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Egoist’s Dilemma: A DEA Game

Ken Nakabayashi® and Kaoru Tone'
National Graduate Institute for Policy Studies
2-2 Wakamatsu-cho, Shinjuku-ku, Tokyol62-8677, Japan

Abstract

This paper deals with problems of consensus-making among individuals or organizations with
multiple criteria for evaluating their performance when the players are supposed to be egoistic,
in the sense that each player sticks to his superiority regarding the criteria. We analyze this
situation within the framework or concept developed in data envelopment analysis (DEA). This
leads to a dilemma called the ‘egoist’s dilemma.” We examine this dilemma using cooperative
game theory and propose a solution. The scheme developed in this paper can also be applied to

attaining fair cost allocations as well as benefit-cost distributions.

Keywords
Game theory, cooperative game, DEA, variable weight, Shapley value, nucleolus, assurance

region method, cost allocation
1. Introduction

Let us suppose n players each have m criteria for evaluating their competency or ability which is
represented by a positive score for each criterion. Similar to usual classroom examinations, the
higher the score for a criterion is, the better the player is judged to perform as regard to the
criterion. For example, let the players be three students A, B and C, with three criteria,
mathematics, literature and gymnastics. The scores are their records for the three subjects,
measured by positive cardinal numbers. Now, we want to allocate a certain amount of
fellowship grant to the three students in accordance with their scores in the three criteria. All
players are supposed to be selfish or egoistic in the sense that they insist on their own advantage
on the scores. However, they must reach a consensus in order to get the fellowship. Similar
situations exist in many societal problems as discussed later. This paper proposes a new scheme
for allocating or imputing the given benefit to the players under the framework of game theory
and data envelopment analysis (DEA). This scheme can also be applied for attaining fair
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expense (cost) allocations, as well as benefit-cost distributions.

The rest of this paper unfolds as follows. Section 2 describes the basic model of the DEA
game and its properties. Then in Section 3, we observe and propose several methods for
imputation, including Shapley value and nucleolus. Also, we discuss the relationship of our
DEA game with the linear production game by Owen (1975). Extensions of the basic model are
discussed in Section 4. Section 5 presents several potential applications of this model. Finally,

some concluding remarks follow in Section 6.
2. Basic models of the game

We introduce the basic models and structures of the game and uncover its mathematical

properties.

2.1 Selfish behavior and egoist’s dilemma

Let X =(x;)ER[ be the score matrix, consisting of the record x, of player j to the criterion

i. It is assumed that the higher the score for a criterion is, the better the player is judged to
perform as regard to the criterion. Each player & has a right to choose a set of nonnegative
weights w* =(wf,---,w!) to the criteria that are most preferable to the player. Using the
weight w¥, we define the relative score of player k to the total score as follows:
Swix,
CRITEIR ey
Elwi (jE.lxij)
The denominator represents a total score of all players as measured by player k’s weight
selection, while the numerator indicates player &’s self evaluation by the same weight selection.
Hence, the expression (1) demonstrates player &’s relative importance (share) under the weight
(or value) selection w*. We assume that the weighted scores are transferable. Player & wishes to
maximize this ratio by selecting the most preferable weight, thus resulting in the following
fractional program.
’2": Wi %,
max A" @
Izlw: ( 12_1 xy)
subject tow, =0 (Vi).
The motivation behind this program is that player k£ aims to maximize his relative value as
measured by the ratio: the weighted sum of his records vs. the weighted sum of all players’

records. This arbitrary weight selection is the fundamental concept underlying data envelopment



analysis (DEA) initiated by Charnes, Cooper and Rhodes (1978). DEA terms this as ‘variable’
weight that is contrasted to a priori ‘fixed’ one. Refer to Cooper et al. (1999) pp.12-13 for this

issue.
Before going further, we reformulate the problem as follows, without losing generality.

We normalize the data set X so that it is row-wise normalized, i.e.,

Sx, =1 (i)

For this purpose, we divide the row (x,,---,x, ) by the row-sum i‘,x,.}. for i=1,---,m. The
il

program (2) suffers no effect by this operation. Thus, using the Charnes-Cooper transformation

scheme, the fractional program (2) can be expressed by a linear program as follows:

c(k) = max gwfxl,, (3)

subject to S w¥ =1
i=1

wr 2 0. (Vi)

Now, the problem is to maximize the objective (3) on the simplex iw{‘ =1. Apparently the
{w]
optimal solution is given by assigning 1 to w,."(,‘) for the criterion i(k) such that

Xigy = max{t,.k |i =1,---,m}, and assigning 0 to the weight of the remaining criteria. We denote

this optimal value by c(k).
c(k)=xr(.t)° (k=1,n) 4)
The c(k) indicates the highest relative score for player £ which is obtained by the optimal weight

selecting behavior. The optimal weight w.,"(,‘) may differ from one player to another.

[Proposition 1]

21 c(k)=1. (5)

Proof: Let the optimal weight for player &k be w, =(wy, -, w,,), i.e, Wy, =1 and
w,, =0 (Vi =i(k)). Then we have

Sck) = EEW:}xu =;xi(k)k =y xy, =1

k=1 k=1{al =l k=1

The inequality above follows from x,,, =x, and the last equality follows from the row-wise



normalization. |

This proposition asserts that, if each player sticks to his egoistic sense of value and insists on
getting the portion of the benefit as designated by c(k), the sum of shares usually exceeds 1 and
hence c(k) cannot fulfill the role of division (imputation) of the benefit. If eventually the sum of
c(k) turns out to be 1, all players will agree to accept the division c(k), since this is obtained by
the player’s most preferable weight selection. The latter case will occur when all players have
the same and common optimal weight selection. More concretely, we have the following

proposition.

[Proposition 2]
The equality ‘ic(k) =1holds if and only if the score matrix satisfies the condition
wl

Xy =Xo ==X, fork=L---n.

Le., each player has the same score with respect to the m criteria.
Proof: ‘If’ part can be seen as follows. Since c(k) = x,, for allk , we have ic(k) =§jx1,, =1
k=1 k=l

The ‘Only if” part can be demonstrated as follows. Supposex,, > x,,, then there must be a
column % =1such that x,, <x,,, as otherwise the second row sum can not attain 1. Thus, we
have

c(D)zx,,ch) = x,, >x,, and c(j) 2z x,, (Vj =1,h).
Hence, it holds that

n

’(E_lc(k)z 2 X+ Xy, > ;E.lx” =1.

jelmh

This leads to a contradiction. Therefore, player 1 must have the same score in all criteria. The

same relation must hold for other players. U

In the above case, only one criterion is needed for describing the game and the division

(imputation) proportional to this score is the fair division. However, such situations might occur

only in rare instances. In the majority of cases, we haveic(k) >1. We may call this the
k=1

‘egoist’s dilemma’ and, as we see later, many societal problems (conflicts) belong to this class.
One might think that a benefit allocation proportional to {c(k)} is a solution. However, this

allocation is by no means rational if we admit coalitions among players.



2.2 Assumption on the game and fair division
In order to attain a fair division (imputation), we assume the following agreements among the
players, although each ‘selfish’ player sticks to his most preferable weight selection behavior as
expressed by the program (3).
(A1) All players agree not to break off the game.
(A2) All players are willing to negotiate with each other to attain a reasonable and fair
division z=(z,,---,z,) as represented by z = wX with a certain common

weightw = (w,,---,w, ), if it exists.

2.3 Coalition with additive property
Let a coalition § be a subset of the player set N =(1,---,n). The record for the coalition § is

defined by
x;(S)= DEE (i=1--,m) (6)

fEs
This coalition aims at obtaining the maximal outcome c(S):
¢(8) = max $wx,(S) @)
i=1
subject to iwf =1, w,=0(Vi).
1ml

The c(S), with c(¢)=0, defines a characteristic function of the coalition S. Thus, we have a

game in coalition form with transferable utility as represented by (N, c).

[Proposition 3]
The characteristic function c is sub-additive, i.e., forany SCNand T CNwithS NT =¢, we
have
c(SUT)=c(S) +c(T). 8
Proof: By renumbering the indexes, we can assume that
S={l -, BT ={ +1,-,k}and SUT ={i,---,k}.
For these sets, it holds that

I3 L3 k
¢(S UT) = max ,Zx” < max Z Xy + max ,-Z,lxij =c(S) +c(T). O

We also have the following proposition.

[Proposition 4]
c(N)=1.



2.4 Another expression of the game
Let us define another game (¥, v) by

V()= 3e()) - e(S). | ©

(We use the notation ¢(j) instead of c({ j }))
[Proposition 5]
(N, v) is supper additive, i.e.,
viS)+v(T)sv(SUT) VS,TCNandSNT=¢

Proof: v(S)+v(T)={gc(j)—c(S)}+{;c(j)—c(T)}=

J J

2,c)- {e(s)+(r)}

7

sjezc(j)—c(S UT)=v[SUT). O

T

We have:
v(j)=0(¥)) andv(N):ji_lc(j)—c(N)=§1c(j)—1>O.
Hence the game (N, v) is O-normalized. Let an imputation of the game (N, v) be
y={(y",y,), which satisfies y, =v(j)=0(Vj)and ji_ly, =v(N). Using y=(,Y.)
we can define a bepefit allocation z=(z,,,z,) by z,=¢(j)-y;(j=1---,n). This
allocation satisfies ,-i..z ;= gc( - ji_] ¥, =1. Hence, this game has essentially the same structure

as the game (V, ¢).
The game (I, v) starts from v(j)=0(Vj) and enlarges the gains by coalitions until the

grand coalition ¥ with v(¥)= 3 c(j)-1.
1

j=

2.5 ADEA minimum game
We observe here the opposite side of the egoist’s game (N, c) that is defined by replacing max in
(3)' by min as follows:

d(k)=min S wix,
i=1
subjectto S wk =1 (10)
i=1 .
wf = 0.(Vi)



The optimal value d(k) assures the minimum division that player k£ can expect from the game. In

this case, as a counterpart of Proposition 1, we have:

[Proposition 6]

gd(k)ﬂ.

Analogously to the max game case, for a coalition S CN, we define

d(S) = min i. w,x,(S)

i (11)
subject to y w, =1, w, = 0(Vi).
=1

Apparently, it holds that d(N)=1.
The DEA min game (N, d) is super-additive, i.e., we have
dSUT)=zd(S)+d(T). VS,TCNwithSNT=¢ (12)
Thus, this game starts from d(k)>0(k =1,---,n) and enlarges the gains by coalitions until the
grand coalition N with d(N)=1.
Between the games (I, ¢) and (, d) we have the following proposition:

[Proposition 7]

d(S) +c(N -8)=1. VSCN (13)

Proof: By renumbering the indexes, we can assume that
S={, kN ={l,---,n}and N =S = {5 +1,---,n}
For these sets, it holds that

d(S)+c(N-S) = mm2x +mf1x x; —mm(Zx - Zx )+max Z A
1= Fet 1 4

~m1n(1— i Xy )+max i x; =1-max 2 X; + max i x, =1 0

: F=h+l juh+l L | LI or ¥t |

2.6 Convex or concave game
Proposition 3 suggests that the DEA max game (N, c) might be a concave game, i.e., for any
coalitions S and 7, it holds that

cSUT)+c(SNT)=sc(S)+c(T). (14)



However, unfortunately this conjecture is not true as demonstrated by the counterexample

below.

[Example 1]
Table 1 exhibits a DEA game with 4 players and 3 criteria. The scores are row-wise normalized

so that the sum of row elements is equal to 1 for each row.

Table 1: Example 1

Player A Player B Player C Player D Row-sum
Criterion 1 | 0.5 0.25 0.2 0.05 1
Criterion2 | 0.375 0.375 0.125 0.125 1
Criterion3 | 0.5 0.25 0.125 0.125 1

Let S={4,B},T={B,C},SUT ={4,B,C}and S NT ={B}. Then we have:
c(8)=0.75,¢(T)=0.5,¢(S UT)=0.95,c(S N T)=0.375.

Hence it holds thatc(S) + ¢(T) =1.25 <1325 =¢(S UT) + ¢(S N T), showing the non-concavity

of this game.

However, this concept, concavity, is case-sensitive and so we should check it case by case. In

the case of SUT=N, we have the following proposition.

[Proposition 8]
1+c(SNT)sc(S)+c(T). VS, TCNwithSUT =N
Proof: From the super-additivity of d ("), we have the following inequality.
d{S-SNT}+{T-SNTH=zd(S-SNT)+d(T ~SNT)

From Proposition 7, it holds that d(S ~SNT)=1-¢(T),d(T -SNT)=1-¢(S) and
d{S-SNT}+{T-SNT}H =1-c(SNT).
Hence we have,

1-c(SNTYz{1-cT)}+{1-c(S)}

1+e(SNT)=c(S)+c(T) |

Similarly we have, for the game (¥, d),

[Corollary 1]
1+d(SNT)zd(S)+d(T). VS, TCNwithSUT =N

From Proposition 8, we have following proposition in the case of 3 players.



[Proposition 9]
The DEA game (N, c) with 3 players is concave.
Proof: Let the three players be i, j and k. Then we have, from Proposition 8, the following
inequality.

c(j,k)+cli,k) =1+ clk)=c, j,k)+clk). O
(We use the notation ¢(j,k) instead of c({ j}, {k}).)

Similarly we have the following proposition.

[Proposition 10]
The DEA game (N, d) with 3 players is convex.

Furthermore, the transformed game (%, v) in the 3-player case has the convex structure.

[Proposition 11]
The DEA game (N, v) with 3 players is convex.
Proof: Let the three players be i, j and k. Then we have,
v{i,k)+v(i, k)= eli) + clk)- <, k)} {c(1)+c( )-c(j )
= ofe) + e ) + 2¢(k) - (i, k) +c J, k)
=cff)+ (J)+26 ~{eli, j k) + clie)}
—() o} cl) =i, j.k)=vEi, j. k)
d

(We notice that the game (N, v} is 0-normalized.) U

3. Imputations

In this section, we observe the core, Shapley value and nucleolus as the representative
imputations of the cooperative game and discuss their mathematical properties associated with
the DEA game. Remarkably, the Shapley value of the DEA max game is the same as that of the

DEA min game. Finally we discuss the common weight problem.

3.1 Conditions for imputation
An imputation of the DEA min game (N, d) is a vector z=(z,, +-,z,) that satisfies the

following individual and grand rationalities.

Individual rationality: z, =d(j), j=1---,n

Grand rationality: 22 ;=dN)=1
}-



Let an imputation of the transformed game (¥, v) be y =(y,,'--,¥,), Wwhich satisfies
v 2W(i)=0(¥))and 3y, =v().
A benefit allocation z=(z,,,z,)=(c(l) = y,,,c(n)—y,) satisfies z, sc(j)(V))

and iz ; =1. This is the induced imputation of the max game (¥, c).
i=1

3.2 The core
The core of the DEA min game (N, d) is the set of imputations that satisfies the following
collective rationality in addition to the individual and grand rationalities.

Collective rationality* ng =d(S), VSCN. a7
J

Since the core of a convex game is not void, the core of DEA games (, d) and (¥, v) with 3
players is not void by Propositions 10 and 11. More generally, Owen (1975) has introduced
linear program games associated with an economic production process and demonstrated that
they have a non-empty core. Comparing our DEA game with his case, we found that the DEA
game can be interpreted as the dual of his linear program. The Owen’s LP game has a coalition
on the right hand side vector of the constraints, whereas the coalition of the DEA game appears
on the objective function vector. Since the optimal primal value that defines the characteristic
function of a coalition is equal to the optimal dual value by the duality theorem, his Theorem 1
(the LP game is balanced) is valid in our case, too. Thus, the DEA games are balanced. A game
has a core if and only if it is balanced (Shapley, 1967). Therefore we have the following two
propositions,

[Proposition 12]
The DEA min game (N, d) is a balanced game. Hence its core is nonempty.
Proof: Although this proposition is a direct consequence of Owen (1975), we give another proof

in a manner specific to the DEA game. Let an arbitrary 2"-2 dimensional nonnegative vector be

Y= b' s :SCN ) which satisfies vs =1(VjEN) . If we can demonstrate that the following

S:jEeN
-

inequality holds for this vector, then the game (¥, 4) is a balanced game (Shapley, 1967).

:Z’ysd(s)sd(NFl.

This inequality can be obtained as follows:

10



%st(s)=%7s ’ m,.in;;xii

sngn(%ysgxﬁ =min ;;xijsu g.;:rs =m'_in;'x,.j =1. O

Similarly, we can demonstrate that the DEA game (¥, v) is a balanced.

[Propositfon 13]

The DEA game (N, v) is a balanced game. Hence its core is nonempty.

Furthermore, Owen (1975) developed a method for finding points in the core. Amazingly,
following his method, we found that any row of the normalized score matrix X or any convex
combination of rows of X is an imputation in the core. In other words, we have the following

proposition.

[Proposition 14]

For any w=(w,, --,w,YER, in the simplexw, +---+w, =1, the vector wX is an imputation in
the core of the DEA game.

(See Appendix A for a proof.)

However, the reverse is not always true, i.e., there are imputations in the core that cannot be

expressed as wX. We will demonstrate this later in Example 5.

3.3 The Shapley value
The Shapley value ¢,(d) of player i for the DEA min game (N, d) is defined by

ola)- 3 L) a5 gy, @

where s is the number of members of a coalition S. This value is the mathematical expectation of

the marginal contribution of player i when all orders of formation of the grand coalition are

equi-probable. Regarding the DEA-games, we have the following remarkable property.
[Proposition 15]

The Shapley values of the DEA max and min games (N, c) and (N, d) are the same.
Proof: For alliEN , we have

11



=S:I.E§CN%(“?_—S)I[{1—CI(N _S)h-f-av -5+ )]
-3 bk g)oal-s)

By replacingS’' = N - S + {z} and defining s' as the number of members in the coalition S,
the last term turns out to:

3, Bl uis— )

L

§

45'. (@) |

[Example 2]
The Shapley values of the max and min games for the data set given in Table 1 are the same.
Actually, the imputation is (0.44375, 0.30625, 0.15625, 0.09375).

It is proved that the Shapley value of a convex game belongs to the core of the game. Hence,
by Proposition 12, the Shapley value of the DEA min game (N, d) for the 3-player case belongs
to the core. Although the DEA min game with 4 or more players is not necessarily convex, we
can demonstrate that the Shapley value of the 4-player case is included in the core. See
Appendix B for a proof.

3.4 The nucleolus
Let an imputation of the DEA game (N, d) be 2z =(z,,"+,z,). Then we define the excess of each

coalition S as follows:

e($,2)=d(s)- 3z, . (19)

JES

In the DEA game, the excess measures the “degree of unhappiness” of coalition S when z
expresses benefit, but measures the “degree of happiness” when z expresses cost. The nucleolus
is the imputation that minimizes (lexicographically) the maximum excess.

Let 6(z) be the wvector (with 2" components) of the excesses of all
coalitions S C N(S = ¢,N), ordered by increasing magnitude. Le.,

e(z)=(e(Sl:z)""’e(Szn-l’Z)): e(S]’z)a"' Ze(Szn-laz)-

We introduce a lexicographic ordering of the vectors 6(z) , ie, 6(2)>,8(y) if

12



FkEqL,--+,2""}, suchthat e(S',2) =e(S’,y) (i =1,k -1)ande(S*,z) >e(S*,y). Let the
entire imputation set of the DEA game (¥, d) be Z, then the nucleolus of (¥, d) is defined by
w(Z)={z€Z | 8(2) =, 8(y), VyEZ}.
If the core is non-empty, then the nucleolus is included in the core.
The nucleolus of the DEA min game is not necessarily the same as that of the max game, as

contrasted to the Shapley value case. This is demonstrated by the next example.

[Example 3]
The nucleolus of the data set in Table 1 is as follows. For the min game (N, d), it is (0.46, 0.29,
0.16, 0.09), whereas for the max game (N, ¢) it is (0.45, 0.3, 0.15, 0.1).

3.5 On the dominance relationship
We call player A dominates player B if it holds x,, = x,, (Vi) . We have the following dominance

relationship on imputation.

[Proposition 16]
If player A dominates player B, then the Shapley value of A is not less than that of player B.
(See Appendix C for a proof.)

[Proposition 17]
If player A dominates player B, then the nucleolus of A is not less than that of player B.
(See Appendix D for a proof.)

3.6 On the common weight
We began this paper by introducing the most preferable weight selection behavior of players.
Now we return to this subject in the knowledge of the imputation z =(z,,---,z,)induced by
coalitions and allocations, e.g., the Shapley value and nucleolus. The weight
w=(w,, --,w, )ER" associates with the imputation z=(z,,---,z,)ER"via wXER". In an
effort to determine w in the way that wX approximates z as close as possible, we formulate the
following LP with variables wER", s* ER", s ER", pER.

min p

subjectto wx , +s; -s; =z, (j=1,-,n)

Wy b w, =1 (20)

s;sp, s;sp (j=1,-,n)

w20 (i=1--,m), 5s720,s;720 (j=1,-,n),

13



where x; denotes the j-th column vector of X.

Let an optimal solution of this programbe (p”,w’,s*,s™"). Then we have two cases.

[Casel] p° =0

In this case, it holds that z=w"X and so the imputation z is explained by the common
weight w", All players will accept this solution since it represents the common value judgment
corresponding to the cooperative game solution. We note that there still remains the uniqueness

issue of w",
[Case2] p" >0

In this case, we have no common weight w” which can expressz as z=w"X perfectly.

[Example 4]
As Example 2 shows, the Shapley value of the DEA game for the data set in Example 1 is
(0.44375, 0.30625, 0.15625, 0.09375).
For this imputation, the optimal solution of the LP (20) satisfies p* = 0 and hence this game has
a common weight w, =0.41667, w, =0.45,w, =0.13333 that explains the game solution
completely.

[Example 5]
Table 2 exhibits a DEA game with 5 players and 3 criteria.

Table 2: A 5 players and 3 criteria case

Player A Player B Player C Player D Player E Row-sum
Criterion 1 | 0.4 0.4 0.1 0.05 0.05 1
Criterion 2 | 0.4 0.3 0.125 0.05 0.125 1
Criterion 3 | 0.001 0.001 0.01 0.5 0.488 1

The imputation by the Shapley value of this game is displayed in Table 3.
Table 3: The Shapley value

Player A Player B Player C Player D Player E Total

Shapley 0.2064667 |0.190967 | 0.064217 | 0.26755 0.2708 1

The optimal objective value of LP (20) is p" = 0.00264328 with the optimal weight

w; =0.336314, w, =0.185265, w, =0.478421.
Hence this problem has no common weight for expressing the Shapley value. The optimal
weight can approximate the Shapley value within the tolerance p” =0.00264328. Also, this

example demonstrates a counterexample to the reverse of Proposition 14. We examined and

14



confirmed that the Shapley value above belongs to the core. However, it cannot be expressed in
the form wX, as evidenced by the above positive p* = 0.00264328 .

4, Extensions

In this section, we extend our basic model to benefit-cost game and discuss the zero weight
issues.

4.1 A benefit-cost game

So far we have dealt with the DEA game in which the score matrix X represents the superiority
(benefits) of players. However, there are occasions where some criteria exhibit the inferiority
(costs) of players. Thus, the merit of a player is evaluated by the difference (profit) between
benefits and costs.

Suppose that there are s criteria for representing benefits and m criteria for costs. Let
y; (i=1--,5) and x; (i=1,---,m) be the benefits and costs of player j(j=1---,n),
respectively. The merit of player j is evaluated by

Uy  + o,y ) = (vx, +0 +vmxmj),
where u=(u,,---,u,)andv=_v,,---,v_) are respectively the virtual weights to benefits and
costs. Analogous to the expression (1), we define the relative score of player j to the total scores
as follows:

nt

gu,.y,.}. - 2vix,.j
DXAORDEDRAGEN

Player j wishes to maximize his score subject to the condition that the merit of all players is

D)

nonnegative, i.e.

5 mn

zluiyik _Zv:‘x:‘k =0. (k=1-,n) (22)
We can express this situation by the linear program below:

n
uyu 2vx

Sllb_] ect to (23)

;-1u (Zylk _ivi(zx&)=l

1l

su. . —mvx.ao k=1,n
21 xyrk Z ik ( )
v, 20(Vi), u,=0(Vi).

15



Following the same scenario as the DEA game in the preceding sections, we can develop
coalitions and imputations of this benefit-cost game, although the row-wise normalization is not

available in this game.

4.2 Avoiding occurrence of zero weight

In Section 3.6, we presented a scheme for determining the weight w through the program (20).
Eventually, it may occur that a certain weight happens to be zero for all optimal solutions. This
means that the corresponding criterion is not accounted for in the solution of the game at all,
even though the criterion might be taken as an important factor at the beginning. If all players
agree to incorporate all criteria positively into account, i.e., to avoid zero weights, we can apply
the following “assurance region method,” originally developed in the DEA literature, e.g.,
Thompson et al. (1986) and Dyson and Thanassoulis (1988). Let the reference criterion be w,,
for example. We set constraints on the ratio w, vs.w; (i =2,---,m) as follows:

L s&sUI, (i=2,,m)
Wy

where L; andU, denote the lower and upper bounds of the ratio w, /w,, respectively. These
bounds must be set by agreement among all players. Thus, using appropriate bounds, we can

avoid the occurrence of zero weights. The program (7) is now modified as:
 ¢(S) = max S whx,(S)
i=1
subjectto 3 w¥ =1
=1 (24)
wf ,
Llsw_kSUi (z=2,---,m)
1

wy = 0. (Vi)
Refer to Allen et al. (1997) for other settings of weight restrictions.

[Example 6]
A data set with 3 players and 3 criteria is displayed in Table 4 along with its Shapley value in
Table 5.

Table 4: 3 player and 3 criteria data

Player A Player B Player C Row-sum
Criterion 1 0.2 0.4 04 1
Criterion 2 0.5 0.2 0.3 1
Criterion 3 0.6 0.2 0.2 1
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Table 5: The Shapley value of Example 6

Player A

Player B

Player C

Sum

Shapley

0.4

0.3

0.3

1

By solving LP (20), we found p* = O with the optimal weight (w; =0.5, w; =0, w; =0.5).
Moreover, the optimal common weight is uniquely determined. Hence, in evaluating the
Shapley value, Criterion 2 (w, =0) has no role at all. This is also reflected in the same Shapley
score (0.3) of Players B and C, even though Player C has a higher score (0.3) in Criterion 2 than
Player B (0.2). So, Criterion 2 is neglected in this imputation. In order to avoid such

inconvenience, we set constraints on weights, for example, as follows.

05s22<2, 052242 (25)
W, w,

We solved the corresponding program (24) after converting the fractional terms into linear
inequalities and found the Shapley value as displayed in Table 6. Now, Player C is ranked
higher than B in the recognition of Criterion 2.

Table 6: The Shapley value after weight constraints

Player A Player B Player C Sum

Shapley 0.428929 0.271429 0.299642 1

The common weight for this Shapley value is obtained by solving LP (20) and we have
(p" =0,w =0.357143,w, = 0.282143,w, = 0.360714 ) which satisfies all constraints in (25).

5. Applications

We present here some of the potential applications of our DEA game. In the literature of
cooperative game theory, there have been many applications to cost or benefit sharing problems.
The proposed DEA game models demonstrate sharp contrast to them in that we can deal with

these problems under multi-criteria environments that are common to conflicts in our society.

5.1 DEA max game

This game can be applied for the purpose of allocating benefits to players. Typical examples
include research grant allocation to applicants by a foundation. The multiple criteria are, among
others,

1. Novelty of subject.

2, Feasibility of research.

3. Influence on advance of science.
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4. Past records of applicants.
Also, many resource distribution problems for R&D belong to this class. In this case, multiple
criteria are, among others,
1. Short term profitability.
2. Contributions to the future of the company.
3. Spillover effects on the existing technologies of the company.

5.2 DEA min game

Typical potential applications of this model include cost allocation or burden sharing problems.

Each player of this game wishes to minimize his share, although the participants of the game

must pay a certain amount of cost in total. The U.N., NATO and many other international

organizations have this kind of problem. According to a paper by Kim and Hendry (1998), in the

NATO burden sharing case, they have pointed out the following items as the criteria for

benefits.

1. Protection from external threat: The degree of reliance on USA (NATO) protection against
an external threat.

2. Political benefits: The relative size of benefits accrued to NATO members by utilizing
NATO as a policy tool in pursuing their foreign policy goals.
Receipt of economic and military aid: Amount of USA economic and military aid received.
Receipt of economic spin-offs (foreign exchange income): The number of USA troops
stationed in a member nation.

5. Receipt of economic spin-offs (employment in defense industry): The number of workers
employed in world’s top 100 defense contractors.

Kim and Hendry (1998) analyzed this problem within the traditional DEA framework by

incorporating other cost factors as outputs and benefit factors as inputs. Comparisons of both

approaches will present an interesting research task.

5.3 DEA benefit-cost game

This model is applicable for the cases in which every player has both merits and demerits. As an
example, we point to the trilateral relationship in security between Japan, South Korea and USA.
The three countries have been playing crucial role in security in the Far-East Asia since the end
of the Second World War (1945). In fact, Japan and USA have been in alliance as represented by
the Japan-US Security Treaty (1951-present). A similar alliance exists between South Korea and
USA, i.e., the US-ROK Mutual Defense Treaty (1954-present). Though Japan and Korea do
not make a security treaty, a potential military reciprocity through USA exists, e.g., Cha (1999)

called this relationship ‘quasi-alliance.’” Three countries are tightening the cooperative
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relationships in the security matter in the presence of a terrorist country (North Korea). However,
the trilateral cooperation demands measurements of weights that signify the importance of each
country. Although Japan and South Korea have been protected under the nuclear umbrella of
USA, the both countries have a certain geopolitical advantage in the Far-East Asia. Therefore,
this importance should be discussed in multi-criteria environments. This subject comes to the
fore implicitly or explicitly whenever the bilateral or the trilateral cooperation demands burden
sharing for the security maintenance. The burden includes governmental spending for military
preparedness, basing, logistic support and others. In measuring the overall importance of each
country in the bilateral or the trilateral relationship, it is absolutely essential to take into account
multi-criteria regarding the relevant benefits and costs. The benefits include, among others,
1. Protection from external threat (North Korea).
2. Economic benefits achieved through the regional stability.
3. Political benefits.
The costs include, among others,
1. Defense efforts.
2. Supports for the US military presence.
3. Military operational role (risk).
4. Other duties and constraints associated with the alliance.
We can apply our DEA benefit-cost game for this purpose, which is one of our intriguing future
research subjects.

As another example, we cite comparisons of cities by quality of life. The criteria for merits
are represented by such factors as:
Living space per householder.
Educational expenses per student.
Number of hospitals per population.
Area of park per population.
Number of libraries per population.

A e

Income per head.

The criteria for demerits include:

1. Pollution {(emissions of CO2 and noise).

2. Congestion (commuting time).

3. Living expenses (level of prices).

4, Crime (murder case per population).

Although many authors have analyzed this subject, e.g., the Analytic Hierarchy Process
approach by Saaty (1986) and the DEA approach by Zhu (2001), the DEA game approach will
add a new dimension to this field.
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6. Concluding remarks

In this paper, we have introduced a societal dilemma called the ‘egoist’s dilemma’ and studied

its properties by means of data envelopment analysis (DEA) and cooperative game theory. The

DEA game thus defined has two variations, the one the original selfish or bullish max game and

the other the modest or bearish min game. As a special case of linear production games of Owen

(1975), we also found that the DEA game has always a core. We have discussed imputations

based on the cooperative game theory, e.g., the Shapley value and the nucleolus. Specifically,

we found that the Shapley value of the max game coincides with that of the min game. This
might be one of the remarkable characteristics of the DEA game. In Japan, a proverb says

“Modesty (sympathy) is not merely for others’ sake,” reflecting a wisdom of living. In this sense,

the Shapley solution has strong impact on consensus-making among participants of the game.

Furthermore, we have studied the common weight issues that connect the game solution with

the arbitrary weight selection behavior of the players. Regarding this subject, we have proposed

a method for incorporating weight constraints to the game.

Future research subjects include:

1. Studies on the relationship between the core and the Shapley value of the DEA game with 5
or more players.

2. The role of other imputations, e.g., the disruptive nucleolus (Littlechild and Vaidya, 1976),
the proportional nucleolus (Young et al., 1981), the bargaining set (Aumann and Maschler,
1964) and the kernel (Davis and Maschler, 1965).

3. Types of coalition, e.g., partial coalition.

Introduction of the concept of economies of scale to the game, especially to the benefit-cost
game.

We hope this study contributes to opening a new field of research in game theory and data

envelopment analysis, and provokes novel applications for resolution of social and political
conflicts.
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Appendix A (Proof of Proposition 14)
We prove this proposition for the DEA min game case. Since the data matrix X is row-wise
normalized, the grand coalition ¥ has the program (11) as

d(N) =min S}wix,.(N)= 2 w,
" " = (A1)
subject to z w, =1, w, =0(Vi).

el

Hence, d(N)=1 for any w=(w,, --,w,)=0with %w, =1, ie., any point in the simplex is
fm]

optimal. For such a w, we define the vector z=(z,,--,z,) by

2= X)), = Zwiry. (J=Lewwn) (42)
For any coalition .S, we have
Z, = mw.x.. =mw. X =mw.x. S).
3= 3w =S 3= mn ) @
Hence, it holds that
Sz, =d(N)=1. (A4)
jen

Since d(S) is the minimum of the objective function in (11) and w is a feasible solution for (11),

we have
d(8)s 3 wx,(S) (A5)
i=1
and, by (A3), ‘
Sz, 2d(S). ' (A6)
JES
Thus, z(=wX)is an imputation in the core. (]
Appendix B
[Proposition 18]

The Shapley value of the DEA min game (N, d) with 4 players is included in the core.
Proof: Let the four players be 1, 2, 3 and 4. Then we can define the Shapley value of the game (N,
d) as follows:

Hd) = $d(S,, U -d(5,)} (VIEQ234), (8D

where II is the set of permutationsz of all players and S”l,. is the set of players preceding player
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i in the permutation 7¢. For a permutation 7, let m; be the marginal contribution of player i
when the players form the grand coalition in the permutation %, i.e.,
my, =d(S,; U{i})-d(S,,)(ViE{L,23,4}). (B2)
Let m_ be an imputation of the game (¥, d) such that:
m, = (e my,me,my). (®3)

{(m, is an imputation because it satisfies the grand rationality and also satisfies the individual
rationality from the super-additivity of d(-).)
Then we can define the Shapley value of the game (N, d) as follows:

) = G@ @@ @) = S, ®4)

Let p be a mapping such that:
p:IO=1II, pr) = p((1,2,3,4) = (2,1,4,3). (B5)
Then obviously { 7t }={p(7)}=11. Hence we can define the Shapley value of the game (, d) as

follows:

$d) =5 S, ). (86)
If %(m,, +m,.)(Va€I) is included in the core, the Shapley value, which is a convex
combination of% (m_ + M, zy) > i included in the core because the core is also a convex set.
The imputation %(m,, +Mm,,,) (Vo EII) satisfies the individual and grand rationalities
because both m, and m,,, satisfy them. For a permutationz = (1,2,3,4), imputations m,

and m ., are defined respectively by (BZ) and (B5) as follows:

m, =(mL,m2,m’,m
=(d®, d12)-d(1), d4@,23)-d@12), 1-4(1,23)), B7)

and

{1 2 3 4
My = My s My s M iy s M )

=(d1,2)-d(2), d(2), 1-d(124), d(124)-d(12)). (BY)
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We can show that the imputation %(m, +m,.,) (7 =(1,2,3,4)) satisfies the collective

rationality for each coalition as follows:

[Case 1] The coalition {1,2}

[y +my o 1+ [m2 +m2 )]
=[d®)+d(12) -d(2)]+[d(1,2) -d (1) +d(2)]
=2d(1,2).
[Case 2] The coalition {1,3}

1 3
[m, +m, ]+ [m} +mo]

=[d®)+d(1,2)-d(2)]+[d(1,2,3) -d(1,2) +1-d (1,2,4)]
=d()-d(1,2,4) +d(1,23) -d(2) +1.

From Corollary 1 and super-additivity of d(*), it holds that d(1)-d(1,2,4)=d(1,3)-1 and
d(1,2,3) -d(2) = d(1,3), respectively. Hence we have
[, +my 1+ [m) +m3 1= 2d(13).

p(n}

For the three cases of the coalition {1,4}, {2,3} and {2,4}, we can similarly confirm the
collective rationality.

[Case 3] The coalition {3,4}

3 3
[m:r + mp(:r)] + [m; + m;(ir)]

=[d(1,2,3)-d(1,2) +1-d(1,2,4)] + [1-d (1,2,3) + d (1,2,4) - d (1,2)]
=2-2d(1,2).

From Proposition 7, it holds that 2 — 24 (1,2) = 2¢(3,4) . Hence we have
[m; +m 1+ [m) +my 1= 2c(3,4) 2 2d(3,4).
[Case 4] The coalition {1,2,3}

[my +m 1+ 1m2 +m? o 1+1m +m ]
=[d®)+d(1,2)-d(D)]+[d(L2) -dD) +d ()] +[d(1,2,3) -d(1,2) +1-d (1,2,4)]
—d(1,23)+d(12) - d(L24) + 1.

From Corollary 1, it holds that d(1,2) ~d(1,2,4) = d(1,2,3) ~1. Hence we have
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1
pin)

2
Pix)

1+[m +m3 \]=2d(1,2,3).

]4+[m? +m o)

m: +m
[m,

For the case of the coalition {1,2,4}, we can similarly confirm the collective rationality.

[Case 5] The coalition {1,3,4}

[m, + m;(:r)] + [mi + m;(:r)] +[m] + m;(,-:)]
=[dW) +d(1,2)-d(2)] +[d(1,23) -d(1,2) +1-d (1,2,4)]
+[1-d(,23)+d(1,2,4)-d(12)]
=d()-d(1,2)-d(2)+2.
From Corollary 1 and Proposition 7, it holds that d(1)-d(1,2)=d(1,3,4)-1 and
d(2) =1-c(1,3,4), respectively. Hence we have
[my +my 1+ m +m 1+ [my +mb 12 d(L3,4) +c(1,3,4) = 2d (1,3,4).

p(x

For the case of the coalition {2,3,4}, we can similarly confirm the collective rationality.

Thus, summing up, the imputation yz(m,r +m, (VA E) is included in the core

because it satisfies the collective rationality in addition to the individual and grand rationalities.
Hence the Shapley value of the game (N, d) with 4 players is also included in the core. O

[Appendix C] (Proof of Proposition 16)
We can decompose (18) into two terms as follows:

ola)- 5 g g5y -
vy sy as o) .

Similarly, for player B, we have the decomposition:

Ps (d ) = . AET'EBQCN %M {d (T) -d (T - {B})} (C3)
* T A&T,EBQ'CN (t_—.w {d (T) —d (T - {B})} (C4)

where ¢ is the number of members of a coalition 7.
For each coalition S in (C1) there is a coalition 7" in (C3) that has the same membership with

S, and vice versa. For these S and T, we have, since A dominates B,
A(S)=d(T) and d(S -{4})<d(T —{B}).
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Hence, we have an inequality between (C1) and (C3):

d(S)-d(S ~{4}) =d(T) - d(T - {B}).
Similarly, for each coalition S in (C2), there is a coalition T in (C4) that has the same
membership with S except A and B, and vice versa. For these sets S and T, we have, since A
dominates B,

d(S)=d(T) and d(S -{4}) =d(T -{B}).

Hence, we have an inequality between (C2) and (C4):

d(S)-d(S -{A}) =d(T) - d(T - {B}).
Therefore it holds that

$4(d)z4;(d). [

[Appendix D] (Proof of Proposition 17)

Suppose that player A dominates player B and the nucleolus of player A is less than that of
player B, i.e., p, < up where pu=(u,,up, -, 1, )JEEN) is the nucleolus of the game
(N, d). For any coalition T C N with A,B&T , we define the excesses of the coalition
T +{A} and T +{B} as follows:

e(T +{4}, u) =d(T+{A})"ZMi —Hy,

e(T +{B}, u) =d(T+{B})_;.“i ~HUg.

Since A dominates B, we have d(T +{A4}) = d(T +{B}). Hence we have

e(T +{A}, u) > e(T +{B}, n). (D1)
We define a coalition 7" and a real number E such that;
E=e(I" +{d},u)= max e(T +{d},p). D2)

Then it holds, from (D1), that
E >e(T +{B}, u) (VT). (D3)
Let 6(u) be the vector of the excesses of all coalitions S CN (S =¢, N), ordered by

increasing magnitude. Le.,

O(u) = (e(SI,,u),- ":e(SZM » 1)), e(Sla “) Zeenz e(SZM s 14)- (D4)

We divide coalitions {S'} into{S',---,S*'}, {SF%,---,8**"} and {S"*"*l,---,Sz'_l} in

such a way that:
e(S*, W) >e(S*, )= =e(S*", u) = E > e(S*", ). (D5)
Then the coalition T +{4} is included in{S*,---,§**"}. ForVS‘ €{S*,.-+,5*}, it holds,
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from (D2) - (D3), that
A,BES' or A,BES". (D6)

+ ! f - f
We define p), = u, as ‘uA—Z‘uB. Then we have u, <u, =gz < puy. Using u, and

4y, we define an imputation g’ as follows:

Ryt Uyt
..):( A2 3, Azﬂﬂ,ﬂc,...) (D7)

| =g s the s
Then, for VT C N with A,B&T , we have
e, u)=e(T, n), (D8)
e(T +{4,B},u) = d(T +{4,B}) - ;ui ~ My~ Hy
=d(T +{A,B})-zﬂ; — g — py =e(T +{4,B}, ), (D9)
and
e(T +{B}, u')=d(T +{B}) —guf' ~ ty
=d(T +{A})-;#.-' ~py =e(T +{d}, 1)
<d(T +{A})-;ﬂ, —py=e(T +{4}, n)
<E. (D10)

ForVS’ €{S?,---,8%"}, we have, from (D6), (D8) and (D9),
e(S',u")=e(S',u)>E. (D11)

For VS’ €{S***1 ... §¥"} it holds, from (D8) - (D10), that

e(S',u')<E. (D12)
ForVS’ €{S*,---,5**"}, we have, from (D8) - (D10),
e(S',u)sE=e(S', n). (D13)
Furthermore, 3S' =T +{4}&{S*,---,$*"}and it holds, from (D10), that
e(S',u')y<e(S', u)=E. (D14)

From (D11)-(D14), we have 8(u) >, 6(u), ie.,
ek, k+h}, e(S,u)=e(S,u)i=1-,t-Dande(S’,u)>e(S",u).
This leads to a contradiction with the definition of the nucleolus. Therefore, if player A

dominates player B, then the nucleolus of player A is not less than that of player B. ]
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