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Abstract

This paper proposes a novel Laplace based solution to nonlinear DSGE models that has a

closed form likelihood. We implicitly use a nonlinear approximation to the policy function

that is invertible with respect to the shocks, implying that in the approximation the

shocks can be recovered uniquely from some of the control variables. Using perturbation

methods and a Lagrange inversion formula we are able to calculate the derivatives of

the likelihood and construct the Laplace based solution. In contrast with previous

likelihood-based approaches, the method used here requires neither the introduction of

linear shocks nor simulation to evaluate the likelihood. Using US data we estimate linear

and nonlinear variants of a well-known neoclassical growth model with and without

time-varying variances. We find that a nonlinear heteroscedastic model has a much

better empirical performance. Furthermore, our models allow us to ascertain that the

monetary policy shock causes 95% of the time changes in economic uncertainty.

JEL Classification: E0, C63

Keywords: Economic Uncertainty, Time-Varying Volatility, Risk-Premium, Higher-Order

Approximation.



1 Introduction

Linearization of Dynamic Stochastic General Equilibrium (DSGE) models is a common

tool to approximate the solution of the dynamic optimization problem in a DSGE

(e.g., Blanchard and Kahn (1985), Sims (2002), Klein (2000)). Linearization is typically

achieved by using only the first term of a Taylor expansion around the steady state of the

log of the equations representing the first-order conditions of the dynamic optimization

problem.

Linearization made possible the use of formal statistical methods to estimate and

test DSGE models, such as the General Method of Moments (e.g., Hansen and Single-

ton (1983), Christiano and Eichenbaum (1992)), Maximum Likelihood (e.g., Hansen

and Sargent (1980), Altug (1989)) and Bayesian methods (e.g., DeJong et al. (2000),

Schorfheide (2000), Otrok (2001)).

However, the linearization of this class of models also comes at a cost, because not all

questions can be fully addressed in a linearized model. As argued by Schmitt-Grohé and

Uribe (2004), two such questions are welfare evaluations and risk premia in stochastic

environments. In a linearized model, the agents become risk-neutral, so it is impossible

to analyze the impact of uncertainty on the economy. Furthermore, evaluating social

welfare across alternative stochastic policy environments using a linear approximation

model leads to the omission of some critical second-order terms, resulting in spurious

results.

To address the limitations of the linearization method, Schmitt-Grohé and Uribe

(2004) proposed the use of perturbation methods (e.g., Judd (1998)) to obtain higher-

order Taylor approximations of the policy functions. They also showed that when

perturbation methods are used to obtain a first-order approximation, the result is the

same as that obtained in the previous literature on linearization (e.g., Blanchard and

Kahn (1985)).

In terms of estimation, moving away from a linearized model towards a nonlinear one

is challenging because the structural errors enter the model in a nonlinear fashion, and

the likelihood function is no longer normal or readily available. Despite this difficulty,

the seminal paper of Amisano and Tristani (2011) shows how to obtain the likelihood in

some restricted models when using a second-order approximation to solve the model. The

method is applicable only when there are no unobserved non-stochastic state variables,

which implies for example that in a model with capital, capital has to be an observed
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variable. In addition, this method requires finding solutions of polynomial equations,

which is computationally intensive, and therefore in practice the number of structural

shocks has to be relatively small.

In a groundbreaking paper, Fernández-Villaverde and Rub́ıo-Ramirez (2007) propose

a particle filter approach that permits the numerical approximation of the likelihood and

Bayesian estimation. However, because evaluating the likelihood requires simulation with

a potentially large number of particles, the estimation method is slow, and impracticable

in moderately large models. Furthermore, this approach requires the number of shocks

to be greater than the number of observed variables and that a number of shocks

(structural or measurement errors) enter linearly in the likelihood.

Amisano and Tristani (2011) show that when a DSGE model is approximated with

higher order perturbation methods, the likelihood of the approximated model can be

derived in theory, but is often numerically intractable. To surmount this problem, we

solve the DSGE model in an alternative manner, proposing a higher order Laplace based

solution to the DSGE, whose likelihood can be easily evaluated in closed form. We

build on the perturbation methods literature to find out the mode and higher order

derivatives of the likelihood that form the basis of the Laplace based solution of the

DSGE model. The likelihood of this DSGE model solution is tractable and can be used

in Bayesian or Maximum Likelihood estimation. In contrast with Amisano and Tristani

(2011), this method allows for unobserved non-stochastic state variables, and unlike

Fernández-Villaverde and Rub́ıo-Ramirez (2007) it requires neither the introduction of

linear shocks nor simulation to evaluate the likelihood.

A limitation of our method is that the likelihood can only be evaluated in closed

form if the number of stochastic shocks and the number of observed variables are equal.

However, since the researcher has often some flexibility in choosing these, our method

can be used to estimate a wide range of models.

Using US data, we use our novel approach to estimate the well-known neoclassical

growth model of Fernández-Villaverde (2010). In addition to the baseline model, we

extend the model by allowing the shocks to be heteroscedastic in two different manners:

i) using independent GARCH processes and ii) using a novel common factor GARCH

process that implies that all volatilities move in unison. We find that the nonlinear

DSGE extended with a common factor GARCH is much superior to the linear DSGE

and all other nonlinear variants in terms of the predictive and marginal likelihoods.

Furthermore, the common factor GARCH specification allows us to determine that 95%
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of the time-variation in volatilities are caused by the monetary policy shock.

The remainder of this paper is structured as follows. Section 2 describes the

perturbation method that has been used in previous literature to obtain the policy

function and for estimation. Section 3 presents the Laplace based solution of the DSGE

model and its likelihood. Section 4 illustrates that the Laplace based solution to the

model that we propose gives similar results to the previous approach in the literature.

Then, section 5 uses the proposed method to estimate a neoclassical growth DSGE

model and discusses the results. Finally, section 6 concludes.

2 Using Perturbation Methods to Obtain the Policy Function and Estimate
the Model

Using the first-order conditions of the dynamic optimization problem, we can see that

the general nonlinear form of a DSGE model can be cast as (e.g., Amisano and Tristani

(2011)):

Et[f(yt+1, yt, xt+1, xt)] = 0 (2.1)

where Et is the expectation operator conditional on information available at time

t; yt represents a vector of non-predetermined variables; and xt denotes a vector of

predetermined variables. The vector xt can be partitioned as xt = (K ′t, A
′
t)
′, where Kt

is a vector of endogenous predetermined state variables and At is a vector of exogenous

predetermined state variables. Schmitt-Grohé and Uribe (2004) assume that At+1

follows the stochastic process: At+1 = ΛAt + σεt, where the scalar σ is a perturbation

parameter, and εt is a vector of zero mean innovations, independently and identically

distributed with variance-covariance matrix Σ. The matrix Λ has all eigenvalues within

the unit circle. The solution of the DSGE model consists of the policy functions which

give the optimal value of yt given xt:

yt = gy(Kt, At, σ)

Kt+1 = hK(Kt, At, σ)

At+1 = hA(Kt, At, σ) + σεt

(2.2)

Schmitt-Grohé and Uribe (2004) obtain a Taylor approximation of the above policy

functions, gy, hK and hA around the deterministic steady state, xt = xss and σ = 0,

using perturbation methods. The deterministic steady state is defined as vectors (yss, xss)
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such that f(yss, yss, xss, xss) = 0. Perturbation methods (e.g., Fleming (1971) and Judd

(1998)) provide a higher order Taylor expansion with respect to the state variables

xt as well as the scale parameter σ. Schmitt-Grohé and Uribe (2004) presented a

set of MATLAB programs designed to compute the coefficients of the higher-order

approximations. A similar approach was proposed by Sims (2000) and Collard and

Juillard (2001).

In order to write the higher-order approximation around the deterministic steady

state, let us define the vectors Yt and Xt as:

Yt =

 yt − yss,
Kt+1 −Kss

At+1 − Ass

 , Xt =

(
Kt −Kss

At − Ass

)
,

where yss, Kss, Ass are the deterministic steady state values of yt, Kt, At. Using this

notation the solution in (2.2) can be written as:

Yt = g(Xt, εt, σ) (2.3)

Following Dynare (2021), higher order approximations to (2.3) can be conveniently

written using Kronecker products, and for example a second order approximation

becomes as follows:

Yt = G0,0 +G1,0εt +G0,1Xt +G2,0(εt ⊗ εt) +G0,2(Xt ⊗Xt) +G1,1(εt ⊗Xt) (2.4)

where G0,0, . . . , G1,1 are matrices of coefficients that depend on σ and other parameters

of the model.

Let Y o
t be the variables of Yt for which there are observed data, for t = 1, ..., T .

Taking as given the model solution in (2.4), Amisano and Tristani (2011) derive the

likelihood when Y o
t and εt have the same dimension no, but show that the method is only

computationally feasible when Kt is observed or absent from the model. However, even

in that case, this method requires finding all the 2no solutions of polynomial equations

for each t = 1, ..., T , so in practice it can only be used when no is small. For example,

Amisano and Tristani (2011) provide an empirical application in which the dimension of

the structural errors εt is two.

In a seminal paper, Fernández-Villaverde and Rub́ıo-Ramirez (2007) propose a
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particle-filtering approach that permits the numerical approximation of the likelihood in

nonlinear DSGE models. This method has the advantage that can be used in conjunction

with several solution methods, including not only perturbation methods but also global

solution methods, etc. (e.g., value function iteration). However, the method is slow

because it uses simulation to evaluate the likelihood, and can become impracticable in

models of moderate sizes. Furthermore, this method does not apply to (2.4) unless it is

assumed that either: 1) Y o
t is observed with measurement error; or 2) some elements of

εt enter linearly in (2.4). Either of these linearity assumptions are necessary to calculate

the importance weights in the particle filter. Although adding measurement errors might

be justified and in some cases improves the empirical fit of the model, we think it is of

interest to estimate the theoretical model with only the structural errors, which in most

cases enter nonlinearly.

Kollmann (2017) proposed a novel method to obtain a tractable likelihood in the

estimation of nonlinear DSGE models. However, in this method, nonlinear terms such

as (εt ⊗ εt) are replaced by their unconditional expected value.

3 A Laplace Based Solution and the Likelihood

Writing the vector Yt as Yt = ((Y o
t )′, (Y n

t )′)′, the solution in (2.3) can be written as:

Y o
t = go(Xt, εt, σ)

Y n
t = gn(Xt, εt, σ)

(3.1)

We assume that Y o
t and εt have the same dimension no and that both are defined in

Rno . If the function go(Xt, εt, σ) was globally invertible with respect to εt in an area of

probability 1, then the following inverses would be well-defined:

εt = mo(Xt, Y
o
t , σ)

Y n
t = mn(Xt, Y

o
t , σ)

(3.2)

Following Galewski (2016), the following conditions are sufficient for global invert-

ibility:

1. go(Xt, εt, σ) is differentiable in εt with continuous derivatives.

2. The determinant of the Jacobian of go(Xt, εt, σ) with respect to εt is never 0.
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3. ‖go(Xt, εt, σ)‖ → ∞ as ‖εt‖ → ∞, where ‖.‖ is the norm operator.

The second condition is guaranteed if the policy function is strictly monotonic in εt.

There is a large literature which gives conditions for policy functions to be strictly

monotonic and proves the condition holds in many important models, for example:

Topkis (1978), Hopenhayn and Prescott (1992), Stokey et al. (1989), Gordon and Qiu

(2018). In addition, the assumption of monotonicity has often been exploited in the

literature on DSGE models to obtain the policy function more efficiently (e.g. Christiano

(1990), Judd (1998), Gordon and Qiu (2018)).

We assume that the policy function Y o
t = go(Xt, εt, σ) is locally, but not necessarily

globally, invertible with respect to εt at the steady state. This condition holds if the

Jacobian of the transformation from Y o
t to εt is not zero at the steady state, which is a

condition that can be verified numerically. This will allow us to obtain the Lagrange

inverse of the Taylor approximation of go(Xt, εt, σ)1. In addition, we assume that there

exists a globally invertible approximation of the policy function Y o
t = go(Xt, εt, σ) and

we denote it with Y o
t = ĝo(Xt, εt, σ), and its inverse as εt = m̂o(Xt, Y

o
t , σ). If the policy

function was indeed globally invertible, then we would use ĝo(Xt, εt, σ) = go(Xt, εt, σ).

Otherwise ĝo(Xt, εt, σ) is an invertible function that has the same Taylor polynomial as

go(Xt, εt, σ) up to a high order at the steady state. Two functions will have the same

Taylor polynomial up to some order r, if they have the same value for the derivatives

of order up to r at the point of approximation. Although there is a literature that

constructs invertible approximations of functions (for example approximations of the

cumulative density function of a normal distribution (e.g. Lipoth et al. (2022)), or

approximations of multivariate functions with invertible neural networks (Teshima et al.

(2020), Ishikawa et al. (2022)), for our purposes we do not need to obtain the invertible

approximation explicitly: it is enough to assume that it exists.

We can use m̂o(Xt, Y
o
t , σ) to obtain an approximation of the density of Y o

t conditional

on Xt, if we apply a change of variables theorem (e.g. Billingsley (1999))

πy(Y
o
t |Xt) = πε(m̂o(Xt, Y

o
t , σ))

∣∣∣∣∣∂m̂o(Xt, Y
o
t , σ)

∂Y o
t

∣∣∣∣∣ (3.3)

where ∂m̂o(Xt, Y
o
t , σ)/∂Y o

t is the Jacobian of the transformation and πε is the density

1Although Taylor polynomials are not in general globally invertible, the Lagrange inverse can be
obtained and it approximates the inverse in a neighbourhood of the point of approximation.
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function of ε.

The density in (3.3) can be approximated using a Laplace approximation of order M ,

which we denote as π̂(y,M)(Y
o
t |Xt). A higher order Laplace approximation is a tractable

density function which in logs has derivatives up to order M at the mode that coincide

with those of the log objective density. Using the chain rule, in order to obtain the

Laplace approximation, we only need the derivatives of εt = m̂o(Xt, Y
o
t , σ) at the mode.

Therefore we do not need to obtain the function εt = m̂o(Xt, Y
o
t , σ) explicitly, only its

derivatives. We approximate the mode of (3.3) and obtain the derivatives at the mode

using the Taylor polynomial approximation of m̂o(Xt, Y
o
t , σ) obtained through standard

perturbation methods (as provided by Dynare (2021)) plus a Lagrange inversion formula

to invert the Taylor polynomial.

The Laplace approximation of order M can be constructed using the following

Polynomial-Normal (Skoulakis (2019)) density function:

1

c
exp

(
−1

2
(Y − µ)′Ω−1(Y − µ)

)(
1 +

M∑
j=3

Bj(Y − µ)[j] 1

j!

)2

(3.4)

where x[j] is the Kronecker power defined as:

x[2] = x⊗ x, x[j] = x[j−1] ⊗ x

and c is a normalizing constant. If M = 2 (such that Bj = 0 for all j) then (3.4) is

just a normal density with mean µ and variance-covariance matrix Ω. In this case we

obtain the standard Laplace approximation, with µ equal to the mode of the objective

density and Ω equal to minus the inverse of the Hessian of the log objective density at

the mode. For M > 2 this continues to be true, but the matrix 2Bj contains the jth

order derivatives of the log objective density at the mode. The normalizing constant c is

known because all the moments of the normal density can be calculated in closed form.

Provided that Y o
t = go(Xt, εt, σ) is locally invertible at the steady state, its Tay-

lor polynomial can be locally inverted using a Lagrange inversion formula. As a

matter of notation, let the Lagrange inverse of the s order Taylor polynomial of

(Y o
t = go(Xt, εt, σ), Y n

t = gn(Xt, εt, σ)) be denoted as (Y o
t = m̃o,s(Xt, Y

o
t , σ), Y n

t =

m̃n,s(Xt, Y
o
t , σ)). Specific formulas for these inversions are provided in Proposition 3.3

for the case s = 2. Then the derivatives of the likelihood in (3.3) can be approximated
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by those of the following function:

π̃(y,s)(Y
o
t |Xt) = πε(m̃o,s(Xt, Y

o
t , σ))

∣∣∣∣∂m̃o,s(Xt, Y
o
t , σ)

∂Y o
t

∣∣∣∣ (3.5)

Because the Taylor polynomial m̃o,s(Xt, Y
o
t , σ) need not be globally invertible, the

function π̃(y,s)(Y
o
t |Xt) in (3.5) is not guaranteed to be a proper density function, in

the sense that the area under the curve does not need to add up to one. For this

reason it cannot be used as an approximation for the likelihood. However, because the

derivatives of the Taylor polynomial m̃o,s(Xt, Y
o
t , σ) approximate those of m̂o(Xt, Y

o
t , σ)

near the point of approximation, we can use the derivatives of π̃(y,s)(Y
o
t |Xt) in (3.5) to

approximate the derivatives of the likelihood πy(Y
o
t |Xt) in (3.3). We can then use these

derivatives to construct the Laplace approximation, which is a proper density in the

sense that it integrates up to one.

We therefore propose to obtain the approximation π̂(y,s)(Y
o
t |Xt) to the likelihood

πy(Y
o
t |Xt) using the following procedure.

1. Obtain the Taylor polynomials of the policy function Y o
t = go(Xt, εt, σ) and

Y n
t = gn(Xt, εt, σ) of order s through perturbation methods.

2. Invert the Taylor polynomials using a Lagrange inversion formula to obtain

εt = m̃o,s(Xt, Y
o
t , σ) and Y n

t = m̃n,s(Xt, Y
o
t , σ).

3. Calculate the mode of log(π̃y,s(Y
o
t |Xt)), and the first M order derivatives at the

mode.

4. Use the mode and first M order derivatives to construct the Laplace approximation.

The procedure is started at t = 1 with X1 = 0, which assumes that the initial

value is the deterministic steady state. Because Yt contains Xt+1, for each t we can

obtain Xt+1 by using the observed values Y o
t and the relationship Y n

t = m̃n,s(Xt, Y
o
t , σ).

Because the dimensions of εt and Y o
t are the same, we do not need any Kalman Filter to

calculate the likelihood. Note that when εt is normally distributed, using s = 1 gives the

same likelihood as in the literature for linear DSGE models (e.g. Fernández-Villaverde

(2010)).

Using the Newton-Raphson algorithm, we calculate the mode YL as the point that

maximizes π̃(y,s)(Y
o
t |Xt) in (3.5). The Laplace approximation (3.4) is a polynomial-

normal density with µ equal to YL and Ω equal to the inverse of minus the Hessian
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of log π̃(y,s)(Y
o
t |Xt). The procedure is very fast because the derivatives are available in

analytical form, and the mode for different values of t can be calculated in parallel, as

we did in our code.

The following propositions provide the formulas for implementing the procedure for

order s = M = 2, with the proofs available in Appendix A. Proposition 3.1 gives the

Hessian and gradient of log πy(Y
o
t |Xt) at any point Y o

t as a function of the derivatives

of m̂o(Xt, Y
o
t , σ) when εt is normally distributed.

Proposition 3.2 gives closed expressions for the gradient and Hessian of log π̃(y,2)(Y
o
t |Xt).

Higher derivatives can be obtained using similar rules of matrix calculus, and are provided

in the authors’ personal website for the 3rd order.

Although there are numerous papers that provide general formulas for the Lagrange

inversion (e.g. Apostol (2000), Johnson (2002)), Proposition 3.3 explains how to obtain

it with the Kronecker product notation used by Dynare (2021). Leon-Gonzalez and

Baiaman kyzy (2024) generalize this to the case s > 2.

Proposition 3.1. Define J as the no × no Jacobian of m̂o(Xt, Y
o
t , σ)

J =
∂m̂o(Xt, Y

o
t , σ)

∂(Y o
t )′

(3.6)

Let Y o
t = (Y o

t,1, ..., Y
o
t,no)

′ and define Fi as the no × no matrix:

Fi =
∂J

∂Y o
t,i

, i = 1, ..., no (3.7)

and C as a 1× no vector

C =
(
tr(J−1F1) ... tr(J−1Fno)

)
(3.8)

where tr(.) is the trace operator. The gradient of log(πy(Y
o
t |Xt)) with respect to Y o

t is

∂ log(πy(Y
o
t |Xt))

∂(Y o
t )′

= −(m̂o(Xt, Y
o
t , σ))′Σ−1J + C. (3.9)

Let A be a no × no matrix defined as:

A = (aij), where aij = tr(J−1FiJ
−1Fj) (3.10)

9



and let V be a no × no matrix defined as:

V =
(
V1 ... Vno

)
, where Vi = −F ′iΣ−1(m̂o(Xt, Y

o
t , σ)). (3.11)

Then the Hessian of log(πy(Y
o
t |Xt)) with respect to Y o

t is

H = −J ′Σ−1J + V − A+ F (3.12)

where F is the R×R matrix, defined as

F = (fij), where fi,j = tr(J−1Fij) and Fij is the no × no matrix defined as:

Fi,j =
∂Fi
∂Y o

t,j

Proposition 3.2. Assume that εt = m̃o,2(Xt, Y
o
t , σ) is given by

εt = G̃0,0
o + G̃1,0

o Y o
t + G̃0,1

o Xt + G̃2,0
o (Y o

t ⊗ Y o
t ) + G̃0,2

o (Xt ⊗Xt) + G̃1,1
o (Y o

t ⊗Xt) (3.13)

where G̃0,0
o , . . . , G̃1,1

o are comformable matrices.

Then the Jacobian is:

J =
∂m̃o,2(Xt, Y

o
t , σ)

∂(Y o
t )′

= G̃1,0
o + 2G̃2,0

o (Ino ⊗ Y o
t ) + G̃1,1

o (Ino ⊗Xt) (3.14)

where Ino is the identity matrix of dimension no.

Let ij denote the jth column of the identity matrix, such that Ino = (i1, ..., ino). Define

C as the no × no matrix whose jth column is equal to 2tr(J−1G̃2,0
o (Ino ⊗ ij)), such that:

C = 2(tr(J−1G̃2,0
o (Ino ⊗ i1)), ..., tr(J−1G̃2,0

o (Ino ⊗ ino))) (3.15)

The gradient of log(π̃(y,2)(Y
o
t |Xt)) with respect to Y o

t is:

∂ log(πy(Y
o
t |Xt))

∂(Y o
t )′

= −(m̃o,2(Xt, Y
o
t , σ))′Σ−1J + C (3.16)

Let A be a no × no matrix defined as:

A = (aij), where aij = 4tr(J−1G̃2,0
o (Ino ⊗ ii)J−1G̃2,0

o (Ino ⊗ ij)) (3.17)
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Let V be a no × no matrix defined as:

V =
(
V1 ... Vno

)
, where Vi = −(2G̃2,0

o (Ino ⊗ ii))′Σ−1(m̃o,2(Xt, Y
o
t , σ)) (3.18)

The Hessian of log(π̃(y,2)(Y
o
t |Xt)) with respect to Y o

t is:

H = −J ′Σ−1J + V − A (3.19)

Proposition 3.3. Let the Taylor Polynomials εt = m̃o,2(Xt, Y
o
t , σ) and Y n

t = m̃n,2(Xt, Y
o
t , σ)

be given by:

εt = G̃0,0
o + G̃1,0

o Y o
t + G̃0,1

o Xt + G̃2,0
o (Y o

t ⊗ Y o
t ) + G̃0,2

o (Xt ⊗Xt) + G̃1,1
o (Y o

t ⊗Xt)

Y n
t = G̃0,0

n + G̃1,0
n Y o

t + G̃0,1
n Xt + G̃2,0

n (Y o
t ⊗ Y o

t ) + G̃0,2
n (Xt ⊗Xt) + G̃1,1

n (Y o
t ⊗Xt)

(3.20)

where G̃0,0
o , . . . , G̃1,1

o , and G̃0,0
n , . . . , G̃1,1

n are comformable matrices. The G̃ matrices in

(3.20) can be obtained from the G matrices in (2.4) as follows.


G̃1,0
o =

(
G1,0
o − 2G2,0

o

(
G1,0
o ⊗G1,0

o + 2(G2,0
o ⊗G0,0

o )
)−1

(G0,0
o ⊗G1,0

o )
)−1

G̃1,0
n =

(
G1,0
n − 2G2,0

n

(
G1,0
o ⊗G1,0

o + 2(G2,0
o ⊗G0,0

o )
)−1

(Go
0,0 ⊗Go

1,0)
)
G̃1,0
o

(3.21)


G̃2,0
o = −G̃1,0

o G2,0
o

(
G1,0
o ⊗G1,0

o + 2(G2,0
o ⊗G0,0

o )
)−1

G̃2,0
n =

(
Gn

2,0 − G̃1,0
n Go

2,0
)(
G1,0
o ⊗G1,0

o + 2(G2,0
o ⊗G0,0

o )
)−1

(3.22)
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G̃1,1
o = −

(
G̃1,0
o G1,1

o + 2G̃2,0
o (G1,0

o ⊗G0,1
o ) + 2G̃2,0

o (G1,1
o ⊗Go

0,0)
)(

(G1,0
o )−1 ⊗ InK

)

G̃1,1
n =

(
G1,1
n −

(
G̃1,0
n G2,0

o + 2G̃2,0
n (Go

1,0 ⊗Go
0,1)
)

+ 2G̃2,0
n (G1,1

o ⊗Go
0,0)
)(

(Go
1,0)−1 ⊗ InK

)
(3.23)


G̃0,2
o = −

(
G̃1,0
o G0,2

o + G̃2,0
o (G0,1

o ⊗G0,1
o ) + G̃1,1

o (G0,1
o ⊗ InK )

)
− 2G̃2,0

o

(
Go

0,0 ⊗Go
0,2
)

G̃0,2
n = G0,2

n −
(
G̃1,0
n G0,2

o + G̃2,0
n (G0,1

o ⊗G0,1
o ) + G̃1,1

n (G0,1
o ⊗ InK )

)
− 2G̃2,0

n

(
G0,0
o ⊗G0,2

o

)
(3.24)


G̃0,1
o = −

(
G̃1,0
o G0,1

o + G̃1,1
o (G0,0

o ⊗ InK )
)
− 2G̃2,0

o

(
G0,0
o ⊗G0,1

o

)

G̃0,1
n = G0,1

n −
(
G̃1,0
n G0,1

o + G̃1,1
n (G0,0

o ⊗ InK )
)
− 2G̃2,0

n

(
G0,0
o ⊗G0,1

o

)
(3.25)

G̃0,0
o = −

(
G̃1,0
o G0,0

o + G̃2,0
o (G0,0

o ⊗G0,0
o )
)

G̃0,0
n = G0,0

n −
(
G̃1,0
n G0,0

o + G̃2,0
n (G0,0

o ⊗G0,0
o )
) (3.26)

4 Simulation from the Laplace Based Solution to the DSGE Model

Once the model has been solved by perturbation methods, equation (2.4) can be used

to simulate directly values for Yt. For a given value of X1 this can be done by repeating

the following two steps for t = 1, ..., T :

1. Simulate εt from the appropriate distribution and use equation (2.4) to obtain Yt.

2. Obtain Xt+1 as the appropriate subvector of Yt.

We use this approach to obtain the generalized Impulse Response Functions (IRFs)

12



presented in Section 5 (see e.g. Dynare (2021) for an explanation of how to use simulation

to construct IRFs).

However, it is also possible to simulate Yt using the likelihood of the Laplace based

solution that we have proposed in Section 3. Specifically, for a given initial value of X1

this can be done by repeating the following two steps for t = 1, ..., T :

1. Simulate Y o
t using the Laplace approximated density π̂(y,M)(Y

o
t |Xt).

2. Obtain Y n
t using the Lagrange inverse Y n

t = m̃n,s(Xt, Y
o
t , σ). Obtain Xt+1 as the

appropriate subvector of Yt.

Note that perturbation methods give an approximation of the policy functions around

the steady state, and that the quality of the approximation deteriorates as we get further

from the steady state. For this reason, we cannot expect the perturbation methods to be

informative about the tails of the distribution of Yt. Instead, we can expect that several

distributions will be consistent with the local properties of the true distribution around

the steady state. The Laplace based solution of the model uses the local derivatives

to construct a density which is consistent with the local properties around the steady

state, and yet can be calculated easily numerically. In contrast, as argued in previous

sections, the exact likelihood for the solution obtained using only perturbation methods

cannot be computed, except in limited cases.

However, if perturbation methods are accurate in approximating the true policy

functions, we should expect both solutions to give similar results. We can evaluate this

by comparing the IRFs obtained from both approaches. To obtain IRFs in the Laplace

based solution, we should introduce intervention dummies it containing the impulses.

Hence, the structural errors of this economy become εt + it, which we introduce in the

Lagrange inverse polynomials εt + it = m̃o,2(Xt, Y
o
t , σ) and Y n

t = m̃n,2(Xt, Y
o
t , σ) that

were presented in equation (3.20) as follows:

εt = G̃0,0
o − it + G̃1,0

o Y o
t + G̃0,1

o Xt + G̃2,0
o (Y o

t ⊗ Y o
t ) + G̃0,2

o (Xt ⊗Xt) + G̃1,1
o (Y o

t ⊗Xt)

Y n
t = G̃0,0

n + G̃1,0
n Y o

t + G̃0,1
n Xt + G̃2,0

n (Y o
t ⊗ Y o

t ) + G̃0,2
n (Xt ⊗Xt) + G̃1,1

n (Y o
t ⊗Xt)

(4.1)

These equations are the same as in (3.20) except that we now write (εt + it) instead

of (εt) or equivalently (G̃0,0
o − it) instead of (G̃0,0

o ). The simulation then can be carried

out as explained above but using (4.1) instead of (3.20), and choosing the vector it

according to the IRF that needs to be calculated.
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Figure 1: IRFs to a Monetary Policy Shock: Second-Order Perturbation Methods versus
Laplace Based Solution
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Figure 1 shows the IRFs to a monetary policy shock obtained with these two

approaches for the empirical analysis in Section 5. We find that the IRFs are very

similar and mostly overlap with each other2.

2The figure shows the responses of inflation, nominal interest rate, investment and rental rate of
capital. The responses of other variables are also similar, and can be found in Baiaman kyzy (2023).
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5 Empirical Analysis

5.1 Model and Data Description

We estimate linear and nonlinear variants of the neoclassical growth DSGE model of

Fernández-Villaverde (2010) using US data from 1959 Q1 to 2019 Q4 (244 observations).

We used the same 5 variables as in Fernández-Villaverde (2010), updated to a longer

sample: 1) the relative price of investment with respect to the price of consumption, 2)

real output per capita growth, 3) real wages per capita growth, 4) the consumer price

index growth and 5) the federal funds rate. Table B3 in Appendix B describes the data

sources and the transformations to obtain the observed variables in the model (Y o
t ). For

the nonlinear models we used a second order approximation (s = M = 2) in the logs of

the variables.

The model has 5 normally distributed structural shocks: a preference shock εd,t,

a labor disutility shock εϕ,t, an investment specific technology shock εµI ,t, a neutral

technology shock εA,t and a monetary policy shock mt. Their standard deviations are

estimated and are denoted as expσd, expσϕ, expσµ, expσA and expσm, respectively.

The model is defined by 30 equations (Table B1) and has 30 variables (Table B2). The

structural errors appear in equations (6.24)- (6.27) and (6.15) in Table B1. We estimate

25 unknown parameters in the linear and homoscedastic nonlinear models. We follow

Fernández-Villaverde (2010) in the specification of the priors (Tables B4 and B5) and in

the calibration of some parameters: ε = 10, η = 10 and φ = 0. However, we differ in

leaving unrestricted two parameters: δ and γ2.

The basic structure of this neoclassical growth model is as follows. There is a

representative household which consumes, saves, holds money, supplies labor, and sets

its own wages subject to a demand curve and Calvo’s pricing. The final output is

produced by a final good firm, which uses as inputs a continuum of intermediate goods

manufactured by monopolistic competitors. The intermediate good producers rent

capital and labor to produce their good. They face the constraint that they can only

change prices following a Calvo’s rule. Finally, there is a monetary authority that fixes

the one-period nominal interest rate through open market operations with public debt.

One of the limitations of the linear DSGE models is that they cannot handle het-

eroscedastic structural errors, because the heteroscedasticity disappears from the model

with the linear approximation. However, heteroscedasticity is important to reflect the

changing uncertainty in the economy, and it also greatly improves the empirical perfor-
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mance of econometric models. We therefore consider two heteroscedastic versions of the

nonlinear model. The first one allows the variances of the structural errors to change in

the fashion of a GARCH model. The shocks continue to have the same unconditional

variance (e.g. exp(2σd)), but they are multiplied by a time-varying process with an

expected value of one:

log d̃t = ρdlog dt−1 +
√
σ̃d,tεd,t

σ̃d,t = ρd1σ̃d,t−1 + ρd2σ̃d,t−1
(εd,t−1)2

exp(2σd)
+ (1− ρd1 − ρd2)

logϕt = ρϕlogϕt−1 +
√
σ̃ϕ,tεϕ,t

σ̃ϕ,t = ρϕ1 σ̃ϕ,t−1 + ρϕ2 σ̃ϕ,t−1
(εϕ,t−1)2

exp(2σϕ)
+ (1− ρϕ1 − ρ

ϕ
2 )

log µI,t = Λµ +
√
σ̃µ,tεµI ,t

σ̃µ,t = ρµ1 σ̃µ,t−1 + ρµ2 σ̃µ,t−1
(εµI ,t−1)2

exp(2σµ)
+ (1− ρµ1 − ρ

µ
2)

log µA,t = ΛA +
√
σ̃A,tεA,t

σ̃A,t = ρA1 σ̃A,t−1 + ρA2 σ̃A,t−1
(εA,t−1)2

exp(2σA)
+ (1− ρA1 − ρA2 )

Rt
R

=
(
Rt−1

R

)γR(Πt
Π

)γΠ

 ỹdt
ỹdt−1

zt
zt−1

Λ
yd

γy1−γR

exp (
√
σ̃m,tmt)

σ̃m,t = ρm1 σ̃m,t−1 + ρm2 σ̃m,t−1
(εm,t−1)2

exp(2σm)
+ (1− ρm1 − ρm2 )

where the last two equations define monetary policy using a Taylor rule. We assume

that ρi1 > 0, ρi2 > 0 and that (ρi1 + ρi2) < 1, for i = d, ϕ, µ,A,m. Under these restrictions

the time-varying variances (σ̃d,t, σ̃ϕ,t, σ̃µ,t, σ̃A,t, σ̃m,t) have expected values equal to one,

so that the long-run variances are (exp 2σd, exp 2σϕ, exp 2σµ, exp 2σA, exp 2σm). The

GARCH version of the model has 10 extra parameters: ρd1, ρd2, ρϕ1 , ρϕ2 , ρµ1 , ρµ2 , ρA1 , ρA2 , ρm1 ,

ρm2 . We specify independent beta priors for each of these parameters. The prior mean and

standard deviation for ρi1 are 0.7 and 0.046, respectively, for i = d, ϕ, µ,A,m. The prior

mean and standard deviation for ρi2 are 0.2 and 0.12, respectively, for i = d, ϕ, µ,A,m.
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We also consider a restricted GARCH model in which the variances evolve according

to a common multiplicative factor σ̃t. Here we assume that for every t this restriction

holds: σ̃t=σ̃d,t= σ̃ϕ,t= σ̃µ,t= σ̃A,t= σ̃m,t. The common factor σ̃t responds to past values

of the structural shocks as in a GARCH model:

σ̃t = ρ1σ̃t−1 + ρ2σ̃t−1
(ε̃t−1)2

var(ε̃t)
+ (1− ρ1 − ρ2)

ε̃t = δd
εd,t

exp (σd)
+ δϕ

εϕ,t
exp (σϕ)

+ δµ
εµI ,t

exp (σµ)
+ δA

εA,t
exp (σA)

+ δm
εm,t

exp (σm)

var(ε̃t) = δ2
d + δ2

ϕ + δ2
µ + δ2

A + δ2
m

In this model all structural shocks contribute to the time variation of the common

factor. We can measure the relative contributions of the shocks to such time variation

by the following proportions:

pd =
δ2
d

var(ε̃t)
, pϕ =

δ2
ϕ

var(ε̃t)
, pµ =

δ2
µ

var(ε̃t)
, pA =

δ2
A

var(ε̃t)
, pm =

δ2
m

var(ε̃t)
,

where pd+pϕ+pµ+pA+pm = 1. For example, pm is the proportion of the time-variation

in uncertainty driven by the monetary policy shock.

When it comes to estimating the common factor GARCH model, we have to realize

that we have to normalize the vector δ = (δd, δϕ, δµ, δA, δm) because it is not identified.

We normalize it by the restriction δ2
d + δ2

ϕ + δ2
µ + δ2

A + δ2
m = 1, such that var(ε̃t) = 1.

Regarding the prior, we specify a beta prior for ρ1, with mean 0.7 and standard deviation

0.046. We then define δ̃ =
√
ρ2δ such that ρ2 = δ̃′δ̃, and specify a normal prior for δ̃

with 0 mean and var-cov matrix equal to (0.2/5)I5, where I5 is the identity matrix. This

implies that the prior for ρ2 is a chi-squared distribution with 5 degrees of freedom and

mean equal to 0.2. The implied prior for the normalized vector δ is a uniform.

We, therefore, estimate and compare four models:

� M1: Log-linearized model with homoscedastic shocks.

� M2: Model resulting from second-order approximation with homoscedastic shocks.

� M2,G: Model resulting from second-order approximation with unrestricted GARCH

in the shocks.
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� M2,fG: Model resulting from second-order approximation with a common factor

in the GARCH processes.

5.2 Results and Discussion

Models are evaluated with the marginal likelihood (e.g., Koop (2003), p. 4), predictive

likelihood (Geweke and Amisano (2010)), and posterior probabilities that use the

predictive likelihood as weights. The marginal likelihood was calculated following

Gelfand and Dey (1994) and Geweke (1999), and the predictive likelihood corresponds

to observations from 45 to 244. We used a block Metropolis-Hasting algorithm with

a random walk proposal to obtain draws from the posterior distribution (e.g., Koop

(2003), p. 97). The average computation time for estimation of models is 2–3 hours

with 300000 iterations3.

Table 1 shows that all nonlinear models (M2, M2,G, and M2,fG) are better than the

linear one (M1) in terms of marginal likelihoods and predictive likelihoods, with the

nonlinear factor GARCH model M2,fG being by far the best performing model with a

posterior probability of one. Therefore, we can conclude that the nonlinear solution

fits the data better than a linear approximation, and that volatilities follow a common

pattern over time.

Regarding the common factor GARCH model M2,fG, Table 2 shows the posterior

estimates for the proportions of uncertainty caused by each structural shock. We find

that the monetary policy shock causes 95% of the time-variation in volatilities, whereas

the investment specific technology shock causes 4%. The posterior estimates and 95%

credible intervals in the four models for all parameters can be found in Appendix B in

Tables B4, B5, B6, B7 and B8.

Figure 2 shows the generalized impulse response functions to a positive monetary

policy shock, which represent log deviations from the steady-state following a shock of

one standard deviation. As expected, a positive monetary shock has a contractionary

impact on aggregate output, consumption, real wages, and investment in all four models.

However, model M2 results in IRFs that are somewhat different from those in other

models. This is because the posterior estimates for some parameters (for example h, γ,

κ, and χ) are different, causing different steady-state values for consumption, investment,

output, and wages (Table B9), which in turn induces slightly different IRFs. If we used

3Using a computer with processor Intel(R) Core (TM) i7-10700, CPU 2.90GHz, and RAM 16.0 GB.
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the same values for the parameters, models M1 and M2 would provide similar IRFs (as

shown in Figure B7).

Figure 3 plots the likelihood for each observation, which measures the probability of

observing the data for each quarter based on the estimated parameters. The sample

period captures several main recessions, mainly the economic downturn in the US

followed by the oil price shock of the 1970s or Early 80s Recession; and the Great

Recession of 2008 to 2009. During both periods, the log-likelihood for models with

heteroscedastic shocks decreases less than for the linear and homoscedastic quadratic

models. The reason for this might be that in heteroscedastic models the conditional

variance in periods of crisis increases, and therefore the likelihood decreases less when

there is a large shock. Figure B8 in Appendix B shows the cumulative likelihood function

over the sample, showing that M2,fG outperforms other models and better captures the

characteristics of the data.

Appendix B shows the fitted and actual values (Figures B1-B4) as well as posterior

estimates of latent processes such as productivity growth and marginal cost (Figures B5

and B6).

Model No of pa-
rameters

Log Marg.
Likelihood

Predictive
Likelihood

Pr(M|Y)

M1 25 4596.30 3782.58 0

M2 25 4602.10 3794.59 0

M2,G 35 4639.30 3792.19 0

M2,fG 31 4711.60 3859.99 1

Table 1: Model Performance Measures for M1, M2, M2,G and M2,fG. The log marginal
likelihood was calculated by importance sampling (Geweke (1999)). The predictive
likelihood is calculated for observations 45 to 244. Pr(M |Y ) is the posterior probability
of model M using the predictive likelihood.

pd pϕ pµ pA pm

Estimate 0.0039 0.0001 0.0434 0.0012 0.9514

Table 2: Posterior Means for Proportions in Model M2,fG
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Figure 2: IRFs to a Positive Monetary Policy Shock. The IRFs are calculated using the
posterior mode of the parameters.

Figure 3: Log Likelihood for Models M1, M2, M2,G and M2,fG. The likelihood is
evaluated at the posterior mode of the parameters.
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6 Conclusions

This paper developed a new methodology for nonlinear DSGE models that allows the

likelihood-based estimation of some important models that cannot be estimated with the

current likelihood methods available in the literature. In particular, this method neither

requires the number of shocks to be greater than the number of observed variables, nor

that some shocks enter linearly in the model. In addition, the method allows for the

presence of unobserved non-stochastic state variables, such as capital.

This method implicitly uses an invertible approximation of the policy function,

according to which the shocks can be recovered uniquely from some of the control

variables. It then uses the local inverse of the policy function to provide a Laplace based

solution of the model. The likelihood of this solution can be calculated in closed form,

which greatly speeds the calculation and allows for the estimation of larger models. In

contrast with previous methods, our novel methodology does neither require simulation

to evaluate the likelihood, nor solving systems of polynomial equations.

In the empirical analysis we used our novel method to estimate linear and nonlinear

variants of the well-known neoclassical growth model of Fernández-Villaverde (2010)

using US data from 1959 Q1 to 2019 Q4. Although the linear version can only handle

homoscedastic structural errors, among the nonlinear variants we considered both

homoscedastic and heteroscedastic structural errors. We found that all nonlinear

variants performed better than the linear model in terms of the marginal and predictive

likelihoods. A novel common factor GARCH model had by far the best performance and

allowed us to estimate that 95% of the economic uncertainty was caused by the monetary

policy shock. Although the IRFs in this model were similar to the ones obtained with the

linear model, the heteroscedastic models had much higher likelihood values in periods

of economic turbulence, thanks to their better representation of uncertainty.
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Appendix A: Proofs of Propositions 3.1, 3.2 and 3.3

Proof of Proposition 3.1

Proof. Let πo = log(πy(Y
o
t |Xt)). From (3.3), assuming normality for εt we have that:

πo = log(πo(Y
o
t |Xt)) = −1

2
ε
′

tΣ
−1εt + log |J | − 1

2
log |Σ| − no

2
log(2π)

Using matrix differential calculus, the derivatives of a determinant can be calculated
(e.g Magnus and Neudecker (1999)), such that a differential of πo can be written as:

∂πo = −ε′tΣ−1∂εt + tr(J−1∂J)

where ∂J is the differential of J and can be written as:

∂J =
no∑
i=1

∂J

∂Y o
t,i

∂Y o
t,i =

no∑
i=1

Fi∂Y
o
t,i

Therefore, we can write:

tr(J−1∂J) = tr(J−1

no∑
i=1

Fi∂Y
o
t,i) =

no∑
i=1

tr(J−1Fi)∂Y
o
t,i = C∂Y o

t

where: ∂Y o
t = (∂Y o

t,1, Y
o
t,2, . . . Y

o
t,no)

′
.

Therefore, ∂πo can be written as:

∂πo = −ε′tΣ−1∂εt + C∂Y o
t

From the definition of Jacobian J , we have that ∂εt = J∂Y o
t . Therefore, we can write:

∂πo = −ε′tΣ−1J∂Y o
t + C∂Y o

t

which gives the result that proves (3.9):

∂πo
∂(Y o

t )′
= −ε′tΣ−1J + C = −(m̂o(Xt, Y

o
t , σ))′Σ−1J + C.

Define π1 = ∂πo
∂(Y ot )′

and take a differential:

∂π1 = −∂ε1
tΣ
−1J − ε′tΣ−1∂J + ∂C
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As before, we have ∂εt = J∂Y o
t . So, we can write:

∂π1 = −(∂Y o
t )
′
J
′
Σ−1J − ε′tΣ−1∂J + ∂C (6.1)

From ∂J =
∑no

j=1 Fj∂Y
o
t,j, we can write:

−ε′tΣ−1∂J = −
no∑
j=1

ε
′

tΣ
−1Fj∂Y

o
t,j = −(∂Y o

t )
′


ε
′
tΣ
−1F1

ε
′
tΣ
−1F2
...

ε
′
tΣ
−1Fno

 = (∂Y o
t )
′


V
′

1

V
′

2
...
V
′
no

 = (∂Y o
t )
′
V
′

Therefore, from (6.1) we can write ∂π1 as:

∂π1 = (∂Y o
t )
′
(−J ′Σ−1J + V ) + ∂C (6.2)

where we have used the fact that V is symmetric. In order to calculate ∂C, first note
that:

∂(tr(J−1Fi)) = tr(∂J−1Fi + J−1∂Fi)

and also that (e.g. Magnus and Neudecker (1999)):

∂J−1 = −J−1∂JJ−1

such that, using ∂J =
∑no

j=1
Fj
∂Y ot,j

, we have that:

∂(tr(J−1Fi)) =
no∑
j=1

tr(−J−1FjJ
−1Fi)∂Y

o
t,j + tr(J−1∂Fi)

Because C = (tr(J−1F1) . . . tr(J−1Fno)) we have that:

∂C = −(∂Y o
t )
′
∂Fi

Now using that ∂Fi =
∑no

j=1 Fij∂Y
o
t,j we can write:

∂C = −(∂Y o
t )
′
A+ (∂Y o

t )
′
F (6.3)

Combining (6.2) and (6.3) we get:

∂π1 = (∂Y o
t )
′
(−J ′Σ−1J + V − A+ F )
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which implies that the Hessian in (−J ′Σ−1J + V − A+ F ), as we wanted to prove.

Proof of Proposition 3.2

Proof. To find the Jacobian let us take the differential of (3.13) which is given by:

∂εt = G̃1,0
o ∂Y o

t + G̃2,0
o (∂Y o

t ⊗ Y o
t ) + G̃2,0

o (Y o
t ⊗ ∂Y o

t ) + G̃1,1
o (∂Y o

t ⊗Xt) (6.4)

Note that G̃2,0
o contains second-order derivatives. In particular, each row of G̃2,0

o is the
vectorized version of a Hessian matrix, which is symmetric. From this we have that:

G̃2,0
o (∂Y o

t ⊗ Y o
t ) = G̃2,0

o (Y o
t ⊗ ∂Y o

t ),

so that (6.4) can be written as:

∂εt = G̃1,0
o ∂Y o

t + 2G̃2,0
o (∂Y o

t ⊗ Y o
t ) + G̃1,1

o (∂Y o
t ⊗Xt) =

= G̃1,0
o ∂Y o

t + 2G̃2,0
o (Ino ⊗ Y o

t )∂Y o
t + G̃1,1

o (Ino ⊗Xt)∂Y
o
t

=
(
G̃1,0
o + 2G̃2,0

o (Ino ⊗ Y o
t ) + G̃1,1

o (Ino ⊗Xt)
)
∂Y o

t

(6.5)

This shows that the Jacobian is the expression given in (3.14):

J = G̃1,0
o + 2G̃2,0(Ino ⊗ Y o

t ) + G̃1,1
o (Ino ⊗Xt)

To calculate (F1, . . . , Fno) let us obtain the differential of J as:

∂J = 2G̃2,0(Ino ⊗ ∂Y o
t ),

which shows that Fj = 2G̃2,0(Ino ⊗ ij) for j = 1, . . . , no. Using (3.8) and (3.9) in Propo-
sition 3.1 we obtain (3.15) and (3.16). The expressions for A and V in (3.17) and (3.18)
were obtained by using the expression for Fj in equation (3.10) and (3.11) of Proposition
3.1. Finally, (3.19) is obtained from (3.12) by noting that Fj does not depend on Y o

t ,
and, thus, Fij = 0.

Proof of Proposition 3.3

Proof. Here we use εt = mo(Xt, Y
o
t , σ) as the local inverse of the policy function

Y o
t = go(Xt, εt, σ), which exists provided that the Jacobian is different from 0. Similarly,
Y n
t = mn(Xt, Y

o
t , σ) is the local inverse of Y n

t = gn(Xt, εt, σ). From the properties of
the inverse function, we have that εt = mo(Xt, go(Xt, εt, σ), σ), and also that Y n

t =
mn(Xt, go(Xt, εt, σ), σ) = gn(Xt, εt, σ). Therefore, a second-order Taylor expansion of
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the composition functions mo(Xt, go(Xt, εt, σ), σ), and mn(Xt, go(Xt, εt, σ), σ) gives the
following:

mo(Xt, go(Xt, εt, σ), σ) = F 0,0
o + F 1,0

o εt + F 0,1
o Xt + F 2,0

o (εt ⊗ εt)+
F 0,2
o (Xt ⊗Xt) + F 1,1

o (εt ⊗Xt) = εt
(6.6)

mn(Xt, go(Xt, εt, σ), σ) = F 0,0
n + F 1,0

n εt + F 0,1
n Xt + F 2,0

n (εt ⊗ εt)+
F 0,2
n (Xt ⊗Xt) + F 1,1

n (εt ⊗Xt) = Yn = gn(Xt, εt, σ)
(6.7)

Equations (6.6)-(6.7) imply the following restrictions on the F matrices:

F 0,0
o = 0, F 1,0

o = I, F 0,1
o = 0, F 2,0

o = 0, F 0,2
o = 0, F 1,1

o = 0,

F 0,0
n = G0,0

n , F 1,0
n = G1,0

n , F 0,1
n = G0,1

n , F 2,0
n = G2,0

n ,

F 0,2
n = G0,2

n , F 1,1
n = G1,1

n

(6.8)

Let g̃o,s(Xt, εt, σ) and g̃n,s(Xt, εt, σ) be the Taylor approximations of order s to the pol-
icy functions go(Xt, εt, σ) and gn(Xt, εt, σ), respectively. The second-order Taylor approx-
imation of the composition functions mo(Xt, go(Xt, εt, σ), σ), and mn(Xt, go(Xt, εt, σ), σ)
can be obtained by calculating the composition function of the corresponding Taylor
polynomials and keeping the terms up to 2nd order.

Therefore, using the Taylor approximations in (2.4) and in (3.20) we can calculate
the compositions mo(Xt, go(Xt, εt, σ), σ), and mn(Xt, go(Xt, εt, σ), σ), and obtain the
coefficients for (εt ⊗ εt), (εt), (εt ⊗Xt), (Xt ⊗Xt), (Xt) and for the constant term.
Equating these coefficients with those in (6.8) gives the following 12 equations with 12
unknowns.

for (εt ⊗ εt)
G̃o

2,0
(G1,0

o ⊗G1,0
o ) + 2G̃o

2,0
(G0,0

o ⊗G2,0
o ) + G̃o

1,0
G2,0
o = F 2,0

o = 0

G̃n
2,0

(G1,0
n ⊗G1,0

n ) + 2G̃n
2,0

(G0,0
n ⊗G2,0

n ) + G̃n
1,0
G2,0
n = F 2,0

n = G2,0
n

(6.9)

for (εt) 
G̃o

1,0
G1,0
o + 2G̃o

2,0
(G0,0

o ⊗G1,0
o ) = F 1,0

o = I

G̃n
1,0
G1,0
o + 2G̃n

2,0
(G0,0

o ⊗G1,0
o ) = F 1,0

n = G1,0
n

(6.10)
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for (εt ⊗Xt)
G̃o

1,1
(G1,0

o ⊗ IK) + G̃o
1,0
G1,1
o + 2G̃o

2,0
(G1,0

o ⊗G0,1
o ) + 2G̃o

2,0
(G1,1

o ⊗G0,0
o ) = F 1,1

o = 0

G̃n
1,1

(G1,0
o ⊗ IK) + G̃n

1,0
G1,1
o + 2G̃n

2,0
(G1,0

o ⊗G0,1
o ) + 2G̃n

2,0
(G1,1

o ⊗G0,0
o ) = F 1,1

n = G1,1
n

(6.11)

for (Xt ⊗Xt)


G̃o

0,2
+ G̃o

1,0
G0,2
o + G̃o

2,0
(G0,1

o ⊗G0,1
o ) + G̃o

1,1
(G1,0

o ⊗ IK) + 2G̃o
2,0

(G0,0
o ⊗G0,2

o ) = F 0,2
o = 0

G̃n
0,2

+ G̃n
1,0
G0,2
o + G̃n

2,0
(G0,1

o ⊗G0,1
o ) + G̃n

1,1
(G1,0

o ⊗ IK) + 2G̃n
2,0

(G0,0
o ⊗G0,2

o ) = F 0,2
n = G0,2

n

(6.12)

for (Xt)
G̃o

0,1
+ G̃o

1,0
G0,1
o + G̃o

1,1
(G0,0

o ⊗ IK) + 2G̃o
2,0

(G0,0
o ⊗G0,1

o ) = F 0,1
o = 0

G̃n
0,1

+ G̃n
1,0
G0,1
o + G̃n

1,1
(G0,0

o ⊗ IK) + 2G̃n
2,0

(G0,0
o ⊗G0,1

o ) = F 0,1
n = G0,1

n

(6.13)
for the constant term:

G̃o
0,0

+ G̃o
1,0
G0,0
o + G̃o

2,0
(G0,0

o ⊗G0,0
o ) = F 0,0

o = 0

G̃n
0,0

+ G̃n
1,0
G0,0
o + G̃n

2,0
(G0,0

o ⊗G0,0
o ) = F 0,0

n = G0,0
n

(6.14)

Thus, solving the system of equations in (6.9)-(6.14) through substituting and
collecting terms we obtain the proposed solutions for matrices of the second-order
approximation of the inverses.

Appendix B: Additional Tables and Figures for the Empirical Analysis.

Name Model equation
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FOC consumption:

dt

(
c̃t − hc̃t−1

zt−1

zt

)−1

−hβEtdt+1

(
c̃t+1

zt+1

zt
− hc̃t

)−1

= λ̃t

(6.1)

Euler equation:

λ̃t = βEt{λ̃t+1
zt
zt+1

Rt

Πt+1

} (6.2)

FOC capital utiliza-

tion: r̃t = γ1 + γ2(ut − 1) (6.3)

FOC capital:

q̃t = βEt

{ λ̃t+1

λ̃t

zt
zt+1

µt
µt+1

((1− δ)q̃t+1 + r̃t+1ut+1−

− (γ1(ut+1 − 1) +
γ2

2
(ut+1 − 1)2))

} (6.4)

FOC investment:

1 = q̃t

(
1− S

[
x̃t
x̃t−1

zt
zt−1

]
− S ′

[
x̃t
x̃t−1

zt
zt−1

]
x̃t
x̃t−1

z̃t
z̃t−1

)
+

+βEtq̃t+1
λ̃t+1

λ̃t

zt
zt+1

S ′
[
x̃t+1

x̃t

zt+1

zt

](
x̃t+1

x̃t

z̃t+1

z̃t

)2

(6.5)

where:

S

[
x̃t
x̃t−1

zt
zt−1

]
=
κ

2

(
x̃t
x̃t−1

zt
zt−1

− exp Λz

)2

S ′
[
x̃t+1

x̃t

zt+1

zt

]
= κ

(
x̃t
x̃t−1

zt
zt−1

− exp Λz

)
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Wage setting 1:

ft =
η − 1

η
(ω̃∗t )

1−ηλ̃t(ω̃t)
ηldt+

+ βθωEt

(
Πχω
t

Πt+1

)1−η ( ω̃∗t+1

ω̃∗t

zt+1

zt

)η−1

ft+1

(6.6)

Wage setting 2:

ft = ψdtϕt(Π
∗ω
t )−η(1+γ)(ldt )

1+γ+

+ βθωEt

(
Πχω
t

Πt+1

)η(1+γ)( ω̃∗t+1

ω̃∗t

zt+1

zt

)η(1+γ)

ft+1

(6.7)

Firm price setting

1: g1
t = λ̃tmctỹ

d
t + βθpEt

(
Πχ
t

Πt+1

)−ε
g1
t+1 (6.8)

Firm price setting

2:

g2
t = λ̃tΠ

∗
t ỹ
d
t + βθpEt

(
Πχ
t

Πt+1

)1−ε(
Π∗t

Π∗t+1

)
g2
t+1 (6.9)

Firm price setting

3: εg1
t = (ε− 1)g2

t (6.10)

Optimal capital la-

bor ratio: utk̃t−1

ldt
=

α

(1− α)

ω̃t
r̃t

zt
zt−1

µt
µt−1

(6.11)

Marginal costs:

mct =

(
1

1− α

)1−α(
1

α

)α
(ω̃t)

1−α r̃αt (6.12)
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Law of motion

wages:

1 = θω

(
Πχω
t−1

Πt

)1−η (
ω̃t−1

ω̃t

zt−1

zt

)1−η

+ (1− θω) (Π∗ωt )1−η

(6.13)

Law of motion

prices: 1 = θp

(
Πχ
t−1

Πt

)1−ε

+ (1− θp)Π∗1−εt (6.14)

Taylor Rule:

Rt

R
=

(
Rt−1

R

)γR(Πt

Π

)γΠ

 ỹdt
ỹdt−1

zt
zt−1

Λyd

γy1−γR

exp (mt)

(6.15)

Resource con-

straint:
ỹdt = c̃t + x̃t +

zt−1

zt

µt−1

µt

(
γ1(ut − 1) +

γ2

2
(ut − 1)2

)
k̃t−1

(6.16)

Aggregate produc-

tion:
ỹdt =

At
At−1

zt−1

zt

(
utk̃t−1

)α (
ldt
)1−α − φ

vpt
(6.17)

Aggregate labor

market: lt = vωt l
d
t (6.18)

LOM Price disper-

sion term: vpt = θp

(
Πχ
t−1

Πt

)−ε
vpt−1 + (1− θp)Π∗−εt (6.19)
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LOM Wage disper-

sion term:

vwt = θw

(
ω̃t−1

ω̃t

Πχw
t−1

Πt

)−η
vwt−1 + (1− θw)(Π∗wt )−η (6.20)

Law of motion for

capital: k̃t
zt
zt−1

µt
µt−1

− (1− δ)k̃t−1−

zt
zt−1

µt
µt−1

(
1− S

[
x̃t
x̃t−1

zt
zt−1

])
x̃t = 0

(6.21)

Profits:

Ft = ỹdt −
1

(1− α)
ω̃tl

d
t (6.22)

Definition optimal

wage inflation: Π∗ωt =
ω∗t
ωt
, where ω∗t = ω̃∗t zt, ωt = ω̃tzt (6.23)

Preference Shock:

log dt = ρdlog dt−1 + εd,t (6.24)

Labor disutility

Shock: logϕt = ρϕlogϕt−1 + εϕ,t (6.25)

Investment specific

technology: log µI,t = Λµ + εµI ,t, where µI,t =
µt
µt−1

(6.26)

Neutral technology:

log µA,t = ΛA + εA,t, where µA,t =
At
At−1

(6.27)

33



Definition compos-

ite technology: µz,t = µ
1

(1−α)

A,t µ
α

(1−α)

I,t , where µz,t =
zt
zt−1

(6.28)

and

γ1 = µz,t
µI,t
β
− (1− δ) (6.29)

and

Λx = exp Λz (6.30)

and

Λz =
ΛA + αΛµ

1− α
(6.31)

observation equa-

tion 1 yot = log(ỹdt )− log(ỹdt−1) + log(µz,t) (6.32)

observation equa-

tion 2 ωot = log(ω̃t)− log(ω̃t−1) + log(µz,t) (6.33)

Table B1: Model Equilibrium Equations
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Variable Description Variable Description

c̃t consumption Π Inflation

dt shock to intertemporal
preferences

λ̃t Lagrange multiplier

µz,t trend growth rate of the
economy

µI,t growth rate of investment-
specific technology growth

µA,t growth rate of neutral
technology

Rt Nominal Interest rate

r̃t rental rate of capital x̃t investment

ut capacity utilization q̃t Tobin marginal q

ft recursive formulation of
wage setting

ldt aggregate labor demand

ω̃t real wage ω̃∗t optimal real wage

Π∗t optimal price inflation Πω∗
t optimal wage inflation

ỹdt aggregate output mct marginal costs

kt capital lt aggregate labor bundle

g1
t variable 1 for recursive for-

mulation of price setting
g2
t variable 2 for recursive for-

mulation of price setting

vpt price dispersion term vωt wage dispersion term

ϕt labor disutility shock Ft firm profits

ωt non-detrended real wage ω∗t non-detrended optimal
real wage

Table B2: Variables in the Model.
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Name in Database Transformation Model
Notation

Description

Relative Price of
Investment Goods
(PIRIC)

−∆ log(x) log(µI,t) log of growth
rate of invest-
ment specific
technology
growth

Real gross domes-
tic product per
capita (A939RX0Q
048SBEA)

∆ log(x) yot real output per
capita growth

Nonfarm Business
Sector: Real Com-
pensation Per Hour
(COMPRNFB)

∆ log(x) ωot real wages per
capita growth

Gross Domestic Prod-
uct: Implicit Price
Deflator (GDPDEF)

∆ log(x) Πt log of gross infla-
tion

Effective Federal
Funds Rate (FED-
FUNDS)

log (1 + x/400) Rt log of gross nom-
inal interest rate

Table B3: Data Sources and Transformations Used. All variables were obtained from
the Federal Reserve Bank of St. Louis’ FRED database. The column ’Transformation’
indicates the transformation to the original series in the database to match the model
variable indicated in the column ’Model Notation’. yot and ωot are defined in the
observation equations (6.32)-(6.33) in Table B1.
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M1 - First-order M2 - Second-order

Mean Credible interval Mean Credible interval

β Gamma 0.998 0.1 0.9983 [0.9972, 0.9992] 0.9990 [0.9983, 0.9996]

h Beta 0.7 0.1 0.5523 [0.4448, 0.6488] 0.8382 [0.8149, 0.8592]

ψ Normal 9 3 9.0389 [3.4819, 14.8717] 9.8073 [5.7470, 15.1635]

γ Normal 1 0.25 0.0761 [-0.0775, 0.3174] 1.6953 [1.2575, 2.1099]

κ Normal 4 1.5 5.8466 [3.6256, 8.3106] 0.2005 [0.1432, 0.2709]

α Normal 0.3 0.025 0.2937 [0.2521, 0.3351] 0.3069 [0.2643, 0.3501]

θp Beta 0.5 0.1 0.6466 [0.5714, 0.7114] 0.5948 [0.5033, 0.6539]

χ Beta 0.5 0.1 0.1228 [0.0433, 0.2403] 0.3335 [0.1624, 0.5760]

θω Beta 0.5 0.1 0.3361 [0.2166, 0.5528] 0.3138 [0.2693, 0.3598]

χω Beta 0.5 0.1 0.5408 [0.3551, 0.7189] 0.4496 [0.2732, 0.6178]

γR Beta 0.75 0.1 0.6830 [0.6276, 0.7297] 0.7086 [0.6600, 0.7516]

γY Normal 0.120 0.05 0.1791 [0.0962, 0.2662] 0.2971 [0.2376, 0.3557]

γπ Normal 1.5 0.125 1.6409 [1.4678, 1.8212] 1.7790 [1.6430, 1.9509]

Π̄ Gamma 1.01 0.1 1.0089 [1.0075, 1.0103] 1.0082 [1.0071, 1.0095]

ρd Beta 0.5 0.2 0.9140 [0.8672, 0.9572] 0.7451 [0.6844, 0.8066]

ρφ Beta 0.5 0.2 0.9948 [0.9892, 0.9989] 0.9931 [0.9860, 0.9984]

Table B4: Prior and Posterior Distribution for Structural Parameters of M1 and M2 (Part I)
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M1 - First-order M2 - Second-order

Mean Credible interval Mean Credible interval

Λµ Normal 0.34 0.1 0.0056 [0.0049, 0.0063] 0.0059 [0.0051, 0.0065]

ΛA Normal 0.178 0.075 0.0007 [-0.0002, 0.0016] 0.0010 [0.0001, 0.0018]

γ2 Beta 0.01 0.03 0.2704 [0.1168, 0.4904] 0.2768 [0.1075, 0.4830]

δ Beta 0.025 0.015 0.0652 [0.0344, 0.1108] 0.0396 [0.0331, 0.0517]

σA IG* 0.1 2 -4.4390 [-4.5647, -4.3140] -4.5792 [-4.7789, -4.3977]

σd IG* 0.1 2 -3.6454 [-3.9580, -3.2126] -2.5250 [-2.7005, -2.3576]

σϕ IG* 0.1 2 -3.6866 [-3.9529, -3.4014] -2.4428 [-2.6186, -2.2635]

σµ IG* 0.1 2 -5.0890 [-5.1792, -4.9960] -5.0900 [-5.1741, -5.0024]

σm IG* 0.1 2 -5.7512 [-5.8581, -5.6345] -5.7818 [-5.8811, -5.6742]

Table B5: Prior and Posterior Distribution for Structural Parameters of M1 and M2 (Part II). *The prior distribution is
given for exp σi and the posterior for σi. IG denotes the Inverse Gamma distribution.
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M2,G - GARCH M2,fG - fGARCH

Mean Credible interval Mean Credible interval

β Gamma 0.998 0.1 0.9987 [0.9977, 0.9994] 0.9986 [0.9977, 0.9984]

h Beta 0.7 0.1 0.5525 [0.4622, 0.6492] 0.5645 [0.4695, 0.6619]

ψ Normal 9 3 9.0195 [3.4322, 14.8874] 9.0756 [3.3670, 14.8716]

γ Normal 1 0.25 -0.0382 [-0.0653, -0.0061] 0.0665 [-0.0866, 0.3564]

κ Normal 4 1.5 5.5269 [3.0775, 8.2445] 6.2402 [3.9788, 8.7965]

α Normal 0.3 0.025 0.2730 [0.2322, 0.3119] 0.2846 [0.2425, 0.3257]

θp Beta 0.5 0.1 0.5598 [0.5059, 0.6004] 0.5577 [0.4911, 0.6144]

χ Beta 0.5 0.1 0.2181 [0.1669, 0.2582] 0.1574 [0.0584, 0.2929]

θω Beta 0.5 0.1 0.3353 [0.2936, 0.3809] 0.2898 [0.1424, 0.6048]

χω Beta 0.5 0.1 0.5171 [0.3225, 0.7110] 0.4805 [0.2884, 0.6749]

γR Beta 0.75 0.1 0.6872 [0.6468, 0.7187] 0.8038 [0.7687, 0.8349]

γY Normal 0.120 0.05 0.1688 [0.1094, 0.2217] 0.1770 [0.0937, 0.2617]

γπ Normal 1.5 0.125 1.6800 [1.5929, 1.7591] 1.6974 [1.5432, 1.8576]

Π̄ Gamma 1.01 0.1 1.0073 [1.0063, 1.0083] 1.0064 [1.0057, 1.0071]

ρd Beta 0.5 0.2 0.9313 [0.9172, 0.9401] 0.9152 [0.8830, 0.9436]

ρφ Beta 0.5 0.2 0.9954 [0.9912, 0.9989] 0.9954 [0.9911, 0.9987]

Table B6: Prior and Posterior Distribution for Structural Parameters of M2,G and M2,fG (Part I).
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Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M2,G - GARCH M2,fG - fGARCH

Mean Credible interval Mean Credible interval

Λµ Normal 0.34 0.1 0.0054 [0.0048, 0.0060] 0.0058 [0.0051, 0.0064]

ΛA Normal 0.178 0.075 0.0006 [-0.0002, 0.0014] 0.0003 [-0.0005, 0.0010]

ρd1 Beta 0.7 0.046 0.6533 [0.6101, 0.6886] 0.6019 [0.4979, 0.6550]

ρd2 Beta 0.2 0.12 0.1377 [0.1243, 0.1552] - -

ρϕ1 Beta 0.7 0.046 0.6933 [0.5972, 0.7795] - -

ρϕ2 Beta 0.2 0.12 0.0568 [0.0159, 0.1048] - -

ρµ1 Beta 0.7 0.046 0.6610 [0.5711, 0.8102] - -

ρµ2 Beta 0.2 0.12 0.1377 [0.0843, 0.1956] - -

ρA1 Beta 0.7 0.046 0.6974 [0.5934, 0.7877] - -

ρA2 Beta 0.2 0.12 0.0810 [0.0251, 0.1448] - -

ρm1 Beta 0.7 0.046 0.7194 [0.6216, 0.8128] - -

ρm2 Beta 0.2 0.12 0.0483 [0.0321, 0.0680] - -

δd Normal 0 0.2 - - -0.0392 [0.0274, 0.0517]

δϕ Normal 0 0.2 - - -0.0064 [-0.0021, 0.0160]

δµ Normal 0 0.2 - - -0.1302 [0.1007, 0.1716]

δA Normal 0 0.2 - - 0.0217 [-0.0493, 0.0029]

δm Normal 0 0.2 - - 0.6096 [-0.6770, -0.5622]

γ2 Beta 0.01 0.03 0.3002 [0.1550, 0.4980] 0.3381 [0.1654, 0.5544]

δ Beta 0.025 0.015 0.1137 [0.0618, 0.1897] 0.0900 [0.0494, 0.1503]

Table B7: Prior and Posterior Distribution for Structural Parameters of M2,G and M2,fG (Part II)



41

Distr.

Prior distribution Posterior distribution

Mean St.Dev.
M2,G - GARCH M2,fG - fGARCH

Mean Credible interval Mean Credible interval

σA IG* 0.1 2 -4.7088** [-4.8680, -4.5454] -2.9338 [-3.5957, -2.2367]

σd IG* 0.1 2 -3.9732 [-4.0799, -3.8386] -2.1175 [-2.7748, -1.4216]

σϕ IG* 0.1 2 -3.8355 [-4.000, -3.6370] -1.9639 [-2.6691, -1.2032]

σµ IG* 0.1 2 -5.0391 [-5.1912, -4.8591] -3.3121 [-3.9670, -2.6109]

σm IG* 0.1 2 -5.7833 [-5.9118, -5.6464] -4.2818 [-4.9142, -3.5850]

Table B8: Prior and Posterior distribution for structural parameters of M2,G and M2,fG (Part III). *The prior distribution
is given for expσi and the posterior for σi. IG denotes the Inverse Gamma distribution.
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Model variables Model M1 Model M2 Deviations

Consumption, c -2.068 -0.5128 -1.555

Investment, x -3.123 -1.5038 -1.619

Labor demand, ld -2.285 -0.9476 -1.338

Output, yd -1.769 -0.1971 -1.572

Capital, k -0.5121 1.5109 -2.022

Aggregate labor, l -2.2851 -0.9473 -1.3378

Firm profits, F -4.073 -2.4990 -1.5727

Table B9: Steady-State Values for Models M1 and M2.
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Figure B1: Fitted vs Observed Values for M1 and M2: Nominal Interest Rate and
Output.
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Figure B2: Fitted vs Observed Values for M1 and M2: Inflation and Wage.

Figure B3: Fitted vs Observed Values for M2,G and M2,fG: Nominal Interest Rate and
Output.
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Figure B4: Fitted vs Observed values for M2,G and M2,fG: Inflation and Wage.

Figure B5: Posterior Estimates of Productivity Growth and Marginal Cost for M1 and
M2.
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Figure B6: Posterior Estimates of Productivity Growth and Marginal Cost for M2,G

and M2,fG.

Figure B7: IRFs to a Monetary Policy Shocks for M1 and M2 Using the Same Values
for the Parameters. The values of the parameters are the posterior estimates in the
linear model.
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Figure B8: Cumulative Log Likelihoods for M1, M2, M2,G and M2,fG.

47


	Introduction
	Using Perturbation Methods to Obtain the Policy Function and Estimate the Model
	A Laplace Based Solution and the Likelihood
	Simulation from the Laplace Based Solution to the DSGE Model
	Empirical Analysis
	Model and Data Description
	Results and Discussion

	Conclusions



