outperform GARCH models in empirical

studies for both macroeconomic and financial data (e.g. Chan & Grant (2016) and Kim

et al. (1998)). In addition, unlike GARCH models, SV models provide not only filtered

estimates but also smoothed estimates of the volatility.

Although in linear Gaussian state space models the likelihood is available in closed form

and can easily be calculated with the Kalman Filter algorithm (e.g. Durbin and Koopman

(2012)), few studies have attempted to obtain a closed form expression for the likelihood in

nonlinear non-Gaussian state space models. Shephard (1994) obtains a closed form expres-

sion for the likelihood of a non-stationary SV model known as Local Scale Model, showing

the similarities to GARCH models. Uhlig (1997) builds on and generalizes Shephard (1994)

to the multivariate case, obtaining an analytic expression for the likelihood and posterior

density of a SV non-stationary restricted singular Wishart model. This was incorporated

into the MLE framework by Kim (2014) and extended to drifting vector autoregression coef-

ficients with MLE estimation by Moura and Noriller (2019). Creal (2017) obtains an analytic

expression for the likelihood in a SV gamma model and shows that analytic expressions for

the likelihood could also be obtained for a family of non linear non Gaussian state space

models. The gamma SV model in Creal (2017) implies a variance-gamma distribution for

the data and this distribution has thin tails (Madan & Seneta, 1990). In contrast, inverse

gamma SV models imply a student-t distribution, thus, they can account for the fat tails

that are observed in most macroeconomic and financial data (Leon-Gonzalez, 2019).

The purpose of this study is to obtain an analytic expression of the likelihood for the

inverse gamma SV model. This is a model in which the variance of the error term follows

an autocorrelated stochastic process with inverse gamma marginals, implying a student-t

distribution for the observed data. The exact likelihood solution will allow the estimation

of the parameters and unobserved states for this non linear and non Gaussian state space

model by MLE. Without the likelihood expression, estimation of non linear non Gaussian

state space models generally involves Bayesian methods such as Markov Chain Monte Carlo.
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We show that by marginalising out the volatilities, the model that we obtain has the resem-

blance of a GARCH in the sense that the formulas that we get are similar, which simplifies

computations significantly. Moreover, the likelihood function proposed in this paper can be

calculated efficiently using a simple recursion. The calculations can be accelerated by doing

computations in parallel, as well as by applying Euler or other acceleration techniques to

the Gauss hypergeometric functions in the likelihood. In addition to obtaining the exact

likelihood, we obtain analytically the expressions for the smoothed and filtered estimates of

the volatilities. We provide the computer code to calculate the likelihood as a user-friendly

R package (called invgamstochvol).

Section 2 reviews the literature on previous attempts to obtain analytically the likelihood

expressions for non linear non Gaussian state space models. Section 3 describes our model

and derives the analytic expression of the likelihood. In addition the section provides the

analytic expressions for the filtering and smoothing distributions of the volatilities. Section

4 evaluates the empirical performance and computational efficiency of the proposed novel

algorithm with a comparison to other methods. We provide empirical applications using

exchange rates data for 7 currencies to the US dollar and quarterly inflation data for four

countries. Section 5 concludes.

2 Literature Review

2.1 Stochastic Volatility Models with an Exact Likelihood

There are very few non linear non Gaussian state space models for which the likelihood can

be obtained exactly. In what follows we review some of the SV models for which an analytic

expression of the likelihood has been obtained.

To obtain the maximum likelihood estimates for a generalised non stationary local scale

model, Shephard (1994) uses the conjugacy between the gamma and the beta distribution.

Using our notation, their model for a univariate observed variable yt can be expressed as:

yt = xtβ + θ
− 1

2
t et, et ∼ N(0, 1)

where xt is a vector of predetermined variables which could include lags of yt, and the inverse

of θt is the time varying volatility. The law of motion for the volatilities is:

θt+1 = θt
νt
λ

νt ∼ Beta(α1, α2) (2.1)
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with α2 = 1
2

. The initial distribution is a gamma with parameters ν and S1 such that θ1

has the following density function:

f(θ1|S1) = θ
ν
2
−1

1 exp

(
− θ1

2S1

)
1

Γ(ν/2)(2S1)
ν
2

(2.2)

where for mathematical convenience the initial density is restricted such that α1 = ν
2
. The

parameters to be estimated are β, ν, λ and S1. Note that, in contrast with the other models

in this paper, the volatility follows a non-stationary process. As shown in subsection 6.6

of the Appendix, defining Z = θ1 − λθ2 for ∈ (0,∞), the likelihood for this model can be

obtained by integrating over the state variable Z. Given that the process for the stochastic

volatility is multiplicative, the likelihood is as follows:

π(yt|y1:t−1) =
Γ(α1 + α2)

Γ(α1)
λα1

(
St+1

St

)α1 1√
2π

(
2

(
(yt − xtβ)2 +

1

St

)−1)α2

(2.3)

where St =
(
(yt−1−xt−1β)2 + 1

St−1

)−1 1
λ

and y1:t−1 = (y1, y2, ..., yt−1). To facilitate the reading

here and in the following we do not write explicitly xt as a conditioning argument.

The framework in Shephard (1994) provides a formal justification to Bayesian methods

of variance discounting used in earlier literature (West & Harrison (2006), p.p. 360-361).

Creal (2017) shows that closed form solutions for the likelihood can be obtained for a

family of non linear state space models with observation densities p(yt|ht, xt; θ), in which the

continuous valued time varying state variable ht can be analytically integrated out condition-

ally on a discrete auxiliary variable zt. xt in these models are the predetermined regressors

and θ is a parameter vector. The models in this class are defined as follows:

yt v p(yt|ht, xt; θ)

ht v Gamma(ν + zt, c)

zt v Poisson

(
φht−1

c

)
where c is a scale parameter and φ determines the persistence of the state variable. For

example Creal (2017) provides the following two alternative sufficient conditions for being

able to integrate analytically these densities conditional on zt:

p(ht|α1, α2, α3) ∝ hα1
t exp(α2ht + α3h

−1
t )

p(ht|α1, α2, α3) ∝ hα1
t (1 + ht)

α2 exp(α3ht)
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where α1:3 are functions of only the observations and parameters of the model. Thus, the

contribution to the likelihood of one observation conditional on zt can be obtained by inte-

grating out the continuous state variables ht analytically. The model that is obtained after

integration simplifies to a Markov Switching model over the support of the non-negative

discrete state variables zt. The likelihood for these Markov Switching models can therefore

be obtained recursively. Creal (2017) gives the detailed recursive formulas to obtain the like-

lihood for some specific models within this family, such as the gamma stochastic volatility

models, stochastic duration models, stochastic count models and cox processes.

The gamma SV model by Creal (2017) can be expressed as follows:

yt = µ+ xtβ + γθt +
√
θtet, et ∼ N(0, 1)

where γ determines the skewness. When γ = 0 the model implies a variance-gamma distri-

bution for the observed variable, which has thin tails (Madan & Seneta, 1990). The initial

stationary distribution is θ1 v Gamma
(
ν, c

1−φ

)
and the unconditional mean is E(θ1) = νc

1−φ .

More recently Sundararajan & Barreto-Souza (2023) propose a composite likelihood ap-

proach for the no-leverage version of the same model that we analyze in this paper, and

which was estimated with Bayesian methods earlier by Leon-Gonzalez (2019). While they

do not obtain the MLE as we do, their approach uses an expectation maximization algorithm

to find the maximum of the composite likelihood, albeit with some restrictions.

3 Model Specification, Likelihood and Volatility Esti-

mates

The model that we analyze is the same as in Leon-Gonzalez (2019), and assumes that the

distribution of the one dimensional yt conditional on an observed predetermined vector of

regressors xt can be described as follows:

yt = µ+ xtβ + et, et|kt ∼ N

(
0,

1

ktB2

)
(3.1)

where β is a conformable vector of coefficients, µ and B2 are scalar parameters and et is

i.i.d. stationary and independent of xt. Although equation (3.1) does not include a leverage

effect, Appendix 6.7 provides the analysis for the model that includes it. The regressors xt are

assumed to be stationary or trend-stationary. The state variable kt follows an autoregressive
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Gamma process (Gouriéroux & Jasiak, 2006) which can be described by writing kt = z′tzt,

where zt is a n× 1 vector that has the following Gaussian AR(1) representation:

zt = ρzt−1 + εt εt ∼ N(0, θ2In) (3.2)

where ρ is a scalar that controls the persistence of the volatility, with |ρ| < 1 and εt is i.i.d.

and stationary. The stationary and initial distribution of the time varying inverse volatility

kt is a gamma with n degrees of freedom, such that k1 v Gamma
(
n/2, 2θ2

1−ρ2
)
. Therefore we

have that E( 1
ktB2 ) = E(V ar(et|kt)) = 1

B2
1−ρ2
n−2

, provided that n > 2, where as a normalization

we assume θ2 = 1 because we have B2 in (3.1). For 0 < n ≤ 2 the model is well-defined but

the volatility does not have a finite mean. The conditional distribution of kt|kt−1 is a non

central chi-squared times a parameter constant that can be written as a mixture of gammas.

The noncentral chi squared is well defined for non-integer values of n, so we will treat the

unknown parameter n as a continuous parameter.

Then, given the properties of a gamma, the conditional mean of the inverse volatility kt

given previous history of kt is a weighted average of the unconditional mean of kt and its

previous value kt−1.

E(kt|kt−1) = ρ2kt−1 + (1− ρ2)E(kt)

where ρ2kt−1 represents the non centrality parameter. kt is correlated with its previous

value and this generates the persistence in the squared residuals, a characteristic feature of

time-varying variance models.

In the absence of leverage effects, the first two unconditional moments of yt|xt have been

given in analytical form by Sundararajan and Barreto-Souza (2023), who also provide L(yt)

and L(yt|yt−s), which can be used for composite likelihoods. We extend these results to the

model with a leverage effect in Appendix 6.7.

The inverse gamma specification implies a student-t distribution with n degrees of free-

dom for yt thus enabling us to model heavy tailed distributions. In contrast, the gamma

SV model (Creal, 2017) implies a variance-gamma distribution, which has thin tails (Madan

& Seneta, 1990). The local scale model of Shephard (1994) is non-stationary, unlike ours

which is stationary. In addition, the local scale model requires a restriction on the initial

distribution for conjugacy (i.e. ν = 2α1).

In the literature log-volatility has often been modeled as a random walk model, and

it has been found that it provides a good approximation (e.g. Harvey et al. (1994)) and

that this model is closely related to the Exponential Weighted Moving Average (EWMA)
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model implemented by RiskMetrics and described by Mina and Xiao (2001). Furthermore,

Eisenstat and Strachan (2016) compared the out-of-sample performance of stationary and

non-stationary versions of the log-normal SV model using predictive likelihoods with US

inflation data and concluded that both models had a similar performance.

Integrating out analytically the volatilities in our model not only allows us to get a closed

form expression for the likelihood, but also to see the similarity of our model to GARCH

models. In particular we can see that the variance at each point in time given previous data

is a (nonlinear) function of previous residuals. Using the filtering distributions in Section

3.2, we obtain the following:

� y1|k1 ∼ N(µ+ x1β, (B
2k1)−1), where k1 is a gamma. Therefore the first observation is

a student-t with n degrees of freedom.

� Similarly for the second observation y2|y1, k2 ∼ N(µ+ x2β, (B
2k2)−1), where k2|y1 is a

mixture of gammas. E(k2|y1) is a nonlinear function of past residuals.

� For any t, yt|yt−1, ..., y1, kt ∼ N(µ+ xtβ, (B
2kt)

−1), where kt|yt−1, ..., y1 is a mixture of

gammas, whose expected value is a nonlinear function of all past residuals.

Thus, integrating out the volatilities gives a structure similar to GARCH models, but

with a different functional form and distribution. When the model includes a leverage effect

this structure remains, but as shown in the Appendix 6.7 instead of mixtures of gammas we

obtain mixtures of generalized inverse Gaussian distributions.

3.1 The Likelihood

The following proposition, whose proof is in Appendix 6.2, gives the likelihood for the model

described in equations (3.1)-(3.2). The model with a leverage effect is dealt with in Appendix

6.7.

Proposition 3.1. Let et = yt−µ−xtβ for t = 1, ..., T . The likelihood for the first observation

is:

L(y1) = (2π)−
1
2

√
B22

1
2

Γ(n+1
2

)

Γ(n
2
)

∣∣B2e2
1 + V −1

1

∣∣−n+1
2 V

−n
2

1

for the second is:

L(y2|y1) = (2π)−
1
2

√
B2

2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) (B2e2
2 + 1)−

n+1
2

(1− δ2)−
n+1
2

Ĉ2
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for the third is:

L(y3|y2, y1) = (2π)−
1
2

√
B2

1

c3

∞∑
h2=0

C̃2,h2

Γ
(
n+1+2h2

2

)
(B2e2

3 + 1)
n+1
2

(2S3)
n+1+2h2

2
2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) Ĉ3

for the fourth is:

L(y4|y3, y2, y1) = (2π)−
1
2

√
B2

1

c4

∞∑
h3=0

C̃3,h3

Γ
(
n+1+2h3

2

)
(B2e2

4 + 1)
n+1
2

(2S4)
n+1+2h3

2
2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) Ĉ4

and for any t ≥ 3 is

L(yt|y1:t−1) = (2π)−
1
2

√
B2

1

ct

∞∑
ht−1=0

C̃t−1,ht−1

Γ
(
n+1+2ht−1

2

)
(B2e2

t + 1)
n+1
2

(2St)
n+1+2ht−1

2
2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) Ĉt

where:

V1 = (1− ρ2)−1

Ṽ −1
2 = V −1

1 +B2e2
1

δ2 = ρ2(Ṽ −1
2 + ρ2)−1

Z2 = (1 +B2e2
2)−1δ2

C̃2,h2 =
[(n+ 1)/2]h2

[n/2]h2

(
1

2
ρ2(Ṽ −1

2 + ρ2)−1

)h2 1

h2!

C̃3,h3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
[(n+ 1)/2 + h2]h3

[n/2]h3

(
1

2
ρ2S3

)h3 1

h3!
(2S3)

n+1+2h2
2

c3 = 2F1

(
n+ 1

2
,
n+ 1

2
;
n

2
; δ3

)
Γ

(
n+ 1

2

)
(1− ρ2S3)−

n+1
2 (2S3)

n+1
2

Ĉt = 2F1

(
n+ 1 + 2ht−1

2
,
n+ 1

2
;
n

2
;Zt

)
for t ≥ 2 and where h1 = 0

for T ≥ t ≥ 3:

St = (1 +B2e2
t−1 + ρ2)−1

Ṽ −1
t = 1 +B2e2

t−1

Zt = (B2e2
t + 1)−1Stρ

2

δt =

(
(1− ρ2St)

−1Stρ
2(Ṽ −1

t−1 + ρ2)−1

)

7



and for T+1 ≥ t ≥ 4:

ct =
∞∑

ht−1=0

C̃t−1,ht−1(1− ρ2St)
−n+1+2ht−1

2 Γ

(
n+ 1 + 2ht−1

2

)
(2St)

n+1+2ht−1
2

C̃t−1,ht−1 =

∞∑
ht−2=0

C̃t−2,ht−2Γ

(
n+ 1 + 2ht−2

2

)
[(n+ 1)/2 + ht−2]ht−1

[n/2]ht−1

(
1

2
ρ2St−1

)ht−1 (2St−1)
n+1+2ht−2

2

ht−1!

and ST+1 = (1 +B2e2
T )−1

The rising factorial is denoted as [x]h and 2F1 denotes a hypergeometric function (e.g.

Muirhead (2005, p. 20)). There are a number of transformations to the 2F1 hypergeometric

functions above to accelerate their convergence. Abramowitz et al. (1988, p.559) defines

several transformations such as the Euler transformation:

2F1(a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z)

or a linear combination approach:

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z)

for (|arg(1− z)| < π)

The expression for Ĉt above transformed using the Euler transformation becomes:

Ĉt = (1− Zt)−
n+2+2ht−1

2 2F1

(
− 1 + 2ht−1

2
,−1

2
;
n

2
;Zt

)
for t ≥ 2 and where h1 = 0

In our coding we used the Euler acceleration only for Ĉ2 and c3, because for larger values

of t the acceleration did not converge when h was large. Regarding the linear combination

approach, although we did not implement it in our code for the R package, the acceleration

converges. We accelerated the calculations by implementing parallel computing in the code.
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This is possible because many of the coefficients in the series are the same for every t,

therefore they only need to be computed once, which can be done in parallel. We also

calculate all the Ĉt in parallel. As shown in Section 4, this drastically reduces computation

time. The derivatives of the log-likelihood can be obtained as a byproduct of the likelihood

calculation.

After integrating out the volatilities, this likelihood can be calculated recursively starting

with y1, which is the first observation, to yT . This likelihood is easy to compute and it always

converges since |Zt| < 1 for all values of t. We truncate the number of terms to calculate the

hypergeometric functions to around 350 to ensure convergence, and the sums are truncated

at about h = 350. These truncation values seemed to be sufficient as explained in Table 1

in our application using inflation data.

Under some regularity conditions (e.g. Harvey (1990)) the MLE estimator is asymptot-

ically efficient with asymptotic distribution given by
√
T (ψ̂ − ψ)

d→ N(0, (I(ψ))−1), where

I(ψ) is the Fisher information matrix, ψ̂ is the MLE estimator and ψ is the true value of

the parameter. In practice I(ψ) can be estimated as the negative of the Hessian of the log-

likelihood evaluated at the MLE estimator, from which standard errors can be obtained. The

likelihood can be maximised using standard routines such as the Newton-Raphson algorithm.

3.2 Joint Smoothing and Filtering Distributions

In this subsection, we provide the analytical expressions for both the joint smoothing and

filtering distributions for the volatilities. Appendix 6.7 deals with the model with a lever-

age effect. Propositions 3.2, 6.2 and 6.3 provide the smoothing distributions in alternative

forms. Propositions 3.2 and 6.3 give the conditional distributions π(kt|k(t+1):T , y1:T ), and

π(kt|k1:(t−1), y1:T ), respectively, while Proposition 6.3 gives the marginals π(kt|y1:T ). The

filtering distributions are stated after Proposition 3.2. Propositions 6.2, 6.3 and all proofs

are in the appendix.

All smoothing and filtering distributions of kt are mixtures of gammas, and so the corre-

sponding distributions of k−1
t are mixtures of inverse gammas. All these distributions can be

sampled from exactly, and therefore be used for simulating the volatilities and calculating

quantities of interest such as confidence intervals or the posterior median.

Proposition 3.2. The joint posterior distribution π(k1:T |y1:T ) can be obtained from the

following conditional densities each of which is a mixture of gammas:

9



π(kt|k(t+1):T , y1:T ) ∝ |kt|
n+1−2

2 exp

(
− 1

2
S−1
t+1kt

) ∞∑
h=0

(
Ct,h|kt|h

)
, t = 1, ..., T

where

C1,h =
1

h!

1

[n/2]h

(
1

4
ρ2k2

)h
S2 = (1 +B2e2

1)−1

ST+1 = (1 +B2e2
T )−1

for 3 ≤ t ≤ T

St = (1 +B2e2
t−1 + ρ2)−1

and for 2 ≤ t < T :

Ct,h =
h∑

ht=0

C̃t,h−ht
1

[n/2]ht

(
1

4
ρ2

)ht khtt+1

ht!

while for t = T , Ct,h = C̃t,h, and where C̃t,h has been defined in Proposition 3.1.

Regarding the filtering distributions, they were obtained in the proof of Proposition 3.1.

They are a mixture of gammas and the kernel is given by:

π(kt|yt−1, yt−2, ..., y1) ∝ |kt|
n−2
2 exp

(
− 1

2
kt

) ∞∑
h=0

(
C̃t,h|kt|h

)
, t = 1, ..., T

where the recursive constants are defined in Proposition 3.1.

4 Empirical Applications

4.1 Macroeconomic Data

In this section we compare the IG-SV model without leverage to other models in the literature

in an application to inflation data for the UK, Japan, Brazil and US (e.g. Stock and Watson

(2007) , Shephard (2015)). The data series were all sourced from the Federal Reserve Bank of

St Louis Fred database as the Consumer Price Index (CPI) data and inflation was constructed

using the following formula:

Inflation =
CPIt − CPIt−1

CPIt−1

× 100
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The number of observations for each series were determined by availability of data. UK

data thus covers the period 1960Q2 to 2022Q1 and Japan data is obtained for the period

1960Q4 to 2022Q1. The US inflation data covers the period 1960Q1 to 2021Q4. Due to

unavailability of data for earlier years for Brazil we have observations for the period 1981Q1

to 2021Q4. yt is the level of inflation and xt contains a constant and 4 lags of yt. Therefore,

for each series we have 244, 242, 244 and 160 observations, respectively, after constructing

the lags.

Figure 1 illustrates the quarterly inflation series for the four countries in levels. The

trend for the evolution of inflation for the US, UK and Japan in the early 1970’s and 1980’s

have slight similarities. However, in later years across all series, inflation evolves differently.

Figure 1: Inflation Rates. The x-axis plots the dates that correspond to the end of each year for the
quarterly observations. The y-axis plots the Inflation Rates

Figure 2 shows the Ordinary Least Squares (OLS) residuals for the four countries over the

sample period, after regressing the level of inflation on its 4 lags and an intercept. Overall
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for all countries, volatility patterns exhibit some extreme values suggesting that models that

assume heavier tailed distributions might fit better and improve forecasting.

The spikes in volatility observed for Brazil inflation show that the series accumulates pe-

riods of consistent high volatility continuously. The graph also shows that we could consider

two regimes for Brazil: 1981Q1-1994Q3 (BR 1) and 1994Q4 - 2021Q4 (BR 2). In the first

regime average inflation was 65.31% whereas in the second regime it was 1.74%. Therefore,

in addition to estimating the models using the whole sample, we will also estimate the models

separately in each regime.

Figure 2: Residuals Plots. The x-axis plots the time period. The y-axis plots the OLS Residuals

In the maximization algorithm, the initial values for the slope coefficients are equal to
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the OLS estimates, and for the rest of the parameters we choose values such that the mean

volatility implied by the model equals that of the data. We truncate the calculation of

hypergeometric functions at 300 terms and we truncate ht in the likelihood at ht = 300 to

ensure convergence.

4.1.1 Smoothed Estimates of the Volatilities

Using the smoothing distributions we are able to obtain an estimate of the variance of et

at each point of time given all available data: E(var(et|kt)) = E(var(yt|xt, kt)), where the

expectation is with respect to the smoothing distribution of kt (i.e. π(kt|y1:T )). This is in

contrast to the commonly used GARCH MLE estimates, which can only provide the filtered

estimates of the variance: var(et|y1:(t−1)). Figure 3 compares the MLE smoothed estimates

of the variance at each point in time for each country, to the moving average of the squared

OLS residuals obtained from 5 continuous squared residuals.
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Figure 3: Smoothed Estimates of the Volatilities. The red lines show the smoothed estimates of the
volatilities compared to the moving average of OLS squared residuals displayed in blue

The periods with high residuals coincide with periods of high estimated stochastic volatil-

ity each point in time for all the four countries. In particular for the US and UK the estimates

reflect the expectations for high volatility trends observed during periods such as the Great

recession and smaller peaks in volatility representing the covid recessions.
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4.1.2 Accuracy Check

We compare our novel algorithm to the Particle Filter to check the accuracy of our compu-

tations. Particle filters are commonly used in practice for calculating the likelihood function

(e.g. Kim et al. (1998)). Literature has it that they provide an unbiased estimate of the

likelihood (see e.g Moral (2004), proposition 7.4.1). We use the UK inflation data for this

exercise. Parameter values for both algorithms are set at the maximum likelihood estimates.

To evaluate each value of the likelihood we use the average of 110 independent replications

of the particle filter proposed in Chan et al. (2020). We set the number of particles to twice

the sample size T , that is each particle filter has T ∗ 2 particles. We obtained 100 values

for the log-likelihood using this method and plot them in Figure 4 together with the value

provided by our algorithm.

The exact log likelihood estimate for the UK inflation data is -229.87. The figure shows

that the particle filter value for the log-likelihood goes above and below our exact value.

Therefore our solution seems accurate.
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Figure 4: Particle Filter Estimates. The horizontal blue line represents the exact value obtained using
our novel algorithm. Small circles show the 100 log-likelihood estimates, each of which was obtained by
averaging 110 runs of the particle filter

4.1.3 Computational Efficiency

In order to calculate the likelihood, we need to truncate the number of terms that are added

for the hypergeometric functions (niter), and also we need to truncate h. For simplicity

we use the same truncation points for both. Table 1 shows the values of the log likelihood

obtained for several truncation values, using the MLE estimates for the parameter values

and the four datasets. The value of the log-likelihood remains stable at truncation points of

150 (Japan), 200 (US), 300 (UK) and 350 (Brazil).

Using a truncation point of 350, the computation time for one evaluation of the likelihood
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in seconds for the UK inflation dataset (T = 244) is 0.24, 0.39, 0.72 and 2.60 when using 18,

8, 4, or just one computing thread, respectively. For the UK exchange rate dataset (T = 999)

that we use in Section 4.2 a truncation point of 350 was also adequate, and the computation

times for the same increase to 0.82, 1.42, 2.72, 10.07, respectively. The coding was done in

C++, linked to the R software and executed in a Ryzen threadripper 3970x processor.

Table 1: Likelihood at different truncation parameter values

UK Japan US Brazil

niter = h = 100 -234.59 102.58 -124.61 -392.51
niter = h = 150 -230.48 102.67 -124.58 -387.29
niter = h = 200 -229.91 102.67 -124.57 -385.91
niter = h = 300 -229.87 102.67 -124.57 -385.63
niter = h = 350 -229.87 102.67 -124.57 -385.62
niter = h = 400 -229.87 102.67 -124.57 -385.62

4.1.4 Parameter Estimates and Model Comparison

Maximum likelihood parameter estimates are reported in Table 2 for our model using quar-

terly inflation data for the UK, Japan, US and Brazil and their standard errors in parenthesis.

β0 is the coefficient of the intercept while β1:4 are the coefficients of the lags. Throughout

the maximum likelihood estimation, we imposed the constraint 0 < ρ < 1 on the persistence

of volatility.
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Table 2: Inverse Gamma SV Model Maximum Likelihood Estimates

Parameter UK JP US BR BR 1 BR 2

B2 0.0653 2.2868 0.2845 0.0127 0.0027 0.1117
(0.0354) (1.2679) (0.1670) (0.0064) (0.0017) (0.1098)

ρ 0.9849 0.9734 0.9577 0.9964 0.9389 0.8894
(0.0091) (0.0159) (0.0252) (0.0048) (0.0650) (0.0897)

n 2.2527 2.0529 3.2136 0.7010 0.9484 5.2053
(0.6534) (0.4724) (0.8377) (0.1374) (0.2449) (2.5386)

β0 0.1148 0.0053 0.1053 -0.1030 -1.1907 0.6535
(0.0492) (0.0078) (0.0418) (0.0810) (1.8766) (0.1187)

β1 0.1256 0.0222 0.5772 1.0604 1.2897 0.6835
(0.0529) (0.0557) (0.0701) (0.0607) (0.0735) (0.0930)

β2 0.1627 0.2592 0.0500 -0.4053 -0.2774 -0.1923
(0.0479) (0.0537) (0.0731) (0.0499) (0.0557) (0.0294)

β3 -0.1005 0.0247 0.3304 0.4889 0.0771 0.0412
(0.0483) (0.0517) (0.0719) (0.0924) (0.0442) (0.0099)

β4 0.6140 0.4291 -0.0747 -0.0652 0.0251 0.0092
(0.0485) (0.0530) (0.0638) (0.0315) (0.0475) (0.0052)

The coefficients of the lags are mostly significant, and the estimates of ρ indicate high

persistence of the volatility in all countries. In all cases except BR and BR1, the estimated

values of n are bigger than 2, implying a finite value for the expected value of volatility. For

BR we have n = 0.7, and for BR 1 n = 0.95, implying that yt has very fat tails, similar to

those of a Cauchy distribution.

We compare the empirical performance of the following 7 models:

M1: Homoscedastic and Gaussian

M2: Local scale model (Shephard (1994))

M3: Univariate GARCH(1,1) with normal errors (Bollerslev (1986))

M4: Univariate GARCH(1,1) with student t errors (Bollerslev (1987))

M5: Log Normal (LN) stochastic volatility (e.g. Kim et al. (1998))

M6: Gamma (G) stochastic volatility (Creal (2017))

M7: Inverse Gamma (IG) stochastic volatility

Except M5 all models are estimated by MLE. The model M5 is estimated using Bayesian

methods with the R package stochvol (Kastner (2016)), using the default non-informative

priors implemented in the package. For this model the value of the log-likelihood at the

posterior mean of parameters is evaluated by averaging 50 independent replications of a

bootstrap particle filter, with each particle filter having a number of particles equal to 60
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times the sample size. The numerical standard error of the log-likelihood estimate was

smaller than 0.02 in all cases. Both the Gaussian and Student t GARCH are specified as

GARCH(1, 1), thus they have 8 parameters and 9 parameters respectively given that we

have 4 lags and an intercept. The stochastic volatility models have 8 parameters except for

the gamma SV model which has an additional parameter for the skewness of volatility.

Table 3 reports the log likelihood values at the maximum likelihood estimates and Table

4 reports the values of the Bayesian Information Criterion (BIC, Schwarz 1978). As expected

the homoscedastic model is the worst of all models for all countries. In terms of the log-

likelihood the inverse gamma model is the best for the US, and the gamma SV model is the

best for the UK and Japan. For BR the GARCH(1,1) with student-t errors has the best

value of the log-likelihood, but when penalizing for the number of parameters using the BIC

(the smaller the better) the inverse gamma SV model is the best. Although the IG model is

also the best in BR2 in terms of the BIC, in BR1 the best turns out to be the Log-Normal.

In summary, using the BIC the gamma SV model is the best for UK and JP, the Log-Normal

is the best for BR1 and the IG SV model is the best for the US, BR and BR2. In the case

of the UK and Japan the asymmetry parameter of the Gamma SV model was estimated to

be large, which might be the reason for the better performance of this model. In the case

of Brazil and the US the residuals appear to have more abrupt changes, which might be the

reason for the better performance of the inverse Gamma SV model.

Figure 5 shows the estimated values of the volatilities (i.e. smoothed values of var(et|y1:(t−1)))

and the 90% confidence intervals for the US data using the Inverse Gamma (IG) and the

Log-Normal (LN) models. Although the shapes of the time-varying volatility curves are the

same, the IG model gives a higher value for the maximum volatility (3.2 versus 1.49), while

having a lower average volatility over the whole sample (0.173 versus 0.186). The fat tail of

the IG distribution allows a larger volatility jump and improves the empirical performance.

Figure 6 shows some diagnostics for the IG model based on the Probability Integral

Transform (PIT), which is defined as pt = Ft(yt), where Ft is the distribution function of

the predictive density of yt given the previous history y1:(t−1), xt and unknown parameters

(see e.g. Pitt and Shephard (1997)). In the IG model this predictive density is a mixture of

student-t distributions, where the weights can be calculated using the filtering distributions

for kt given in Section 3. Therefore in our case pt can be calculated analytically. If the model

is well specified, pt should be uniformly distributed with no serial correlation. To check

for serial correlation, the distributions pt are mapped to normalised innovations through

the inverse of the Gaussian distribution function. Furthermore, to check for correlation in
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squared residuals, the same operation is applied to the reflected probabilities 2|pt−0.5|. The

histogram and QQ plot of pt show that pt is uniformly distributed, and the correlogram of the

normalised and reflected innovations show that all the serial correlations are insignificant,

indicating that the model is well specified.

Table 3: Inflation Rates Model Comparisons: Log Likelihood

Model UK JP US BR BR 1 BR 2

M1 -306.74 18.39 -165.42 -763.33 -269.65 -124.43
M2 -230.04 100.17 -129.90 -395.30 -222.47 -123.05
M3 -233.01 90.87 -147.72 -387.76 -226.91 -120.07
M4 -227.74 107.06 -133.34 -383.97 -221.38 -118.38
M5 -229.08 101.96 -126.74 -389.63 -221.61 -119.70
M6 -220.88 112.09 -129.33 -475.07 -240.84 -117.73
M7 -229.87 102.67 -124.57 -385.62 -226.26 -119.14

Table 4: Inflation Rates Model Comparisons: BIC

Model Parameters UK JP US BR BR 1 BR 2

T 244 242 244 160 51 109

M1 6 646.46 -3.85 363.83 1557.12 562.90 277.02
M2 8 504.05 -156.42 303.77 831.21 476.39 283.63
M3 8 509.99 -137.83 339.41 816.11 485.27 277.68
M4 9 504.95 -164.73 316.15 813.61 478.15 278.98
M5 8 502.13 -160.00 297.47 819.85 474.67 276.94
M6 9 491.24 -174.79 308.14 995.81 517.06 277.68
M7 8 503.72 -161.43 293.12 811.84 483.97 275.81
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Figure 5: Volatilities in US inflation and 90% confidence intervals: Inverse Gamma and Log-Normal
Models.

Figure 6: Probability Integral Transform diagnostics for US inflation data in the IG-SV model.
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4.2 Exchange Rates Data Application

We use 1000 daily exchange rate observations for 7 currencies (GBP, EUR, JPY, CND, AUD,

BRL, ZAR) to the USD. The data for the first 6 currencies were obtained from the Board of

Governors of the Federal Reserve and covers the period beginning 5 March 2019 and ending

3 March 2023. ZAR was obtained from the South African Reserve Bank for the period 7

May 2019 to 3 March 2023. In this analysis yt is the first difference of the log exchange

rate. We compare the empirical performance of the IG-SV model with no leverage to the

same models considered in the previous subsection. All models include an intercept but we

include no regressors (i.e. xt is empty).

Figure 7 shows the normalised exchange rates for the 7 countries. We calculate the

percentage of times that the absolute value of the normalised exchange rate goes beyond 1.96

standard deviations. The JPY, BRL, GBP, CAD, EUR, and AUD have thicker tails than a

normal distribution with 5.8%, 5.7%, 5.9%, 5.2%, 6.5% and 6.1% proportions respectively.

The ZAR has slightly thinner tails to the normal with 4.8% of the proportion going beyond

1.96 standard deviations.

In addition we obtain the proportion where the absolute value of the normalised exchange

rate goes beyond 3.0902 standard deviations, which is 0.2% for a normal distribution. The

ZAR has the lowest proportion, with 0.4%, but still larger than the normal. The JPY, BRL,

GBP, CAD, EUR, and AUD distribution proportions are 1.8%, 1.0%, 1.6%,1.3%, 1.2%, 0.9%,

respectively, all of them much greater than the normal.
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Figure 7: Normalised Exchange Rates. yt was normalised by subtracting its mean and dividing by the
standard deviation. The x-axis plots the dates that correspond to the end of each year for the daily

observations. The y-axis plots the normalised yt

Table 5 shows the log likelihood values and Table 6 the BIC values (the smaller the

better) across all the 7 models listed above. The best model for the ZAR, which has the

thinnest tails, is the Gamma SV model, both in terms of the likelihood and the BIC. For

all the other currencies the GARCH(1,1) with student-t errors has the highest log-likelihood

values. However, when taking into account the number of parameters using the BIC, this

model is the best only for the EUR and JP. The inverse Gamma SV model is the best for all

the other currencies, GBP, CAD, AUD, BRL, with the log normal SV model being equally

good for the GBP and BRL.

Figure 8 shows the estimated values of the volatilities (i.e. smoothed values of var(et|y1:(t−1)))

and the 90% confidence intervals for the AUD data using the Inverse Gamma (IG) and the

Log-Normal (LN) models. Although the shapes of the time-varying volatility curves are

23



the same, the IG model gives a higher value for the maximum volatility (10−527.7 versus

10−518.5), and also has a higher average volatility over the whole sample (10−55.72 versus

10−54.48).

Figure 9 shows the PIT based diagnostics, showing that the IG model is well specified.

Table 5: Exchange Rates Model Comparisons: Log likelihood

Model GBP EUR JPY CAD AUD BRL ZAR

M1 3659.66 3962.76 3770.79 3976.17 3551.11 3123.64 3236.27
M2 3754.46 4053.28 3962.96 4034.74 3637.23 3167.60 3244.68
M3 3747.26 4044.27 3927.91 4027.51 3632.31 3165.52 3249.98
M4 3765.21 4059.93 3987.26 4041.50 3641.47 3171.54 3253.80
M5 3762.50 4055.48 3971.76 4036.88 3638.15 3168.97 3251.93
M6 3759.35 4053.41 3967.96 4034.91 3633.98 3168.72 3257.63
M7 3762.81 4055.50 3973.79 4038.36 3640.23 3168.94 3252.42

Table 6: Exchange Rates Model Comparisons: BIC

Model Parameters GBP EUR JPY CAD AUD BRL ZAR

T 999 999 999 999 999 999 999

M1 2 -7305.51 -7911.71 -7527.77 -7938.52 -7088.41 -6233.46 -6458.73
M2 4 -7481.30 -8078.92 -7898.28 -8041.86 -7246.83 -6307.58 -6461.73
M3 4 -7466.89 -8060.91 -7828.19 -8027.39 -7236.99 -6303.42 -6472.33
M4 5 -7495.89 -8085.33 -7939.98 -8048.47 -7248.40 -6308.55 -6473.07
M5 4 -7497.37 -8083.33 -7915.89 -8046.13 -7248.67 -6310.31 -6476.23
M6 5 -7484.16 -8072.29 -7901.38 -8035.29 -7233.42 -6302.92 -6480.73
M7 4 -7497.99 -8083.37 -7919.96 -8049.09 -7252.83 -6310.25 -6477.22
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Figure 8: Volatilities in AUD data and 90% confidence intervals: Inverse Gamma and Log-Normal Models.

Figure 9: Probability Integral Transform based diagnostics for AUD data in the IG-SV model.
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5 Discussion and Conclusions

This paper obtained an analytic expression for the likelihood of an inverse gamma (IG) SV

model. As a result it is possible to obtain the Maximum Likelihood estimator using standard

numerical optimization routines. The exact value of the likelihood is also useful for Bayesian

estimation and model comparison. Within the literature of nonlinear or non Gaussian state

space models this novel approach is one of the very few methods that allow MLE because we

are able to obtain the likelihood exactly. We provide the explicit formulas for this likelihood

as well as the code to calculate it in an R package (invgamstochvol). Furthermore, we

obtained the filtering and smoothing distributions for the inverse volatilities as mixtures of

gammas (or generalized inverse Gaussians in the case of leverage), allowing exact sampling

from these distributions. IG SV models can account for fat tails, which are observed in

most macroeconomic and financial data. The approach that we use to obtain the likelihood

expression is a result of integrating out the volatilities in the model. This approach is

computationally efficient, simple and accurate. The empirical fit of the IG SV model is

better than other alternative models in the literature with inflation data for two countries

and for 4 exchange rates series as shown in the empirical exercises.

Using realistic scenarios based on real data, a Monte Carlo experiment provided in Ap-

pendix 6.8 shows that confidence intervals for coefficients and volatilities have approximately

correct coverage when the sample size is 250 or higher. Leon-Gonzalez and Majoni (2024)

employ the inverse gamma SV model in a Vector Autoregression (VAR) model by using

the Common Stochastic Volatility (CSV) framework put forward by Carriero et al. (2016).

They obtain the exact value of the likelihood and show that the CSV-IG model outperforms

several other CSV models previously proposed in the literature in terms of out-of-sample

predictive likelihoods using large VAR models of macroeconomic variables for four countries:

US, JP, UK and BR. The IG SV model with analytical likelihood can also be easily extended

to the multivariate case by using the framework in Cogley and Sargent (2005) or Wu and

Koop (2022).
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6 Appendix

6.1 Lemma and proof

To derive the likelihood we will make use of the following lemma, which is a slightly modified
version of Theorem 7.3.4 in Muirhead (2005).

Lemma 6.1. For integers p ≤ q∫
|K|
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where (n + 1)/2 > 0 and pFq(.) is a hypergeometric function of scalar argument, provided
that in the case p = q we have that |0.5BA−1| < 1.

Proof. We apply Theorem 7.3.4 in Muirhead (2005) after making a change of variables. Let
X = 1

4
BK such that K = 4XB−1. Thus we have:
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We use the Jacobian dK = |4B−1|dX to integrate with respect to X:∫
|X|
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This integral is the same as in the theorem, therefore, when we integrate out X we get the
following:∫
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6.2 Proof of Proposition 3.1

Proof. k1 is a gamma, Bauwens et al. (2000) gives the prior density for k1 as:

|k1|
n−2
2 exp
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− 1

2

(
k1(1− ρ2)

)) 1

c0

(6.1)

where c0 =
Γ(n

2
)

( 1−ρ2
2

)
n
2

, is a constant and Γ is a gamma function. Let V −1
1 = (1− ρ2), thus, the

likelihood for the first observation is as follows:

L(y1) =

∫
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The integral is with respect to k1, so after rearranging and combining like terms we have;

L(y1) =

∫
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1
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1

c0

dk1

where k
n+1−2

2
1 exp(−1

2
(B2e2

1 +V −1
1 )k1) is the kernel of a gamma with n+1 degrees of freedom.

Let Ṽ2 = (B2e2
1 + V −1

1 )−1, therefore, the density of k1|y1 is:

π(k1|y1) = k
n+1−2

2
1 exp

(
− 1

2
k1Ṽ2

−1
)

1

c̄0

(6.3)

with c̄0 =
Γ(n+1

2
)

(
Ṽ2

−1

2
)
n+1
2

. Thus, we have the likelihood as:

L(y1) = (2π)−
1
2

√
B2Γ

(
n+ 1

2

)∣∣∣∣B2e2
1 + V −1

1

2

∣∣∣∣−n+1
2 1

c0

Taking into account c0 we can write the likelihood for t = 1 as:

L(y1) = (2π)−
1
2

√
B22

1
2

Γ(n+1
2

)

Γ(n
2
)

∣∣B2e2
1 + V −1

1

∣∣−n+1
2 V

−n
2

1

Define k1:2 = (k1, k2), then we have the likelihood for the second observation as:

L(y2|y1) =

∫
L(y2|k1:2, y1)π(k1:2|y1)dk1:2

where π(k1:2|y1) = π(k1|y1)π(k2|k1, y1) . The prior for kt unconditionally is a gamma. How-
ever, kt|kt−1 is a non central chi-squared. Muirhead (2005, p. 442) gives this non central
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chi-squared density as follows:

π(kt|kt−1) = k
n−2
2

t exp

(
− 1

2
kt

)
0F1

(
n

2
;
1

4
ρ2kt−1kt

)
exp

(
− 1

2
ρ2kt−1

)(
Γ

(
n

2

))−1
1

c
(6.4)

where 0F1 is a hypergeometric function, ρ2kt−1 is the non-centrality parameter and c = 2
n
2 .

We can then write the likelihood for the second observation given the first as :

L(y2|y1) =

∫
(2π)−

1
2

√
B2k

1
2
2 exp

(
− 1

2
B2e2

2k2

)
π(k1:2|y1)dk1:2 (6.5)

We integrate first with respect to k1. Define l2 as representing all the elements in π(k2|k1)
as given by (6.4) that do not depend on k1 as follows:

l2 =

(
k
n−2
2

2 exp

(
− 1

2
k2

))−1(
1

Γ(n
2
)

)−1(
1

c

)−1

(6.6)

Given that π(k2|k1, y1) = π(k2|k1), and given (6.4) and (6.3), we can write π(k2|y1) as
follows:

π(k2|y1) =

∫
π(k2|k1, y1)π(k1|y1)dk1 =∫

1

c̄0

k
n+1−2

2
1 exp

(
− 1

2
(Ṽ2

−1
k1)

)
exp

(
− 1

2
(ρ2k1)

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
1

l2
dk1

where we have used the expression for π(k1|y1) in (6.3). We can write the above integral
more compactly as:

∫
π(k2|k1, y1)π(k1|y1)dk1 =

∫
1

c̄0

k
n+1−2

2
1 exp

(
− 1

2
(Ṽ2

−1
+ ρ2)k1

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
1

l2
dk1

Applying Lemma 6.1 the solution to this integral is as follows:

π(k2|y1) =

∫
π(k2|k1, y1)π(k1|y1)dk1 =

1

c̄0

Γ

(
n+ 1

2

)∣∣∣∣ Ṽ2

−1
+ ρ2

2

∣∣∣∣−n+1
2

1F1

(
n+ 1

2
;
n

2
;
1

2
k2ρ

2(Ṽ2

−1
+ ρ2)−1

)
1

l2

(6.7)

Given (6.6) and (6.7), the distribution of k2|y1 is a mixture of gammas as follows:

π(k2|y1) ∝ k
n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ 1

2
;
n

2
;
1

2
k2ρ

2(Ṽ2

−1
+ ρ2)−1

)
(6.8)

The normalising constant for this density function can be obtained in closed form. Lemma
6.1 gives the solution to this integral, thus, we have:
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∫
k
n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ 1

2
;
n

2
;
1

2
k2δ2

)
dk2 = Γ

(
n

2

)
2
n
2 2F1

(
n+ 1

2
,
n

2
;
n

2
; δ2

)
(6.9)

where δ2 = ρ2(Ṽ2

−1
+ ρ2)−1. This 2F1

(
n+1

2
, n

2
; n

2
; δ2

)
function has the same terms in the

denominator and the numerator thus they cancel out and we have:

2F1

(
n+ 1

2
,
n

2
;
n

2
; δ2

)
= 1F0

(
n+ 1

2
; δ2

)
(6.10)

Therefore, this function simplifies to a known solution for |δ2| < 1, see Muirhead (2005,
p.261) .

1F0

(
n+ 1

2
; δ2

)
= (1− δ2)−

n+1
2 (6.11)

Therefore the normalising constant becomes:

Γ

(
n

2

)
2
n
2 1F0

(
n+ 1

2
; δ2

)
= Γ

(
n

2

)
2
n
2 (1− δ2)−

n+1
2

Given this normalising constant, we have the density for π(k2|y1) from 6.8 as follows:

π(k2|y1) =
1

c1

k
n−2
2

2 exp

(
− 1

2
k2

)
1F1

(
n+ 1

2
;
n

2
;
1

2
k2ρ

2(Ṽ2

−1
+ ρ2)−1

)
where c1 = Γ

(
n
2

)
2
n
2 (1−δ2)−

n+1
2 . Thus, the likelihood for the second observation is as follows:

L(y2|y1) =

∫
π(y2|k2, y1)π(k2|y1)dk2

=

∫
(2π)−

1
2

√
B2k

n+1−2
2

2 exp

(
− 1

2
(B2e2

2 + 1)k2

)
1

c1
1F1

(
n+ 1

2
;
n

2
;
1

2
k2ρ

2(Ṽ2

−1
+ ρ2)−1

)
dk2

Using again Lemma 6.1 and taking into account c1, the likelihood for the second obser-
vation is:

L(y2|y1) = (2π)−
1
2

√
B2

2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) (B2e2
2 + 1)−

n+1
2

(1− δ2)−
n+1
2

2F1

(
n+ 1

2
,
n+ 1

2
;
n

2
; (B2e2

2 + 1)−1δ2

)
Thus we get a Gauss hypergeometric function which can be evaluated easily. Let Z2 =

(B2e2
2 + 1)−1δ2 and Ĉ2 = 2F1

(
n+1

2
, n+1

2
; n

2
;Z2

)
. This series converges because |Z2| < 1

(Abramowitz et al., 1988). To accelerate the convergence of this series we apply the Euler
transformation as in Abramowitz et al. (1988) and thus we get:
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2F1

(
n+ 1

2
,
n+ 1

2
;
n

2
;Z2

)
= (1− Z2)−

n+2
2 2F1

(
− 1

2
,−1

2
;
n

2
;Z2

)
(6.12)

Thus Ĉ2 = 2F1

(
n+1

2
, n+1

2
; n

2
;Z2

)
= (1 − Z2)−

n+2
2 2F1

(
− 1

2
,−1

2
; n

2
;Z2

)
, then we can write

the L(y2|y1) as follows:

L(y2|y1) = (2π)−
1
2

√
B2

2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) (B2e2
2 + 1)−

n+1
2

(1− δ2)−
n+1
2

Ĉ2

The density of kt for the third observation is given by:

π(k3|y2, y1) =

∫
π(k3|k2)π(k2|y2, y1)dk2

where π(k2|y2, y1) ∝ π(k2|y1)L(y2|k2, y1). The distribution for π(k2|y1) in (6.8) can be
written as follows:

π(k2|y1) ∝
∞∑

h2=0

C̃2,h2k
n+2h2−2

2
2 exp

(
− 1

2
k2

)
where C̃2,h2 =

[(n+1)/2]h2
[n/2]h2

(
1
2
ρ2(Ṽ2

−1
+ ρ2)−1

)h2 1
h2!

. Thus we have:

π(k2|y2, y1) ∝
∞∑

h2=0

C̃2,h2k
n+1+2h2−2

2
2 exp

(
− 1

2
k2(B2e2

2 + 1)

)
(6.13)

Given (6.4) and (6.13) we have:

π(k3|y2, y1) ∝
∫
k
n−2
2

3 exp

(
− 1

2
k3

)
0F1

(
n

2
;
1

4
ρ2k2k3

)
exp

(
− 1

2
ρ2k2

)
×

∞∑
h2=0

C̃2,h2k
n+1+2h2−2

2
2 exp

(
− 1

2
k2(B2e2

2 + 1)

)
1

Γ
(
n
2

)
2
n
2

dk2

which simplifies to:

π(k3|y2, y1) ∝
∫
k
n−2
2

3 exp

(
− 1

2
k3

)
0F1

(
n

2
;
1

4
ρ2k2k3

)
exp

(
− 1

2
(B2e2

2 + 1 + ρ2)k2

)
∞∑

h2=0

C̃2,h2k
n+1+2h2−2

2
2

1

Γ
(
n
2

)
2
n
2

dk2

Using Lemma 6.1 the density of k3|y2, y1 is thus:
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π(k3|y2, y1) =
1

c3

k
n−2
2

3 exp

(
− 1

2
k3

) ∞∑
h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)

1F1

(
n+ 1 + 2h2

2
;
n

2
;
1

2
k3ρ

2S3

)
(2S3)

n+1+2h2
2

1

Γ
(
n
2

)
2
n
2

(6.14)

where S3 = (B2e2
2 + 1 + ρ2)−1 and c3 is the normalising constant as in (6.9) as follows:

c3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
(2S3)

n+1+2h2
2 2F1

(
n+ 1 + 2h2

2
,
n

2
;
n

2
; ρ2S3

)
Similar to (6.10) and (6.11), the hypergeometric function simplifies to get:

c3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
(2S3)

n+1+2h2
2 (1− ρ2S3)−

n+1+2h2
2

Collecting terms dependent on h2 we can write c3 as

c3 =

( ∞∑
h2=0

[(n+ 1)/2]h2
[n/2]h2

[(n+ 1)/2]h2
δh23

h2!

)
Γ

(
n+ 1

2

)
(1− ρ2S3)−

n+1
2 (2S3)

n+1
2

where δ3 =
(
(1− ρ2S3)−1S3ρ

2(Ṽ2

−1
+ ρ2)−1

)
. This can be written as:

c3 = 2F1

(
n+ 1

2
,
n+ 1

2
;
n

2
; δ3

)
Γ

(
n+ 1

2

)
(1− ρ2S3)−

n+1
2 (2S3)

n+1
2

Using Euler’s acceleration in (6.12) we can transform c3 as:

c3 = (1− δ3)−
n+2
2 2F1

(
− 1

2
,−1

2
;
n

2
; δ3

)
Γ

(
n+ 1

2

)
(1− ρ2S3)−

n+1
2 (2S3)

n+1
2

Therefore the likelihood for t = 3 is as follows:

L(y3|y2, y1) =

∫
π(y3|k3, y2, y1)π(k3|y2, y1)dk3

Thus we have from (6.14)

L(y3|y2, y1) =

∫
(2π)−

1
2

√
B2

1

c3

k
n+1−2

2
3 exp

(
− 1

2
k3(B2e2

3 + 1)

) ∞∑
h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)

1F1

(
n+ 1 + 2h2

2
;
n

2
;
1

2
k3ρ

2S3

)
(2S3)

n+1+2h2
2

1

Γ
(
n
2

)
2
n
2

dk3
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and using Lemma 6.1 we get:

L(y3|y2, y1) = (2π)−
1
2

√
B2

1

c3

∞∑
h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
(2S3)

n+1+2h2
2 Γ

(
n+ 1

2

)
2
n+1
2

(B2e2
3 + 1)−

n+1
2 2F1

(
n+ 1 + 2h2

2
,
n+ 1

2
;
n

2
; (B2e2

3 + 1)−1ρ2S3

)
1

Γ
(
n
2

)
2
n
2

Letting Z3 = (B2e2
3 + 1)−1ρ2S3, we can define Ĉ3 = 2F1

(
n+1+2h2

2
, n+1

2
; n

2
;Z3

)
. Thus, we

have:

L(y3|y2, y1) = (2π)−
1
2

√
B2

1

c3

∞∑
h2=0

C̃2,h2

Γ

(
n+1+2h2

2

)
(B2e2

3 + 1)
n+1
2

(2S3)
n+1+2h2

2
2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) Ĉ3

The filtering density of kt for t = 4 is given by:

π(k4|y3, y2, y1) =

∫
π(k4|k3, y1, y2, y3)π(k3|y3, y2, y1)dk3 (6.15)

where π(k3|y3, y2, y1) ∝ π(k3|y2, y1)L(y3|k3, y2, y1). Let:

C̃3,h3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ 1 + 2h2

2

)
[(n+ 1)/2 + h2]h3

[n/2]h3

(
1

2
ρ2S3

)h3 1

h3!
(2S3)

n+1+2h2
2 (6.16)

Then from (6.14) we have that the filtering distribution k3|y2, y1 is a mixture of gammas
as follows:

π(k3|y2, y1) ∝
∞∑

h3=0

C̃3,h3k
n+2h3−2

2
3 exp

(
− 1

2
k3

)
As before, when we include the third observation, the distribution of k3|y3, y2, y1 is also

a mixture of gammas and can be written as follows:

π(k3|y3, y2, y1) ∝
∞∑

h3=0

C̃3,h3k
n+1+2h3−2

2
3 exp

(
− 1

2
k3(B2e2

3 + 1)

)
Let Ṽ4

−1
= (B2e2

3 + 1). Then, using (6.15) and (6.4), we have the distribution of
k4|y3, y2, y1 as follows:
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π(k4|y3, y2, y1) ∝
∫
k
n−2
2

4 exp

(
− 1

2
k4

)
0F1

(
n

2
;
1

4
ρ2k3k4

)
exp

(
− 1

2
ρ2k3

)
1

Γ
(
n
2

)
2
n
2

×
∞∑

h3=0

C̃3,h3k
n+1+2h3−2

2
3 exp

(
− 1

2
k3Ṽ4

−1
)
dk3

(6.17)

Taking this integral with respect to k3 we get:

π(k4|y3, y2, y1) ∝ k
n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ 1 + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

1

Γ
(
n
2

)
2
n
2

where S4 = (Ṽ4

−1
+ ρ2)−1 = (B2e2

3 + 1 + ρ2)−1. Let c4 be the normalising constant, that is:

c4 =

∫
k
n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ 1 + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

1

Γ
(
n
2

)
2
n
2

dk4

Thus we get:

c4 =
∞∑

h3=0

C̃3,h32F1

(
n+ 1 + 2h3

2
,
n

2
;
n

2
; ρ2S4

)
Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

Using (6.10) and (6.11), this simplifies to:

c4 =
∞∑

h3=0

C̃3,h3(1− ρ2S4)−
n+1+2h3

2 Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

Thus,

π(k4|y3, y2, y1) =
1

c4

k
n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ 1 + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ 1 + 2h3

2

)
(2S4)

n+1+2h3
2

1

Γ
(
n
2

)
2
n
2

Therefore the likelihood for t = 4 is as follows:
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L(y4|y3, y2, y1) =

∫
π(y4|k4, y3, y2, y1)π(k4|y3, y2, y1)dk4

Thus we have:

L(y4|y3, y2, y1) =

∫
(2π)−

1
2

√
B2

1

c4

k
n+1−2

2
4 exp

(
− 1

2
k4(B2e2

4 + 1)

) ∞∑
h3=0

C̃3,h3Γ

(
n+ 1 + 2h3

2

)

1F1

(
n+ 1 + 2h3

2
;
n

2
;
1

2
k4ρ

2S4

)
(2S4)

n+1+2h3
2

1

Γ
(
n
2

)
2
n
2

dk4

This is similar to t = 3 therefore we have:

L(y4|y3, y2, y1) = (2π)−
1
2

√
B2

1

c4

∞∑
h3=0

C̃3,h3

Γ

(
n+1+2h3

2

)
(B2e2

4 + 1)
n+1
2

(2S4)
n+1+2h3

2
2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) Ĉ4

and the likelihood for any t is:

L(yt|y1:t−1) = (2π)−
1
2

√
B2

1

ct

∞∑
ht−1=0

C̃t−1,ht−1

Γ

(
n+1+2ht−1

2

)
(B2e2

t + 1)
n+1
2

(2St)
n+1+2ht−1

2
2
n+1
2

2
n
2

Γ
(
n+1

2

)
Γ
(
n
2

) Ĉt

where for t ≥ 4:

δt =

(
(1− ρ2St)

−1Stρ
2(Ṽ −1

t−1 + ρ2)−1

)
Zt = (B2e2

t + 1)−1Stρ
2

Ĉt = 2F1

(
n+ 1 + 2ht−1

2
,
n+ 1

2
;
n

2
;Zt

)
Ṽ −1
t = 1 +B2e2

t−1

St = (B2e2
t−1 + 1 + ρ2)−1 = (Ṽ −1

t + ρ2)−1

ct =
∞∑

ht−1=0

C̃t−1,ht−1(1− ρ2St)
−n+1+2ht−1

2 Γ

(
n+ 1 + 2ht−1

2

)
(2St)

n+1+2ht−1
2

C̃t−1,ht−1 =

∞∑
ht−2=0

C̃t−2,ht−2Γ

(
n+ 1 + 2ht−2

2

)
[(n+ 1)/2 + ht−2]ht−1

[n/2]ht−1

(
1

2
ρ2St−1

)ht−1 (2St−1)
n+1+2ht−2

2

ht−1!
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6.3 Proof of Proposition 3.2

Proof. Combining the prior density for k1 in (6.1) with the transition equation in (6.4) and
the likelihood, we get:

π(k1|k2:T , y1:T ) ∝ |k1|
n+1−2

2 exp

(
− 1

2
S−1

2 k1

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
= |k1|

n+1−2
2 exp

(
− 1

2
S−1

2 k1

) ∞∑
h=0

(
C1,h|k1|h

) (6.18)

with C1,h = 1
h!

1
[n/2]h

(
1
4
ρ2k2

)h
.

The integral of (6.48) with respect to k1 is proportional to:

1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2k2S2

)
and therefore:

π(k2|k3:T , y1:T )

∝ |k2|
n+1−2

2 exp

(
− 1

2
S−1

3 k2

)
1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2k2S2

)
0F1

(
n

2
;
1

4
ρ2k3k2

)
(6.19)

where we have used that S−1
3 = 1 +B2e2

2 + ρ2. Combining the series we get that:

1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2k2S2

)
0F1

(
n

2
;
1

4
ρ2k3k2

)
=( ∞∑

h1=0

[(n+ 1)/2]h1
[n/2]h1

(1
2
ρ2S2)h1kh12

h1!

)( ∞∑
h2=0

1

h2!

1

[n/2]h2

(
1

4
ρ2k3

)h2
kh22

) (6.20)

By making the change of variables h = h1 + h2 we get that (6.20) can be written as:

∞∑
h=0

h∑
h2=0

((
[(n+ 1)/2]h−h2

[n/2]h−h2

(1
2
ρ2S2)h−h2

(h− h2)!

)
1

h2!

1

[n/2]h2

(
1

4
ρ2

)h2
kh23

)
kh2 =

∞∑
h=0

C2,hk
h
2 (6.21)

where:

C2,h =
h∑

h2=0

C̃2,h−h2
1

h2!

1

[n/2]h2

(
1

4
ρ2

)h2
kh23
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and C̃2,h−h2 has been defined in proposition 3.1 as:

C̃2,h−h2 =
[(n+ 1)/2]h−h2

[n/2]h−h2

(1
2
ρ2S2)h−h2

(h− h2)!

Using (6.21) we obtain that:

π(k2|k3:T , y1:T ) ∝ |k2|
n+1−2

2 exp

(
− 1

2
S−1

3 k2

) ∞∑
h=0

(
C2,hk

h
2

)
(6.22)

as we wanted to prove.
The integral of (6.22) with respect to k2 is proportional to:

∞∑
h=0

(
C2,h

Γ
(
n+1+2h

2
)

(S−1
3 /2)

n+1+2h
2

)
=
∞∑
h=0

( h∑
h2=0

C̃2,h−h2
1

h2!

1

[n/2]h2

(
1

4
ρ2

)h2
kh23

)
Γ
(
n+1+2h

2
)

(S−1
3 /2)

n+1+2h
2

(6.23)
Making the change of variables h1 = h− h2, equation (6.23) can be written as:

∞∑
h1=0

∞∑
h2=0

(
C̃2,h1

1

h2!

1

[n/2]h2

(
1

4
ρ2

)h2
kh23

)
Γ
(
n+1

2
+ h1 + h2

)
(S−1

3 /2)
n+1
2

+h1+h2
(6.24)

Note that Γ
(
n+1

2
+ h1 + h2

)
= Γ

(
n+1+2h1

2

)[
n+1+2h1

2

]
h2

. Then (6.24) can be written as:

∞∑
h2=0

∞∑
h1=0

C̃2,h1Γ

(
n+ 1 + 2h1

2

)[
(n+ 1)/2 + h1

]
h2

[n/2]h2

(
1

2
ρ2S3

)h2 1

h2!
(2S3)

n+1+2h1
2 kh23 (6.25)

Using the definition of C̃3,h2 in proposition 3.1, we can write (6.25) as:

∞∑
h2=0

C̃3,h2k
h2
3

Recall that the transition density is in (6.4). Therefore, we have:

π(k3|k4:T , y1:T ) ∝
( ∞∑
h2=0

C̃3,h2k
h2
3

)
0F1

(
n

2
;
1

4
ρ2k3k4

)
|k3|

n+1−2
2 exp

(
− 1

2
S−1

4 k3

)

with S−1
4 = 1 +B2e2

3 + ρ2. As before, we can multiply the two series as follows:
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( ∞∑
h2=0

C̃3,h2k
h2
3

)
0F1

(
n

2
;
1

4
ρ2k3k4

)
=

( ∞∑
h2=0

C̃3,h2k
h2
3

)( ∞∑
h3=0

1

[n/2]h3

(
1

4
ρ2k3

)h3
kh34

1

h3!

)

=
∞∑
h=0

h∑
h3=0

|k3|hC̃3,h−h3
1

[n/2]h3

(
1

4
ρ2

)h3
kh34

1

h3!
=
∞∑
h=0

|k3|hC3,h

where

C3,h =
∞∑

h3=0

C̃3,h−h3
1

[n/2]h3

(
1

4
ρ2

)h3 kh34

h3!

and therefore, π(k3|k4:T , y1:T ) can be written as:

π(k3|k4:T , y1:T ) ∝ |k3|
n+1−2

2 exp

(
− 1

2
S−1

4 k3

) ∞∑
h=0

|k3|hC3,h (6.26)

as we wanted to prove.
Since π(k3|k4:T , y1:T ) in (6.26) and π(k2|k3:T , y1:T ) in (6.22) have the same structure, and,

since the transition density of kt is always the same, we get analogous results for any t < T ,
as we wanted to prove. For t = T the only difference is that there is no transition density
from kT to kT+1. For this reason we do not need to multiply two series, and hence CT,h = C̃T,h
and ST+1 = (1 +B2e2

T )−1

6.4 Proposition 6.2 and proof

Proposition 6.2. The density π(kt|k1:(t−1), y1:T ) is a mixture of gamma distributions and
its kernel is proportional to:

π(kT-s|k1:(T-s-1), y1:T ) ∝ |kT-s|
n+1−2

2 exp

(
− 1

2
S−1
T-s+1kT-s

)( ∞∑
h=0

aT-s,hk
h
T-s

)
s = 0, . . . , T − 1

where

aT-s,h =
h∑

hT-s=0

ãT-s,h−hT-s

1

(hT-s)!

1

[n/2]hT-s

(
1

4
ρ2

)hT-s

khT-s
T-s−1, s = 1, . . . , T − 2
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and

ãT-s,hT-s+1
=

∞∑
hT-s+2=0

ãT-s+1,hT-s+2
Γ

(
n+ 1

2
+ hT-s+2

)
[(n+ 1)/2 + hT-s+2]hT-s+1

[n/2]hT-s+1

×
(

1
2
ρ2ST-s+2

)hT-s+1

(hT-s+1)!
(2ST-s+2)

n+1+2hT-s+2
2 s = 2, . . . , T − 1

with,

aT,h =
1

h!

1

[n/2]h

(
1

4
ρ2kT−1

)h
ãT−1,hT =

[(n+ 1)/2]hT
[n/2]hT

(
1
2
ρ2ST+1

)hT
(hT )!

For the case when s = T − 1, we have aT-s,h = a1,h = ã1,h.

Proof. We need to integrate π(k1:T )π(y1:T |k1:T ) with respect to kT first. The terms that
depend on kT are the following:

exp

(
− 1

2
e2
TB

2kT

)
|kT |

1
2 |kT |

n−2
2 exp

(
− 1

2
kT

)
0F1

(
n

2
;
1

4
ρ2kTkT−1

)
=

exp

(
− 1

2
S−1
T+1kT

)
|kT |

n+1−2
2

∞∑
h=0

aT,h|kT |h
(6.27)

with aT,h = 1
h!

1
[n/2]h

(
1
4
ρ2kT−1

)h
. This proves the result for s = 0. The integral of (6.27) with

respect to kT is proportional to:

1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2kT−1ST+1

)
Therefore, the terms that depend on kT−1 in π(k1:T )π(y1:T |k1:T ) after integrating out kT

are the following:

|kT−1|
n+1−2

2 exp

(
− 1

2
S−1
T kT−1

)
1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2kT−1ST+1

)
0F1

(
n

2
;
1

4
ρ2kT−1kT−2

)
(6.28)

Equation (6.28) has the product of two series, that can be written as:
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1F1

(
n+ 1

2
;
n

2
;
1

2
ρ2kT−1ST+1

)
0F1

(
n

2
;
1

4
ρ2kT−1kT−2

)
=

=

( ∞∑
hT=0

[(n+ 1)/2]hT
[n/2]hT

(1
2
ρ2ST+1)hT khTT−1

hT !

)( ∞∑
hT−1=0

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2kT−2

)hT−1

k
hT−1

T−1

)
(6.29)

Making the change of variables h = hT + hT−1 we get that (6.29) is equal to:

∞∑
h=0

( h∑
hT−1=0

[(n+ 1)/2]h−hT−1

[n/2]h−hT−1

(1
2
ρ2ST+1)h−hT−1

(h− hT−1)!

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2

)hT−1

k
hT−1

T−2

)
khT−1 =

∞∑
h=0

aT−1,hk
h
T−1

where:

aT−1,h =
h∑

hT−1=0

(
[(n+ 1)/2]h−hT−1

[n/2]h−hT−1

(1
2
ρ2ST+1)h−hT−1

(h− hT−1)!

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2

)hT−1
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)
which can be written as:

aT−1,h =
h∑

hT−1=0

ãT−1,h−hT−1

1

(hT−1)!

1

[n/2]hT−1

(
1

4
ρ2

)hT−1

k
hT−1
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and:

ãT−1,h =
[(n+ 1)/2]h

[n/2]h

(1
2
ρ2ST+1)h

h!

Therefore, π(kT−1|k1:T−2, y1:T ) which is given by (6.28), can be written as:

π(kT−1|k1:T−2, y1:T ) ∝ |kT−1|
n+1−2

2 exp

(
− 1

2
S−1
T kT−1

) ∞∑
h=0

(
aT−1,hk

h
T−1

)
(6.30)

which proves the result for s = 1.
The integral of (6.30) with respect to kT−1 gives:
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∞∑
h=0

(
aT−1,h

Γ
(
n+1+2h

2
)

(S−1
T /2)

n+1+2h
2

)
=

=
∞∑
h=0

h∑
hT−1=0

ãT−1,h−hT−1

1

(hT−1)!

1

[n/2]hT−1

(
1

4
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)hT−1

k
hT−1

T−2

Γ
(
n+1+2h

2
)

(S−1
T /2)

n+1+2h
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(6.31)

Making a change of variables h = hT + hT−1, equation (6.31) can be written as:

∞∑
hT=0

∞∑
hT−1=0

(
ãT−1,hT

1

(hT−1)!

1
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)
Γ
(
n+1

2
+ hT + hT−1

)
(S−1

T /2)
n+1
2

+hT+hT−1
(6.32)

Noting that Γ
(
n+1

2
+ hT + hT−1

)
= Γ

(
n+1

2
+ hT

)[
n+1

2
+ hT

]
hT−1

, (6.32) can be written as:
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ãT−1,hTΓ

(
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2
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)[(n+ 1)/2 + hT
]
hT−1

[n/2]hT−1

(
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)
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(6.33)
where:

ãT−2,hT−1
=
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ãT−1,hTΓ

(
n+ 1

2
+ hT

)[(n+ 1)/2 + hT
]
hT−1

[n/2]hT−1

(
1
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ρ2ST
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(hT−1)!
(2ST )

n+1+2hT
2

Therefore, we have that the integral of (6.30) with respect to kT−1 gives (6.33).Therefore,
collecting the terms that depend on kT−2 we have that:

π(kT−2|k1:(T−3), y1:T ) ∝

|kT−2|
n+1−2

2 exp

(
− 1

2
S−1
T−1kT−2

)( ∞∑
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ãT−2,hT−1
k
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T−2

)
0F1

(
n

2
;
1

4
ρ2kT−2kT−3

)
(6.34)

Equation (6.34) depends on the product of two series, which can be written as follows:
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( ∞∑
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)
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(
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(hT−2)!

1
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)
=
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h=0

( h∑
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ãT−2,h−hT−2

1

(hT−2)!

1

[n/2]hT−2

(
1

4
ρ2kT−3

)hT−2
)
khT−2 =
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h=0

aT−2,hk
h
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where:

aT−2,h =
h∑

hT−2=0

ãT−2,h−hT−2

1

(hT−2)!

1

[n/2]hT−2

(
1

4
ρ2kT−3
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Therefore, we can write (6.34) as:

π(kT−2|k1:(T−3), y1:T ) ∝ |kT−2|
n+1−2

2 exp

(
− 1

2
S−1
T−1kT−2

) ∞∑
h=0

aT−2,hk
h
T−2 (6.35)

which proves the result for s = 2.
Because π(kT−2|k1:(T−3), y1:T ) in (6.35) and π(kT−1|k1:T−2, y1:T ) in (6.30) have the same

structure, and because the transition density is always the same, we can conclude the result
is proven for any s = 0, . . . , T −2. For s = T −1 there is no transition density from k0 to k1,
therefore there is no need to multiply two series, so we get a1,h = ã1,h and S2 = (1+B2e2

1)−1.

6.5 Proposition 6.3 and proof

We can integrate π(k1:T )π(y1:T |k1:T ) with respect to k1:(t−1) and with respect to k(t+1):T to
obtain the following proposition which gives the marginal density π(kt|y1:T ) for t = 2, . . . , T−
1. Note that for t = T or t = 1 the marginal densities are given by Propositions 3.2 and 6.2,
respectively.

Proposition 6.3. The density of π(kt|y1:T ) is that of a mixture of gammas and its kernel is
given by:

π(kt|y1:T ) ∝ |kt|
n+1−2

2 exp

(
− 1

2
S−1
t+1kt

) ∞∑
h=0

D̃t,h|kt|h

for t = 2, . . . , T − 1, where for 2 ≤ t < T − 1:
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D̃t,h =
h∑

ht=0

∞∑
ht+1=0

C̃t,h−ht
1

[n/2]ht

(
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4
ρ2

)ht 1

ht!

Γ
(
n+1

2
+ ht + ht+1

)
(S−1

t+2/2)
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2
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and for t = T − 1:
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h∑
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1
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(
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)hT−1 1

(hT−1)!

Γ
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2
+ hT−1

)
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T+1/2)
n+1
2

+hT−1

where ãt+1,h was defined in Proposition 6.2 and C̃t,ht was defined in Proposition 3.1.

Proof. To find π(kt|y1:T ) we need to integrate π(k1:T )π(y1:T |k1:T ) with respect to k1:(t−1) and
with respect to k(t+1):T . From the proofs of propositions 3.2 and 3.3, we have that when
2 ≤ t < (T − 1):

∫ ∫
π(k1:T )π(y1:T |k1:T )dk1:(t−1)dk(t+2):T ∝ |kt|

n+1−2
2 exp

(
− 1

2
S−1
t+1kt

)( ∞∑
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)

× |kt+1|
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2 exp
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− 1

2
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)( ∞∑
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at+2,h

Γ
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2
+ h
)

(S−1
t+3/2)

n+1+2h
2

)
(6.36)

In the proof of proposition 3.3, it is shown that:

∞∑
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at+2,h

Γ
(
n+1

2
+ h
)

(S−1
t+3/2)

n+1+2h
2

=
∞∑
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ãt+1,hk
h
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Therefore (6.36) can be written as:

π(kt, kt+1|y1:T ) ∝ |kt|
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2 exp
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2
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)( ∞∑
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ãt+1,hk
h
t+1

) (6.37)

The product of the two series can be written as:

( ∞∑
h=0

Ct,h|kt|h
)( ∞∑
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h
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(6.38)

45



where neither ãt+1,ht+1 nor C̃t,h−ht depend on kt+1. Therefore, we can integrate out kt+1 from
(6.37) using (6.38) to obtain:

π(kt|y1:T ) ∝ |kt|
n+1−2

2 exp

(
− 1

2
S−1
t+1kt

)( ∞∑
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D̃t,h|kt|h
)

where
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as we wanted to prove.
In the case t = T − 1, expression (6.37) becomes:

π(kT−1, kT |y1:T ) ∝ |kT−1|
n+1−2

2 exp
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(6.39)

Thus, in this case we only have one series, not the product of two. Integrating with respect
to kT we get:

π(kT−1|y1:T ) ∝ |kT−1|
n+1−2

2 exp
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as we wanted to prove.

6.6 Proof of Local Scale Model Likelihood

To facilitate the reading we do not explicitly write xt as a conditioning argument. Given
that we have a gamma distribution for the initial condition (2.2) and a Gaussian error term,
we have that the joint density (y1, θ1, ν1) is :

π(y1, θ1, ν1) =
1√
2π

(θ1)
1
2 exp

(
− 1

2
(y1 − x1β)2θ1

)
f(θ1|S1)

Γ(α1 + α2)

Γ(α1)Γ(α2)
να1−1

1 (1− ν1)α2−1

where f(θ1|S1) is the density of the initial condition given as:

f(θ1|S1) = θ
ν
2
−1

1 exp

(
− θ1

2S1

)
1

Γ(ν/2)(2S1)
ν
2

(6.40)
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The volatility process is represented by a non stationary process as in (2.1). We make a
change of variables from (y1, θ1, ν1) to (y1, Z, θ2) where Z = θ1 − λθ2, and v1 = θ2λ

θ1
. The

Jacobian of this transformation is λ/(Z + λθ2). Therefore π(y1, Z, θ2) can be written as:

π(y1, Z, θ2) =
(Z + λθ2)

1
2

√
2π

exp

(
− 1

2
(y1 − x1β)2(Z + λθ2)

)
(Z + λθ2)

ν
2
−1 exp

(
− (Z + λθ2)

2S1

)
×
(

(Z + λθ2)

λ

)−1
1

Γ(ν/2)(2S1)
ν
2

Γ(α1 + α2)

Γ(α1)Γ(α2)

(
θ2λ

Z + λθ2

)α1−1(
Z

Z + λθ2

)α2−1

which simplifies to:

π(y1, Z, θ2) =
1√
2π

exp

(
− 1

2

(
(y1 − x1β)2 +

1

S1

)
(Z + λθ2)

)
×

Γ(α1 + α2)

Γ(α1)Γ(α2)

(Z + λθ2)
ν
2

+ 1
2
−(α1+α2)

Γ(ν/2)(2S1)
ν
2

λα1Z
α2−1θα1−1

2

Note that for mathematical convenience, α1 is restricted as α1 = ν
2

and α2 = 1
2
. Therefore,

ν
2

+ 1
2
− (α1 + α2) = 0, and π(Z|y1, θ2) is a gamma distribution. Using the properties of the

gamma distribution, we can integrate over the state variable Z:

π(y1, θ2) =

∫
π(y1, Z, θ2)dZ

=
Γ(α2)√

2π

exp

(
− λθ2

2

(
(y1 − x1β)2 + 1

S1

))
(

2

(
(y1 − x1β)2 + 1

S1

)−1)−α2

Γ(α1 + α2)

Γ(α1)Γ(α2)

λα1 θ
ν/2−1
2

Γ(ν/2)(2S1)
ν
2

(6.41)

From equation (6.41) we can see that θ2|y1 is a gamma distribution with parameters
(
ν
2
, 2S2

)
,

where S2 =
(
(y1− x1β)2 + 1

S1

)−1 1
λ

. Let f(θ2|S2) be defined as in (6.40), that is, the density
of a gamma distribution:

f(θ2|S2) = θ
ν
2
−1

2 exp

(
− θ2

2S2

)
1

Γ(ν/2)(2S2)
ν
2

. (6.42)

Then equation (6.41) can be written as follows:

π(y1, θ2) =
Γ(α2)

Γ(α2)

Γ(α1 + α2)

Γ(α1)

λα1

Γ(ν/2)(2S1)
ν
2

1√
2π

(
2

(
(y1−x1β)2+

1

S1

)−1)α2

f(θ2|S2)Γ(ν/2)(2S2)
ν
2

Therefore, θ2|y1 is a gamma distribution, such that π(θ2|y1) = f(θ2|S2), which is defined in
(6.42).
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From these derivations we can get the likelihood as follows. First, for t = 1, we have that

π(y1|θ1) =
1

(
√

2π)
θ

1
2
1 exp

(
− 1

2
θ1(y1 − x1β)2

)
and the initial condition for θ1 is a gamma distribution given in (6.40). Therefore, π(y1) is
a student-t and we have:

π(y1) =
Γ(α1 + α2)

Γ(α1)
λα1

(
S2

S1

)α1 1√
2π

(
2

(
(y1 − x1β)2 +

1

S1

)−1)α2

(6.43)

For t = 2, π(y2|θ2) is also a normal. Thus the conditional distribution for the second
observation given θ2 is as follows:

π(y2|θ2) =
1

(
√

2π)
θ

1
2
2 exp

(
− 1

2
θ2(y2 − x2β)2

)
and π(θ2|y1) is the gamma distribution defined in (6.42). Therefore, we have the same
structure as in t = 1, and using the properties of the gamma distribution, we get that the
likelihood π(y2|y1) is a student-t as follows:

π(y2|y1) =
Γ(α1 + α2)

Γ(α1)
λα1

(
S3

S2

)α1 1√
2π

(
2

(
(y2 − x2β)2 +

1

S2

)−1)α2

(6.44)

where S3 =
(
(y2 − x2β)2 + 1

S2

)−1 1
λ
.

Because the kernels are the same for t = 1 and for t = 2, then we have proved it for every
t.

6.7 Model with a Leverage Effect

In the presence of a leverage effect the model equation is yt = µ + xtβ + γk−1
t + et, with

var(et) = (B2kt)
−1 and γ 6= 0. The likelihood is given by the following proposition.

Proposition 6.4. Let ẽt = yt−µ−xtβ for t = 1, ..., T . The likelihood for the first observation
is:

L(y1) =
1

c0

(2π)−
1
2

√
B22 exp(γB2ẽ1)

Kp(
√
a1b)

(a1/b)(p/2)

and for t ≥ 2,

L(yt|y(1:(t−1))) =
1

mt

(2π)−
1
2

√
B22 exp(γB2ẽt)

∞∑
ht=0

M̃t,ht

Kp+ht(
√
atb)

(at/b)(p+ht)/2

where Kp(.) is the modified Bessel function of the second kind (Abramowitz et al. (1988,
p.375)) and p = (n+1)/2, b = B2, a1 = V −1

1 +B2ẽ2
1, at = 1+B2ẽ2

t , m2 = Γ(n/2)2(n−2)/2m̄0,
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m̄0 = 2Kp(
√
a1b)

(a1/b)p/2
.

c0 =
Γ(n/2)

((1− ρ2)/2)n/2

M̃2,h2 =
1

h2!

1

[n/2]h2

(
ρ2

4

)h2 Kp+h2(
√

(a1 + ρ2)b)

((a1 + ρ2)/b)(p+h2)/2

M̃t,ht =
∞∑

ht−1=0

1

ht!

1

[n/2]ht

(
ρ2

4

)ht Kp+ht−1+ht(
√

(at−1 + ρ2)b)

((at−1 + ρ2)/b)(p+ht−1+ht)/2
M̃t−1,ht−1 for t ≥ 3

mt =
∞∑
ht=0

M̃t,ht

Γ(n+ht
2

)

2(n+ht)/2
for t ≥ 3

Proof. From the model equation yt = µ + xtβ + γ 1
kt

+ et, with et|kt ∼ N(0, (ktB
2)−1), we

can write et = (yt − µ− xtβ − γ/kt) = ẽt − γ/kt, with ẽt = (yt − µ− xtβ), such that:

(et)
2 = (ẽt)

2 +
γ

kt
(
γ

kt
− 2ẽt)

(et)
2kt = (ẽt)

2kt +
γ2

kt
− 2γẽt

The likelihood of the first observation is the following integral:

L(y1) =
1

c0

∫
(2π)−

1
2

√
B2k

(n+1−2)/2
1 exp

(
−1

2
((B2ẽ2

1 + V −1
1 )k1 +

B2γ2

k1

)

)
exp(γB2ẽ1)dk1

(6.45)

where V −1
1 = 1 − ρ2 and c0 = Γ(n/2)

((1−ρ2)/2)n/2
. From (6.45) we can see that π(k1|y1) is the

following generalized inverse Gaussian distribution:

π(k1|y1) =
1

m̄0

kp−1
1 exp(−1

2
(a1k1 +

b

k1

))

Since the integrand of (6.45) is the kernel of a generalized inverse Gaussian distribution
(GIG, Jørgensen (1982)), the integral can be solved as follows:

L(y1) =
1

c0

(2π)−
1
2

√
B22 exp(γB2ẽ1)

Kp(
√
a1b)

(a1/b)(p/2)
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The likelihood of the second observation can be obtained as:

L(y2|y1) =

∫
L(y2|k1:2, y1)π(k1:2|y1)dk1:2

=

∫
L(y2|k2, y1)π(k2|y1)dk2

=

∫
(2π)−

1
2

√
B2k

1/2
2 exp

(
−1

2
(B2ẽ2

2k2 +
B2γ2

k2

)

)
exp(γB2ẽ2)π(k2|y1)dk2

(6.46)

where we have used that L(y2|k1:2, y1) = L(y2|k2, y1). Using that π(k2|k1, y1) = π(k2|k1), the
expression for π(k2|y1) can be found as follows:

π(k2|y1) =

∫
π(k1:2|y1)dk1

=

∫
π(k2|k1)π(k1|y1)dk1

=

∫
1

m̄0

k
n+1−2

2
1 exp

(
−1

2

(
a1k1 + b

1

k1

))
exp

(
−1

2
ρ2k1

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
1

l2
dk1

=
1

m̄0

1

l2

∞∑
h=0

1

[n/2]h

(
1
4
ρ2k2

)h
h!

2Kp+h

(√
(a1 + ρ2)b

)
((a1 + ρ2)/b)(p+h)/2

(6.47)
where l2 was defined in (6.6) in the proof of Proposition 3.1 and contains terms that do
not depend on k1. Using this expression for π(k2|y1) we can see that (6.46) is a mixture of
generalized inverse Gaussian distributions, and therefore L(y2|y1) can be written as:

L(y2|y1) =
1

m2

(2π)−
1
2

√
B22 exp(γB2ẽ2)

∞∑
h2=0

M̃2,h2

Kp+h2(
√
a2b)

(a2/b)(p+h2)/2

The density π(k3|y2, y1) can be obtained from π(k3|y2, y1) =
∫
π(k3|k2, y2, y1)π(k2|y2, y1)dk2,

where π(k3|k2, y2, y1) = π(k3|k2) is the transition density and π(k2|y2, y1) ∝ π(k2|y1)L(y2|k2, y1):

π(k2|y2, y1) ∝ k
n+1−2

2
2 exp

(
−1

2

(
a2k2 + b

1

k2

)) ∞∑
h=0

1

[n/2]h

(
1
4
ρ2k2

)h
h!

Kp+h(
√

(a1 + ρ2)b)

((a1 + ρ2)/b)
p+h
2

Therefore we have:

π(k3|y2, y1) ∝
∫
k
n−2
2

3 exp

(
−1

2
k3

)
0F1

(
n

2
;
1

4
ρ2k2k3

)
exp(−1

2
ρ2k2)π(k2|y2, y1)dk2

∝ exp

(
−1

2
k3

) ∞∑
h3=0

k
n−2
2

+h3
3 M̃3,h3
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Therefore the filtering distribution of k3 is:

π(k3|y2, y1) =
1

m3

exp

(
−1

2
k3

) ∞∑
h3=0

k
n−2
2

+h3
3 M̃3,h3

And the likelihood is:

L(y3|y2, y1) =

∫
L(y3|k3, y1, y2)π(k3|y1, y2)dk3

=

∫
(2π)−

1
2

√
B2k

1/2
3 exp

(
−1

2
(B2ẽ2

3k3 +
B2γ2

k3

)

)
exp(γB2ẽ3)π(k3|y1, y2)dk3

=
1

m3

(2π)−
1
2

√
B22 exp(γB2ẽ3)

∞∑
h3=0

M̃3,h3

Kp+h3(
√
a3b)

(a3/b)(p+h3)/2

Because L(y3|y2, y1) is the same as L(y2|y1), and the transition density of k4|k1:3 is the same
as that of k3|k1:2, we will obtain the same likelihood for t ≥ 3.

Proposition 6.5. When the leverage parameter is different from 0 (γ 6= 0), the joint poste-
rior distribution π(k1:T |y1:T ) can be obtained from the following conditional densities each of
which is a mixture of generalized inverse Gaussian:

π(kt|k(t+1):T , y1:T ) ∝ |kt|
n+1−2

2 exp

(
− 1

2
S−1
t+1kt +

b

kt

) ∞∑
h=0

(
Mt,h|kt|h

)
, t = 1, ..., T

where

M1,h =
1

h!

1

[n/2]h

(
1

4
ρ2k2

)h
S2 = (1 +B2e2

1)−1

ST+1 = (1 +B2e2
T )−1

for 3 ≤ t ≤ T
St = (1 +B2e2

t−1 + ρ2)−1

and for 2 ≤ t < T :

Mt,h =
h∑

ht=0

M̃t,h−ht
1

ht!

1

[n/2]ht

(
1

4
ρ2kt+1

)ht
while for t = T , Mt,h = M̃t,h, and where M̃t,h has been defined in Proposition 6.4.

Proof. Combining the prior density for k1 in (6.1) with the transition equation in (6.4) and
the likelihood, we get:
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π(k1|k2:T , y1:T ) ∝ |k1|
n+1−2

2 exp

(
− 1

2

(
S−1

2 k1 +
B2γ2

k1

))
exp

(
ẽ1B

2γ
)

0F1

(
n

2
;
1

4
ρ2k1k2

)
∝ |k1|

n+1−2
2 exp

(
− 1

2

(
S−1

2 k1 +
B2γ2

k1

)) ∞∑
h=0

(
M1,h|k1|h

)
(6.48)

Note that M1,h is equal to C1,h, which were the coefficients obtained in Proposition 3.2 for
the case of no leverage (γ = 0). Note also that the terms related to the leverage effect are
exp(ẽtB

2γ), which does not affect the distribution of kt, and exp(B2γ2/k1), which makes the
gamma distribution become a generalized inverse Gaussian distribution. Proceeding in the
same way as in the proof of Proposition of 3.2, we obtain that Mt,h is obtained from M̃t,h

using the same recursion that was used in Proposition 3.2 to obtain Ct,h from C̃t,h.

6.8 Monte Carlo Experiment

To see the impact of sample size on the properties of the ML estimates we carry out a Monte
Carlo experiment. We consider two possible scenarios for the values of the parameters,
and in order to fix reasonable ones we select those from the estimation of the model with
US inflation (case 1) and with Canadian exchange rate data (case 2). Thus in case 1 we
have n = 3.21, ρ = 0.96, B2 = 0.28, β = (0.1053, 0.5772, 0.0500, 0.3304,−0.0747) and
xt = (1, yt−1, yt−2, yt−3, yt−4). In case 2 we have n = 6.2, ρ = 0.98, B2 = 317, β = (0.00) and
xt = (1).

Because the parameters n, B2 and ρ are restricted, we maximize the likelihood with
respect to the transformed unrestricted parameters Tn = log(n), Tb2 = log(B2) and Trho =
log(−log(1 − ρ)). Confidence intervals are constructed using the standard errors of the
transformed parameters, which are obtained from (1/T ) times the inverse of the negative
Hessian of the log likelihood evaluated at the MLE. We repeat the experiment for several
values of T between 50 and 350, and use 500 simulated datasets for each value of T .

Table 7 shows the coverage of 95% confidence intervals for the parameters n, ρ, B2 and
for the combination of parameters xtβ with t = T/2 (for a known value of xt). We can see
that the coverage is close to the true value of 95 when the sample size is 250 or larger, except
for n which is slightly oversized in case 2. The table also shows the average absolute bias to
estimate xtβ (as a percentage of the true value only in case 1, because the true value is 0 in
case 2). We can see that the bias decreases with the sample size, as expected.

Table 8 shows the coverage of 95%, 90% and 80% confidence intervals for the volatilities
(var(et|y1:(t−1)) = (B2kt)

−1)) at t = T/2 and t = T . These are obtained by simulating first
from the estimated asymptotic distribution of the estimator to simulate values of n, ρ,B2, and
then simulate the volatilities conditioning on these values using the smoothing distributions.
We can see that the coverage is close to the true value of 95 when the sample size is 50 or
larger in case 1, and from 150 in case 2. The table also shows the median absolute bias to
estimate the volatility as a percentage of the true value. We can see that the bias decreases
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with the sample size, as expected.

Table 7: Coverage of 95% confidence intervals and
bias of parameters

T B2 n ρ βxt bias
50 79.6 97.8 100 89.2 17.9
100 86.2 97.4 99.4 91.8 4.6
150 87.4 98.0 99.0 94.0 5.1

Case 1 200 91.4 97.0 98.8 93.8 21.2
250 93.6 96.6 96.2 93.0 10.9
300 93.0 95.6 96.6 93.0 1.6
350 93.2 94.8 96.4 93.6 5.7

50 88.0 98.2 98.8 95.6 5.8E-04
100 90.6 98.6 99.4 94.4 4.0E-04
150 92.6 98.8 99.0 96.2 3.1E-04

Case 2 200 92.2 98.2 97.4 95.8 2.6E-04
250 92.8 99.2 96.6 96.6 2.5E-04
300 95.8 99.2 96.8 96.6 2.2E-04
350 96.0 98.6 97.4 95.6 2.1E-04

The column labeled bias indicates the mean abso-
lute bias to estimate βx for case 2, but for case 1
it is the same but in percentage with respect to the
true value. The coverage is also expressed in per-
centage. T is the sample size, and the number of
replications for each value of T was 500.
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Table 8: Coverage and bias of volatilities: var(et|y1:t) = (B2kt)
−1

t = T/2 t = T
T c95% c90% c80% bias c95% c90% c80% bias
50 96.8 94.2 84.6 63 94.2 90.4 79.6 63
100 94.8 90.4 79.6 51 94.0 89.0 78.6 59
150 94.2 88.2 81.2 44 94.4 88.4 75.8 57

Case 1 200 93.4 89.0 78.8 47 94.8 89.2 80.8 52
250 91.6 87.4 76.4 44 94.6 90.2 79.4 54
300 91.8 87.2 77.8 45 91.2 84.8 76.0 50
350 92.2 86.6 74.8 47 93.2 88.8 79.8 45

50 99.6 98.4 95.4 161 96.8 95.6 90.2 103
100 97.8 94.0 88.6 69 97.4 94.4 87.6 41
150 94.4 91.2 81.4 67 96.0 91.4 83.4 39

Case 2 200 93.8 89.6 82.2 50 91.8 86.8 79.0 41
250 92.2 88.0 77.2 43 93.0 87.6 78.4 37
300 90.2 85.0 76.4 41 95.0 90.2 77.6 37
350 92.2 84.0 73.0 44 93.2 87.4 79.6 32

cx% indicates the coverage of a x% confidence interval for the volatility
var(et|y1:t) = (B2kt)

−1 at t = T/2 and at t = T . bias represents the
median absolute bias as a percentage of the true value. The number of
replications for each value of T was 500.
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