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Abstract

In any competitive set up, policy recommendations based on elas-
ticity parameters have assumed greater significance for the firm’s fi-
nancial viability and success. So there is a need to examine with more
prudence the elasticity estimates obtained from various parametric as
well nonparametric methods. The main aim of this paper is first to
critically examine these methods in order to shed light on what seems
to be missing, and then to proceed by developing an empirically de-
manding ecompassing measure of scale elasticity. All these measures,
which are finally applied to a panel data of US electric companies,
constitute the empirical premise of this paper.
Keywords: DEA; Translog cost function; Cost efficiency; Scale elas-
ticity.

1 Introduction

Intensifying pressures in competitive environment have motivated many in-
dustries to build larger operating units to achieve the widely advantages of
‘scale economies.’ This is apparent not only in manufacturing industries but
also in regulated/state-owned industries such as electricity, water, telecom,
etc., and public sector units such as hospitals and schools. This reflects the
spread of faith in the underlying benefits of ‘scale increases’ in the minds of
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economists, engineers, industrial managers, and governments. From a policy
point of view, the estimation of scale elasticity (returns to scale, RTS) pa-
rameter is of particular importance concerning whether there is any scope for
increased productivity by expanding/contracting, whether minimum efficient
scales will allow competitive markets to be established, and if the existing
size distribution of firms is consistent with a competitive market outcome. So
there is a need that these estimates should be examined with more prudence
for the firm’s financial viability and success.

We find in the economics literature (Färe et al., 1988) that there are two
approaches to the estimation of scale elasticity: the neoclassical approach
and axiomatic approach. The former approach (whose estimation method
is parametric econometric approach) gives us quantitative measure of scale
economies whereas the latter approach (whose estimation method is the non-
parametric data envelopment analysis (DEA) by Charnes et al., 1978) yields
qualitative information on scale economies. Recently, we find in the literature
that DEA models also generate quantitative information of scale economies
(Banker et al., 1996b, Førsund, 1996, Sueyoshi, 1997). Both the methods
have become important analytical tools in the empirical evaluation of scale
elasticity. The main purpose of this paper is to empirically examine the na-
ture of scale properties in both the methods, then to point out their relative
strengths and weaknesses, and finally to propose an alternative based on the
premise that other estimates can be illusory.

The choice of generation division of the U.S. electric industry for the
empirical comparison of scale elasticity estimates between these two meth-
ods undertaken in this study, is not only made for its importance but also
designed to be illustrative of the many potential applications elsewhere in
other divisions too. The existence of monopoly structure in this industry
had long been debated just after the appearance of Christensen and Greene
(1976)’s study, which showed that economies of scale at the generation divi-
sion had been exhausted in several U.S. electric power companies. However,
in comparison to the generation division, it had also been presumed that
economies of scale had still remained in the network activities. These ob-
servations prompted policy makers bringing deregulation into this industry,
introducing competition into the generation division, and unbundling of ver-
tical integrated structure of the electric power industry.1. Much of earlier

1Even knowing the fact that economies of scale are neither necessary nor sufficient
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literature have too examined the existence of not only the economies of scale
in generation division, but also economies of vertical integration.

This paper unfolds as follows. In Section 2, we first introduce the non-
parametric DEA models for the qualitative evaluation of RTS, discuss the
quantitative evaluation of elasticity, then point out their limitations and sug-
gest an alternative method in the same existing DEA framework. Section 3
deals with discussion of quantitative evaluations of elasticity in the recent
parametric models. For illustrative empirical comparison, we employ the
panel data of 18 US Electric Companies over a period of eight years to demon-
strate the strengths and weaknesses of each model in Section 4. Section 5
offers some concluding remarks.

2 Nonparametric DEA Models

Throughout this paper, we deal with n decision making units (DMUs)/firms,
each uses m inputs to produce s outputs. For each DMUo (o = 1, . . . , n),
we denote respectively the input/output vectors by xo ∈ Rm and yo ∈ Rs.
The input/output matrices are defined by X = (x1, . . . ,xn) ∈ Rm×n and
Y = (y1, . . . ,yn) ∈ Rs×n. We assume that X > O and Y > O.

2.1 Technology and Scale Elasticity

The technology (T ), which converts inputs into outputs at any given point
of time is defined as the set of all feasible input-output combinations,

T ≡ {(x,y) | x can produce y}.

The standard neoclassical characterization of production function for multi-
ple outputs and multiple inputs is the transformation function ψ(x,y), which
exhibits the following properties:

ψ(x,y) = 0,
∂ψ(x,y)

∂yr

< 0 (∀r) and
∂ψ(x,y)

∂xi

> 0 (∀i).

Alternatively, the technology can be described by its input set

L(y) ≡ {x | (x,y) ∈ T} for all y,

condition for the existence of natural monopoly
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or by its output set

P (x) ≡ {y | (x,y) ∈ T} for all x.

Following Shephard (1970), the output distance function is defined as

Do(x,y) ≡ inf{δ | y/δ ∈ P (x), δ > 0}.

For any output vector y, y/D0(x,y) is the largest output quantity vector on
the ray from the origin through y that can be produced from x. Assuming
free disposability, the following holds true:

y ∈ P (x) if and only if D0(x,y) ≤ 1.

Thus, D0(x,y) provides a representation of the technology.
The returns to scale (RTS) or scale elasticity in production (ρp) or de-

gree of scale economies (DSE) or Passus Coefficient, is defined as the ratio
of the maximum proportional (β) expansion of outputs to a given propor-
tional (µ) expansion of inputs. So differentiating the transformation function
ψ(µx, βy) = 0 w.r.t. scaling factor µ, and then equating it with zero yields
the following local scale elasticity measure2:

ρp(x,y) ≡ −
m∑
i

xi
∂ψ

∂xi

/ s∑
r

yr
∂ψ

∂yr

.

However, in case of single input and single output technology, ρp is simply
expressed as the ratio of marginal product (MP)[=dy/dx] to average product
(AP) [=y/x], i.e.,

ρp(x, y) ≡
MP

AP
=
dy/dx

y/x
.

The scale elasticity also reflects the sensitivity of the output distance func-
tion with respect to changes in the input quantity vector where ψ(x,y) =
Do(x,y) − 1 = 0 (Färe et al., 1986, and Ray, 1999). Assuming Do(x,y) to
be continuously differentiable, ρp is then defined by

ρp(x,y) ≡ −
∑m

i=1 xi
∂Do(x,y)

∂xi

Do(x,y)
.

2See Hanoch (1970), Starrett (1977), Panzar and Willig (1977) and Baumol et al.
(1982) for the detailed discussion.
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For a neoclassical ‘S-shaped production function’ (or Regular Ultra Passum
Law (RUPL) in the words of Frisch, 1965), ρp(x, y) takes on values ranging
from ‘greater than one’ for sub-optimal output levels, through ‘one’ at the
optimal scale level, and to values ‘less than one’ at the super-optimal out-
put levels. So the production function satisfies RUPL if ∂ρp/∂y < 0 and
∂ρp/∂x < 0 (Førsund and Hjalmarsson, 2004). RTS are increasing, constant
and decreasing if ρp > 1, ρp = 1, and ρp < 1 respectively.

Following Baumol et al. (1988), the dual measure of scale elasticity3 in
terms of cost (ρc), is defined in multiple input and multiple output environ-
ment as

ρc ≡ C(w,y)
/ s∑

r=1

yr
∂C(w,y)

∂yr

,

where C(w,y) ≡ minx{w.x | x ∈ L(y)} is the minimum cost of producing
output vector y when input price vector is w. However, ρc can be expressed
as the ratio of average cost to marginal cost in the case of single output.
RTS are increasing, constant or decreasing depending upon whether ρc > 1,
ρc = 1, or ρc < 1 respectively.

2.2 Qualitative Information on RTS

The CCR output oriented model (Charnes et al., 1978), which is based on
the assumption of constant returns to scale, is used to qualitatively describe
local RTS for DMUo.

[CCR-O] max θ

subject to
n∑

j=1

xijλj ≤ xo (i = 1, . . . ,m)

−
n∑

j=1

yrjλj + θyo ≤ 0 (r = 1, . . . , s)

λj ≥ 0. (∀j)

If
∑n

j=1 λj = 1 in any alternate optima, then constant returns to scale (CRS)
prevails on DMUo; if

∑n
j=1 λj < 1 for all alternate optima, then increasing

3In the production economics literature, the reciprocal of scale elasticity is described
as cost elasticity (Chambers, 1988 and Varian, 1992). It is also sometimes referred to as
an index of cost flexibility, which serves to explain the mark-up in a ‘quasi-competitive’
benchmark setting (Baumol et al., 1988).
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returns to scale (IRS) prevails; and if
∑n

j=1 λj > 1 for all alternate optima,
then decreasing returns to scale (DRS) prevails.

The dual of the BCC model (Banker et al., 1984), which is based on the
assumption of variable returns to scale (VRS), is also used for obtaining the
qualitative information on local RTS for DMUo.

[BCC-O] min φ =
m∑

i=1

vixio + vo

subject to −
s∑

r=1

uryrj +
m∑

i=1

vixij + vo ≥ 0, (j = 1, . . . , n)

s∑
r=1

uryro = 1

ur, vi ≥ 0, and vo : free.

If v∗o = 0 (∗ represents optimal value) in any alternate optimal then CRS
prevails on DMUo, if v∗o < 0 in all alternate optimal then IRS prevails, and
if v∗o > 0 in all alternate optimal then DRS prevails on DMUo.

Färe et al. (1985) introduced the following ‘scale efficiency index’ (SEI)
method, which is based on non-increasing returns to scale (NIRS), to deter-
mine the nature of local RTS for DMUo as follows:

[SEI-O] max f

subject to
n∑

j=1

xijλj ≤ xo (i = 1, . . . ,m)

−
n∑

j=1

yrjλj + fyo ≤ 0 (r = 1, . . . , s)

n∑
j=1

λj ≤ 1

λj ≥ 0. (∀j)

If θ∗ = φ∗, then DMUo exhibits CRS; otherwise if θ∗ < φ∗, then DMUo

exhibits DRS iff φ∗ > f ∗, and DMUo exhibits IRS iff φ∗ = f ∗.
These three different RTS methods are equivalent to estimate RTS pa-

rameter (Banker et al., 1996b and Färe and Grosskopf, 1994). In empirical
applications, one, however, finds that the CCR and BCC RTS methods may
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fail when DEA models have alternate optima. However, the scale efficiency
index method does not suffer from the above problem, and hence is found
robust. An elaborate discussion on the qualitative evaluation of RTS of dif-
ferent DEA models is found in Löthgren and Tambour (1996) and Tone and
Sahoo (2003, 2004, 2004a,b).

In the light of all possible multiple optima problem in the CCR and BCC
methods, Banker and Thrall (1992) generalized by introducing new variables
v+

o and v−o , which represent optimal solutions obtained by solving the dual of
the output-oriented BCC model, with one more constraint

∑m
i=1 vixio+vo = 1

and replacing the objective function in this model by either v+
o = max vo or

v−o = min vo. They show that IRS operates iff v+
o ≥ v−o > 0, DRS operates

iff 0 > v+
o ≥ v−o and CRS operates iff v+

o ≥ 0 ≥ v−o .
Banker et al. (1996b) point out that the concept of RTS is unambiguous

only at point on the efficient facets of production technology. So the RTS
for the inefficient units may depend upon whether the efficiency estimation
is made through an input-oriented or output-oriented manner. A detailed
method of doing so is found in the studies of Banker et al. (1996a), Tone
(1996) and Cooper et al. (1999).

2.3 Quantitative Information on RTS

In this subsection we first discuss the quantitative evaluation of scale elastic-
ity in both primal and dual environments, then point out their limitations,
and finally suggest an alternative measure to get rid of such limitations.

2.3.1 Scale Elasticity in Primal Environment

If a DMUo is efficient in [BCC-O], then it holds that

−
s∑

r=1

u∗ryro +
m∑

i=1

v∗i xio + v∗o = 0

In order to unify multiple outputs and multiple inputs, let us define a scalar
output y and scalar input x respectively as

y =
s∑

r=1

u∗ryro, and x =
m∑

i=1

v∗i xio.
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Then, we have output (y) to input (x) relationship as

y = x+ v∗o .

From this equation, we define MP as

MP =
dy

dx
= 1,

and AP as

AP =
y

x
=

1

x
=

1

1− v∗o
, since y =

s∑
r=1

u∗ryro = 1.

Now, the scale elasticity in production (ρp)
4 is defined as

ρp =
MP

AP
= 1− v∗o .

However, if DMUo is inefficient, then ρp equals (1− 1
φ∗ .v

∗
o). RTS are increas-

ing, constant and decreasing if v∗o < 0, v∗o = 0 and v∗o > 0 respectively.
To note here that as pointed out by Førsund and Hjalmarsson (2004),

the scale elasticity in production, ρp does not satisfy fully the requirement of
RUPL as

∂ρp(x, y)

∂xio

= −v∗o
∂(1/φ)

∂xio

= (1/φ2)v∗ovi, i = 1, . . . ,m.

IRS (v∗o < 0) implies decreasing production elasticity in accordance with
RUPL, while DRS (v∗o > 0) implies an increasing ρp, thus violating the law.

2.3.2 Scale Elasticity in Dual Environment

Sueyoshi (1997) used the following dual of the VRS cost DEA model5

[COST] γ∗ = max
s∑

r=1

uryro + ωo

4Several authors (Førsund, 1996; Sueyoshi, 1999; and Fukuyama, 2001) have derived
this same scale elasticity formula in different ways. However, we need to mention here
that our approach towards the derivation of scale elasticity is much simpler.

5We call [COST] DEA model as the ‘classical’ cost efficiency model. On the DEA
measure of cost efficiency, refer to Farrell (1957), Färe et al. (1985, 1994), Byrnes and
Valdmans (1994), Coelli et al. (1998), Cooper et al. (1999) and Sueyoshi (1999). This
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subject to −
m∑

i=1

vixij +
s∑

r=1

uryrj + ωo ≤ 0, (∀j)

vi ≤ wi, (∀i)
ur, vi ≥ 0, (∀r, i), ωo : free

to compute scale elasticity for DMUo (where ∗ represents optimal value).
Following Baumol et al. (1988), he computed DSE at (wo,yo) as

ρc(= DSE) = γ∗/(
s∑

r=1

u∗ryro),

and shows the equivalence of IRS with DSE > 1, CRS with DSE = 0 and
DRS with DSE < 1.

Note that under the assumption of unique optimal solution, the scale
elasticity in primal form (ρp) in the BCC-O model and scale elasticity in dual
form (ρc) in VRS Cost model are same when φ∗ = 1 and v∗o = ω∗o/(ω

∗
o − γ∗).6

model is primarily based on a number of simplifying assumptions: 1) its underlying factor-
based technology set (input set L(y)) is convex, 2) input prices are exogenously given, and
3) input prices are known with full certainty by the DMUs. However, in many real-life
applications, prices are not exogenous, but vary according to the actions by the DMUs
(Chamberlin, 1933 and Robinson, 1933). Also, DMUs often face ex ante price uncertainty
when making production decisions (Sandmo, 1971 and McCall, 1967). Looking at these
realities leads us to suspect the harmless character of the convexity postulate for L(y). See
Cherchye et al. (2000a) and Kuosmanen (2003) for the details.

6Both primal and dual measures of scale elasticity are based on maintained hypoth-
esis of convex structure of production technology (L(y)). Even though convexity axiom
assumes away some economically important technological features such as indivisible pro-
duction activities, economies of scale (= IRS), and economies of specialization (= disec-
onomies of scope), which all, in fact, result from concavities in production functions as
pointed out by Farrell (1959), this postulate has rarely been exposed to empirical tests
in a DEA tradition (a noteable exception is Briec et al., 2004). Barring a few authors
like Thrall (1999), recent literature favoring dropping of convexity axiom include, among
others, Deprins et al. (1984), Scarf (1981a,b, 1986, 1994), Tulkens (1993), Tulkens and
Vanden Eeckaut (1995), Bouhnik et al. (2001), Tone and Sahoo (2003), and Kuosmanen
(2003); whereas the literature on some exciting economic analysis arising from violation of
convexity include Yang and Ng (1993), Yang (1994), Yang and Rice (1994), Borland and
Yang (1995) and Shi and Yang (1995). The only argument favoring convexity postulate
is that there is possible reduction of small sample errors, which, but, comes at the cost
of possible specification error, which is likely to be negligible in large samples. In fact,
looking at the DEA-related economic literature (Afriat, 1972; Hanoch and Rothschild,
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Otherwise,

ρc

ρp

=
1− ω∗

o

ω∗
o−γ∗

1− 1
φ∗v∗o

.

However, the details of the duality relationship between ρp and ρc can be
found in Cooper et al. (1996) and Sueyoshi (1999, pp.1603-1604).

2.3.3 An Alternative Measure of Scale Elasticity

This cost model however suffers from two problems: 1) scale elasticity in
dual form ρc is no different from its primal counterpart, i.e., scale elasticity
in production ρp, thus giving the illusion that RTS and economies of scale
are the one and same, and 2) this cost model declares a cost inefficient DMU
as efficient one.

Concerning the first problem, it is to be noted that in the above production-
cost relationship it has been implicitly maintained that in the special case
of given input factor prices, the cost structure is entirely determined from
the underlying production technology where IRS implies economies of scale.
However, as the input market is typically imperfect in the real world, these
two concepts can no longer be the same. A description concerning the con-
ceptual differences between these two concepts lies beyond the scope of this
study. However, the interested readers can refer to our earlier studies, e.g.,
Sahoo et al. (1999) and Tone and Sahoo (2003) where both the concepts have
been critically reviewed by highlighting the fact that they have distinctive
causative factors that do not permit them to be used interchangeably.

As regards the second problem, Tone (2002) has recently shown that if
any two DMUs (A and B, say) have same amount of inputs and outputs, i.e.,
xA = xB and yA = yB, and the unit input price vector of DMU A is twice
that of DMU B, i.e., wA = 2wB, then both the DMUs exhibit the same cost
efficiencies. This finding is ‘strange’ because they have achieved the same
cost efficiency irrespective of their cost differential.7 This second problem,
which is due to the very definition of the ‘classical’ cost efficiency model

1972; and Varian, 1984) on production analysis, it appears that convexity properties are
motivated from the perspective of economic objectives (e.g., cost minimization), but not
as an inherent feature of the production technology. See Cherchye et al. (2000b) for de-
tails who provide empirical as well as theoretical arguments, less in favor of, but, mostly
against the convexity postulate in DEA environment.

7See Tone (2002), Tone and Sahoo (2004a,b) for the detailed explanations.
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accounting only for the direction (gradient) of unit price vector (w) but not
for its magnitude, are embedded in the convex structure of the supposed
factor-based technology set T as defined by

T = {(x,y) | x ≥ Xλ,y ≤ Y λ, eλ = 1,λ ≥ 0},

where T is defined only by using technical factors X and Y , but has no
concern with the unit input price w.

Let us define an another cost-based technology set Tc
8 as

T c = {(x̄,y)|x̄ ≥ X̄λ,y ≤ Y λ, eλ = 1,λ ≥ 0},

where X̄ = (x̄1, . . . , x̄n) with x̄j = (w1jx1j, . . . , wmjxmj)
T .

Here, we assume that the matrices X, W and hence X̄ are all positive.
Also we assume that the elements of x̄ij = (wijxij) (∀(i, j)) are denominated
in homogeneous units, e.g., dollar, cent or pound so that adding up the
elements of x̄ij has a meaning.

The new cost efficiency γ̄∗9 is defined as

γ̄∗ = ex̄∗
o/ex̄o,

where x̄∗
o is the optimal solution of the LP given below.

[NCOST] ex̄∗ = min ex̄

8This technology structure was developed while looking at the compelling arguments
for dropping of convexity axiom, though it is regarded as a standard regularity property
without having a valid justification. To cite one important argument for admitting indi-
visibilities as inherent feature of T (but which was assumed away through convexification
of it), Scarf (1994) maintains that if technology involves serious indivisibilities, then it is
impossible to detect optimal equilibrium of the firm facing CRS. If production really does
obey CRS, there is no economic justification for the existence of large firms, i.e., there
is nothing to be gained by organizing economic activity in large, durable and complex
units such as assembly lines, bridges, transportation and communication networks, giant
presses, and complex manufacturing plants, which are available in specific discrete sizes,
and whose economic usefulness manifests itself only when the scale of operation is large.
However, our cost-based technology set Tc approximates reality in terms of not requir-
ing convexity assumption for the factor-based technology set L(y). But, note that our
convexification of Tc is again an assumption.

9Unlike the classical cost efficiency estimate γ∗, this new cost efficiency estimate γ̄∗

does always satisfy the property of ‘monotonicity’ with respect to input and input price,
i.e., if xA = kxB(k > 0), yA = yB and wA = wB , then we have γ̄∗

A = (1/k)γ̄∗
B , and if

xA = xB , yA = yB and wA = kwB(k > 0), then we have γ̄∗
A = (1/k)γ̄∗

B
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subject to x̄ ≥ X̄λ

yo ≤ Y λ

eλ = 1

λ ≥ 0.

The new cost efficiency is evaluated by the program [NCOST].10 The con-
straint includesm inequalities, since x̄ is anm-vector. Considering the objec-
tive function form ex̄ and the input constraints in [NCOST], the aggregation
of these m constraints into one yields the following new program [NCOST-1]:

[NCOST-1] min ex̄

subject to ex̄ ≥ eX̄λ

yo ≤ Y λ

eλ = 1

λ ≥ 0.

This program is simpler than the former in that it has only one aggregated
constraint on the input part.

This aggregated model presents a correspondence between cost (input)
and production (outputs). Let us denote ex̄j by w̄j, i.e.,

w̄j =
m∑

i=1

xijwij. (j = 1, . . . , n)

w̄j is the input cost for the DMUj for producing the output vector yj. Using
this notation and notifying the expressions in [NCOST-1], the new aggregated
scheme reduces to the following LP:

[NCOST-2] min
n∑

j=1

w̄jλj

10As regards the evaluation of cost efficiency, convex cost-based technology set Tc proves
to be superior over the convex factor-based technology set T on two counts. First, cost
efficiency based on Tc, as just discussed in the earlier footnote, does always satisfy mono-
tonicity property with respect to input and input price. Second, this model does not
necessarily require the assumption of convexity to hold for factor-based technology set
L(y), since convexity assumption for L(y), though harmless, is not at all required for
analysis of cost efficiency. And, more importantly, convex L(y) excludes some interesting
economic features such as indivisibilities, scale, and scope.
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subject to yo ≤ Y λ

eλ = 1

λ ≥ 0.

To compute scale elasticity, we consider the dual LP for [NCOST-2] to serve
the purpose.

[NCOST(Dual)] max
s∑

r=1

uryro + δo

subject to
s∑

r=1

uryrj + δ ≤ w̄j (j = 1, . . . , n)

ur ≥ 0 (∀j), δ : free.

We have now scale elasticity11 at (w̄o,yo) as

ρc =
1

1− δ∗/w̄o

.

RTS are increasing if δ∗ > 0 (ρc < 1), constant if δ∗ = 0 (ρc = 1), and
decreasing if δ∗ < 0 (ρc > 1).

If there are multiple optima in δ∗, then let its sup (inf) be δ̄∗ (δ∗). Then
RTS are characterized as increasing if δ∗ > 0 (ρc > 1), constant if δ̄∗ ≥ 0 ≥ δ∗

(ρc ≤ 1 ≤ ρ̄c), and decreasing if δ̄∗ < 0 (ρ̄c < 1).
To note that the method discussed above for characterizing RTS holds

true for efficient DMU. However, if a DMU is found inefficient, then project
it onto the efficient frontier, and then solve the above LP to compute ρc

12.

11This measure of RTS is very different from the standard approach discussed in Aly et
al. (1990). This is the case because the former is derived from the cost-based technology
set whereas the latter is from the factor-based technology set.

12A detailed method of doing so is extensively discussed in Tone and Sahoo (2004b).
One application of the use of this new method in the area of Indian life insurance is found
in Tone and Sahoo (2004a).
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3 Parametric Models

3.1 Scale Elasticity in Translog Production Function

Following Griliches and Ringstad (1971) and Christensen et al. (1973), the
technology characterized by translog production function is represented by

ln yj = αo +
m∑

i=1

αi lnxij +
1

2

m∑
i=1

m∑
i′=1

αii′(lnxij)(lnxi′j)

+δtt+ δttt
2 +

m∑
i=1

δit(lnxij)t+ vj,

where vj is assumed to follow a normal distribution with 0 mean and σ2
v

variance, i.e., vj ∼ N(0, σ2
v). The local scale elasticity of firm j in production

ρjp is computed as:

ρjp =
m∑

i=1

∂ ln yj

∂ lnxij

=
m∑

i=1

[
αi +

1

2

m∑
i′=1

αii′ lnxi′j +
1

2

m∑
i′=1

αi′i lnxi′j +
m∑

i=1

δit.t
]
.

3.2 Scale Elasticity in Translog Cost Function

The following translog cost function:

lnCj(w, y) = αo +
m∑

i=1

αi lnwij + βy ln yj +
1

2

m∑
i=1

m∑
i′=1

αii′(lnwij)(lnwi′j)

+
1

2
βyy(ln yj)

2 +
m∑

i=1

γiy(lnwij)(ln yj) + δtt+ δttt
2

+
m∑

i=1

δit(lnwij)t+ δyt(ln yj)t+ vj,

can be employed to estimate the cost-output relationship with the following
restrictions:

m∑
i=1

αi = 1,
m∑

i′=1

αii′ = 0 (i = 1, . . . ,m), αii′ = αi′i (∀i, i′),
m∑

i=1

γiy = 0
m∑

i=1

δit = 0

to ensure linear homogeneity in input prices, where vj ∼ N(0, σ2
v). The local

scale elasticity in cost of firm j, ρjc, is then computed by
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ρjc = 1
/
∂ lnCj(w, y)

∂ ln yj

= 1
/[

βy + βyy ln yj +
m∑

i=1

γiy lnwij + δyt.t
]
.

To note here that in the multiple input and multiple output environment,
under standard regularity conditions, at the cost minimizing input vector
x∗(w,y), the scale elasticity estimates in both primal and dual environments
(ρp and ρc) are the same, i.e.,

ρjp ≡ −
m∑
i

x∗ij
∂ψ

∂xij

/ s∑
r

yrj
∂ψ

∂yrj

= Cj(w,y)
/ s∑

r=1

yrj
∂Cj(w,y)

∂yrj

≡ ρjc.

See Baumol et al. (1988, pp. 63-64) for its proof. Further, it is shown
there that any differentiable cost function, whatever the number of outputs
involved, and whether or not it is derived from a homogeneous production
process, has a local degree of homogeneity, which is reciprocal of the homo-
geneity parameter of the production process.

3.3 Scale Elasticity in Stochastic Frontier Translog Cost
Function

Following Stevenson (1980) and Kumbhakar and Lovell (2000), in the VRS
environment the following stochastic version of translog cost function:

lnCj(w, y) = αo +
m∑

i=1

αi lnwij + βy ln yj +
1

2

m∑
i=1

m∑
i′=1

αii′(lnwij)(lnwi′j)

+
1

2
βyy(ln yj)

2 +
m∑

i=1

γiy(lnwij)(ln yj) + δtt+ δttt
2

+
m∑

i=1

δit(lnwij)t+ δyt(ln yj)t+ vj + uj,

can be employed to estimate the cost-output relationship with the following
restrictions:
m∑

i=1

αi = 1,
m∑

i′=1

αii′ = 0 (i = 1, . . . ,m), αii′ = αi′i (∀i, i′),
m∑

i=1

γi = 0,
m∑

i=1

δit = 0
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to ensure linear homogeneity in input prices. Here, vj ∼ N(0, σ2
v) and the

inefficiency term uj is assumed to follow a half-normal distribution or a trun-
cated normal distribution.

The local scale elasticity of firm j in cost environment, ρjc, is then com-
puted by

ρjc = 1
/
∂ lnCj(w, y)

∂ ln yj

= 1
/[

βy + βyy ln yj +
m∑

i=1

γiy lnwij + δytt
]
.

In parametric literature, the ad hoc functional forms chosen for the pro-
duction technology without knowing its underlying relationship between in-
puts and outputs, often, cast doubt on the results. To cite one study here,
for all functional forms Hasenkamp (1976) considered, his findings suggest
economies of scale, where as for flexible functional forms, his results reveal
economies of specialization (i.e., violation of convexity assumption). In spite
of large empirical evidence (not reported here) against the convexity axiom
for factor-based technology, the parametric approach imposes restrictions on
the parameters of production and cost functions to bring convexity assump-
tion in for the underlying production technology.

4 Empirical Results

4.1 The Data

For the empirical illustration concerning the comparison between [NCOST]
and translog estimates of scale elasticity, we have used the panel data of 18
electric power companies in the U.S. over a period spanning from 1992 to
1999. These companies have several functions such as generation, transmis-
sion, distribution, and so on. However, our study uses only generation data
because we focus on the productive performance of these companies. The
US data set is obtained from the ‘FERC FORM1’ disclosed by the Federal
Energy Regulatory Commission (FERC).

Concerning the selection of data on inputs and output, we have consid-
ered three inputs: Capital (x1), Fuel (x2), and Labor (x3), and one output:
electric power generated (GWh) (y). Capital is taken as the total installed
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generating capacity (MW). Labor is considered the total number of employ-
ees. Here, because of unavailability of data, we have not taken outsourcing
into consideration. Fuel is taken as the total consumed fuel not only in
fossil power plant but also in nuclear power plant. The amount of fuel con-
sumption for gas, coal and petroleum is converted to British Thermal Unit
(BTU). Compared to the fossil fuel, the amount of consumption of nuclear
fuel is difficult to assess in which case it is calculated backward from gener-
ated electric power from nuclear power plants assuming thermal efficiency of
35% and then is converted into BTU.

As regards the price data, unit price of capital (w1) is taken as the ratio
of total capital cost, c(x1), (which is the total sum of Maintenance and De-
preciation expenses in generation division) to capital input (x1). Unit price
of fuel (w2) is taken as the ratio of total fuel cost, c(x2), (which is the total
sum of fossil, nuclear and other fuel expenses) to fuel input x2. Unit price
of labor, i.e., wage rate (w3) is computed as the ratio of total wages and
salaries, c(x3), to total number of employees (x3). All input cost data are
realized through Producer Prices Index (PPI) of U.S.

In the spirit of earlier studies of Boussofiane et al. (1991), Ray and Kim
(1995) and Sueyoshi (1997, 1999), each year’s company’s annual performance
is considered here a distinct DMU. So, we have in total 144 (=18x8) DMUs
in our sample period. Prior to formal modeling of production process, it is
common in empirical work in the DEA literature (Färe et al., 1987, Grosskopf
and Valdmanis, 1987, and Rangan et al., 1988) to present descriptive statis-
tics on the input-output data, which serves to provide some intution on the
plausibility of the derivative DEA-efficiency coefficients. In a similar con-
text, Besley (1989) and Hammond (1981) have proposed the evaluation of
efficiency “ex ante” and “ex post.” Thus, the efficiency predictions in this
section are termed “ex ante” in the sense that they are derived from the de-
scriptive statistics on the data. Analogously, the DEA efficiency scores can
be interpreted as “ex post” predictions of efficiency. Table 1 containts means,
maxima, minima and standatrd deviations of input-output data based on the
full panel data set comprising 18 companies for eight years.

Table 1: Descriptive Statistics Input and Output Data
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From the extreme values in the data on single input (aggerated cost) and
single output (electric power generated), our crude ex ante prediction is that
DMU 2 in 1997 and DMU 5 in 1999 might be among the best practice
companies with minimal cost and maximal output respectively. As regards
the curvature of the cost frontier, the scatter plot of cost vis-a-vis output
is shown below in Figure 1, and the cost frontier is then drawn, keeping in
mind the fact that the cost-based technology set is convex.

Figure 1: Cost Frontier of US Electric Companies

We find in this figure eight companies over various years: 2(1997), 5(1999),
8(1998, 1999), 13(1999), 16(1999), 17(1997) and 18(1996), characterized, re-
spectively, by points A, H, F, G, D, C, E and B, exhibiting efficient perfor-
mance, and the companies in the remaining years of operation under inef-
ficient performance behavior. Concerning the returns to scale behavior of
the efficient units, we find here DMUs A and B operating under IRS, DMU
C under CRS, and DMUs D, E, F, G and H under DRS. And as regards
the RTS behavior of inefficient units, our ex ante prediction is that a large
number of units appear to be operating under DRS.

4.2 RTS Results in DEA Models

We now turn to discuss the quantitative information on input-oriented RTS
behaviour of the US electric companies in both primal and dual environments.
We only analyze here the scale elasticity estimates of these 18 companies
obtained in both BCC and [NCOST] DEA models.13

Concerning the scale elasticity behavior in production environment, BCC
estimates reveal more units operating under IRS (74 units under IRS, 34 units
under CRS and 36 units under DRS). However, as regards the evaluation of

13The elasticity estimates for each of the 18 companies over a period of eight years are
all reported in Appendix A. The methods used for the computation of scale elasticity are
BCC-I and [NCOST-I]. Both BCC-I and [NCOST-I] estimates on scale elasticity are the
arithmetic average of lower (inf.) and upper (sup.) bounds of elasticity, thus taking care
of the problem of the case of alternate optima.
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scale elasticity in cost environment,14 [NCOST] results favors more units
operating under DRS (48 units under IRS, 31 units under CRS and 65 units
under DRS). This apparent contradiction coming out from these two sets of
estimates can be explained from the fact that the BCC estimates are derived
from a convex factor-based technology set where as the [NCOST] estimates
are from convex cost-based technology set.

However, in the spirit of Färe et al. (1987), an ad hoc procedure has
been adopted here to limit the impact of noise on the estimated level of scale
elasticity. Here a more stable picture of performance can be extracted by
performing separate envelopments on the successive eight cross sections, and
derive the mean-year scale elasticity score of these 18 companies over a period
of eight years. Spearman’s rank correlation coefficient was used to establish
whether noise in outcomes made any unexpected or abrupt change in scale
elasticity rankings of the companies year-on-year vis-a-vis mean efficiencies
of these units over eight years. High value of rank correlation coefficient
was taken to represent stable scale elasticity scores, which reflect underlying
levels of performance. The rank correlation estimates are exhibited below in
Table 2.

Table 2: Spearman’s Rank Correlation

The earlier [NCOST]-based scale elasticity estimates, based on the panel
data, of these 18 companies are found to be significantly correlated with their
cross-section based elasticity estimates for all the eight years. This finding of
significanr rank correlation suggests that these scale elasticity estimates are
stable, and can be taken as the basis of acceptable targets. The cross-section
based mean-year scale elasticity estimates of these companies for each of these
years are found to be, respectively, 1.083, 1.631, 1.237, 2.275, 1.520, 1.024,
1.108 and 1.477. This finding is in broad agreement with our panel data
based mean-year elasticity estimates (3.326, 4.498, 3.831, 2.895, 2.330, 2.157,

14Note here that, classical dual [COST] estimates of scale elasticity are not reported
because we have already demonstrated the superiority of [NCOST] estimates over the
classical [COST] estimates in our forthcoming paper (Tone and Sahoo, 2004b).
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3.117 and 3.498).15 However, the magnitude of the cross-section based mean-
year elasticity estimates are lower compared to those in our panel-based case.
This result is not surprising because of more exreme scale elasticity values
in the latter case, otherwise, the result would have been reverse because the
creation of envelops for successive cross-sections limits the number of firms
to 18 each, which increases the chance of inefficient units to be come efficient
in our DEA evaluation process.

4.3 RTS Results in Econometric Models

We have considered here both translog cost function and stochastic frontier
translog cost function models for the computation of scale elasticity.

4.3.1 Translog Cost Function Model

For the computation of scale elasticity,16, we have considered first the non-
frontier and non-stochastic case where we employed translog cost function
(TCF), without and with time trend. We have formulated the following
structure given below where the third input price (w3) is standardized.
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15It is to be noted here that the magnitude of each of these mean estimates, being all
greater than 1 does not mean that Electric industry operates under IRS for all these years.
In fact, these mean values are greatly distorted because of a few extreme scale elasticity
values for some units (units 2 and 6 in cross-section based data, and units 2, 6, 11 and 15
in panel based data). These estreme values are due to the fact that DEA evaluates RTS
of inefficient unit by upwardly projecting them onto the efficient frontier. Otherwise, the
trend is clearly in favor of DRS in most of the cases.

16Before scale elasticity calculations are made, we applied the Likelihood Ratio (LR)
test to verify whether CRS assumption is justified for the industry, and we find that it is
no longer valid, i.e., industry exhibits VRS.
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The methods of estimation used are Ordinary Least Squares and Auto Re-
gression. The estimates of coefficients along with their standard errors are
all reported in Table 3.

Table 3: Estimates of Translog Cost Function

Regression is run for three times: first one with no time trend using
OLS method (TCF1), second one with time trend using OLS (TCF2), and
third one with time trend using Auto regression. As is seen in this table,
the consideration of time trend appears to have no noticeable impact on
the estimates of translog cost coefficients and values of R2. A graphical
illustration for the comparison of scale elasticity estimates obtained from the
above three regressions is shown below in Figure 2.

Figure 2: Scale Elasticity Behavior in Translog Cost Function Models

We observe here that the average elasticity estimates of US electric com-
panies exhibit IRS for all the eight years.17 Barring the first case (TCF1)
where we have not considered the time trend, average trend scale elasticity
behavior of these companies in the other two models are same.

However, the problem with the TCF model is that it does not take into
account the possibility that a firm’s performance may be affected by factors
entirely outside its control such as poor machine performance, bad weather,
input supply breakdown, etc., and by factors under its control labeled ‘in-
efficiency.’ In effect, the single term inefficiency mixed with the effects of
exogeneous shocks, measurement error and inefficiency is subject to ques-
tions. So there appears the stochastic frontier, which was motivated by the
idea that deviations from the cost frontier might not be entirely under the
control of the firms being studied. So the error term in the stochastic frontier

17The detailed estimates of scale elasticity of these companies over all the years are
shown in Appendix B.
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is composed of two parts: one part, vj (systematic), which is unrestricted,
permits the random variation of the frontier across firms and captures the ef-
fect of measurement error, other statistical noise and randdom shocks outside
the control of firm, and the other part, uj (one-sided error term), captures
the effect of inefficiency relative to the stochastic frontier.

4.3.2 Stochastic Frontier Translog Cost Function

We have employed here the stochastic and frontier version of the same
translog cost function where we assumed two distributions for the inefficiency
term: one with half-normal distribution (STCF1) and other with truncated
normal distribution (STCF2). Now, for computing scale elasticity in VRS
environment, we have formulated the following structure given below where
the third input price (w3) is standardized.
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The results on the coefficients along with their standard errors in each case
are all exhibited in Table 4.

Table 4: Estimates of Stochastic Frontier Translog Cost Functions

Concerning average scale elasticity behavior of the US electric companies,18

we find also in Figure 3 the trend scale elasticity behavior in each of the two

18Like our non-stochastic case, to justify the validity of computation of scale elasticity,
we have too applied here LR-test to examine whether industry exhibits CRS. We find
in each of two cases that CRS can no longer be the maintained assumption as LR-test
stastistic, χ2, is found to be statistically significant.
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cases more or less the same.19 However, there appears to be a striking differ-
ence between the trend scale elasticity behavior revealed through TCF and
STCF estimates where the TCF trend completely dominates its stochastic
counterpart. This result is not surprising because the main factor contribut-
ing this difference is the statistical ‘noise’ factor. Thus, neglecting this factor,
will lead, at least in this case, to a too greater picture of scale elasticity es-
timates in TCF setting.

4.4 RTS Results: A Comparison

Let us now turn to compare the scale elasticity estimates obtained in both
TCF and STCF models with those in our new method. To start with, let
us examine the distribution of returns to scale between DEA and translog
methods, which is exhibited in Table 5.

Table 5: Distribution of RTS in DEA and Translog Models

We find here that, as expected from our ex ante prediction, [NCOST]
reports more units operation under DRS (48 units under IRS, 31 units under
CRS, and 65 units under DRS). In TCF setting, both OLS and auto regres-
sion methods yield the diametrically opposite information on RTS possibil-
ities, favoring more units opearting under IRS. The statistical t-test results
with 5% confidence interval suggest that 69-78 companies operate under IRS,
40-55 units under CRS and 20-26 units under DRS. However, the RTS pos-
sibilities in STCF environment do not go in line with those in TCF setting,
favoring more units of operation under CRS. The statistical t-test results with
5% confience interval indicate that in the case of inefficiency term following
half-normal distribution, 29 units are found operating under IRS, 83 units
under CRS and the remaining 32 units under DRS, whereas in the case of
the truncated normal distribution, 47 units are found operating under IRS,
59 units under CRS and the remaining 38 units under DRS. This divergent
information concerning the distribution of RTS in STCF setting is largely

19The stochastic scale elasticity estimates of each of these 18 companies over eight years
are exhibited in Appendix C.
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attributed to the functional forms for the inefficiency distribution. Since, the
RTS behavior in STFC setting is largely dependent upon the distribution of
the inefficiency term, the question remains to verifying the validity of the
assumption of half-normal and truncated normal distribution. However, the
apparent contradiction in revealing RTS information between [NCOST] and
STFC is clearly evident in that in the former DRS is favored for more units
(as per our a priori ex ante prediction), and in the latter, IRS and CRS are
favored for majority of the companies.

Concerning the investigation of optimal scale of operations, our new
model [NCOST] offers different policy prescription in that it suggests the
lower level of operation as against the very high level of such operation yielded
in both TCF and STCF models. This divergent information on RTS behav-
ior of these units yielded from these two methods can further be reconfirmed
from the χ2 statistic results. Table 6 [A through F] gives a comparative pic-
ture of estimates of scale elasticity of [NCOST] vis-a-vis with those in BCC,
TCF and STCF methods.

Table 6: Comparison of Scale Elasticity Estimates

We find χ2 statistics in all the cases significant, which suggest that scale
elasticity estimates obtained in [NCOST] model are significantly different
from those in BCC, TCF and STCF models. The difference in results between
BCC and [NCOST] models is due to the fact that both are not dual to each
other. However, the difference in results obtained from translog cost model
and [NCOST] model can be explained through by comparing the theoretical
setups of their models. The translog sets of estimates are based on the convex
factor-based technology set whereas [NCOST] set of estimates are on convex
cost-based technology set.

Now, it is worth comparing our findings with those in some of early em-
pirical studies. We find that the findings of these studies are unable to per-
suasively establish whether scale economies are present. In fact, the findings
are contradictory to each other. To cite a few, among others, Kaserman and
Mayo (1991) found the existence of economies of vertical integration in the
privately owned U.S. electric power companies in 1981, but division-specific
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economies of scales were absent, which go in line with the findings of our
stochastic translog method. Gilsdorf (1994) and Hayashi et al. (1997), on
the other hand, found the existence of division-specific scale economies, sup-
porting our [NCOST] findings. We believe that the findings of our [NCOST]
model that precisely uncovers the real differences in input factor prices, are
realistic, otherwise, policy makers in most of the states in the U.S. would not
have brought changes in appropriate policy in terms of introducing compe-
tition into generation division.

4.5 RTS in [NCOST]: Is It Rational?

Before proceeding further, let us first intuitively demonstrate the rationality
of the empirical evaluation of scale elasticity estimates20 in our new method.
We see in Figure 1 that cost-based technology frontier is piecewise-linear
comprising only eight efficient DMUs (A: 2(1997), B: 18(1996), C: 16(1999),
D: 13(1999), E: 17(1997), F: 8(1999), G: 8(1998) and H: 5(1999)), and seven
efficient facets (AB, BC, CD, DE, EF , FG and GH). We clearly see here
that the first two facets (AB and BC) are characterized by IRS, and DRS
prevails on the remaining facets. The cost, output and the computational
procedure for the calculation of scale elasticity are all exhibited in Table 7.

Table 7: Empirical Evaluation of Scale Elasticity

Now let us compute the scale elasticity of an inefficient unit such as
16(1997) (also indicated by point I in Figure 1). This DMU’s input effi-
ciency score in our [NCOST] model is 0.410602, and its peer DMUs are D
[= 13(1999)] and E [=17(1997)]. So the projected cost and output values
of this DMU are, respectively, 753544325.196 and 44442.017. The average
cost, marginal cost and scale elasticity of DMU I [16(1997)] are computed as
follows:

20Note that [NCOST] estimates of elasticity presented earlier are based on one out-
put and three distinct input costs. This was ideally done for better comparison because
translog cost model deals with three inputs. Since elasticity calculation based on three
input costs and one output cannot be exhibited in graph, we presented here in Table 7
the same with help of one aggregated input cost and one output.
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AC = C/Y = 753544325.196/44442.017 = 16955.673,

MC =
1

slope of facet DE
= dC/dY = 18748.719,

Scale Elasticity = AC/MC = 16955.673/18748.719 = 0.904364.

The scale elasticity score of 0.904364 indicates that DMU I operates under
DRS. The fundamental difference between our new [NCOST] method and
translog cost method for the estimation of cost frontier is that in the former
the structure of the frontier is assumed to be convex whereas in the latter,
the technology structure, depending upon data, may be either convex or non-
convex. We intend to verify this in the light of three new artificial data sets:
one in which cost-based technology set is convex, and in the other two, it is
not.

4.6 Verifying RTS in New Data Sets

We now examine this relationship in three new atrificial data sets, each
consisting of 144 firms. The scatter plots of output vis-a-vis cost corre-
sponding to Data Sets I, II and III are exhibited, respectively, in Figures:
3, 4 and 5. We find here that the observed cost-based technology set in
Figure 3, corresponding to Data Set I, is convex whereas corresponding to
Data Sets, II and III in Figure 4 and Figure 5, they are not. However, in all
the cases, the hypothesis of convex structure for the underlying cost-based
technology is maintained, as can be seen from both the figures where the cost
frontiers are made of thick piecewise linear lines.

Figure 3: Cost Frontier (Data Set I)

Figure 4: Cost Frontier (Data Set II)
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Figure 5: Cost Frontier (Data Set III)

We now report the summary of scale elasticity estimates for each firm.
The computational procedure is just the same as the one we explained while
demonstrating the rationality of empirical evaluation of scale elasticity in
Table 7. A simple glance at Figures: 3, 4 and 5 reveals that the cost frontiers,
corresponding to Data Sets: I, II and III, are, respectively, made of three (A,
B and C). four (A, B, C and D) and three (A, B, C) efficient firms. The
distribution of RTS in [NCOST] and TCF settings is exhibited in Table 8.

Table 8: Distribution of RTS in Data Sets: I, II and III

We find here that in case of Data Set I where observed cost-based tech-
nology set is convex, as expected, both the methods favor more number of
units operating under IRS. [NCOST] reports 68 units opearting under IRS, 33
units under CRS, and the remaining 43 units under DRS, and with 5% level
of confidence, our t-test results in TCF setting report 78 units under IRS, 48
units under CRS and 18 units under DRS. Now, coming to Data Set II where
observed cost-based technology is not convex, both the methods are in broad
agrement to our a priori expectation that most of the units operate under
IRS. [NCOST] here reveals 134 units under IRS, 7 units under CRS and 3
units under DRS as opposed to all the 144 units (with 5% level of confidence
interval) exhibiting IRS in translog method. However, in Data Set III where
observed cost-based technology is also not convex, our a priori expectation
was that more number of units appeared to be operating under DRS. But,
both the methods, here, yield diametrically opposite conclusion concerning
RTS possibilities. We find [NCOST] reporting 39 units operating under IRS,
16 units under CRS, and 89 units under DRS, whereas translog method yields
103, 41 and 0 units operating, respectively, under IRS, CRS and DRS.

The potential problem arises in the choice of these two methods when the
observed cost-output relationship violates the requirement of convex struc-
ture of the cost-based technology set. The translog cost model has the well
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reputation of being flexible in approximating arbitrary production technolo-
gies. So the comparison between these two sets of estimates leads us to
conclude that both methods broadly yield same information on returns to
scale possibilities in the case of data where the observed cost-based technol-
ogy structure is convex, and in case of data like Data Set II and III, where
this convex structure is violated, the inference on RTS possibilities drawn
from these two methods are not clear cut.

The relevant point to bear in mind here is that the difference between
these two sets of scale elasticity estimates is largely attributed to the dif-
ference in the theoretical setups in these two models. In the traditional
production economics literature, it is typically assumed that every DMU is
endowed with a particular input price vector. For a particular factor-based
convex technology set, every DMU’s efficient cost frontier is convex in the
output given its input price vector. In this setup, it is easy to see that if one
plots the least cost values against output for various DMUs that are charac-
terized by different output and input price vector combinations, the resulting
cost frontier need not be convex in output. To summarize, while every input
price vector-specific cost frontier is convex in output, the cost frontier made
up arbitrary points from these cost frontiers need not be convex when DMUs
do not have control over input prices.21

However, the setup in our [NCOST] model assumes that DMUs not only
control over on the mix and quantities of inputs used but also exercise any
control over input prices22 This is what one expects an ideal measure of
scale elasticity to assign some value to each of the aforementioned aspects of

21The choice of preferred input prices is one important aspect of production planning
process that is considered very important in determining international competitiveness,
but is clearly overlooked in this conventional model. Since, this aspect does not lend itself
well to direct measurement in this traditional model, many companies miss opportunities
to bolster their performance by not locating themselves in places where some of important
inputs are cheaply available. Another aspect, often overlooked in this model, is input cost
savings due to bulk-buying at preferential lower prices.

22Using several different aspects of production planning process, this model indeed im-
putes a multifactor perspective in its scale elasticity estimates to track overall performance.
The scale elasticity estimate obtained in this model often gives managers a convenient
scorecard to answer question: ‘How is a company really doing?’ This model has theoret-
ical advantage over traditional counterpart not only studying but also influencing scale
elasticity behavior because use of elasticity estimates by companies will make a real dif-
ference in their subsequent decisions and priorities to improve performance.
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production planning. Increasingly, companies are too discovering the com-
petitive power of undertaking each of these aspects - or the dangers of not
doing so. Now, we face a difficult trade off in the use of these two mod-
els when the observed cost-based technology set is not convex. The choice
of using translog model, which has property of being flexible, is associated
with imposition of ad hoc functional form without knowing the underlying
relationship between inputs and outputs, which cast doubts on the results
obtainable by this method. Furthermore, the imposition of normality restric-
tions on the parameters of translog production/cost function brings in the
convexity postulate, which is definitely not a normal feature of factor-based
production technology, as has been evident from empirical literature.23

In contrast, the choice of using [NCOST] model is associated with an im-
position convexity postulate for cost-based technology,24 but assuming away
the same assumption for the factor-based technology set, which excludes
important economic phenomena such as indivisible production activities,
economies of scale and economies of specialization. So the question remains
to be seen, which model to use for empirical valuation of scale elasticity, is
largely dependent on the magnitude of relative cost of use of each model.
In the light both empirical and theoretical arguments that favor dropping
of convexity assumption for factor-based technology set in DEA, we believe,
our proposed [NCOST] model does receive the favor.

5 Concluding Remarks

Investigation of scale elasticity for obtaining optimal scale of operations has
significant bearings while recommending policy for restructuring any sector.
So due care is warranted in this regard to ensure that the scale elasticity
estimates should not be suffered from major shortcomings. We find in the
parametric literature that the translog cost function has been very popular
to estimating scale elasticity. We show here that first, the scale elasticity es-

23In fact, the empirical evidence suggests that non-convexities are surprisingly common
feature of the underlying factor-based production technologies.

24A solid conceptual explanation for convexity postulate for cost-based technology set is
of course required for establishing it to be a regular assumption in production economics
literature. This excercise can be taken as a future research study, which is mentioned in
the concluding remarks of this paper.
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timates obtained from this precisely depend upon the functional forms of the
inefficiency distribution, and second, these estimates are subject to question
when the convexity postulate for the underlying factor-based technology set
is not realistic. Similarly, the scale elasticity estimates obtained from tradi-
tional non-parametric method (Classical cost efficiency by Sueyoshi, 1997)
can be argued to be misleading based on the grounds that first, this model
is based on the convex factor-based technology set that rules out some eco-
nomically important technological features such as indivisibilities, economies
of scale and economies of specialization, and second, cost efficiency obtained
from this model does not always satisfy the monotonicity property with re-
spect to not only input but also input price. We suggest a new nonparametric
method for the estimation of scale elasticity while pursuing further elasticity
studies based on the premise that the elasticity estimates based on other
methods can be illusory.

This study points to avenues for future research in two directions:

• Justifying further the convex cost-based technology set by providing
a conceptual framework, which is essential to help readers better un-
derstand the situations under which our proposed new scale elasticity
estimates will prove to be superior over the those in classical [COST]
model.25 Such a conceptual framework can be made by carefully de-
scribing the difference between our setup with that of classical model as
well as describing the data generating processes for inputs, input price
vectors and efficiency random variables, which, in conjunction with a
convex factor-based technology set, can endogenously generate a convex
cost-based technology set.

• Developing in terms of formulating a nonlinear DEA model by incor-
porating the relationship between input price and quantity as cost has
a linkage with a production change (e.g., a bulk purchase).

25We have already demonstrated the superiority of the former over the latter in terms
of exhibiting both monotonicity property, and not requiring the factor-based technology
set to be convex.
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[28] Färe, R., S. Grosskopf and C. A. K. Lovell. (1988) “Scale Elasticity and
Scale Efficiency,” Journal of Institutional and Theoretical Economics,
144, 721-729.
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