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1 Introduction

Pricing American options is a current focus of financial engineering research.
This problem contains several difficulties due to its early exercise opportu-
nities. Let S(t) be the price vector of underlying assets, h(S) be the payoff
function, and r be the continuous discount factor, then the price of American
option at time ¢ is a function of the asset price S(¢) = x and given by

Vi(x) = max Efe ™" Ih(S(7))] 8(t) =], (1)

where maximum is taken over all stopping times 7 < T', and T is the maturity
of the option.
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Many works are devoted to find a good algorithm to compute the price
Vo(S(0)). In this paper we present an algorithm based on Broadie and
Glasserman’s random tree method [2]. Our modification to their method
is introducing quasi-Monte Carlo method, which is recently used for many
(non-American) option problems. Random tree method has a nice property
that it can provide a confidence interval of the price, but it has a disad-
vantage in its exponential growth of computational time with respect to the
number of exercise opportunities. Although our modification cannot avoid
this blow-up of the computational time, it can reduce the rate of the blow-up.

The outline of this paper is as follows. We explain the random tree
method in Sec. 2, then we introduce a quasirandom tree method in Sec. 3.
Some numerical examples are given in Sec. 4.

2 Random Tree Method

Let S{t) = (S1(t),...,S.(t))" denote the prices of n assets at time ¢ (¢ =
0, At,2At,...). In this paper we restrict the model to the discrete time case.
Assume that S(t) follows a Markov process with the initial state S{0):

S(t+At) = (I+At(rI—diag(sy,. .., 8,))+V At diag(a1Wi(t), - . ., 0, Wa(2)))S(t),
(2)

where I is the n-dimensional unit matrix, r is the risk-free interest rate, 6;
is the dividend rate for the i-th asset, o; is the volatility of the i-th asset,
and W(t) = (Wi(t),..., W,(t)) is a vector whose components are normal
random variables with mean zero and correlation matrix R = (p;;) (pi = 1,
i=1,...,n). The vectors W(t) and W(s) are independent if  # 5.

Given a payoff function h(S), the price of an American option at time ¢
with maturity T is equal to

Vi(x) = max E [e 7O h(S(7))| S(t) = x, (3)

where maximum is taken over all the stopping time 7 taking the value on the
set {0, At,2At,..., NAt(=T)}. It is known that the prices V; satisfies the
following Bellman equation

Vi(x) = max {h(x), Efe "WV aS(t + AD) S = x]},  (4)

with the terminal condition Vr(x) = h(x). Our aim is to compute the
price Vy(xo) with the initial condition S{0) = xo. The price Vp(xo) can be
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obtained by solving the equation (4) recursively given the terminal condition
Vr(x) = h(x). When we construct an algorithm for solving this problem,
. the crucial point is to find a good estimator of the successive conditional
expectation E [e""2tV,, A, (S(t + At))| S(t) = x]. A

Broadie and Glasserman [2] proposed a method for evaluating American
style options by simulation. Their method first generates a random tree,
and then computes two estimators based on the tree. Their estimators are
called the high estimator and the low estimator, because they are high bi-
ased and low biased, respectively. By generating a number of random trees
and computing the high and low estimators, they compute the sample mean
and variance of each estimator. Then they give the point estimate of the
price of the option by the arithmetic mean of the high and low estimators,
and the confidence interval based on the sample standard deviations of two
estimators. Their method is summarized below.

S»[1][1]
So[1]{2]
S[1][3]
S[2][1]
Sa[2][2]
S2[2](3]
S,(3][1]
S2[3][2]
S1[3] S.[3][3]

0 At 2At

So

Figure 1: Random Tree (b = 3)

Random Tree Method _
To fix the idea we present the method for the case of American call options
on the maximum of n assets.

Input n: number of assets, N: number of exercise opportunities, At: time
step, 7: risk-free interest rate, &; (¢ = 1,...,n): dividend rate, o;
(¢ = 1,...,n): volatility, R = (p;;) (4,7 = 1,...,n): correlation ma-
trix, b: number of branches per node in the tree, h(S): payoff function,
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in our case h(S) = (max;=1__, S; — K)T, where K is the strike price of
the option and (z)* = max{z, 0}.

Random Tree A random tree is a rooted tree and a realization of the
Markov process (2). (See Fig. 1.) The nodes in a random tree are
associated with the arrays of the n-dimensional vectors. A random
tree can be identified with a collection of vector arrays:

N
{So,S1[t],....SnB]... Bl

The indices of the array represent the generation process of the tree,
and this point will be explained in detail below.

The n-dimensional vectors {Sg[i1]...[i}]%1,---,% = 1,...,b} con-
tain the prices of n assets at time kAt. Each node in the tree has
the same number of branches b. Each branch has a direction, and
this direction represents the time transition. A node at the head
of a branch is considered generated from the tail node. The first
vector Sy, associated to the root, contains the initial prices of n as-
sets. Given the k-th vector Sgféy]...[e] = (Skli1] ... [i](4))j=1 at
time kAt for fixed 41, ...,4, the (k+ 1)-th vector Sgy1[t1] ... [fks1] =
(Skaalic] - - [irr1)(4))7=y (k41 =1,...,b) is generated according to (2)
under the condition S(kAt) = Si[é1]. .. [¢] at time kAt as follows.

Skaafia] - [iellid(5) = Sele] - - - (] () (1 + (r — 8;) At + 03 VAIW(5))
(5)
(i=1,...,b;5=1,...,n), where W; = (W;(1),..., W;(n)) are normal
random vectors with the components having correlation matrix K. For
each branch generation independent random vectors W; are used.

One random tree produces a pair of high and low estimates by the
procedure described below. In order to obtain a reliable estimate of
the price, we must compute the sample mean of each estimate by in-
dependent replications of random trees.

High Estimator Compute the values of ©g, ©:[8],...,On[b] ... [b] backward
recursively as follows. First we set

Oni1]...[in] = R (Snlit] .- [in]) (6)



and then

b

Ogli] - - - [1] = max {h(sk[il] [ix]) '5 Z Atekﬂ[@l | ["k][ﬂ]}

. (7)
fork=N—1,N—2,...,0. Let ©y be the sample mean of independent
replications of O, and s(Og) be its sample standard deviation.

Low Estimator Compute the values of 6y, 6,[b],...,0n[b]...[b] backward
recursively as follows. Let

Onli1]...[in] = R(Sn[i1]. .- [in]). (.8)

Next define intermediate variables niliq] . . . [é][j] as
melta] - - [i]l7] =

b
h(Sk[Zl] . [Zk]) if h(Sk[’ll] [’lk 1 Z e’ t9k+1 le
i=1,i#]
e ™, 1 [41]. . [ik][]]  otherwise

for 7 =1,...,b. Then let
Oufin] - [ix] = Z Melia] - - - [2x] (7], (10)

for k = N —1,...,0. Let 6, be the sample mean of independent
replications of fy, and s(fy) be its sample standard deviation.

Point Estimate and Confidence Interval The point estimate for V4(So)
of an American call option on the maximum of n assets is given by the
mean of high and low estimators (0 + 6p)/2. Its confidence interval is
given by

maa((8 - K)*, 0 — 225003 8,4 22220 | )

where Sp = max;<j<n{S0(j)}, and z,/2 is the 1 — a/2 quantile of the
standard normal distribution, and M is the number of replications of
random trees.
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The random tree method has an advantage of easy implementation. Once
an asset model and a payoff function are given, even if the model is very
complicated, we can immediately apply this method to the model and ob-
tain an estimate of the option price with a confidence interval. Neverthe-
less this method has its drawback in the aspect of computational complex-
ity. The running time of the random tree algorithm is proportional to
the number of nodes. Since the number of nodes in the tree is given by
Yot = (BN —1)/(b— 1), the running time of the algorithm has the or-
der O(n?bN) for one replication. The time complexity O(n?) is required for
generating n correlated normal random numbers. This result shows that this
algorithm becomes impractical as the number of exercise opportunities(/V)
or the number of branches per node(b) grows large.

When the number of exercise opportunities is given beforehand, our main
efforts are put in reducing the number of branches. Since the estimates O
and 0 are the approximations for the conditional expectations, these compu-
tations are essentially approximate integrals in n-dimensional space, where
n is the number of assets. As the dimension of the space grows large, nu-
merical integration problems encounter a difficulty of increasing number of
sample points. When we solve the model with many assets, we need a large
number of branches to obtain the estimate with good accuracy. Recently
quasi-Monte Carlo method is widely used for high-dimensional numerical in-
tegration problems, and achieves great successes. In the next section we
propose to use low-discrepancy point sets to reduce the number of branches.

3 Quasirandomization

The random tree method uses n-dimensional normal random vectors {Wy}
to generate the branches of the tree. Our basic idea is to replace random
vectors with a low-discrepancy point set.

One problem that we should consider when we utilize a low-discrepancy
point set is how to estimate the error of the calculated value. In the ran-
dom tree method the confidence interval, which represents the error of the
computed value, is given in terms of the sample standard deviations of the
estimates, and the sample standard deviations are derived from replications
of random trees. So we need several independent replications of trees to
give error estimations. To this end, we utilize randomization techniques for
quasi-Monte Carlo methods. These techniques allow us to produce a set of
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independent low-discrepancy sequences. More specifically, our procedure for
generating “quasirandom trees” is as follows.

Quasirandom Tree Let {Z;|i =1,... ,~b} be a low-discrepancy point set.
At time kAt, given the k-th vector Sg[i1] ... [ix] = (Skléd] - - - [k](5))F=1s
the (k+ 1)-th vector Sgyifir]. .. [ths1] = (Skalta] - . - [fe421(F))j=; is de-
termined by A

Searlia] . [aelE1G) = Selia] -] (G) (1 + (r = 8;) At + 0, VAIW(5))
| a2
(i =1,...,b;7 = 1,...,n). Here we introduce the vectors W(i) =
(W1(3),...,Wo(i))T (i = 1,...,b) which are generated by using the
Cholesky factorization B = AAT of the correlation matrix and the
inverse of standard normal distribution function ¢~! as

W(i) = A($ 1 (Z1(3)),- -, 07 (Za(D) T (13)

The vectors Z(i) = (Z1(i), ..., Zn(2))7 (i = 1,...,b) are the key of our
algorithm, and generated from {Z;|i =1,...,b} as

7(i) = Z; + U (mod 1), (14)

where U is a uniform random vector in the unit cube [0, 1)" and (mod
1) means component-wise modulo one operation. For each branch gen-
eration we use an independent random vector U.

In the above procedure we can produce independent quasirandom trees.
The low and high estimators are computed in the same way as in the random
tree method. '

- Remark The randomization technique above used is originally due to [1].
For other randomization techniques for quasi-Monte Carlo methods refer to

3], [5]-

4 Numerical Results

We performed numerical experiments on American call options on the max-
imum of n assets. Recall that the payoff function of this option is given
by

h(8) = ( max S; — K)™,

i=1,...n
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where (z)* = max{r,0} and K is the strike price. As a low-discrepancy
point set {Z;} we adopt the first b points of Faure sequence. By using M

independent randomly shifted point sets {Z(T)(z')} (r=1,..., M) instead of
random vectors in the random tree method, we compute M pair of estimates
O and 6 (r=1,..., M) and set

Go= L300, go= 1S e. (15)
0_Jwr=10, Oﬂ—‘[ww:lo.

The point estimate of the price of the option at time 0 is given by Vp =
2(G0+0o). Let 5(Oy) and s(f) be the sample standard deviations of ©g and
6y, respectively. The confidence interval is defined as in (11).

Example 1 (five assets). We choose K = 100, r = 0.05, §; = 0.1 (i =
1,...,n), 0, =02(G=1,...,n), p;j =03 (4,5 =1,...,n, 4 # j), T =
1, N = 3, and n = 5. These parameters are used in [2]. We set Sp =
(90,...,90). We compute © and 6, for the different number & of branches
per node ranging between 100 and 1000. The confidence interval is computed
based on 30 replications of trees (M = 30). The result is shown in Fig.2. The
result of the quasirandom tree method is shown in the left graph, and the
random tree method is shown in the right. In the graph, the horizontal axis

78 T T T 78

s % = i e | %:;'; :::
7 3 wl
18} E |
E e 4 é st
g 15| R S ‘i:‘ #“i;‘f‘«f—'"”}""'i&*—i—rfﬂ g s
g | ‘}' - 4 § 5|
a5 | - 74|
rys T4
st 715
g 20 0 et BT oo 1000 b £ o el h_’i» 00 1000
(a) Quasirandom Tree Method (b) Random Tree Method

Figure 2: Comparison of Quasirandom and Random methods (five assets)
~ shows the number b of branches per node, and the vertical axis shows the

estimated price; the point estimates of the price are shown by ¢, high and low
estimates are shown by dashed lines, and the vertical bars on the points shows
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the confidence intervals given by (11). By comparing the graphs we find that
the estimate by the quasirandom tree method shows more stable convergence
than the random tree method, and that the quasirandom tree method gives
smaller standard deviations for the estimates than the random tree method
(The width of the confidence interval of the random tree estimation is about
3 to 5 times that of the quasirandom tree estimation).

Example 2 (ten assets). All the parameters are the same as in Example 1
except the number of assets n = 10. The result is shown in Fig. 3. In this
example quasirandom tree method shows narrower confidence intervals and
more stable convergence of estimates than random tree method.

"s v v - s . .
point sskralo H— point astmate
15 | N el 145 o tiased - 7

N4 b e

1% b "3

(a) Quasirandom Tree Method (b) Random Tree Method

Figure 3: Comparison of Quasirandom and Random methods (10 assets)

Example 3 (one hundred assets). In this experiments the number of assets
is n = 100. The number of replications is M = 10, and the number of
branches per node b is in the range 100 < b < 500 due to computational
time limitation. In the experiment for 100 assets, the convergence of the
confidence interval with respect to the increase of the number b of branches
par node, seems to be unstable. We consider this is because the number of
replications may not be sufficient, but we have not investigated this issue in
detail yet.
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Figure 4: Comparison of Quasirandom and Random methods (100 assets)

5 Conclusion

We introduced a (randomized) quasirandom modification for the random tree
method of Broadie and Glasserman, and compared the quasirandom and the
random tree methods by numerical experiments. In all the experiments the
quasirandom method gives smaller error estimates than the random method,
and the running times of both methods are almost the same.

Although the quasirandom tree method can reduce the number of branches
per node, it inherits from the random tree method a demerit of exponential
growth of the computational time with respect to the number of exercise
opportunities. This drawback limits the application of the methods. Omn
the other hand the quasirandom tree method as well as the random tree
method has a merit that we can easily implement them even for complicated
stochastic assets models. For such models, we consider the quasirandom tree
method can be a good choice for the pricing.

References

[1] Cranley, R. and T. N. L. Patterson: Randomization of Number The-
oretic Methods for Multiple Integration, SIAM Journal on Numerical
Analysis, Vol. 13, No. 6, pp. 904-914, 1976.

[2] Broadie, M. and P. Glasserman: Pricing American-style Securities Using
Simulation, Journal of Economic Dynamics and Control, Vol. 21(1997),

10



pp. 1323-1352.

[3] Matousek, J.: On the Lj-Discrepancy for Anchored Bbxes, Journal of
Complexity, Vol. 14(1998), pp. 527-556. '

[4] Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo
Methods, SIAM, Philadelphia, 1992.

[5] Owen, A. B.: Monte Carlo Variance of Scrambled Net Quadrature,
SIAM Journal on Numerical Analysis, Vol. 34(1997), No. 5, pp. 1884~
1910.

11


c-hashimoto
長方形


