GRIPS Research Report Series [-98-0008

Toward Efficient and Stable Computation
for
Large-Scale Data Envelopment Analysis

Kaoru Tone

National Graduate Institute for Policy Studles
Urawa, Saltama 338-8570, Japan

tel: 81-48-858-6096
fax: 81-48-852-0499
e-mall: tone@grips.ac.jp

January 15, 1999
Research supported by Grant-in-Aid for Scientific Research(C),

the Ministry of Education, Sclence, Sports and Culture,
Japan

VR
W,
GRIPS

NATIONAL GRADUATE INSTITUTE
FOR POLICY STUDIES

c-hashimoto
楕円

Toward Efficient and Stable Computation

for

Large-scale Data Envelopment Analysis

Kaoru Tone

National Graduate Institute for Policy Studies
Urawa, Saitama 338-8570, Japan

tel: 81-48-858-6096
fax: 81-48-852-0499
e-mail: tone@grips.ac.jp

January 15, 1999

Research supported by Grant-in-Aid for Scientific Research
(C), the Ministry of Education, Science, Sports and Culture,
Japan.

Toward Efficient and Stable Computation for
Large-scale Data Envelopment Analysis

Kaoru TONE*

Abstract

In this paper we will propose several techniques for improving
computations in Data Envelopment Analysis (DEA) and demonstrate
their validity for large-scale problems using numerical experiments.
Since DEA stems from mathematical programming approaches to ef-
ficiency analysis and specifically utilizes linear programming (LP) for
evaluating the relative efficiency of decision making units (DMUs),
the speeding up of the LP routine is an important factor for efficient
DEA computation. However, there is another route of improvement,
such as by incorporating the special characteristics of the relation-
ship between efficient and inefficient DMUs in DEA. For example, in
most DEA models, e.g. CCR, BCC and Additive, among others, it is
demonstrated that no inefficient DMUs appear in the reference set of
any DMUs. In the LP terminology, these inefficient DMUs are never
included in the optimal basis for any DMUs. Therefore, knowledge on
‘inefficient DMUSs narrows the candidates of the incoming variables to
the basis and hence subsequently reduces the load of computation. In
this paper, these two directions, i.e. improvement of LP and utiliza-
tion of the special characteristics of DEA efficiency structure, will be
examined.

*National Graduate Institute for Policy Studies, Urawa Saitama 338-8570, Japan.
e-mail:tone@grips.ac.jp. This research is supported by Grant-in-Aid for Scientific Research
(C), the Ministry of Education, Science, Sports and Culture, Japan.

1 Introduction

Data Envelopment Analysis (Charnes, Cooper and Rhodes [4]) is an innova-
tive method for evaluating the relative performance of enterprises by means of
numerical data and many applications have been carried out in various fields
of organizational activities, including governments, schools, hospitals, finan-
cial institutions, manufacturers and so forth. Some of recent studies include
several thousands decision making units (DMUs) as object of comparisons.
In dealing with such large-scale applications there arise computational prob-
lems with respect to the amount of time required for completion and the
quality of results obtained.

In this paper, we will try to improve some of the computational aspects
of DEA. Since DEA is a linear programming (LP) formulation for efficiency
evaluation, several techniques developed for LP are also valuable for DEA.
In Section 2, the role of multiple pricing and the product form of inverse
will be discussed. Another route for improvement exists in the use of special
characteristics of DEA formulation. For example, in representative DEA
models, e.g. CCR, BCC and Additive, it is demonstrated that no inefficient
DMUs appear in the reference set to any DMUs. In the LP terminology
these inefficient DMUs are never included in the optimal basis for any DMU.
Therefore, knowledge on inefficient DMUs narrows the candidates of the
incoming variables to the basis and hence reduces subsequently the load of
reduced cost computation. We will propose a two-stage strategy for this
purpose in Section 3. Then numerical experiments will be introduced in
Section 4. The experiments demonstrate the effectiveness of the proposed
strategies, especially for large-scale problems. See also Ali [1, 2] and Ali and
Seiford [3] for another aspects of DEA computation.

2 Multiple Pricing and Product Form of In-
verse |

In this section the effect of multiple pricing for choosing a nonbasic column
and product form of inverse are discussed.

Before going into the details of computation, we will briefly describe the
DEA models as formulated by linear programs. Let the number of DMUs,
inputs and outputs be n, m and s, respectively. The input (output) of DMU;

2

(=1,...,n) is denoted by the vector (z;) ((y;)). Throughout this paper we
assume that @; and y; (j =1,...,n) are semipositive, i.e. nonnegative and
nonzero. Input matrix X € R™*" and output matrix ¥ € R**" are composed
of the set of vectors (zy,zs,...,2,) and (¥;,Ys,---,Y,), Tespectively. We
solve the following LP once for each DMU, (0 =1,2,...,n) and hence n LPs
in total.

min 8 (1)
subject to bz, - XA >0 (2)
Y2y, (3)

L<eA<U (4)

A>0, (5)

where 0 and A are variables to be determined optimally, L and U are the
lower and upper bounds to the sum of the elements of A and e is the row
vector with all elements equal to one. Usually, DEA computation consists of
two phases. In Phase I, we solve the above LP and find the optimal objective
value 8* which is the score of the DMU,. Then we maximize the sum of inpui
excesses and output shortfalls while keeping the objective value at 6. This
process, called Phase II, is formulated as follows:

max es” +est (6)
subject to s” =0z, — XA (7)
st=YA-y, (8)

L<er<U (9)
A>0,s">0,st >0 (10)

where s~ and s* are vectors representing input excesses and output short-
falls, respectively. If we try to solve this two-phase process using commercial
LP codes, it will be necessary to compromise the two objective functions
above into one. This will be usually done by a function such as

min 8 —e(es”™ +es™) (11)

where ¢ is a small positive number. However, this causes another problem,
i.e. selection of a reasonable €. As Ali and Seiford [3] reported, this formula
is unstable in the sense that the resulting solution loses numerical accuracy

3

and robustness. This is one of the reasons why we need specially designed
software for DEA. It should contain functions such as computations of the
efficiency score (6*), the reference set ("), slacks (s7*, s**), the optimal dual
values (the weights), the projection onto efficient frontier and statistics on
the problem and results. In what follows we will discuss subjects valuable in
designing DEA software based on our experiences.

2.1 Multiple Pricing

In the LP formulation (1)-(5) of DEA the number of rows (m 4+ s + 2) is
considerably smaller than that of colummns (rn). Thus, the pricing out of all
nonbasic variables at each iteration incurs high costs. The multiple pricing
(see [7, 6] for example) works efficiently in our case. This strategy goes as
follows.

1. Choose p (say p = 5) candidate columns with p most negative reduced
cost.

2. Update the entering columns and find the leaving basic variable for
each column.

3. Choose as the entering column the candidate with the largest negative
value of improvement in the objective function.

The above process is repeated until the remaining columns do not have a
sufficiently large negative reduced cost to enter the basis. If there is no
candidate, we choose new p candidate columns with the negative reduced
cost.

The effect of multiple pricing can be observed in the numerical experi-
ments in Section 4.

2.2 Product Form of Inverse

One of the characteristics of LP formulation (1)-(5) is that its coefficient
matrices X and Y are dense. So, we cannot make use of the sparse matrix
techniques developed for usual LP problems. However, even in the dense
matrix case, the product form of inverse technique is valuable in keeping the
numerical stability of the simplex iterations. We will reinvert the basis after
the number of simplex iterations exceeds a certain limit.

4

3 A Two-Stage Strategy for DEA Computa-
tion
The “efficiency” and “inefficiency” of the DMU, is dfined as follows:

Definition 1 (Efficiency and Inefficiency) The DMU, is efficient if, for
every optimal solution (6*,X*,s7*,s1*) to (1)-(10), it holds

=1, s =0, st =0,
Otherwise, the DMU, s inefficient.

Thus, “inefficiency” means either §* < 1 or §* = 1 and s # 0 and/or
st* £ 0 for some s~ and/or s™™.

Definition 2 (Reference set) A reference set to DMU, is defined by
Fo= (P> 0} G =1,2,...,m). (12)

Using E, we can express 8%z, and y, by

Oz, = Y, Nej+s™ (13)
j€E,

Yo = D ANy;—s" (14)
JEEO

In the DEA models, the cases (L = 0,U = c0) and (L = 1,U = 1) are called
CCR (Charnes, Cooper and Rhodes [4]) and BCC (Banker, Charnes and
Cooper [5]) models, respectively. These two are representative DEA models,
in that the former corresponds to the constant returns-to-scale situation and
the latter to the variable returns-to-scale one. With respect to them, we have
the following propositions.

Proposition 1 For the CCR and BCC models, the DMUs in the reference
set to DMU, are efficient. (See Appendix for a proof.)

This proposition can be rewritten in LP terminology as follows.

Proposition 2 In the CCR and BCC models, we can choose an optimal ba-
sis for any DMU which consists of columns corresponding to efficient DMUs
and slack variables (s~ and/or s). (See Appendix for a proof.)

5

Proposition 2 has a significant role in DEA computation. If we can find,
by some means, that a certain DMU is inefficient, then the corresponding
column will not be included in an optimal basis for any DMU and so we
need not calculate its reduced cost, i.e., we can neglect this DMU in the
‘simplex method. By experience, we know that in large-scale problems the
majority of DMUs are inefficient, and in fact account for more than 90%
of all DMUs. Hence, knowledge on inefficiency reduces the amount of DEA
computation significantly. The following two-stage strategy aims at realizing -
this idea.

3.1 The First Stage

In the first stage, we will solve n LPs corresponding to n DMUs within a
certain limit of simplex iterations. This number may be set, for example, at
2% (the number of constraints of the LP). So we do not pursue an optimal
solution at this stage. Eventually we will finish this stage in one of the
following three cases.

Case 1 As soon as the objective value § of DMU, is found to be less than
1, we stop the simplex iteration even before the prefixed number of
iterations and record the set of indices of the basis. Furthermore, if the
basis is optimal then we record the fact using a one bit logical variable.

Case 2 If DMU, is found to be efficient within the iteration, we record
the set of indices of the basis and one bit of logical variable indicating
optimality.

Case 3 If we cannot decide whether DMU, is efficient or not within the
given number of iterations, we record the set of indices of the last basis
and stop the procedure dealing with DMUL,.

The first stage will end up with the information on whether DMU, is inef-
ficient ([Case 1]), efficient ([Case 2]} or unknown ([Case 3]). However, since
the number of simplex iterations is limited, the first stage is free from the
occurrence of a large number of degenerate pivots, which is often observed
when the numbers of inputs and outputs are large.

3.2 The Second Stage

Following the first stage we solve the n LPs again using the results of the
first stage. The second stage strategy is summarized as follows.

1. We start the iteration for each DMU from the last basis of the DMU
obtained in the first stage.

2. The DMUs which are found to be inefficient in the first stage should
not be candidates for inclusion in the optimal basis and hence we do
not calculate their reduced cost.

3. For DMUs whose basis are found to be optimal in the first stage we
calculate the optimal solution and the simplex multipliers directly from
the set of basis.

For large-scale problems, the effect of Strategy 2 is remarkable, as will be
demonstrated by the numerical experiments in the next section. If we solve
LP (1)-(5) directly for each DMU, the number of candidates for incoming
basis variables is large and therefore we need to calculate reduced costs of
many nonbasic variables. This may also give rise to occurrence of a large
number of degenerate pivot sequences. Our two-stage strategy will be useful
to prevent such undesirable iterations.

4 Numerical Experiments

In this section numerical experiments on the proposed methods will be demon-
strated. In all cases, we apply the methods to the CCR model, i.e., the prob-
lem (1)-(10) with L = 0 and U = oo. The codes are written using Visual
Basic for Applications (VBA) in Excel 97 for Windows 98 (a trademark of
Microsoft Inc.).

4.1 The Methods Compared
We compared the following three methods using numerical experiments.

Standard Simplex method without multiple pricing, i.e. computing the
reduced costs of all nonbasic variables and choosing the most negative
one.

Multiple Simplex method with multiple pricing.
Two-stage Simplex method with two-stage strategy and multiple pricing.

In all cases we use the product form of inverse formula for basis change and
conduct reinversion at every 2x(the number of constraints). Proposition 2
and the discussions following it enable us to omit the calculation of reduced
cost for the column after the corresponding DMU is found to be inefficient.
We apply this policy throughout experiments. In the two-stage method the
upper bound of iterations in the first stage is set to 2x(the number of con-
straints).

4.2 Test Problems

Two kinds of test problems are chosen. One is “real world” and the other
a “randomly generated” data set. We apply the notation W(R)n-m-s-(p%)
to denote a real World (Random) problem with n DMUs, m inputs and s
outputs, including about p% efficient DMUs. As an example, Table 1 shows
statistics of the problem W8000-6-2.

Table 1: Statistics of Problem W8000-6-2

INPUT QUTPUT
Inputl Input2 Inputd3 Inputd Inputd Input6 Outputl Output2
Max 9501 915 1993 99 682 551 27028 1815
Min 0 0 20 0 0 0 0 0
Average 16.7 41.1 174.8 4.1 38.5 29.5 1509 142.3
Std. D. 44 78 173 5.4 34.9 31.9 2050 149

4.3 Results of the Experiments
(1) For real world problems

First we exhibit CPU time for Wn-6-2 with n=500, 1000, 2000, 4000 and
8000 in Table 2. In this case the numbers of inputs (m = 6) and outputs
(s = 2) are fixed. However, the density (p) of efficient DMUs are decreasing
with respect to n (the number of DMUs) as listed in the table. Percentages
in the parenthesis designate the relative CPU times of ‘Multiple’ and “Two-
stage’ to ‘Standard’. The results show that the effect of the multiple pricing

8

Table 2: Comparisons of CPU Seconds for Real World Problems*

Wn-m-s-(p%)** Standard ~ Multiple Two-stage
WE500-6-0-(7.8%) 29(100%) 24(83%) 25(36%)
W1000-6-2-(5.8%) 104(100%) 83(80%) 76(73%)
W2000-6-2-(2.6%) 337(100%) 285(80%) 245(73%)
W4000-6-2-(1.6%) 1666(100%) 1133(68%) 935(56%)
W8000-6-2-(1.0%) 6897(100%) 4701(68%) 3618(52%)

* A PC with 400MHz CPU and 128MB main memory
was used for this experiment.

** n,m,s= Numbers of DMUs, inputs and outputs,
and p = percentage of efficient DMUs.

becomes evident as the number of DMUs grows beyond 1000 and that the
two-stage strategy works well for large-scale problems.

(2) For randomly generated problems

Table 3 shows the results of experiments with random problems Rn-10-10-
(p%) where p ranges about 5%, 10%, 156% and 20%.

We can see that the superiority of the two-stage strategy becomes ap-
parent as the number of DMUs grows and the density of efficient DMUs
decreases.

4.4 Some Observations
(1) Sensitivity of the first-stage iteration

In the experiments in Tables 2 and 3 we set the upper bound of the simplex
iterations in the first stage to 2x(the number of constraints). In order to
check the sensitivity of this bound, we set the bound to 0.5, 1, 1.5, 2 and
2.5% (the number of constraints) and applied them to problems R2000-10-
10-(5%) and R2000-10-10-(9%). The results are exhibited in Table 4, where
“First-stage rate” means the percentage of the number of inefficient DMUs
found at the first-stage. As a matter of course, this number grows as the
upper bound of iterations goes up. As far as this sample concerned, CPU
times are not so sensitive to the upper bound between M and 2M (M =

9

Table 3: Comparisons of CPU Seconds for Random Problems”

Rn-m-s-(p%)** Standard ~ Multiple Two-stage
R500-10-10-(6%) 85(100%) 85(100%) S9(105%)
-(12%) 110(100%) 114(104%) 107(97%)

(16%) 122(100%) 146(120%) 138(113%)

-(20%) 132(100%) 170(129%) 148(112%)
R1000-10-10-(5%) 336(100%) 318(05%) 276(82%)
-(10%) 434(100%) 419(97%) 343(79%)

_(14%) 491(100%) 503(102%) 423(86%)

(19%) 555(100%) 590(106%) 482(87%)
R2000-10-10-(5%) 1506(100%) 1187(79%) 932(62%)
(9%) 1865(100%) 1625(87%) 1220(65%)

(12%) 2251(100%) 1943(86%) 1515(67%)

-(16%) 2396(100%) 2238(93%) 1694(71%)

* A PC with 300MHz CPU and 32MB main memory

was used for this experiment.
** n,m, s= Numbers of DMUs, inputs and outputs,

and p = percentage of efficient DMUs.

the number of constraints). This may correspond to the empirical results
that most LP problems are solved in M to 3M iterations (Gass[6], p. 303).
It is also remarkable that 96 to 100 % of inefficient DMUs were identified
at the first-stage for the upper bound beyond M. However, notice that this
identification does not always mean the discovery of the optimal efliciency
score'of the DMU.

(2) Influence of the rate of efficient DMUs

The results of Table 3 exhibit the fact that the merit of “T'wo-stage’ strategy
decreases as the rate of efficient DMUs grows up. In the most extreme case,
if most DMUs are efficient, this strategy will lose all its merits. However,
such cases are likely to be exceptional.

10

Table 4: Sensitivity of First-Stage Iterations

Upper bound 0.5M* M 15M 2M 25M
R2000-10-10-(5%) 1121~ 049 926 932 942
First-stage rate 2% 97% 100% 100% 100%
R2000-10-10-(9%) 1445 1229 1235 1220 1306
First-stage rate 1% 9%6% 99% 99% 99%

* M = the number of constraints. ** CPU seconds.

(3) Number of inputs and outputs

We experimented to investigate how increases in numbers of inputs and out-
puts affect the behavior of codes on random problems. Table 5 exhibits the
results. Percentages in the parenthesis designate the relative CPU time of
‘Multiple’ and ‘Two-stage’ to ‘Standard’. From the table it is observed that
as the numbers of inputs (m) and outputs (s) increase the superiority of
‘Multiple’ and ‘T'wo-stage’ over ‘Standard’ decreases. This may reflect the
fact that the workload of basis maintenance becomes heavy as the numbers
of inputs and outputs increase and, in contrast, the cost of reduced cost com-
putations loses its weight comparatively. However, the ratios of ‘Two-stage’
to ‘Multiple’ stay almost constant at 80%.

Table 5: Effect of Inputs and Outputs Numbers*

R2000-m-s-(p%) Standard ~ Multiple Two-stage
R2000-5-5-(4%) 807" (100%) 555(60%) 444(55%)
R2000-10-10-(5%) 1506(100%) 1187(79%) 932(62%)
R2000-15-15-(5%) 2367(100%) 2072(88%) 1679(71%)

* A PC with 300MHz CPU and 32MB main memory
was used for this experiment.
** CPU seconds.

11

5 Conclusions

In this paper we discussed several issues aiming at accelerating DEA compu-
tation for large-scale problems. Numerical experiments demonstrated their
usefulness, and especially the two-stage strategy utilizes efficiently the spe-
cial structure of DEA problems. This process can be applied not only for
CCR, BCC and Additive models but also for the cases with (L =0,U = 1)
(not increasing returns-to-scale model), and (L = 1,U = oo) (not decreas-
ing returns-to-scale model) as well. Also, we can apply this strategy to the
allocative models.

Future research includes finding faster methods for identifying ineflicient
DMUs in the first stage. With respect to this point, interior point methods
and greedy algorithms may deserve consideration.

As has been widely recognized, DEA needs specially designed codes in
order to take full advantage of this method. We hope that our proposed
methods will contribute to this purpose.

References

[1] Ak, AL, “Data Envelopment Analysis: Computational Issues,” Com-
puters, Environment, and Urban Systems, 14, 157-165 (1990).

[2] Ali, A.L, “Computational Aspects of DEA,” in Data Envelopemnt Anal-
ysis, eds Charnes, Cooper, Lewin and Seiford, Kluwer Academic Pub-
lishers, 1994.

(3] Ali, A.I and Seiford L.M., “Computational Accuracy and Infinitesimals
in Data Envelopment Analysis,” INFOR, 31(4), 290-297 (1993).

[4] Charnes, A., W.W. Cooper and E. Rhodes, “Measuring the Efficiency
of Decision Making Units,” European Journal of Operational Research,

9, 429-444 (1978).

[5] Banker, R.D., A. Charnes and W.W. Cooper, “Some Models for Esti-
mating Technical and Scale Inefficiency in Data Envelopment Analysis,”
Management Science, 30, 1078-1092 (1984).

[6] Gass, S.I., Linear Programming, 5th ed., McGraw-Hill, 1985.

12

[7] Murtagh, B.A., Advanced Linear Programming: Computation and Prac-
tice, McGraw-Hill, New York, 1981.

Appendix

Proof of Proposition 1

We will prove the proposition in the case of the CCR model. The BCC case
can be proved in a similar way.

Assume that the DMU (z,,%,) has an optimal solution (8*,A*,s™*, s**)
to (1)-(10) and an inefficient DMU (®y,y,) is a member of the reference set
to (®,,y,) with A} > 0. Further assume that the inefficient (2,,%,) has an
optimal solution (8}, p*,t7*,£%*) and can be expressed as

Oie, = > urep+i (15)
keE)

o= Z HrYe — e, (16)
kEE;

where E; is a reference set to (®1,y,).
From (15), we have

@y = Y prek+ 4 (1 - 6]y ' (17)
kek,

By substituting right sides of (17) and (16) into (13) and (14), we obtain

'z, = M D g+ D, Nep+sT H AT+ (1-00)z) (18)

kek, jeE,~{1}
Yo = A D myet Y Ny;—sT AT (19)
kel j€Es~{1}

By arranging the last two expressions and using the notation #} for coefficient
of (x;,y;), we have

gz, = Y mimj+sT+ A7+ (1 -00)w1) . (20)
J

Yo = y_miy;—sT = At (21)
J

13

Since by assumption (x,y,) is inefficient, we have either (i) 87 < 1 or (ii)
67 =1 and (£7*,t™) is semipositive.
In case (i), since 1 — 8} > 0, ex; > 0 and A} > 0, it holds that

es™ < es*+ Aj(et™ + (1 — 67)ex,) (22)
es™ < es™ + Alet™. (23)

Thus, we have a larger sum of slacks for Phase II. This contradicts the max-
imality of (s, s1*).
In case (ii), similar inequalities hold as below.

es™ < es"4 Aet™ (24)
est™ < es™ 4 Aet™. (25)

Since in this case (¢7*,£™) is semipositive (nonnegative and nonzero), we
have a larger sum of slacks for Phase II. This contradicts the maximality of
(s7*, ™).

By the above reasoning, every DMU in the reference set must be efficient.

Proof of Proposition 2

By Proposition 1, an optimal basis to (1)-(10) consists of columns corre-
sponding to (i) efficient DMUs with nonnegative basic solution, (ii) ineflicient
DMUs with the value zero in the basic solution and/or (iii) slack variables.
We can remove the case (ii) from the basis by imposing a large penalty to
the columns without changing the objective function value. Notice that we
can start the simplex iteration from an initial feasible basis to (1)-(5) which
consists of the columns corresponding to DMU,, # and slack variables. Thus
it is sufficient to deal with inefficient columns only for removing them from
the basis.

14

c-hashimoto
長方形

