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A Hybrid Measure of Efficiency in DEA

Kaoru Tone*
National Graduate Institute for Policy Studies
2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8677, Japan.

Abstract

This paper proposes a new hybrid measure of efficiency for DEA.
It provides a unifying framework for radial and non-radial approaches.
Keywords: DEA, radial, non-radial, orientation, SBM

1 Introduction

There are two types of measures or approaches in DEA: radial and non-radial.
Differences exist in the characterization of input or output items. Suppose
that there are four inputs z;, z,, 23 and z4, in the concerned problem,
where 7, and z; are radial, and z3 and x4 are non-radial. That is, (z;, z3)
are subject to change proportionally, such as (az, azs) (with o > 0), while
z3 and z4 are subject to change non-radially. These differences should be
reflected in the evaluation of efficiency. The radial input part (z,, )
satisfies the efficiency status if there is no proportionally reduced input
(az1, 0my) (With @ < 1) that can produce the observed outputs. The non-
radial input part 3 (z4) satisfies the efficiency status if there is no reduced
z3 (z4) that can produce the observed outputs. Analogously, the output part
can be divided into the radial and non-radial outputs.

The radial approach is represented by the CCR, (Charnes, Cooper and
Rhodes (1978)) and BCC (Banker, Charnes and Cooper (1984)) models. Its
shortcoming is that it neglects the non-radial input/output slacks. The non-
radial approach includes Russell (1985), Pastor et al. (1999) and Tone (2001).

*tone@grips.ac.jp



It deals with slacks directly, but it neglects the radial characteristics of inputs
and/or outputs.

In this paper, we integrate these approaches in a unified framework and
propose a hybrid measure of efficiency.

This paper unfolds as follows. Section 2 defines the hybrid measure.
Section 3 discusses economic interpretations of the model. We extend the
basic model in Section 4. Comparisons of the Hybrid model with the CCR
and SBM are described in Section5. An illustrative example follows in Section
6 and we conclude the paper in Section 7.

2 A hybrid measure

Let the observed input and output data matrices be X € RT*" and Y €
RI", respectively, where n, m and s designate the numbers of DMU (de-
cision making unit), inputs and outputs. We decompose the input matrix
into the radial part, X® € R["**", and non-radial part, X% € RT?*", with

m = m; -+ My, as follows:
XR
X = ( XNR ) . (1)

Analogously, we decompose the output matrix Y into the radial part, Y €
R#*" and the non-radial part, YY® € R%2X" with s = s, + s,, as follows:

v=( yum ). @

We assume that the data set is positive, i.e., X > 0 and Y > 0. The
production possibility set P is defined by

P={(z,y)lz>X\y<YXAA>0}, (3)

where A is a nonnegative vector in R". (We can impose some constraints to
A, such as 375, A; = 1, which is the variable returns to scale model. We
will return to this subject in Section 4.)

We consider an expression for describing a certain DMU (z,, y,) = (&, zVE,



yXyYB) e Pas

bl = XEX 4 s (4)
aoNE = XNR) 4. gNA-
by, =YX — o™
yVR = yNR) _ gNR+
(7] Y

with 8 <1, ¢ > 1, A>0, s% >0, s¥% >0, s >0, s+ > 0. The
vectors 8%~ € R™ and s¥#~ € R™ indicate the ezcesses for the radial and
non-radial inputs, respectively, while s%* € R** and s¥&t € R® indicate
the shortfalls for the radial and non-radial outputs, respectively. They are
called slacks.

Assuch, 8 =1, ¢ =1,X, =1,); = 0(Vj # o), with all slacks being zero
is a feasible expression. Based on the expression (4), we define an index p as
follows:

1-m(1—f)— L3 sV /gl E

p= e : (5)
L+ 30— 1)+ 5 0Ly Y B+ /ufie

This index p is designed so that it is decreasing with respect to decreases in 8
and increases in ¢, s¥®~ (Vi) and sE+ (Vr), but is not affected by s®~ and
sft directly, reflecting free disposability of these radial slacks. This index is
also units invariant, i.e., invariant with respect to the measurement units of
the data.

The hybrid efficiency status of the DMU (z,, y,) = (x&, Y%, y® yNE) ¢
P is defined as follows:

Definition 1 (Hybrid efficient status) The DMU (z,,y,) is hybrid effi-

cient if and only if p =1 for every feasible expression of (4), i.e., 8 =1, ¢ =
1, sVE- =0, sVEt+ =,

This status can be identified by solving the following program with the vari-



ables 8, ¢, A, sVE~- gNE+

Lm0~ & 7 ol
EECRES SO
subject to  fzF > XRA
R = XNB) 4 sNVE-
¢yl <YEA
yNR = yNR) _ gNE+
(7]
§<1, ¢>1, A>0, s >0, sVE > 0.

[Hybrid]  p* = min

Let an optimal solution for this program be (6*,¢*, A*, s¥F™, s

Then we have a theorem:

(6)

NR+*).

Theorem 1 The DMU (z,,y,) is hybrid-efficient if and only if p* =1, i.e.,

6* =1,¢* =1, sVB* =0, sNEt* =,

The [Hybrid] can be transformed into a linear program using the Charnes-

Cooper transformation (Charnes and Cooper (1962)) as follows:

LP 7" = min t——t— SNR-~
P Bt 0)- 2 oS
subject to t+il-(<1>—t)+1§:SNR+/yNR—l
5 sr—l
0zF > XTA
taNR = XNRA + gVR-
Pyl < YEA

tyNR — YNRA SNR+

0<t, &>t A>0, 8VF >0, SVNF+ > 0.

(See Tone (2001) for additional details.)

(7)

Let an optimal solution of [LP] be (t*, ©*, &*, A*, SNE~— gNEtx)

Then we have an optimal solution of [Hybrid] as defined by:

p* = T, §* = @*/t*, ¢* — @*/t*,
AF = A*/t*, SNR—* — SNR—-*/t*’ SNR-%-* — SNR’I'*/t*.

(8)



For a hybrid-ineflicient DMU, i.e., p* < 1, the hybrid-projection is given
by:

R gl (9)
VR ¢ gNR _ gNR— (10)
gy ¢yl (11)
Go " yp s, (12)

We notice that the radial slacks s®* and sft*, if they exist, are not ac-
counted for in the above projection, since they are assumed to be freely
disposable and have no effect on efficiency evaluation.

Theorem 2 The projected DMU (22, gNE, &, yNR) is hybrid-efficient.

See Appendix A for a proof.
Using the optimal solution (6%, ¢*, sV %=, sNE+*) we can decompose the
hybrid efficiency indicator p* into four factors as follows:
Radial input inefficiency: o = %(1 —6%) (13)

N 1 ¢
Non-radial input inefficiency:  ap = — Z sVE=* [gNRE (14)
i=1

Radial output inefficiency: B = 88_1(¢* -1) (15)

1S
Non-radial output inefficiency: g = p Zsf’ Retx fyNER, (16)

r=1
Also we define input and output inefficiencies as:
Input inefficiency: a=a;+ o (17)
Output inefficiency: 8 = 81 + Bo. (18}
Thus, p* can be expressed as:
£ _ 1“6!: ].—011'—0!2
1+8 1+B1+8

This expression is useful for finding the sources of inefficiency and the mag-
nitude of their influence on the efficiency score g*.
Based on A", we define the reference set to DMU (z,,y,) as follows:

; (19)
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Definition 2 (Reference set) The set of indices corresponding to the pos-
itive \}s is called the reference set to (zo,y,).

The reference set R, is described as

Ro={i| X} >0} (e{L-,n}. (20)

3 Economic interpretations

The dual program corresponding to the linear program [LP] can be described
in terms of dual variables v® € R™, v¥E ¢ R™ oF ¢ R%, ulE ¢
R%2 w € R as follows:

[Dual]  w*= max w (21)
subject to w=1-vta} — v"Re]R + uFyl + uVEy YR (22)
— R XE _NEXNR L Ry R L yNVRYNE < (23)

1 1
VR > E[],/a,-f,\”i!] (or v]YBgNR > —i= 1,...,mg) (24)

W w
'U.NR > ;[1/yivR] (OI' ufyRy,{\;R Z ?, r= ]-) s 732) (25)
ma

vl > E (26)
ufyl > %w (27)
v >0, uf >0, (28)
where the notation [1/z,%] designates the row vector (1/z]R, ..  1/zNR).

The dual variables v® € R™, V& ¢ R™2, 4R ¢ R, and uM® € R* can
be interpreted as the virtual unit-costs and unit-prices of the corresponding
input and output items, respectively. The dual program aims at finding the
optimal virtual unit-costs and unit-prices for the DMU (z,,y,) so that the
profit ufyf+uNByNE _ o Egl_ yNEENR does not exceed zero for any DMU
(including (,,¥,)), and maximizes the profit ufy® + uNByNE _ yRgpR _
vVEg VR for the DMU, concerned. Apparently, the optimal profit is at best
zero and hence w* = 1 for the hybrid efficient DMU.

Constraints (24) and (25) restrict the feasible virtual unit-cost and virtual
unit-price ¥V'% and u™® of the non-radial inputs and outputs, respectively,
to the positive orthant, while constraints (26) and (27) set the lower bound
for the radial cost v®2? and the radial price u®y?%, respectively.
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4 Extensidns

In this section, we extend the basic [Hybrid] model to the variable returns-
to-scale environment and to oriented-models.

4.1 Variable returns-to-scale model

We can evaluate the hybrid efficiency under the variable returns to scale
(VRS) condition by imposing the following constraint to [Hybrid]:

n
doa=1 (29)
=1
This effects introduction of a free variable w, € R to the [Dual] as follows:

[Dual-VRS] w* = max w (30)
subject to

w=1-— vk — VBN 4 yRyR Ly NRYNE o 4 (31)

—vBXR _ yNEXNE o Ry R L yVRYNE 4 e < 0 (32)
1

v"R > —[1/25"] (33)
w

uME > ~[1/y" (34)

vRghR > T (35)

m
uyf 2 2w (36)
v® >0, uf >0, (37)

where e is a row vector with all elements equal to 1. The free variable wy plays
the role of determining the returns-to-scale characteristics of efficient DMUs,
i.e., increasing, constant, decreasing, in a manner similar to the procedure
developed by Banker and Thrall (1992).

4.2 Oriented model

The input (output)-oriented Hybrid model can be defined by neglecting the
denominator (numerator) of the objective function (6) of [Hybrid]. Thus, the



efficiency values p} and p§, can be obtained as follows:

[Hybrid-I]  pf=min 1-— s (1-6)—-— Zs B=[zNR (38)

m 1_.1
subject to  8z% > XEX
gl ® = XNE) 4 gNE-
Y, SYEA
yé\’R S YNRA
<1, A>0, s"? >0.

. 1

[Hybrid-O]  pf, = min TF (=D 7 I3, 7t jyiE (39)
subject to  xF > XEX
wlo\'R 2 XNRA
gys <YEX
yNR _ YNR)\ sNR-l-
$>1, A>0, s"B+ >0
This leads to:
Theorem 3
pr > p" and pp > pt. (40)

The decomposition (19) is valid in these models too, i.e., =1 = f =01in
[Hybrid-I] and o = oy = 2 = 0 in [Hybrid-O].

4.3 Weighted Hybrid model

We can impose the relative importance of radial vs. non-radial inputs (out-
puts) as well as the relative importance among the non-radial inputs and



outputs as follows:

R NR— _NR—
. ' 1— Ermﬂ!.(l ) _1_ z:’fl E‘—mi—
p*= min R (41)

R NR
1+1”—°ﬂ(¢—1)+‘"‘; Sty YR
with  wif +wlE <2, 'u)I, wi® >0
wo""woR<2 ’wo, w2 0
ngVR— = m,, Zwi‘”” = 89, wWE™ >0 (V4) wl B >0 (V7).

i=1 r=1

This will contribute to discriminate inputs and outputs according to their
importance in evaluation.

5 Comparisons with the CCR and SBM mod-
els

We define the CCR and SBM models as special cases of the Hybrid model
and compare efficiency values among them. Furthermore, we observe a single
radial input (output) case and show that this reduces to a non-radial model.

5.1 The CCR and SBM models

The Hybrid model can be transformed into the CCR or SBM model by
setting all inputs and outputs as radial or non-radial, respectively. Thus, we
can define:

COR]  phon = min 2 (42)

¢
subject to Bz, > XA
oY, YA
0<1,¢>1, A>0.



1_%2213;/1:1'0
1+%2:=1 Sr/yra
subject to x, = XA+ s~

Yy,=YA-s"

A>0,s5 >0, sT>0.

[SBM] Pspa = min (43)

In a similar vein as described in Section 4.2, we can define the oriented CCR.
or SBM models, i.e., CCR-I, CCR-O, or SBM-I, SBM-0O, by neglecting output
or input side efficiency. Between the CCR, CCR-I and CCR-O models we
have:

Lemma 1

Pecr = PeCR-1 = PCCR-0- (44)

See Appendix B for a proof.

However, this lemma is no longer true when we deal with the BCC model,
i.e., the radial and VRS model. Usually, phoe, Phco—r and phoo_o are
different each other.

Among these indices, we have the following relationship.

Theorem 4

Pocr 2 P 2 Pspu (45)
PCCR-T 2 PT 2 PSBM-I

PCcr-0 2 PO 2 PiBM-0

PsBuM-1 2 Psery  PseM—0 2 PSBM

PBcc-1 2 Peccy Peoc-o 2 Pacc-

See Appendix C for a proof.

5.2 The case having a single radial input (output) item

We will demonstrate that a single radial input (output) case can be reduced
to a non-radial input (output) model.
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Let us assume that the number of the radial inputs {outputs) is one, i.e.,
my =1 (s; = 1). Then the first constraint of [Hybrid] becomes:

Ha:f > XEX.
We can transform this single (not vector) inequality into:
zf > XEX + (1 - 6)zE. (46)

Let us define %~ = (1—8)zF (> 0). Then, the f-related term in the objective
function of [Hybrid] becomes:

1 5
—ESR JzE.

‘Thus, the model is reduced to the non-radial case. The inequality in (46) is
binding at the optimal solution.

Similarly, the single radial output case can be reduced to a non-radial
case.

However, the single non-radial input (output) case cannot be reduced to
a radial model.

6 An illustrative example

Table 1 exhibits a simple example consisting of six DMUs, each having two
radial inputs (21, %), a single non-radial input (z3), two radial outputs
(¥1, ¥2), and a single non-radial output (ys).

Insert Table 1 about here.

We measured the efficiency score using the [Hybrid], [CCR] and [SBM]
models and obtained the results as shown in the last three columns of Table
1, where [CCR] and [SBM] assume all variables are Radial and Non-radial,
respectively.

Observing the data set, we can see that the DMU A is the only superstar
in the sense that other DMUs have input excesses or output shortfalls against
A. The non-radial [SBM] captures these drawbacks effectively and gives the
full score unity only to A, whereas others are judged to be inefficient. On
the other hand, the radial [CCR] model neglects these slacks and assigns the
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full efficiency score unity to all DMUs except F. The [Hybrid] model gives
the score between [CCR| and [SBM]. The optimal slacks are common to all
models except DMU F as exhibited in Table 2.

Insert Table 2 about here.

The differences among the three models can be explained more clearly by
observing the dual side solution. An optimal dual solution and its correspond-
ing weighted data for [CCR] are reported in Tables 3 and 4, respectively. In
this model, we can conclude by means of Lemma 1 that the dual problem
becomes:

w* = max ufyF? (47)
subject to  —vXF+uYE <0 (48)
vEel = (49)
v >0, uf>0 (50)

At optimality, the following complementary slackness conditions should
hold: s;v; = 0 for i =1,2,3, and s}u, = 0 for » = 1,2,3. Hence, in Table 3,
the underlined parts that correspond to non-zero slacks in Table 2 must be
zero. The dual values in Table 3 satisfy the above dual constraints for each
DMU and provide a dual objective value that is equal to the objective value
of the primal problem. Hence they are optimal, although they are not nec-
essarily unique. The [CCR] model takes no account of the remaining slacks
in evaluating efficiency. Table 4 reports the weighted inputs and outputs for
each DMU. They satisfy the relationship Zf=1 v;z; = 1 and Zﬁd UpYy = W*
for each DMU.

Insert Table 3 about here.

Insert Table 4 about here.

We now turn to [SBM]. In this model, we have, from (24) and (25),
viZi, > 1/3 (1 = 1,2,3) and u,yre = w/3 (r = 1,2,3). (We omitted the
notation NR, since all variables are non-radial in [SBM].) Thus, the optimal
v must be positive, and » must also be positive if w* > 0. This reduces the
feasible region of the dual program, and the optimal w* is not greater than

12



that of [CCR]. Tables 5 and 6 exhibit the results. All entries are positive,
indicating that all inputs and outputs are accounted for in the efficiency
evaluation.

Insert Table 5 about here.

Insert Table 6 about here.

As we pointed out in Theorem 4, [Hybrid] is positioned between [CCR]
and [SBM]. Tables 7 and 8 show the optimal dual variables and weighted in-
puts/outputs. Since z; and z, are radial, their dual variables are constrained
to be non-negative, while z3 is non-radial and hence v3 > 1/(3z3) is required.

Insert Table 7 about here.

Insert Table 8 about here.

Table 9 exhibits the decomposition of the efficiency score by means of the
expression (19). From this table, we can see the sources of inefficiency and
their magnitudes. For example, DMU C's inefficiency is caused by the input
inefficiency (e = 0.167), which stems from the non-radial input inefficiency
(g = 0.167). DMU F's inefficiency can be attributed to the output ineffi-
ciency (8 = 5.67), which stems from the radial output inefficiency (6 = 4.67)
and the non-radial output inefficiency (8, = 1). This tallies with the value
¢r = 8 in the table. § = 1 and ¢ = 1 indicate the absence of radial ineffi-
ciency in inputs and outputs, respectively.

Insert Table 9 about here.

7 Concluding remarks

In this paper we have proposed a hybrid measure of efficiency that combines
the radial and non-radial measures of efficiency in a unified manner. This
model is useful for measuring the efficiency of DMUs when radial and non-
radial inputs (outputs) are mixed in the problem. We have also presented a
formula for decomposing the efficiency score into radial input (output) and
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non-radial inputs (outputs) inefficiencies. Using this decomposition we can
see the sources of inefficiency and the magnitude of their influence on the
score. The efficiency score of [Hybrid] ranks between [CCR] (the easiest)
and [SBM] (the hardest), reflecting the partial incorporation of slacks. We
recommend that, if slacks for an input (output) are considered important
in measuring efficiency, the input (output) should be handled as non-radial.
Meanwhile, if the slacks are freely-disposable, the item can be classified as
radial.

The proposed model can be extended and utilized in several dimensions,
e.g., super-efficiency measurements (Tone (2002)) and application to the
multi-stage DEA (Fried et al. (2002)). These are future research subjects.

Appendix A: Proof of Theorem 2

Let an optimal solution of the [Hybrid] for (Z,, 7,) be (8**, ¢**, A**, sVE—** gNE+)
It holds that

0 ZE = grgezl > XEA™ (51)
—iVR — XNRA** _I_SNR—** (52)
DYy = ¢ Yy > YA (53)
-NR = YNRA** _ SNR+** (54)
9** <1, ¢ > 1. (55)
From (52) and (54) we have:
w(])VR _ XNRA*# + (SNR—** + sNR—*) (56)
ytI)\’R — YNR)\** _ (SNR+** + SNR'*'*). (57)

Thus, (6**6*, ¢**¢*, A**, gV B+ gNR—x gNE+ur 4 sNR+4) i5 5 feasible solution
of the [Hybrid] for (z,,y,). From the optimality of (6%, ¢*, A*, sVE~* gNE++),
we have the inequality:

1_%(1_9**0*) ___T:_,{Zz I(SNR—**_i_SNR *)/m
1+ 21,(¢**¢* _ ) 1 Z (3NR+** + SNR"'*)/y%R
1-2(1-6)— i sE T [l R

I+ e -1+ Zr_ls"’*’”*/yro

(58)
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Noting that 8** < 1, ¢** > 1, sVE** > 0, sVNE+* > 0, this inequality holds
if and only if we have:

0 = 1, ¢** =1, SNR—** =0, gNBA** _ 0. (59)

Thus, the projected DMU (%,,,) is hybrid-efficient.

Appendix B: Proof of Lemma 1
In the [CCR|] model, let us define

7 =0/ (60)
Then [CCR] becomes:
[CCR] Pocp =min 7 (61)
subject to 7z, > X(A\/4)
Yo S Y (A/9)
=1, A>0.

Essentially this is equivalent to [CCR-I]. Similarly, we can demonstrate that
Pecr = Pecr-o-

Appendix C: Proof of Theorem 4

We will demonstrate the inequality (45), since others can be derived similarly.
Let an optimal solution of [CCR] be (6*,¢*, A*). Then, after partition into
radial and non-radial parts, we have:

o'zl > XEA*

gtxwé\’R 2 XNRA*

¢*y§ S YRA*

45*92”2 S YNRA*.
Let us define

SNR_ — (1 _ 9*)$ONR (Z 0), sNR—I- — (¢* ___ l)yNR (2 0)

o
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Then, (6%, ¢*, X*, sVE~, sNR+) is a feasible solution for [Hybrid]. Thus, we
have pop = p* showing the first inequality of (45).

Let an optimal solution of [Hybrid] be (8%, ¢*, X*, sVE~* sNE+x) and
define s®* and sft* as:

570 = (1= 0)af (2 0), s™ = (4" ~ 1y (2 0).
Then we have:
2y = XN+ s, gy = VRN - s

Hence, after changing the radial part into non-radial and defining s™ =
(877*,8NE=*), g¥* = (gR+* gNE+*) | the obtained (A*,s™*,s1*) is a feasible
solution for [SBM]. Thus we have p* > p&g,,-
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Table 1: A simple example

Input Output
Radial Non-radial Radial Non-radial Efficiency score
DMU =z =z z3 Y1 Y2 Y3 [Hybrid] [CCR] [SBM]
A 1 1 1 2 2 2 1 1 1
B 1 2 1 2 2 2 1 1 0.833
C 1 1 2 1 2 2 0.833 1 0.625
D 1 1 1 i 2 1 0.75 1 0.6
E 1 1 1 2 1 05 0.5 1 0.429
F 2 2 2 05 05 1 0.15 0.25 0.15
Table 2: Slacks
Input Output

DMU sy sy 85 st st st

A 0 0 0 0 0 0

B 0 1 0 0 0 0

C 0 0 1 1 0 0

D 0 0 0 1 0 1

E 0 0 0 0 1 15

F(Hybrid) 0 0 0 0o 0o 3

F(CCR) 0 0 0 0.5 05 0

F(SBM) 0 0 0 3.5 35 3
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Table 3: Dual variables: [CCR]

Input Output
Radial Radial
DMU Score g v3 U1 Ug ug
A 1 0.667 0.167 0.167 0.167 0.167 0.167
B 1 1 0 0 0.5 0 0
C 1 1 0 0 0 0.5 0
D 1 1 0 0 0 0.5 0
E 1 1 0 0 0.5 0 0
F 025 0.5 0 0 0 0 0.25
Table 4: Weighted inputs and outputs: [CCR]
Input Output
Radial Radial
DMU Score wvzy wvezs vaTs3 U1Y1  UY1  U3Ys
A 1 0.667 0.167 0.167 0.333 0.333 0.333
B 1 1 0 0 1 0 0
C 1 1 0 0 0 1 0
D 1 1 0 0 0 1 0
E 1 1 0 0 1 0 0
F 025 1 0 0 0 0 0.25
Table 5: Dual variables: [SBM]
Input Output
Non-radial Non-radial
DMU Score w1 Ug U3 ] Ug %3
A 1 0.333 0.333 0.333 0.167 0.167 0.167
B 0.833 0.333 0.167 0.333 0.139 0.139 0.139
C 0.625 0.333 0.333 0.167 0.208 0.104 0.104
D 0.6 0.333 0.333 0.333 0.2 0.1 0.2
E 0.429 0.333 0.333 0.333 0.071 0.143 0.286
F 0.15 0.167 0.167 0.167 0.1 0.1 0.05
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Table 6: Weighted inputs and outputs: [SBM]
Input Output
Non-radial Non-radial
DMU Score wizy 19z U3x3 U1Yy1  Ugly1  U3Ys
A 1 0.333 0.333 0.333 0.333 0.333 0.333
B 0.833 0.333 0.333 0.333 0.278 0.278 0.278
- C 0.625 0.333 0.333 0.333 0.208 0.208 0.208
D 0.6 0.333 0.333 0.333 0.2 0.2 0.2
E 0.429 0.333 0.333 0.333 0.143 0.143 0.143
F 0.15 0.333 0.333 0.333 0.06 0.05 0.05
Table 7: Dual variables: [Hybrid]
Input Output
Radial  Non-radial Radial Non-radial
DMU Score v Ys U3 Uy Ug U3
A 1 0.667 0 0.333 0333 0 0.167
B 1 0.667 0 0.333 0.333 0 0.167
C 0.833 0.667 0 0.167 0 0.278 0.139
D 0.75 0.667 0 0.333 0 0.25 0.25
E 0.5 0.667 0 0.333 0.167 0 0.333
P 0.15 0.333 0 0.167 0.2 0 0.05

Table 8: Weighted inputs and outputs: [Hybrid]

Input Output
Radial Non-radial Radial Non-radial

DMU Score vz 2Ty v3T3 Uy U2l U3Ys

A 1 0.667 0 0.333 0.667 0 0.333
"B 1 0.667 0 0.333 0.667 0 0.333

C 0.833 0.667 0 0.333 0 0.556 0.278

D 0.75 0.667 0 0.333 0 0.5 0.25

E 0.5 0.667 0 0.333 0333 0 0.167

F 0.15 0.667 0 0.333 0.1 0 0.05
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Table 9: Measures of inefficiency: [Hybrid]

Input Output Input Output

DMU Score « o] o B 61 B 0 ¢
A 1 0 0 0 0 0 0 1 1
B 1 0 0 0 0 0 0 1 1
C 0.833 0167 0 0.167 0 0 0 1 1
D 0.75 0 0 0 0.333 0 0333 1 1
E 0.5 0 0 0 1 0 1 1 1
F 015 0 0 0 5.67 4.67 1 1 8
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